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Abstract 

Light Detection and Ranging (LiDAR) sensors are popular in Simultaneous Localization and Mapping (SLAM) owing to 

their capability of obtaining ranging information actively. Researchers have attempted to use the intensity information 

that accompanies each range measurement to enhance LiDAR SLAM positioning accuracy. However, before employ-

ing LiDAR intensities in SLAM, a calibration operation is usually carried out so that the intensity is independent of the 

incident angle and range. The range is determined from the laser beam transmitting time. Therefore, the key to using 

LiDAR intensities in SLAM is to obtain the incident angle between the laser beam and target surface. In a complex 

environment, it is difficult to obtain the incident angle robustly. This procedure also complicates the data processing 

in SLAM and as a result, further application of the LiDAR intensity in SLAM is hampered. Motivated by this problem, in 

the present study, we propose a Hyperspectral LiDAR (HSL)-based-intensity calibration-free method to aid point cloud 

matching in SLAM. HSL employed in this study can obtain an eight-channel range accompanied by correspond-

ing intensity measurements. Owing to the design of the laser, the eight-channel range and intensity were collected 

with the same incident angle and range. According to the laser beam radiation model, the ratio values between two 

randomly selected channels’ intensities at an identical target are independent of the range information and incident 

angle. To test the proposed method, the HSL was employed to scan a wall with different coloured papers pasted on 

it (white, red, yellow, pink, and green) at four distinct positions along a corridor (with an interval of 60 cm in between 

two consecutive positions). Then, a ratio value vector was constructed for each scan. The ratio value vectors between 

consecutive laser scans were employed to match the point cloud. A classic Iterative Closest Point (ICP) algorithm was 

employed to estimate the HSL motion using the range information from the matched point clouds. According to the 

test results, we found that pink and green papers were distinctive at 650, 690, and 720 nm. A ratio value vector was 

constructed using 650-nm spectral information against the reference channel. Furthermore, compared with the clas-

sic ICP using range information only, the proposed method that matched ratio value vectors presented an improved 

performance in heading angle estimation. For the best case in the field test, the proposed method enhanced the 

heading angle estimation by 72%, and showed an average 25.5% improvement in a featureless spatial testing envi-

ronment. The results of the primary test indicated that the proposed method has the potential to aid point cloud 

matching in typical SLAM of real scenarios.
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Introduction
LiDAR sensors are active devices that obtain range infor-

mation; they have been extensively employed in SLAM 

applications (Qian et al. 2017; Chen et al. 2018a, b, c; Tang 

et  al. 2015). LiDAR sensors have also become popular 

in autonomous driving applications that utilize SLAM-

based technology to offer a robust positioning solution 
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when Global Navigation Satellite System (GNSS) naviga-

tion signals are degraded or not available (Kallasi et  al. 

2016; El-Sheimy and Youssef 2020). Range information 

is obtained by measuring the time of flight between the 

emitted pulse and the reflected laser echoes from targets. 

�e intensity information that accompanies the range 

information refers to the power strength of the reflected 

laser echoes (Guivant et al. 2000; Yoshitaka et al. 2006). 

However, compared with visual sensors, traditional mon-

ochromatic LiDAR sensors are unable to acquire abun-

dant textures of targets because they operate at a single 

spectral wavelength. Researchers attempted to leverage 

the one-channel intensity information to enhance LiDAR 

SLAM positioning accuracy (Wolcott and Eustice 2015; 

Barfoot et al. 2016; Hewitt and Marshall 2015). However, 

we consider that there are two inherent shortcomings in 

this method:

1. �e intensity is only obtained from a single spectral 

wavelength, which is insufficient for feature extrac-

tion and certain target classification. In general cam-

era-based solutions, RGB images refer to three-chan-

nel information in the visible spectrum. Additional 

spectral information or channels are preferable for 

this application.

2. LiDAR intensity values are determined by many 

extrinsic factors including range, laser incident angle, 

and material reflectivity (Khan et al. 2016; Singh and 

Nagla 2018; Jeong and Kim 2018; Engelhard et  al. 

2011). �e incident angle of the laser beam has to be 

calculated according to the slope of the target sur-

face or line. Although some line extraction methods 

have been proposed, it is still difficult to obtain these 

parameters robustly. �e line slope calculation proce-

dure significantly complicates the data processing.

Despite these problems, efficient and robust application 

of LiDAR intensity in SLAM is important to the research 

community. �e important issue is to determine a robust 

technique to render the LiDAR intensity immune to the 

range and incident angle. In this study, an eight-channel 

tuneable hyperspectral LiDAR (HSL) with spectral wave-

length ranging from 650 to 1000 nm (650, 690, 720, 760, 

800, 850, 905, and 1000 nm, labelled as Channel 1–Chan-

nel 8, respectively) was designed, and the instrument 

was employed to generate point clouds accompanied by 

eight-channel spectral intensity information (Kaasalainen 

et al. 2007, 2016; Chen et al. 2010; Hakala et al. 2012).

In HSL, a supercontinuum (SC) laser beam is emitted 

at regular intervals to obtain point clouds. �is guar-

antees that all laser pulses from the employed channels 

are reflected by the target with identical surfaces. �us, 

the intensity ratio value between two different spectral 

channels’ intensities is obviously independent of the 

range and incident angle. �e ratio values are deter-

mined only by the power of the emitted laser beam and 

the target surface reflectivity at a specific wavelength. 

Since the power density of the laser source is stable, cer-

tain features related to the target surface reflectivity can 

be extracted from the intensity measurement. Compared 

with the complicated intensity calibration processing in 

single-wavelength LiDAR, the ratio method is practical 

and straightforward. Overall, the contributions of this 

study are summarized as follows:

1. More spectral features or textures of the targets are 

obtained with the ranging information simultane-

ously. �e HSL sensor was the first sensor to collect 

this information actively and simultaneously without 

any data registration or coordinate transformation 

issues. Compared with the RGB-D sensor, data reg-

istration between the RGB camera and depth camera 

is avoided; moreover, the HSL is insensitive to envi-

ronmental illumination unlike the RGB camera sen-

sor.

2. With the spectral ratio value vectors, features are 

extracted robustly according to the target surface 

reflectivity. Since the spectral reflectivity of the tar-

get is determined by the surface material, the simi-

larity of the spectral ratio value vector can determine 

whether the points are from identical materials. 

Complicated calibration procedures are not needed 

for LiDAR intensity processing for the proposed 

method in SLAM.

�e remainder of this paper is organized as follows: 

“System and method” section illustrates the design of 

the hyperspectral LiDAR, introduces the spectral feature 

extraction method in detail, and presents the motion esti-

mation procedure. “Field tests and result analysis” sec-

tion discusses the field test results and analysis. Finally, a 

conclusion is drawn.

System and method
�is section introduces the traditional SLAM. �en, the 

HSL system and the proposed model are introduced. 

“Traditional SLAM” section presents the traditional 

SLAM using single-wavelength LiDAR as a range sen-

sor. �e HSL system design and implementation are 

described in “Hyperspectral LiDAR” section. “Intensity 

model” section describes the intensity model for single-

wavelength LiDAR considering certain parameters, for 

instance, range, incident angle, and material reflectivity. 

�e proposed spectral ratio method, and the calcula-

tion is given in detail in “LiDAR intensity calibration free 

method” section. “Motion estimation” section reveals 
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the motion estimation procedure with ratio value vector 

matching.

Traditional SLAM

�e SLAM combines positioning and mapping process-

ing in a single framework. It is a problem to build a map 

of an unknown environment by traversing it with range 

sensors (laser, sonar, etc.) mounted on a platform by 

matching the spatial features extracted from two or more 

consecutive frames of range measurements to directly 

obtain the movement of the platform with various algo-

rithms while simultaneously determining the location on 

the map. Figure  1 presents a typical structured indoor 

map generated by a backpack SLAM system employ-

ing a Voledyne VLP-16 laser scanner and an X-sense 

Micro-electromechanical System (MEMS) Inertial Meas-

urement Unit (IMU). �e red point is the point cloud col-

lected by the backpack SLAM carried by a tester without 

a loop closure correction. �e blue point is the reference 

point cloud collected by a Leica P40 laser scanner operat-

ing in terrestrial laser scanning mode. It can be observed 

that the SLAM-generated map (red) coincides with the 

reference data. However, SLAM performance deterio-

rates in featureless environments where the matching 

errors significantly increase. �e drift errors of position 

and heading angle estimation derived from SLAM will 

accumulate over time in an exponential manner.

Hyperspectral LiDAR

Figure  2 presents the employed components for the 

HSL. First, an SC laser source is used as the “white” laser 

source with a spectral band from 450 to 2400  nm (the 

spectral power intensity of the SC laser source is pre-

sented in Fig.  3) (Kaasalainen et  al. 2007, 2016; Chen 

et al. 2010, 2019; Hakala et al. 2012; Li et al. 2019; Jiang 

et  al. 2019). Second, an Acousto-Optic Tuneable Filter 

(AOTF) is installed after the SC laser source. �e filter 

enables a continuous spectral wavelength selection with a 

filtering resolution of 2–10 nm in the time domain (Chen 

et al. 2019; Li et al. 2019; Jiang et al. 2019).

�en, a collimator is employed to collimate the laser 

beam before a reflector mirror reflects the laser beam to 

the target. A Cassegrain optics system is utilized to col-

lect the backscattered laser echoes, and an Avalanche 

Photodiode (APD) sensor module with an integrated 

amplifier is adopted to collect those reflected echoes 

from the target. All waveforms of the laser beam are sam-

pled and collated by a linked high-speed oscilloscope. 

Range information and spectral intensity are acquired by 

processing the raw waveforms. �e sampling frequency 

is 5  GHz which equals a 3-cm ranging resolution. �is 

Fig. 1 Typical structured indoor map generated by a backpack SLAM system
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approximates the resolution in commonly used laser 

scanners, for example,  HOKUYO® UTM-30LX. With the 

rotation of the device, the HSL can yield point clouds of 

the environment.

Intensity model

In this paper, LiDAR intensity refers to the received 

power of the returned pulse from the targets. Some cor-

responding models have been published (Kallasi et  al. 

2016; El-Sheimy and Youssef 2020; Guivant et  al. 2000; 

Yoshitaka et al. 2006; Wolcott and Eustice 2015; Barfoot 

et  al. 2016; Hewitt and Marshall 2015). According to 

these previous investigations, LiDAR intensity is always 

influenced by certain intrinsic and extrinsic parameters. 

Specifically, the intrinsic parameters include the power of 

the emitted laser beam and atmospheric attenuation; the 

extrinsic parameters include the reflectivity of the target, 

transmitting range, and incident angle. Considering these 

factors, a common intensity model is given as Eq. (1):

where PR refers to the received signal power, PE is the 

emitted signal power, ρ is the reflectance of the target, 

and θ is the incident angle between the target surface 

normal vector and the laser beam incident on the tar-

get. R is the range between the target and LiDAR. ηstm 

and ηsys describe the systematic and atmosphere factors, 

respectively.

In this model, assuming that PE is unchanged and the 

targets are Lambertian reflectors, the backscatter sig-

nal strength has a major portion in the incident beam 

direction.

LiDAR intensity calibration free method

Assuming that there are N spectral channels available 

for this HSL configuration (considering the data storage 

and practical hardware investment, eight channels are 

selected in this research), the received power at wave-

length �i can be written as Eq. (2) according to the inten-

sity model of Eq. (1):

where PR

�i
 is the received signal power, PE

�i
 is the emit-

ted signal power, and ρ�i
 is the reflectance of the target. 

θ refers to the incident angle between the target surface 

and the laser beam projected on the target. ηstm and 

ηsys describe the systematic and atmospheric factors, 

respectively. R refers to the range between the target and 

LiDAR.

With the characteristic that all spectral channels of the 

HSL have the same incident angle θ and range R , a ratio 

(1)PR =

πPEρ cos (θ)

4R2
ηstmηsys

(2)P
R
�i

=

πP
E
�i
ρ�i

cos (θ)

4R2
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�i
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Fig. 2 Schematic design of HSL
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variable is defined using a channel as reference (the chan-

nel can be randomly selected). �e new model is written 

as Eq. (3).

where ratio�i
 is the defined ratio for the channel with 

wavelength �i ; P
R

ref
 is the received signal power of the 

selected referenced spectral channel; η
stm

ref
 and η

sys
ref  

describe the systematic and atmosphere factors of the 

reference channel, respectively; ρ�i
 is the reflectance of 

the target for spectral wavelength �i ; P
R

�i
 is the received 

signal power of the �i spectral channel; and ηstm
�i

 , η
sys
�i

 

describe the systematic and atmosphere factors for the �i 

spectral channel, respectively.

According to Eq.  (3), the ratio value is determined by 

three major elements: the emitted power of the laser 

beam, reflectivity of different materials for the distinct 

spectral wavelength, and systematic and atmosphere fac-

tors. Figure  2 shows the power density for the corre-

sponding spectral wavelengths ranging from 450 to 

2400 nm; the emitted signal strength varies for different 

spectral wavelengths. However, the laser source has an 

almost fixed power density curve, and the emitted power 

strength is stable. 
P
E

�i

P
E

ref

 is a constant value termed as k�i
 , 

which is associated with a specific spectral wavelength.

With regard to the systematic and atmospheric factors, 
η
stm
�i

η
sys
�i

η
stm
ref η

sys
ref

 can be also regarded as a constant value η�i
 , which 

differs slightly in the distinct spectral wavelength. Hence, 

Eq. (3) can be simplified as

In Eq. (4), ρ�i
 and ρref are determined by the laser beam 

wavelength and the target material. k�i
 and η�i

 are only 

associated with the specific spectral wavelength. �us, 

for a dataset with N  points, the following spectral ratio 

vector O�i
 at �i wavelength can be obtained.

Obviously, the ratio vector can be employed for target 

classification without LiDAR intensity calibration.

Motion estimation

In the proposed hyperspectral LiDAR-simultaneous 

location and mapping (HSL-SLAM), after obtaining two 

consecutive laser scanning data, the motion estimation 

(3)ratio�i
=

P
R
�i

P
R
ref

=

P
E
�i

P
E
ref

ρ�i

ρref

η
stm
�i

η
sys
�i

η
stm
ref η

sys
ref

(4)ratio�i
= k�i

ρ�i

ρref

η�i

(5)O�i
=

[

ratio
1

�i

, ratio
2

�i

, . . . , ratio
N

�i

]

occurs in the following three steps. �is is also presented 

in Fig. 4.

1. �e defined ratio values are calculated according to 

the collected multichannel spectral information from 

Eqs. (3) and (4).

2. �e spectral ratio vector, which is calculated in 

Eq. (5), is applied to match the consecutive scanning 

data.

3. A SLAM algorithm, which is a classic ICP algorithm 

in a case study, is employed to estimate the motion 

and heading angle with the matched range informa-

tion from Step 2.

Field tests and result analysis
After illustrating the HSL design and proposed cali-

bration-free method, this section aims to demonstrate 

the feasibility of the method on indoor SLAM through 

a field test. �is section is divided into four parts: (1) 

“Experimental setup” section introduces the experi-

mental setup, including the HSL settings, experiment 

scenario description, and operations; (2) “Spectral ratio 

vector results” section presents the details of the spec-

tral ratio vector values at the selected 650-nm wave-

length; (3) “Motion estimation” section performs the 

 

Fig. 4 Motion estimation procedure
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motion estimation process and results; and (4) the last 

subsection discusses the results.

Experimental setup

�e field test scenario is presented in Fig.  5. An HSL 

hardware prototype is constructed and employed for 

scanning a corridor environment. A step motor is uti-

lized to horizontally rotate the laser beam with a half-

degree angular resolution. �e laser source is capable of 

emitting a laser beam covering a Spectral Range from 

Visible (VIS) to Shortwave Infrared (SWIR) band. Eight 

spectral channels are adopted in this research with centre 

frequencies at 650 nm (Channel 1), 690 nm (Channel 2), 

720 nm (Channel 3), 760 nm (Channel 4), 800 nm (Chan-

nel 5), 850  nm (Channel 6), 905  nm (Channel 7), and 

1000 nm (Channel 8) with a 5-nm spectral bandwidth.

As illustrated in Fig. 5, a field test was carried out in a 

corridor with few spatial features, and the point clouds 

with spectral data were collected from four consecutive 

positions along the corridor with a 60-cm displacement. 

At each position, HSL collected 24 points horizontally 

from each scan on a step with an angular resolution of 

0.5°. �e point cloud consists of a horizontal scan line of 

11.5° on colourful paper targets pasted on a flat window 

glass, as Fig. 6 shows. �e four positions are named Site 1 

to Site 4 and are located from the farthest to closest posi-

tions at the end of the corridor. During the test, HSL was 

moved along the corridor from Site 1 to Site 4 to simulate 

SLAM operation, while the heading direction was kept 

constant.

Figure  7 illustrates the scans for Site 1, Site 2, Site 3, 

and Site 4; the points contained in each scan were named 

point 1–point 24 clockwise. Since all of the papers were 

pasted on flat glass, we could observe few spatial features 

in these line scans. Traditional SLAM algorithms cannot 

extract meaningful spatial features, and it is difficult to 

locate the carrier robustly in such spatial featureless envi-

ronment. However, abundant spectral features contained 

Fig. 5 HSL hardware prototype and data collection

Fig. 6 Colourful papers pasted on scan line
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in HSL measurements can be extracted to contribute a 

more robust position solution.

Spectral ratio vector results

To demonstrate the feasibility of the proposed LiDAR 

intensity calibration-free method, point clouds acquired 

from the green paper were adopted as an example and 

processed with the method. Figure 8a presents the ampli-

tude of the raw wavelength signals of Point 19 and Point 

24 from the green paper at Site 1, which was extracted 

from the raw waveforms. Figure  8b illustrates the ratio 

values of the LiDAR-derived intensity of these two 

points. Specifically, in this paper, the intensity refers to 

the amplitude of the reflected laser echoes. In addition, 

the ratio values were calculated by employing the 800-nm 

wavelength’s spectral intensity as a reference. �e calcu-

lation is shown as Eq. (6):

(6)
ratio

j
�i

=
r
j
�i

/

r
j
�ref

; j = 1, . . . , 24;

�i = �1, . . . , �8; �ref = 800 nm

where j is the points’ index, �i is the spectral channel 

index, and �ref is the selected reference Channel 5 with an 

800-nm wavelength.

�rough Fig. 8a, it is difficult to determine whether the 

two measurements were collected from the same object 

merely based on the intensity values without calibration. 

Meanwhile, as demonstrated in Fig.  8b, they are almost 

identical after being processed by the proposed method. 

Consequently, for the same target, the spectral ratio 

vectors are identical for the signals collected at distinct 

angles and ranges.

As presented in Fig. 6, the pink paper was placed close 

to the green paper. Figure 8c shows the pink paper ratio 

values and green paper ratio values, which were differ-

ent at wavelengths of 650 nm, 690 nm, and 720 nm. Fur-

thermore, for the 8 groups of 24 points obtained from 

different channels, the ratio values of echo intensities at 

Channel #01 (650 nm) and Channel #05 (800 nm) were 

calculated for each site and are presented in Fig. 9. A dra-

matic decrease in ratio values can be seen. A decrease in 

the ratio value curves occurred between Point #18 and 

Point #19 at Site #01, Point #19 and Point #20 at Site #02, 

Point #19 and Point #20 at Site #03, and Point #20 and 

Point #21 at Site #04 respectively. �ese are indicated 

at the border of the pink paper and green paper and are 

marked in Fig. 10. �e pink paper and green paper were 

distinctive in their ratio values. �us, the presented ratio 

vector could be employed for the consecutive laser scan-

ning matching.

Limited by the spectral wavelength setting in this 

paper, only pink and green paper could be classified, and 

the other papers did not present significant differences 

at the selected wavelength of Channel #01 (650  nm) as 

the difference between green and pink papers. However, 

optimal spectral channel configuration for indoor SLAM 

should be investigated in future.

Point clouds
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Fig. 7 Laser scanning point clouds for Site #01, Site #02, Site #03, and 

Site #04 (24 points for each scan)

Fig. 8 Pink and green paper ratio values compared at Site #01
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Motion estimation

As previously mentioned, motion estimation in this paper 

was conducted in three steps: spectral feature extract-

ing, matching, and estimation. In “Spectral ratio vector 

results”, the spectral extraction results were presented, and 

the matching was conducted by aligning the spectral ratio 

vectors. Figure 9 shows the spectral ratio values of Channel 

#01 against Channel #05. A rule was set to convert the ratio 

vector to a binary vector. �is is expressed as follows:

where bi is the converted ratio value, and δ is a threshold 

value which empirically equals 0.3 in this research.

(7)bi =

{

1, while ratio > δ

0, while ratio < δ
; (i = 1, . . . , 24)

a b

c d

Fig. 9 Spectral ratio vector for Site #01, Site #02, Site #03, and Site #04 (Channel #01/Channel #05)

Fig. 10 Marked spectral features with wavelength settings
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By matching the converted binary vectors, the point 

clouds were matched between the consecutive laser scan-

ning. �en, the matched point clouds were applied in 

an ICP algorithm for motion estimation (Rusinkiewicz 

and Levoy, 2001). Here, the iteration step was set to 20. 

Table  1 lists the positioning and heading errors using a 

classic ICP. Specifically, the positioning errors stayed 

within 0.10 m, and the heading errors were all below 0.5°. 

�e motion estimation was conducted at local coordi-

nates (illustrated in Fig. 5) for which Site 1 was the origi-

nating point. Table  2 lists the motion results estimated 

using ratio vector matching and a classic ICP.

Discussion

From a comparison of the results between Tables 1 and 

2, both traditional ICP and ICP aided by spectral features 

exhibited similar positioning errors, but the proposed 

method exhibited improved heading estimation by using 

the ratio vector matching operation before ICP. In par-

ticular, for the p heading estimation at Site #03, the two 

methods showed similar results because the spectral fea-

ture points offered identical feature indices for match-

ing at Sites #02 and Site #03. �us, the ratio value vector 

matching did not influence the results at Site #03.

�e estimated heading results using spectral fea-

tures for the scanning matching have better accu-

racy when compared to classic ICP. In the classic ICP 

case, the incoming laser scan has no feature changes in 

heading estimation since it scans a flat surface and the 

LiDAR range measurement noise is the only stochastic 

noise source which affects heading estimation. How-

ever, when spectral feature information (Fig.  9) is inte-

grated with range measurements, the average heading 

estimation error decreases from 0.110° to 0.082° (with 

spectral information). For the best case in Site #02, the 

proposed method can enhance heading estimation by 

72%. However, the positioning error is not efficiently 

mitigated. �e explanation is straightforward: the point–

point match strategy of ICP can extract information 

to detect the movement in consecutive scans, which is 

60  cm along the corridor on the X-axis of local coordi-

nates, as Fig.  5 shows. �us, the enhancement intro-

duced by the spectral information is limited. �e nature 

of partly matching consecutive laser scans of ICP causes 

the heading estimation to drift quickly; the accumulated 

errors will cause the position accuracy to decrease with 

time. �erefore, the proposed method can supply a more 

robust SLAM solution by using spectral features inherent 

to the targets.

SLAM performance is poor in spatially featureless 

environments where the matching errors can signifi-

cantly increase owing to the lack of matching spatial 

features. From the test cases, we can easily draw a pre-

liminary conclusion: the spectral-feature-aided SLAM 

can enhance the indoor positioning especially in heading 

estimation by utilizing the spectral information collected 

by the HSL.

Nevertheless, with the current spectral channel con-

figuration, the HSL cannot discriminate the spectral dif-

ference between all cases of two neighbouring papers. 

�e major reason is that currently, most selected wave-

lengths are in a near-infrared band in which the spectral 

profile of different papers is similar. �e spectral channel 

selection should be optimized with the spectral proper-

ties of the targets, for example, the channels from 450 to 

650 nm should be optimized even with the weak power 

density of the SC source in that spectrum range.

Conclusion
�is paper presented a new method utilizing LiDAR 

intensities to aid in point cloud matching. An eight-

channel HSL ranging from 650 to 1000 nm was selected, 

and the objects’ spectral profiles were collected. A ratio 

value was defined based on multispectral information 

to exclude the influence of the range and incident angle 

on the LiDAR intensities. A field test was conducted to 

demonstrate the effectiveness of the proposed method. 

According to the results, we arrive at the following 

conclusions:

1. �e HSL was able to collect the spectral information 

of the targets, and the defined spectral ratio vector 

can help classify various objects, which was signifi-

cant for spectral feature searching.

2. �e ratio vector matching was effective for improv-

ing motion estimation. When conducting motion 

estimation aided by ratio vector matching, although 

the position errors had minor differences, the head-

ing estimation had improved accuracy.

Table 1 Positioning and heading errors (ICP)

Errors Site #02 Site #03 Site #04

Positioning errors (m) − 0.063 0.035 0.010

Heading errors (°) 0.046 − 0.130 − 0.155

Table 2 Positioning and  heading errors using spectral 

features (ICP + feature matching)

Errors Site #02 Site #03 Site #04

Positioning errors (m) − 0.062 0.035 0.010

Heading errors (°) 0.013 − 0.129 − 0.103
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In this study, the primary results of investigating the 

ability of the HSL to assist in point cloud matching occur 

in a very limited scenario. Future work is as follows:

1. A feasible and optimal channel selection for the HSL 

will be carried out. Improved channel selection and 

setting are essential for point cloud classification and 

ratio vector matching.

2. Complex indoor datasets will be collected to evalu-

ate the proposed method in detail; we are firmly con-

vinced that HSL has great potential in SLAM. Fur-

thermore, a new advanced method will be designed 

to process point clouds with abundant spectral infor-

mation.
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