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Abstrac t .  We introduce a robust and efficient mix-network for expo- 
nentiation, and use it to obtain a threshold decryption mix-network for 
EIGamal encrypted messages, in which mix servers do not need to trust 
each other for the correctness of the result. If a subset of mix servers 
cheat, they will be caught with an overwhelming probability, and the 
decryption can restart after replacing them, in a fashion that is trans- 
parent to the participants providing the input to be decrypted. As long 
as a quorum is not controlled by an adversary, the privacy of the mix 
is guaranteed. Our solution is proved to be secure if a commonly used 
assumption, the Decision Diffie-Hellman assumption, holds. 
Of possible independent interest are two new methods that we intro- 
duce: blinded destructive robustness, a type of destructive robustness 
with protection against leaks of secret information; and repetition ro- 
bustness, a method for obtaining robustness for some distributed vector 
computations. Here, two or more calculations of the same equation are 
performed, where the different computations are made independent by 
the use of blinding and permutation. The resulting vectors are then un- 
blinded, sorted and compared to each other. This allows us to detect 
cheating (resulting in inequality of the vectors). 
Also of possible independent interest is a modular extension to the E1- 
Gamal encryption scheme, making the resulting scheme non-malleable 
in the random oracle model. This is done by interpreting part of the ci- 
phertext as a public key, and sign the ciphertext using the corresponding 
secret key. 

Keywords:  mix-network, decryption, privacy, robustness, error detec- 
tion 

1 I n t r o d u c t i o n  

A mix-network takes a list of values as input, and outputs a permuted list of func- 
tion evaluations (typically decryptions) of the input items, without revealing the 
relationship between input and output  elements. Mix-networks were introduced 
by Chaum in 1981 [4] as a primitive for privacy. Although alternative primitives 
for privacy (e.g., [27]) can be used where users trust each other to some extent, 
for most applications, mix-networks still today remain the only realistic method 
to ensure connection privacy in settings like the Internet. Consequently, mix- 
networks have seen many applications since they were introduced, spanning the 
areas of pure communication (e.g., [31, 25]), the special case of web-browsing 
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[12], and election schemes [4, 11, 28]. They also have other potential uses wher- 
ever privacy is important,  as in payment schemes. Mix-networks are also often 
used implicitly, by the assumption of an anonymous channel. However, in spite 
of its usefulness and wide use, this important  primitive has almost not evolved 
at all since it was conceived. 

The implementations that  have been suggested have accepted a model re- 
quiring a lot of trust,  or sacrificed either robustness, practicality or efficiency 
in order to provide a solution. For example, the majority of currently used re- 
mailers use only one mix server, which has to be fully trusted by the users for 
both privacy and correctness. If several such servers are pipelined for improved 
privacy (such as in [14, 23, 31]), this raises concerns in terms of both correctness 
and availability of service, especially in situations where mix servers are welcome 
targets of attackers. (It is interesting to note that  if an attacker corrupting some 
subset of mix servers can verify a claimed mix decryption, the degree of pri- 
vacy might paradoxically decrease with increased pipelining/distribution. This 
was first noticed in [17], in the context of an adversary desiring to verify that 
purchased votes were cast "correctly" .) Furthermore, in order to allow an adver- 
sarial trust model of the type often assumed in commerce and election settings, 
and to obtain robustness, pipelined servers must be able to perform some form of 
correctness proof of their computation (without sacrificing privacy). There has 
been no suggestion of how to do this efficiently. So far, the most efficient propos- 
als are those of Ogata, Kurosawa, Sako and Takatani [22], and Abe [1]. Apart 
from these, no robust threshold mix-network has been proposed. A threshold 
solution is important,  or users would be forced to re-encrypt and re-send the en- 
crypted messages in situations where an error or attack would force one or more 
servers to be replaced. This is not only a limitation in terms of efficiency and the 
adversarial model, but  also excludes certain types of uses of the mix-network. 

We demonstrate an elegant and efficient solution to this problem. More pre- 
cisely, we suggest a mix-network for decryption of a list of EIGamal [10] en- 
crypted messages, with the properties for privacy, availability, robustness, and 
efficiency listed in the next section. 

Using novel methods for catching cheaters, we propose a solution to the same 
problem as studied by Ogata, Kurosawa, Sako and Takatani [22], and by Abe 
[1]. They propose methods in which each mix server re-encrypts each encrypted 
message twice, and permutes the corresponding two lists. Then, the other mix 
servers asks to have either the first block or the second block of permutations 
and encryptions revealed, which if done correctly, gives them 50% confidence 
that  the server performing the transaction was honest. This is then repeated a 
large number of times for each server. Our method avoids cut-and-choose, and 
minimizes the amount of costly zero-knowledge proofs needed, and as a result, 
is significantly more efficient. In our particular solution, the cost of privacy and 
robustness increases the price of the computation by a factor 3a 4- 7k, where 
n = 1 - lo~ Here, e is the maximum acceptable success probability of an 21ogN" 
attacker, N the number of elements to be decrypted, and k is the size of the 
quorum required. For a million elements, a maximum success probability for 
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an attacker of 2 -8~ and a quorum size of 5, this gives us a cost factor for the 
robustness and privacy of approximately 44. The corresponding overheads of 
[1, 22] are approximately a factor of between 1500 and 4000 (in a setting with 
no external verifiers.) We note that all of the above costs can be somewhat 
reduced by applying methods for batch verification (e.g., [3]), but it appears 
that our algorithm would be more efficient for all sizes of inputs and quorums 
even after the algorithms are optimized. 

Nove l  Methods :  
In order to balance robustness and integrity of secret information, a variety of 
methods have been introduced and used. One of the most common methods 
is the zero-knowledge proof, but proofs with very limited degrees of knowledge 
leaks may also be used in the litterature. Since general zero-knowledge proofs 
normally are very costly, we want to limit the use of these, and shift towards 
other methods for robustness where possible, and otherwise to use only few 
and specialized zero-knowledge proofs. A proof that we will make use of in this 
work is that of proving valid undeniable signatures, introduced by Chaum and 
van Antwerpen [5]. This will be used to prove valid exponentiations without 
revealing the secret exponents. 

Traditionally, a protocol has been made robust by having each participant 
prove to each other participant that he perfomed his part of the computation 
according to the protocol. The concept of destructive robustness was introduced 
in [19, 20] to improve the efficiency of robustness verifications by making the 
common case inexpensive to perform. The method of destructive robustness in- 
volves two steps: the detection of an error, and the tracing of cheaters (in case 
of an error). This separation of tasks improves efficiency and allows for simpler 
protocols (and simpler proofs of the same). This is so since the tracing, which is 
only performed when necessary, is allowed to destruct important protocol prop- 
erties (hence the name), such as privacy, which allows for more straightforward 
protocols. The destruction of protocol properties may not be a problem: In the 
situation where the concept was introduced, the transcript would become mean- 
ingless as a result of the cheating, and could therefore be opened up to pinpoint 
cheaters, after which the protocol would be started anew. However, in the setting 
of this paper, this is not possible, as this would potentially reveal the messages 
that in an encrypted form constitute the input. In order to avoid this, we in- 
troduce the idea of blinded destructive robustness. Here, the input is blinded to 
begin with; if no cheater is detected, the result is unblinded; on the other hand, 
if the result is found to be incorrect, then the computation on the blinded input 
is verified. (This requires special attention to ensure that the blinding was not 
incorrectly performed.) 

Detecting that cheating has taken place is not always easy. More specifically, 
in the situation we consider, where vectors are manipulated and permuted, and 
the permutations are secret due to privacy requirements, the conflict between 
robustness and privacy is particularly noticeable. We introduce the method of 
repetition robustness. This is a method for detecting cheating behavior in settings 
like these, to be used to obtain robustness. By blinding copies of the input vector 



451 

twice or more, and performing the desired operation on the blinded vectors, we 
can, after unblinding the resulting vectors, sort and compare the results (which 
should be equal to each other). If some of the participants of the computation 
cheated, the resulting vectors will be different with an overwhelming probability. 

Another new method we introduce is that  for making E1Gamal encryptions 
non-malleable, by adding one field correspodning to a signature, whose public 
key is a portion of the non-modified ciphertext (and therefore does not depend 
on the identity of the encryptor,  but only to the ciphertext.) 

O u t l i ne :  We begin by presenting the model and the requirements on the mix- 
scheme for E1Gamal decryption in section 2. In section 3, we review EIGamal 
encryption and decryption, present our extension for non-malleability, and show 
how to perform a mix-decryption of E1Gamal encrypted messages given a prim- 
itive for mix-exponentiation. We demonstrate such a primitive in section 4. The 
properties of the resulting schemes are stated in section 5, and proven in the 
appendix. 

2 M o d e l  a n d  R e q u i r e m e n t s  

We assume three types of (polynomial-time limited) participants: users, a bul- 
letin board, and the mix  servers.  The users post encrypted messages to the bul- 
letin board. The bulletin board is simply an area to which users have appendive 
write access, and to which all participants have read access. After the bulletin 
board fills up, or after some other triggering event occurs, the mix  servers  com- 
pute a permuted list of decryptions of all valid encryptions posted on the bulletin 
board. All honest users should be granted privacy,  i.e., tha t  the relationship be- 
tween their encrypted message and the corresponding decrypted message is se- 
cret. It may in some settings be required that  dishonest users can be deprived of 
their privacy. (Here, a user may be labeled dishonest  by posting the encryption 
of an invalid message according to some standard, or generally just behaving 
in a way that  is not allowed in the system on the whole.) Finally, we have the 
adversary, who can control other participants, and who may be mobile (see, e.g., 
[15]). The adversary may wish to break the privacy of a user he does not control, 
or make participants he does not control accept as valid an invalid decryption 
of the posted messages. 

More rigorously, the requirements on the mix-decryption scheme are as fol- 
lows: 

- C o r r e c t n e s s :  If all mix servers are honest, the correct output  will be gen- 
erated. 

- P r i v a c y :  If there is not a quorum of corrupt and collaborating mix servers, 
it will not be possible for any set of participants to establish the relationship 
between input- and output  items with a success probability non-negligibly 
bet ter  than what could be achieved by guessing a permutat ion of the un- 
known items uniformly at random. 
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- R o b u s t n e s s :  If any subset of cheating participating mix servers produce 
an output  different from that  prescribed by the protocol, then the honest 
participating mix servers will be able to establish this fact. Furthermore, 
the honest servers will efficiently be able to establish the identities of the 
cheating servers. 

- Avai lab i l i ty :  The system implements a high degree of availability, meaning 
that  it allows a large number of mix servers not to be available, to refuse 
to participate, or to cheat actively, without affecting the availability of the 
service. The exact number that  has to be available is governed by the choice 
of the threshold scheme. 

- Ef f ic iency:  The scheme does not require any interaction between differ- 
ent users posting encrypted messages, nor between these users and the mix 
servers. The users need only a minimum amount of interaction (and only 
one round) with the bulletin board, and the amount  of data  transferred 
is low (with a maximum overhead per posted message of one signature). 
The amount of computation required by the users is low, allowing for smart 
card implementations. Furthermore, the amount of computation, communi- 
cation, and storage required by the mix servers is low, both asymptotically 
and practically. 

We provide a scheme that  satisfies all of the above requirements, and prove it 
to be secure if the following assumption holds: 

T h e  D e c i s i o n  D i f f i e - H e l l m a n  A s s u m p t i o n :  Let p -- 2q + 1, for primes p 
and q, and let m, g be generators of a subgroup of order q. Then, the pairs 
(m, m ~ , g, g~) and (m, m r, g, g~) are indistinguishable, for random and unknown 
values r , x  C Zq, m,g E Gp. 

3 E I G a m a l  D e c r y p t i o n  

3.1 R e v i e w  

P u b l i c  a n d  S e c r e t  I n f o r m a t i o n :  Let p, q be primes such that  p = 2q + 1, 
and g be a generator of Gp. The mix servers share a secret key x using a (k, n) 
threshold scheme (see [30, 24]); their corresponding public key is y = g~ rood p. 
Server j ' s  secret share is x~, its public share yj = g~J rood p. (Onwards, we 
assume all arithmetic to be modulo p where applicable, unless otherwise stated.) 

E1Gamal :  Our protocol uses E1Gamal encryption [10]: To encrypt a value I ra 
using the public key y, a value 7 E~ Zq is picked uniformly at random, and 
the pair (a,b) = (my'r,g ~) calculated. Thus, (a, b) is the encryption of m. In 
order to decrypt this and obtain m, m = a/b ~ is calculated. It is known that  the 
E1Gamal eneryption scheme is semantically secure if the Decision Diffie-Hallman 
assumption holds. 

1 H e r e ,  m = (M)M for a n  original message M E [1...  ~ ! ] ,  where (M) is the Jacobi 
symbol of M. 
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P r o o f  o f  val id  e x p o n e n t i a t i o n :  One tool that  will be repeatedly used to prove 
that  a valid exponentiation was performed is a proof protocol for proving valid 
undeniable signatures (introduced by Chaum and van Antwerpen [5]). This is 
a proof that  logmS = loggy for a given quadruple (m, s, g, y). There are several 
protocol versions developed; in order to obtain a high degree of efficiency, we 
will use a non-interactive proof version, such as a Schnorr signature [29]. This 
requires one exponentiation per proof for the prover, and two per verifier. 

3.2 Non-malleable EIGamal 

Even if we have a primitive that  takes a list of encrypted messages and decrypts 
these in a fashion that  does not reveal any information about  the relationship 
between items in the input list and items in the output  list, we do not necessarily 
have a system that  implements privacy. The reason is the following: an attacker 
may repeat (potentially disguised) copies of some items of the decrypted input 
list (potentially submitted by other parties than himself,) and then determine 
(with some probability) what the decryption of the attacked message was, by 
counting repeats or correlations in the output  list. Therefore, it is necessary to 
use a non-malleable [9] scheme, such as our proposed extension to the EIGamal 
encryption scheme. Before the mix-decryption process starts, the mix servers 
remove any invalid encryption entry, and any duplicates of the same entry. 

To implement non-malleability, the following approach will be taken: Each 
user proves knowledge of the value 7i used for the encryption when submitting 
the pair (ai, bi). This can be done by treating bi as the public key (for which % 
is the corresponding secret key) and signing (ai, bi, aux) using this secret key, 
where aux is some auxiliary information - in our case, a number indicating 
how many previous batches have been decrypted, which is public information. 
We suggest using Schnorr [29] signatures for this. An encryption pair is said to 
be valid if the above signature is valid and correpsonds to the ciphertext pair. 
Encryptions that  are not valid are discarded. The resulting encryption scheme 
is non-malleable in the random oracle model [26], as shown in the appendix. 

Remark: Other methods of providing non-malleability can be employed. For 
example, we may use the recently proposed scheme by Cramer and Shoup [7], 
which is shown to be secure against an adaptive chosen message attack (which 
is shown to imply non-malleability in [2].) A list of such encryptions can be 
mix-decrypted using almost identical methods to those described in this paper. 

3.3 Mix-decrypt ion of  EIGamal 

Assume that  we have a primitive M I X E X P  that  takes a list of items (cl , .  �9 �9 CN) 
and robustly computes a permutat ion of the list, (Cl~,...,CN~). Here, (f = 
1-Ij~Q 5j, where 5j is server j ' s  share, Aj = g~ is public, and Q denotes a 
quorum. 

Consider now the list ((al,  bi), .. �9 (aN, bN)) of ElGamal encrypted messages. 
We want to produce a permutat ion of the list ( m l , . . .  ,VAN), for mi = alibi =. 
This can be obtained in the following manner: 
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1. Each participating mix server, j E Q, selects a secret value 5j Eu Zq, and 
publishes Aj = g~,. 

2. Each item, (ai, bi), in the input list is blinded using sequential exponentia- 
tion, resulting in a list (CO/l, i l l ) , . . - ,  (O~N,/~N)), s.t. (ai, fl~) = (ai 1/6, bil/5) �9 
VALIDEXP(o~ i j ,  o~ij-l,g, Aj)  is then run by each active server j E Q to 
prove that  his output c~j = ai(j_l) 1/J~. (Notice how the order of the input 
and output is switched, compared to the normal expression: thus, instead of 
proving correct exponentiation using 5~, we prove the correct exponentiation 
using 1/(ij.) 

3. For each item fli in the above list, the mix-servers distributively compute 
/~i = fli = (using a parallel threshold exponentiation, as demonstrated in 
among others, [24].) Server j E Q runs V A L I D E X P ( f l i j ,  fli, g, Yj), for the 
share/~ij of/~i to prove correct computation. 

4. For each new pair (ai,/~i), the corresponding "blinded decryption" #i = 
ai/fli is calculated. The result is a list (P l , - - . ,PN) .  

5. Using the assumed primitive M I X E X P ,  the active mix-servers robustly 
compute a permutation of ( m l , . . .  ,mN).  Here, mi = #i~; therefore, this 
list is the desired list of decrypted messages. Note that  this is the only step 
where the relationship between items in the input and output is hidden. 

4 A M i x - E x p o n e n t i a t i o n  S c h e m e  

Before we introduce how to design the protocol M I X E X P ,  we will look at a 
non-robust version of the same. This protocol will later be used as a building 
block. We then discuss the principles of the "global" solution, after which we 
present this solution itself. 

4.1 A Building Block 

Let the public input be the vector ~ = ( f t l , . . .  , ~N) ,  the secret keys (51, . . . ,  5k), 
k such that  ~ = ~,j=l 5j, and the desired output a permutation ofY = (a l , .  �9 �9 aN), 

where ai = #i '~. Let ~ = (Trl,...,Trk) be a secret distributed vector of permu- 
tations, for which 7r 3 E N --+ N. The servers in the quorum sequentially raise 
all the elements to their secret key, and apply their secret permutation to this 
output, producing the input to the next server, or, for the last server, the output 
of the protocol. We denote the application of the above protocol by 7r(~4), where 
~r indicates the final permutation, ~ is the accumulated exponent, and the expo- 
nentiation is element-wise w.r.t, the input vector. This building block has two 
uses: (1) it is used for robustness by disassociating its input from its output w.r.t. 
the order of the items. This is done in a manner that  if performed several times 
produces several independent instances of the same input, preventing a cheater 
to modify a certain item (since he has to correctly guess the appearance of this 
item in each instance). (2) It is used to achieve privacy, again by disassociating 
the input order from the output order. 
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4.2 P r i n c i p l e s  o f  O u r  R o b u s t  M i x - D e c r y p t o r  

The following ideas are used to ensure correctness of our solution: 

- B l i n d i n g  I: Multiple, independent blindings and permutations are per- 
formed on copies of the input vector. Later, the desired operations will be 
performed on these blinded vectors; after these are unblinded, the resulting 
vectors are sorted and compared. If they are different, this indicates that  at 
least one participant cheated, and the result is declared invalid. 

- B l i n d i n g  II :  At the same time as the desired operation is performed on the 
blinded vectors, a second blinding is performed. This affects all the vector 
elements in the same manner (and if it does not, this will constitute cheating, 
and will be detected as described in the previous step.) This blinding will be 
removed only for valid vectors, after blinding I has been verified. 

- Trac ing :  If a result is declared invalid, then only blinding I is removed. This 
is the only blinding that  is different for the multiple vectors, and the problem 
must therefore reside here. Each mix server then proves that  it performed 
the correct computation on these unblinded vectors. 

4 . 3  O u r  S o l u t i o n  

In order to obtain the desired degree of security, the blinded computation is 
repeated a > 2 times. Here, the probability of an at tack going unnoticed is 
bounded above by ( N ( N  - 1)) 1-~, where N is the number of items of the input 
list. (Thus, for an input vector with a million items, ~ = 3 gives 2 -a~ as the 
maximum success probability of an attack.) 

In the robust version, the public input is ~ as before, and the public keys 
of the participants {A}j~Q, where A 3 = gSJ. The corresponding secret keys are 
{5}jeQ, and the accumulated exponent is 5 = l-ljeQ 5J. The permutations used 
are generated internally, and are therefore not part  of the input. 

We are now ready to introduce the protocol for M I X E X P :  

1. S e t u p :  Each participating mix server j selects secret exponents, p I ~ j ,  for 
1 < )~ < a, and PlI j ,  each number chosen uniformly at random from the even 
numbers of Zq; and secret permutations,  7rl~j, and 7rll~j, for 1 < A < a, 
all chosen uniformly at random from N --~ N. 

2. B l i n d i n g  I: The mix servers compute PI~ = 1rI~(PP~), 1 < )~ < a. 
3. E x p o n e n t i a t i o n  a n d  B l i n d i n g  II :  The mix servers compute ~II)~ : 

"KII)~(-'~I)~SPII), for 1 < ~ < ~. 
4. U n b l i n d i n g  I: 

(a) The mix servers publish {p i ,x j } jeQ,  for 1 < )~ < ~. 

(b) Each mix server computes -5i~ = ~i1~ 1/pI~, for 1 < A < ~, where 

PI)~ : II jEQPI)~j.  
(c) The lists {a-/~}~=l are sorted and compared. If they are all equal, and 

no element is zero, then the result is labeled valid, otherwise invalid. 
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5. U n b l i n d i n g  II:  (for valid results only) 
(a) The mix servers publish {lri 1 j }jeq" 
(b) The computation of Pl  1 in "Blinding I" is verified. 
(c) The mix servers publish {Pllj}jc Q. 
(d) Let Mj denote the product (modulo p) of all the elements constituting 

the input to mix server j ,  for )~ = 1. Similarly, Sj denotes the product 
of all the output elements for mix server j ,  and A = 1. Mix server j C Q 
runs VALIDEXP(Mj ,  Sj, g, A3puJ ). 

(e) The mix servers compute ~1 - ~I 11/(pl lPH), and output  a l .  
6. Trac ing:  (for invalid results only) 

(a) The mix servers publish {~l~j}jeQ, {Ul1~j}jeQ, {(bjPtlj)}jeQ. 
(b) The computation of Pt~,  1 < )~ < a, in "Blinding I" is verified. 
(c) The computation of a u  ~, 1 < A < a, in "Exponentiation and Blinding 

II" is verified. 

In the above, if any mix server is found to have cheated, then the tracing protocol 
halts after the current step has been completed, the cheater(s) replaced, and the 
protocol restarts. 

5 C l a i m s  

The proposed scheme for Mix-E1Gamal decryption, using the introduced prim- 
itive for M I X E X P ,  has the following properties, which are proven in the Ap- 
pendix: correctness (theorem 1,) robustness (theorem 2,) and privacy (theorem 
3.) As a result, the scheme for mix-decryption of E1Gamal can easily be seen to 
have the same properties. Following the method in [16], the system can be shown 
to be proactivizable. Our proposed non-malleable E1Gamal version is proved to 
indeed be non-malleable in theorem 4. 

6 E f f i c i e n c y  A n a l y s i s  

In this section, we specify the cost of the privacy and robustness in terms of the 
cost factor with which the computation increases. This depends on the size k 
of the quorum, and the maximum probability e of success for an adversary. We 
have that  ~, the number of repeats required, equals ~ = 1 - lo~ where N is 

21ogN ' 

the number of items of the input. 
The non-robust building block for exponentiation and permutation requires 

kN modular exponentiations. Generating a proof in V A L I D E X P  requires one 
exponentiation, verifying its correctness requires 2 exponentiations per verifier. 
M I X E X P  therefore requires 3~kN + k2N + k(2k - 1) exponentiations given 
honest participants (akN each from step 2, 3 and 4; (k2N + k(1 + 2(k - 1))) 
from step 5.) Therefore, the cost of the entire protocol for mix-decryption is 
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approximately 3akN + 7k2N exponentiations given honest 2 participants (2kN + 
2kN(2k -  1) for step 2; k N + k N ( 2 k -  1) for step 3; and 3akN+k2N+k(2k  - 1) 
for step 4.) 

Given the same quorum size but no privacy protection or robustness, the 
corresponding number  of exponentiations would have been kN, giving us a cost 
increase factor of 3 ~ +  7k. For ~ = 3, k = 5, which is reasonable in many  settings, 
this means an overhead of a factor of 44. 

We note that  the verification of valid exponentiations can be done using batch 
verification, bringing down the cost substantially. We can use the methods for 
modular  exponentiat ion with common exponent suggested in [3] for this. Also, 
we note tha t  if joint proofs (see [1]) are performed for V A L I D E X P ,  then it 
appears  that  the overhead can be made linear instead of quadratic. 
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A p p e n d i x :  P r o o f s  o f  C l a i m s  

Instead of basing the proofs on the Decision Diffie-Hellman assumption, we will 
use a (more relevant) assumption, implied by the DDH assumption: 

N N The Ordering Assumption: Consider the sets M = { m j } i =  1 and S = {s j} i= 1, 
where si = mi  ~ for secret, independent and uniformly distributed m i , x .  We 
say that  (M, S) can be ordered if there exists a polynomial-time algorithm that  
matches at least one of the items s~ to mi with a probability non-negligibly larger 
than that  of choosing the pair uniformly at random. The ordering assumption 
states that  no (M, S) can be ordered. 

L e m m a  1: The ordering assumption is implied by the Decision Diffie-ttellman 
assumption. 

P r o o f  o f  L e m m a  1: 
Let us assume that  the Decision Diffie-Hellman assumption holds. Consider the 

N N 
sets M = {mi} i=l  and So = {8o i } i= l  , where SOl = mi  x. for secret, independent 
and uniformly distributed mi,  xi.  Clearly, (M, So) cannot be ordered, since for 

N every possible order, there is a set X = {x,}i=l of secret keys that  makes the 
8 N matching valid. Consider now Sj = { 3i}~=1, where sji = mi  ~:i, where j out of 

the N secret keys in X = {xi}~ 1 are identical (with a value chosen uniformly at 
random), and the rest are independent and uniformly distributed. Assume that  
it is not possible to order (M,  S j ) ,  but that  it is possible to order (M, Sj+I). This 
can be used as a black box to produce a polynomial-time algorithm that  with a 
non-negligible probability can distinguish between the quadruples (g, g~, m,  m ~) 
and (g ,g~ ,m ,  mr) ,  thus contradicting the Decision Diffie-Hellman assumption. 
We produce the algorithm by substituting a value si of $3, whose exponent xi 

' which we want to know if it equals m~, for is not a duplicate, with a value s i 
the duplicated exponent x. If the resulting pair (M, S') can be ordered, then 
si, = miX, otherwise not. In order not to get a contradiction, we must conclude 
that  (M, SN) cannot be ordered if the Decision Diffie-Hellman assumption holds, 
which concludes the proof. [] 

T h e o r e m  1: The scheme is correct: If all participating mix servers are honest, 
then their output will be a permuted list of messages corresponding to the list 
of encrypted messages. 

P r o o f  o f  T h e o r e m  1: (Sketch) 
The non-robust version of M I X E X P  produces as output a permutation of )4, 
where the exponentiation is per item, ~ is the public input, and 6 is the product of 
all the distributed components {6 3 }jeQ" Therefore, step 5e of MIXEXP cancels 
the effects of the blindings in steps 2 and 3 (apart from the permutations), 
resulting in an output which is a permutation of the list ~-~. Considering the 
mix-decryption now, we see that  the exponentiations of steps 2 and 5 cancel 
each other; therefore, considering the operation in step 3, if the public input 
is a list of pairs (ai, bi), then the output is a permutation of a list with items 
mi  = aJb~ ~. Thus, the scheme is correct. [] 
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T h e o r e m  2: The scheme is robust: Assume that  there are k - 1 dishonest par- 
ticipating mix servers controlled by an adversary. It is the goal of the adversary 
to force the output  of the scheme to be a vector that corresponds to an incorrect 
decryption of the input vector. The adversary has only a negligible probabil- 
ity of success, and the identity of the adversary will be learnt by the honest 
participants with an overwhelming probability. 

P r o o f  of  T h e o r e m  2: (Sketch) 
We see that  step 2 of M I X E X P  must be performed correctly by an adversary, 
or the cheating will be detected in steps 4a (Unblinding I) and 5a-b (unblinding 
II). Due to the use of V A L I D E X P ,  the adversary must keep the product  of 
all the items he is outputt ing correct, or the cheating will be detected in step 
5d. As a result of the operation in step 2, and the ordering assumption, we 
have that  if the adversary does not control a quorum (implying that  at least one 
participating mix server is honest), then the adversary cannot correlate the items 
constituting the inputs and outputs in step 2 to each other with a probability 
non-negligibly bet ter  than a uniform at random guess. Therefore, the adversary 
cannot identify the same two items of the output  lists of the different repetitions 

1 a--1. Therefore, the adversary with a probability significantly exceeding 

cannot alter two items in each repetition (and this is the minimum number 
to retain the same product  of all the items), with a probability significantly 

1 ~--1  exceeding N(gr-1) . Therefore, any cheating will be detected, and the tracing 
option invoked. Since all computation has to be revealed in step 6 of M I X E X P ,  
a cheating adversary will be identified. [] 

T h e o r e m  3: The scheme implements privacy: Assume that  there are k - 1 
dishonest mix servers, i.e., there is at least one participating mix server that  
is honest. Let the dishonest mix servers be controlled and coordinated by an 
adversary. This adversary also controls up to N - 2 out of the N users posting 
encrypted messages. It is the goal of the adversary to match each one of the two 
decrypted messages that  he does not control to their corresponding encrypted 
messages. The adversary has only a negligible probability of success. 

P r o o f  o f  T h e o r e m  3: (Sketch) 
If some mix servers break the privacy of some individual, then they match this 
individual's input to the mix to the corresponding output  with a probability sig- 
nificantly bet ter  than making a guess uniformly at random given all the known 
input-output relations. We note that  the input items are independent, since a 
proof of knowledge is required for an input item to be accepted. Also, note that  
items to the mix cannot be distinguished from random elements of the group, 
due to the blinding in the pre-processing stage (see section 3.3.) Let us now con- 
sider two cases, one in which the final result is declared valid, and one in which 
it is declared invalid: 
Valid result: We know from theorem 2 that  as long as one of the participating 
servers is honest, then the computation is robust, and a result that  is declared 
valid must be valid with an overwhelming probability. Therefore, in order to 
break the privacy, the cheating mix servers need to match input elements to 
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output  elements of the honest servers computation in step 3 (Exponentiation 
and Blinding II) of M I X E X P .  Since the permutation employed in this step is 
not revealed by the honest mix server, nor is his share of the exponent 5, if the 
cheating mix servers can match the input to the output,  then this would con- 
tradict the ordering assumption, and therefore also the Decision Diffie-Hellman 
assumption. 
Invalid result: If a result is declared invalid, then the honest server will perform 
step 6 (Tracing), in which the permutations used, and the shares of the prod- 
uct 5pl I are published. However, the honest mix server will not reveal its share 
of 5 (or PII). Therefore, even though the permutation is known, no information 
about  5 is given to the cheaters, and the exponent the input is raised to is chosen 
uniformly at random. Therefore, this is a result that  the cheaters can simulate, 
and therefore, does not give them any information that  allows them to break 
privacy. [] 

T h e o r e m  4: The proposed extension of the E1Gamal encryption scheme is non- 
malleable in the random oracle model. 

P r o o f  o f  T h e o r e m  4: (Sketch) 
The scheme can be proven semantically secure, as the original EIGamal scheme, 
relative to the the DDH assumption. We assume an adversary can provide a 
ciphertext c ~ given a ciphertext c, relative to a message rob, for an unknown 
b E {0, 1} and two known plaintext messages m0 and ml.  Decrypting c' using an 
oracle replay technique (see [26]) we get m t, the plaintext message corresponding 
to c'. Knowing the relation between c ~ and c, we can determine whether m' 
corresponds to mo or ml ,  thereby breaking the semantic security, which gives a 
contradiction. [] 


