
����������
�������

Citation: Ahn, E.; Hur, J. A Practical

Metric to Evaluate the Ramp Events

of Wind Generating Resources to

Enhance the Security of Smart Energy

Systems. Energies 2022, 15, 2676.

https://doi.org/10.3390/en15072676

Academic Editor: Fabrice Locment

Received: 25 February 2022

Accepted: 30 March 2022

Published: 6 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

A Practical Metric to Evaluate the Ramp Events of Wind
Generating Resources to Enhance the Security of Smart
Energy Systems
EunJi Ahn and Jin Hur *

Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul 03760, Korea;
a.eunji@ewhain.net
* Correspondence: jhur@ewha.ac.kr; Tel.: +82-2-3277-6050

Abstract: The energy industry, primarily based on the use of fossil fuels (e.g., coal and oil) is rapidly
shifting toward renewable energy for securing sustainable resources. Thus, preparing for large wind
power ramp events is essential to retain reliable and secure power systems. This study proposed
a new statistical approach to predict wind power ramp events, and evaluated the performance of
prediction. The empirical data, which is the observed wind power output data and wind speed
data from Taebaek (South Korea) were used for analyzing ramp events and for evaluation. Based
on the data analysis, a practical metric for evaluating the performance of wind power ramp events
forecasting was developed and presented in detail. Notably, the accuracy of forecasting was evaluated
through various metrics, whereas the normalized mean absolute error (NMAE) analysis demonstrated
≤ 10% values for all the analyzed months. In addition, a system review was conducted to check if
the methodology suggested in this study has helped enhance the security of power systems. The
results show that evaluating and considering the ramp events can improve the accuracy of wind
power output forecasting which can secure the smart energy systems.

Keywords: ramp event; wind power generation; renewables

1. Introduction

As renewable energy accounted for 26.2% of the global electricity generation in 2018
and is expected to rise to 45% by 2040, it can be deemed as the fastest growing energy
source worldwide [1]. Although renewable energy is essential for the electricity sector,
some challenges have to be resolved when integrating a large amount of wind power into
the grid. The increase in wind turbine penetration in electrical power systems will begin to
influence the overall power system behavior, such as changing the average inertia of power
systems, voltage stability, and wind power operation plannings [2,3]. The lower system
inertia can increase the requirements for the primary frequency control reserves to cut off at
the same minimum frequency due to sudden loss of generation [4]. In the aspects of voltage
stability, which refers to the power system’s capability to maintain constant voltage on all
buses after the disturbance at a given initial operating point, due to voltage hollows and
frequency fluctuations, production is often disconnected during network accidents. This
disconnection can lead to a severe imbalance in production and consumption, which in turn
can accelerate the occurrence of serious accidents in the network. Therefore, it is important
to keep the voltage stable in the network for proper power system operation [3,5]. Likewise,
as many previous studies focused on problems caused by the integration of wind power
into the power system, this study also considered solving the variability and uncertainty
caused by wind power generation.

Due to the variability and uncertainty of renewable energy, wind farms are affected
by large fluctuations that can cause a potential disaster. These fluctuations can be defined
as “ramp events”, which represent local events in a wind power time series and are
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characterized by a sharp variation in power. A positive power change event at every
time interval is defined as a “ramp-up”, while the negative one is referred to as a “ramp-
down” [6]. According to the time and geographic scale over which the ramp event occurs,
both ramp-ups and ramp-downs can exhibit variable levels of severity and can cause both
financial and physical impacts. During ramp-ups, wind farms are often curtailed as the
electricity surplus cannot be dispatched. This naturally triggers the loss of potential profits
because wind farm owners have to compensate for additional costs, being unable to meet
specific loads. Moreover, wind power ramps can negatively affect electric system stability
and can cause drastic consequences such as power outages [7]. Although the current power
system can be used for managing small amounts of uncertainty and variability, ramp events
are a critical issue, given the sudden and large changes in wind power [8].

Generally, ramping events are characterized by the following features: ramping
start/end, ramping duration, rate, and magnitude. Although the magnitude and du-
ration may vary for each ramp, a ramp can notably maintain a certain large gradient during
consecutive time steps of the time series [9]. These key features have been used in numerous
studies that attempted to define a ramp event. For instance, Ferreria et al. [10] provided
an overview of different ramp definitions and approaches in ramp event forecasting. In
other words, ramp definitions and factors have to be comprehensively considered, while
ramp forecasting should be accurate. Greaves et al. [11] defined a ramp as a change in
wind power output that is at least 50% of the installed wind capacity and occurs within
a time span of ≤4 h. In addition, Gallego et al. [12] defined four types of ramps based
on the three characteristics: power change magnitude, direction, and duration. Using
these definitions, the swinging door algorithm is also applied to extract ramp events from
actual and forecasted wind power time series. The paper concluded that the wind power
forecasts improved the accuracy of the wind power ramp forecasting, especially during
the summer. In our study, similar but vice versa, we revealed that the wind power ramp
forecasting has improved the accuracy of the wind power forecasts, especially during June.
Zheng and Kusiak [13] utilized the rate of change in wind power output over a 10-min
interval to define ramps. The authors introduced the characteristics for ramp events, four
ramp definitions and two ramp forecasting models. For the ramp forecasting methods,
we focused on wind power ramp detection [14], which utilizes an optimized swinging
door algorithm (OpSDA) to efficiently detect ramp events. Furthermore, in [15], a novel
improved dynamic swinging door algorithm is applied to extract ramp segments. Then
the dynamic programming method identifies ramp trend and combines ramp segments.
Bossavy et al. [16] suggested two methods for forecasting the uncertainty of the power pro-
duction, which currently represent the state-of-the-art probabilistic forecasting model and
ensembles. Also, a Gaussian process, which is based on linear program for forecasting ramp
events was suggested by [6]. Although these studies greatly advanced state-of-the art ramp
event definition and detection, novel standards for ramp events need to be introduced.

To this end, our study proposed a new statistical approach for forecasting wind power
ramp. This approach represents a practical metric to evaluate the forecasting performance
of ramp events in wind generating sources and to enhance the security of smart energy
systems. We used data from the wind farm ‘A’ in Taebaek, Gangwondo (South Korea). As
the main objectives of this study, we (1) analyzed the seasonal and hourly characteristics of
wind ramp in 2018, (2) provided the values that can be used as a standard when forecasting
ramp events or ramp rates, (3) utilized the obtained values to forecast the ramp rate of wind
power outputs, (4) conducted a power system review using the empirical data and the actual
power system in Korea. These results will allow effective usage of the ramping information
in power system operations. Notably, the efficiency of the wind power output ramp is
important, as it can help wind farms prepare for ramping events. Moreover, improving the
accuracy of wind power ramp forecasting can reduce the discrepancy between the forecast
and actual wind power output, thereby enhancing the ramp forecasting performance and
reducing wind integration costs.
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The remainder of this paper is organized as follows. In Section 2, ramp events and
ramp rate are defined in a novel way. The new definition laid the foundation for the
data analysis, performed with the data obtained from Taebaek, South Korea. Especially,
Section 2.3 uses the results from Section 2.2 to quantify a new standard value for seasonal
ramp rate. Then, wind power output ramp forecasting was performed using standard
values that were newly established through this study. The practical metric for evaluating
the ramp events is also suggested. Section 3 describes the results for wind power output
forecasting based on ramp event prediction. In addition, the results for the system review
by applying the proposed methodology to the real power system were described and
analyzed to verify the capability of the method. Finally, Section 4 presents the conclusion
and a discussion for future work.

2. Materials and Methods

Since wind power generators are basically uncertain and volatile, in order to apply
their data to the operation and planning of the system, the need for improved understand-
ing of variability in wind power production is increasingly pressing [17]. This section
provides a methodology for stable operation of the power system by overcoming problems
related to variability and uncertainty of wind energy through ramp prediction.

2.1. Ramp Events and Ramp Rate

Wind power ramp events are large fluctuations in the wind power in a short time
interval, which can cause unexpected variations in the electric power grid. Ramp is
characterized by different time and geographic scales. From a directional perspective,
ramps can be classified as upward (ramp-ups) and downward (ramp-downs) types. Figure 1
illustrates the ramp curve that has ramp-up, ramp down and steady state. On one hand, an
increase in wind power, being driven by intense low-pressure systems, low-level jets, and
thunderstorms, may trigger upward ramps [10]. On the other hand, downward ramps are
driven by the reduction in wind power or when high-speed winds cause wind turbines
to reach cut-out limits (22–25 m/s), and shut down to protect the wind turbine from
damage [18]. Generally, a downward ramp is riskier than an upward ramp due to the
limited availability of reserve power [19].
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It is somewhat challenging to define a ramp event, which can be constrained by numerous
parameters [20–22]. Many studies have been defining ramp events continuously, and general
definitions for ramp events are summarized refer to the current research [8,11,23].
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A. Ramp magnitude

The first definition of a ramp event considers the magnitude of the wind power change.
In this definition, significant ramp is defined as a change in wind power that is larger than
30% of the installed wind capacity and is expressed as follows.∣∣∣P(t+∆t) − Pt

∣∣∣ > Pval (1)

Pt refers to the power signal. The parameter ∆t is related to the ramp duration, and
it defines the size of the time interval considered to identify the ramp. The parameter
Pval is related to the ramp magnitude function, which provides a cut-off level of power
changes. A ramp event is considered to occur at the start of the interval if the magnitude of
the increase or decrease in the power signal at the time ∆t ahead preceding the interval is
greater than a predefined threshold value. The values on the end points of the interval are
only considered and the ramps occurred in the middle are ignored.

B. Ramp magnitude and Duration

The second definition defines important ramps based on both the magnitude and
duration of wind power changes. An important ramp is defined as a change in wind power
output that is greater than 25% of the installed capacity and that occurs within a time range
4 h or less, which can also be expressed through Equation (1). Here, ∆t, the duration of the
ramp is less or equal to 4 h, and Pval , the threshold value, is considered to be 25% of the
installed capacity.

C. Ramp change rate

The third definition for important ramps is based on the ramp change rate of wind
power. Ramp events are considered to occur when the ratio between the absolute difference
of power measured at two points, initial and final points of time interval, and the magnitude
of the time interval ∆t is greater than a predefined reference value (i.e., power ramp rate
value or PTval). PTval is the threshold value of change rate in wind power output.∣∣∣P(t+∆t) − Pt

∣∣∣
∆t

> PTval (2)

The ramp type can be identified using the relative position of the extreme point in time
within the interval. If the maximum output occurs after the minimum output, it becomes
an upward ramp, otherwise it is defined as a downward ramp.

D. Ramp Direction, Magnitude, and Duration

The last general definition of important ramps considers the change direction, mag-
nitude, and duration of wind power. Upward ramp is identified when the change in
wind power is greater than 20% of installed capacity within the time span of 4 h or less.
Downward ramp is defined when the change in wind power is greater than 15% of installed
capacity within a time span of 4 h or less. PTup

val represents the upward ramp threshold
value, and PTdown

val represents the downward ramp threshold value. Ramp timing is defined
as the point when the filtered signal achieves a local maximum.

P(t+∆t) − Pt > PTup
val (3)

P(t+∆t) − Pt > PTdown
val (4)

Based on the definitions suggested by various research, we have newly defined
the ramp event, which considers ramping duration and ramping magnitude. The ramp
definitions proposed by this study are as follows. Let Rt be a ramp function. This function
can be defined in several ways, all involving power production (Pt) criteria at the wind
farm or wind turbine. The Rt used in this study is defined as a ratio between the power
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currently measured and the power measured time ∆tr ahead. Subscript “r” stands for a
ramp events. The time interval is assumed to be 1 h, which can be written as Equation (5).

Rt = Pt−∆tr /Pt (5)

After defining a ramp event, the ramp rate can also be defined. The ramp rate is the
increase or reduction in output per minute. On this basis, the ramp rate can be calculated
by using Equation (6):

Ramp Rate (%) =
Ramp (Rt)

Installed Capacity
× 100 (6)

The ramp rate is obtained through dividing the ramp value (Rt) by the installed
capacity. Ramp is the value calculated by Equation (5), and the installed capacity of the
power generation is defined as 16 MW in this study. The ramp rate derived every month
by hour was averaged to determine the seasonal trend. The following section describes the
data used in this study and the data analysis results.

2.2. Data Description

The historical wind power and wind speed data were collected from the Mountain
Taebaek wind farm ‘A’ in Gangwon-do, South Korea for the 1 January–31 December 2018
period. It is a SCADA data obtained from a real wind farm in Taebaek. Since South Korea
has a day-ahead market structure and the dispatch is made every hour, we have used the
empirical wind data with the time interval 1 h for analysis. We have received the data from
the transmission owner in South Korea, which has completed the data preprocessing so
that the time interval of the data can be 1-h.

First, the analyzed data for 12 months were categorized by season, whereas March,
April, and May data were considered as ‘Spring’; June, July, and August data were con-
sidered as ‘Summer’; September, October, and November data were considered as ‘Fall’;
while December, January, and February data were considered as ‘Winter’. In addition, the
temporal data analysis was conducted to evaluate trends over each 1 h. Figure 2 describes
the seasonal trend of ramp rate. As seen, the ramp rate was higher during fall and winter
than that in spring and summer. The average rates for fall and winter were found to
be > 10%, while those for spring and summer were found to be 10%. The average ramp
rates for spring, summer, fall and winter were estimated to be 8.85%, 9.03%, 12.79%, and
10.44%, respectively. Thus, the variability was stronger during fall and winter. Furthermore,
we analyzed the hourly trends of ramp rates (Figure 3).

The analysis revealed that the ramp rates seemingly increased in the morning, com-
pared with those in the night, as the values from 7–11 am were higher than those from
7–11 pm. We used the ramping information to develop new methods and present an im-
proved version of our previous work. To this end, new methods for probabilistic ramp
forecasting will be introduced, whereas the overall process for wind power forecasting
considering ramp events is shown in Figure 4, which is explained comprehensively through
following section, Section 2.3.

2.3. Ramp Forecasting Method

Given the characteristics of wind power output, we can improve the reliability of
the wind power output forecast by an accurate prediction of a ramp. We introduce and
describe a statistical approach to forecast wind power output by using the ramp rate. The
ramp event data analysis in this section demonstrates a novel method to forecast the wind
power output value of the next one hour. For the prediction, we calculated the hourly
average of wind power output for every month and the hourly average of the ramp rate.
Subsequently, we retrieved the average values for each season, spring, summer, fall, and
winter to establish the seasonal standard ramp rate values.
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Tables 1 and 2 provide an overview of the input data and the calculated standard ramp
rate values. They reflect the seasonal characteristics and can be used for forecasting wind
power outputs. In this study, the installed capacity of the wind farm is 16 MW.

Table 1. Overview of the input data.

Classification Data

Measured data Historical wind power output (MW)
Weather data: wind speed (m/s)

Calculated data Hourly, seasonally averaged Ramp Rate
(Standard RR) (%)

Installed Capacity Wind farm installed capacity: capacity factor (MW)
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We used the obtained values in the algorithm for forecasting wind power outputs
based on ramp events prediction (see the Algorithm 1 below). In the algorithm, RRi stands
for the ramp rate value at i hour. For example, Winter RR2 will be 1125.27 (MW) referred to
Table 2.
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Table 2. Seasonal hourly ramp rate standard values.

Spring Summer Fall Winter

1:00 0 0 0 0
2:00 615.87 792.44 1214.90 1125.27
3:00 680.16 428.17 1174.60 820.12
4:00 714.30 1424.50 713.26 2353.95
5:00 857.42 559.10 878.17 652.80
6:00 783.25 537.04 1064.20 603.95
7:00 763.17 522.91 3941.40 726.75
8:00 876.29 1155.20 3557.30 805.01
9:00 737.83 1285.60 2651.70 1556.24
10:00 1083.70 1527.60 2433.20 2360.38
11:00 1438.30 793.58 918.29 3288.99
12:00 1970.8 564.27 1397.10 883.21
13:00 862.69 1500.10 641.49 790.78
14:00 727.63 1763.30 630.82 609.03
15:00 587.75 510.86 721.98 643.05
16:00 737.33 557.91 1958.60 619.58
17:00 963.04 2113.20 1008.10 970.67
18:00 944.56 817.67 626.53 1030.54
19:00 806.31 847.61 540.16 688.46
20:00 484.02 402.82 727.05 548.76
21:00 653.63 1121.80 584 574.10
22:00 711.15 332.75 666.21 701.74
23:00 1805.10 532.06 728.09 817.00
24:00 548.57 682.59 632.68 840.68

Algorithm 1. Wind power forecasting based on standard seasonal RR values

Input: Measured wind power output value, Standard seasonal RR values
Output: Forecasted value of wind power outputs based on ramp events (MW)
1: month = 1 to 12
2: if month = 1 to 2 and 12
3: Standard RR values for winter is used
4: for i = 0 to 23 (i = hour)
5: Pf = Measured wind power output valuei × 10000÷Winter RRi+1 ÷Capacity factor
6: Return forecasted value = Pf
7: end if
8: if month = 3 to 5
9: Standard RR values for spring is used
10: for i = 1 to 24 (i = hour)
11: Pf = Measured wind power output valuei× 10000÷ Spring RRi+1 ÷Capacity factor
12: Return forecasted value = Pf
13: end if
14: if month = 6 to 8
15: Standard RR values for summer is used
16: for i = 1 to 24 (i = hour)
17: Pf = Measured wind power output valuei× 10000÷ Summer RRi+1 ÷Capacity factor
18: Return forecasted value = Pf
19: end if
20: if month = 9 to 11
21: Standard RR values for fall is used
22: for i = 1 to 24 (i = hour)
23: Pf = Measured wind power output valuei × 10000÷ Fall RRi+1 ÷ Capacity factor
24: Return forecasted value = Pf
25: end if
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3. Results
3.1. Evaluation Metric

To evaluate the novel algorithm for forecasting wind power output, based on ramp
rate analysis, the error metrics were applied. Four of the metrics have been previously
defined [17,24,25] for wind power prediction and three of them are presented below with
the additional NMAE equation:

BIAS = 1
N

N
∑

i=1
(yi − ŷi)

MAE = 1
N

N
∑

i=1
|yi − ŷi|

SDo f AE =

√
1
N

N
∑

i=1
(|yi − ŷi| −MAE)2

NMAE = |yi−ŷi |
Capacity Factor × 100

(7)

where N stands for the total number of data analyzed, yi and ŷi are the measured and
forecasted values, respectively. BIAS, MAE and NMAE are the basic error metrics and
SDofAE, which is the standard deviation of absolute error, is used for the estimation of
error distribution.

The performance evaluation results for a novel forecasting algorithm are shown in
Table 3. As seen, the NMAE was <10% for all months, while the seasonal average NMAE
values were 6.00%, 4.00%, 4.47%, and 7.89% for spring, summer, fall and winter, respectively.
The slightly higher estimate of NMAE of winter indicates that it is difficult to predict the
ramp events in winter, compared with those in the other seasons, due to the severe wind
and high wind volatility.

Table 3. Monthly error metric results for wind power output prediction.

Season Month BIAS MAE SDofAE NMAE (%)

Winter
January 1.03 1.10 0.96 6.88

February 1.29 1.33 1.20 8.35

Spring
March 1.03 1.20 0.99 7.54
April 0.85 0.96 0.77 6.04
May 0.64 0.70 0.56 4.43

Summer
June 0.11 0.49 0.28 3.08
July 0.25 0.74 0.46 4.66

August 0.22 0.68 0.46 4.26

Fall
September 0.68 0.70 0.61 4.42

October 1.16 1.26 0.89 7.90
November 0.87 0.88 0.67 5.56

Winter December 1.21 1.35 1.27 8.45
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Moreover, we found that the seasonal trends such as slopes were similar. Four seasonal
trends, representing each period of the year are shown in Figure 5. Note that May was
selected to represent spring, June to represent summer, November to represent fall, and
January to represent winter.

Figure 5 compares the measured wind power output and the forecasted wind power
output with the 1-h interval. The forecast seemingly follows the trend of the measured
output graph. We identified fluctuation elements in all the four seasonal result graphs.
We argue that these elements emerged due to the unpredictable wind variability, driven
by strong winds. Thus, for our future work, we will focus on the detection and extrac-
tion of ramping events through combining the swinging door algorithm (SDA) with our
novel algorithm.
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3.2. System Review

The system review was conducted through PowerWorld Simulator by applying the
forecasted values to the real island’s power system in Korea. Applying the method to the
real island’s power system in Korea has proved that the wind power output prediction
based on ramp forecasting, which is a method presented in this research, can improve the
stability of the energy system. Through PowerWorld Simulator, voltage profile and line
overloading were reviewed. It was confirmed that the system works stably even when the
proposed method is applied. The review methodology and results are as follows.

After creating a case to be reviewed by applying the forecasted values to the real power
system in Korea, contingency analysis was performed. Through contingency analysis,
transmission security and voltage profile were checked to see if the system operates stably
even in unstable system conditions such as N-1 contingency. Figure 6 shows the system
diagram when the predicted value is applied to the real power system. It seems that the
overloading occurs at the bottom because the slack generator is located at the bottom.
Therefore, we can conclude that the system operates stably without overloading.
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First, the transmission security was checked by checking whether overloading oc-
curred. As shown in Figures 7 and 8, even with the N-1 contingency (blue circle), which is
regarded as a part of general power system security analysis, the transmission status was
stable without any significant overloading. Therefore, multiple contingency analysis was
also conducted by breaking the lines arbitrarily and sequentially. The results are described
in Figure 9.

It was concluded that the transmission security can be maintained by applying this
method, as the results showed that the system operates stably without overloading even in
unstable situations such as N-1 contingency and multiple contingency.

Second, checking the voltage profile was also considered for methodology verification.
The voltage variation must be within ±5% of the standard voltage in order to maintain the
reliability criterion of the voltage in the system. We checked whether the system voltage is
within the range of 0.95 p.u to 1.05 p.u. Figure 10 shows the system to which the proposed
method is applied; the voltage variation was within the reliability criterion, which means
the system still operates stably with the forecasted values.

By reviewing line overloading and bus voltage profile through PowerWorld Simu-
lator to check security of power grid, we have verified the capability of the suggested
methodology. The system review was based on actual data and a real system; therefore,
the methodology can be considered as one of the ways that can be readily-applicable to
real systems to enhance the energy system security by overcoming the variability and
uncertainty issues resulting from wind power.
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4. Conclusions

Numerous countries worldwide are exploring the development of renewable-energy-
source-based power generation. This, in turn, increases the use of wind power in electricity.
However, it has resulted in power production and load balancing difficulties. There were
indications that ramp events can be one of the drivers of this undesirable variability. We
argued that the improved ramp forecasting can help to maintain the stability of the power
grid. To this end, a new statistical approach for forecasting wind power outputs based
on ramp event detection was presented. First, a ramp trend was analyzed seasonally
and hourly, then the ramp rate values were calculated from the data, obtained from the
wind farm ‘A’ in Taebaek, South Korea in January–December 2018. The data we used
for the analysis are historical wind speed (m/s) and wind power output data (MW). The
seasonal analysis indicated that the ramp rate was higher during fall and winter than
during spring and summer. The average rates for fall and winter were above the value 10%,
while those for spring and summer were below 10%. The average ramp rate for spring was
8.85%, summer was 9.03, fall was 12.79%, and winter had a value of 10.44%. The hourly
analysis revealed that the ramp rate was higher in the morning than at night. The ramp rate
calculation provided the seasonal hourly ramp rate standard values, presented in Table 3,
which can be deemed as one of the contributions of this study. We found that the values
were statistically significant, thereby realistically reflecting the seasonal and time-specific
characteristics of ramps.

As the accurate identification of wind power ramps is important for wind power fore-
casting algorithms, this study proposed a novel algorithm based on ramp events detection,
which is evaluated through various metrics, including BIAS, MAE, NMAE, and SDofAE.
The evaluation of the metrics showed that NMAE values for all the months were < 10%.
In addition, a total of four graphs, the most representative of each season, visualizing
the comparison between measured and forecasted values are presented. The seasonal
average NMAE values were 6.00%, 4.00%, 4.47%, and 7.89% for spring, summer, fall and
winter, respectively. After evaluating the forecasting performance, the system review was
conducted through PowerWorld Simulator to check if the proposed methodology can help
enhance energy system security. Voltage profile and line overloading was analyzed for
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the system review. In this study, real power system in South Korea was used. For all N-1
contingency analysis, the system has operated stably. Among all N-1 contingency cases,
two cases were presented in this paper. Furthermore, multiple contingency analysis was
conducted. It can be concluded that the proposed method enables stable operation of
the system because the system operated without any overloading status even in unstable
situations where several lines were cut off. In addition, in case of voltage profile review,
the system voltage variation was within the reliability criterion, the range of 0.95 p.u to
1.05 p.u, when the proposed methodology was applied to the real system.

Likewise, the proposed methodology will play an important role as an indicator that
can resolve the volatility and uncertainty that occur when renewable energy is integrated
into the power system. While developing the methodology, variability was analyzed based
on one year of training data and, therefore, annual distribution of power generation was
all analyzed. Consequently, the forecasted results and information presented in this paper
include all the changes of the wind power generator for a year, and are the error calculation
results considering the variability of the sufficient data set. To this end, the advanced work
was carried out to predict wind power generation by predicting a ramp event. By verifying
the results based on the empirical data with real system review, this methodology can be
applied directly to Independent System Operator in South Korea and Transmission Owner
in South Korea. Despite the fact that it is a practical methodology, since the analysis has
still been conducted on the 1-h interval basis, it is considered that further analysis will be
needed in the future using higher resolution data such as 15-min interval data.

Our future work can also combine our novel algorithm with a swinging door algorithm
(SDA), proposed by [14,15,26], which has already been used for ramp event detection, as
this study needs more accurate ramp detection. The SDA algorithm is characterized with
simple structure and high computing efficiency, thereby paving the way toward more
in-depth analysis of ramp event detection. The combined algorithm’s goal is not only to
improve forecast performance, but also to establish a model that performs online forecasting
in a shorter time. To conclude, as evaluating and considering the ramp events improved
the accuracy of wind power output forecasting, our results can lay the foundation for a
new metric for ramp forecasting in our future work.
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