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Abstract

This paper introduces a simple model for subsurface light transport
in translucent materials. The model enables efficient simulation of
effects that BRDF models cannot capture, such as color bleeding
within materials and diffusion of light across shadow boundaries.
The technique is efficient even for anisotropic, highly scattering
media that are expensive to simulate using existing methods. The
model combines an exact solution for single scattering with a dipole
point source diffusion approximation for multiple scattering. We
also have designed a new, rapid image-based measurement tech-
nique for determining the optical properties of translucent materi-
als. We validate the model by comparing predicted and measured
values and show how the technique can be used to recover the opti-
cal properties of a variety of materials, including milk, marble, and
skin. Finally, we describe sampling techniques that allow the model
to be used within a conventional ray tracer.

Keywords: Subsurface scattering, BSSRDF, reflection models,
light transport, diffusion theory, realistic image synthesis

1 Introduction

Accurately modeling the scattering of light by materials is funda-
mental for realistic image synthesis. Even the most sophisticated
light transport algorithms fail to produce convincing results if the
local scattering models are too simple. Therefore a great deal of
research has gone into describing the scattering of light from mate-
rials.

Previous research has focused on developing models for the
bidirectional reflectance distribution function (BRDF). The BRDF
was introduced by Nicodemus [14] as a simplification of the
more general bidirectional surface scattering distribution function
(BSSRDF). The BSSRDF can describe light transport between any
two rays that hit a surface, whereas the BRDF assumes that light en-
tering a material leaves the material at the same position (Figure 1).
This approximation is valid for metals, but it fails for translucent
materials, which exhibit significant transport below the surface.
Even for many materials that do not seem very translucent, using
the BRDF creates a hard, distinctly computer-generated appearance
because it does not locally blend surface features such as color and
geometry. Only methods that consider subsurface scattering can
capture the true appearance of translucent materials, such as mar-
ble, cloth, paper, skin, milk, cheese, bread, meat, fruits, plants, fish,
ocean water, snow, etc.

1.1 Previous Work

Almost all BRDF models are derived exclusively from surface scat-
tering, with any subsurface scattering approximated by a Lam-
bertian component. An exception is the model by Hanrahan and
Krueger [10] which includes an analytic expression for single scat-
tering in a homogeneous, uniformly lit slab. However, all BRDF
models ultimately assume that light scatters at one surface point and
they do not model subsurface transport from one point to another.

Subsurface transport can be simulated accurately but slowly by
solving the full radiative transfer equation [1]. Only a few papers in
graphics have taken this approach to subsurface scattering. Dorsey
et al. [5] simulated full subsurface scattering using photon mapping
to capture the appearance of weathering in stone. Pharr and Han-
rahan [15] used scattering functions to simulate subsurface scat-
tering. These approaches, while capable of simulating all of the
effects of subsurface scattering, are computationally very expen-
sive compared to the simulation of opaque materials. Techniques
based on path sampling are particularly inefficient for highly scat-
tering materials, such as milk and skin, in which light scatters mul-
tiple (often several hundred) times before exiting the material. For
highly scattering media Stam [17] introduced the use of diffusion
theory. He solved a diffusion equation approximation using a multi-
grid method, and used this method to render clouds with multiple
scattering.

Subsurface scattering is also important in medical physics, where
models have been developed to describe the scattering of laser light
in human tissue [6, 8]. In that context, diffusion theory is often used
to predict as well as to measure the optical properties of highly scat-
tering materials. We have extended this theory for use in computer
graphics by adding exact single scattering, support for arbitrary ge-
ometry, and a practical sampling technique for rendering.

In measurements of appearance for computer graphics, subsur-
face scattering has rarely been considered. Debevec et al. [3] mea-
sured light reflection from human faces, which included contribu-
tions from subsurface scattering, but they did not relate the data to
the physical properties of the material. Again building on medical
physics research [8, 9], we have extended a methodology developed
for measuring biological tissues into a rapid image-based appear-
ance measurement technique for translucent materials. This method
examines the radial reflectance profile resulting from a beam illu-
minating the sample material. By fitting an expression derived from
diffusion theory it is possible to estimate the absorption and scatter-
ing properties of the material.

2 Theory

The BSSRDF, S, relates the outgoing radiance, Lo(xo, ~ωo) at the
point xo in direction ~ωo, to the incident flux, Φi(xi, ~ωi) at the point
xi from direction ~ωi [14]:

dLo(xo, ~ωo) = S(xi, ~ωi; xo, ~ωo) dΦi(xi, ~ωi).

The BRDF is an approximation of the BSSRDF for which it
is assumed that light enters and leaves at the same point (i.e.,
xo = xi). Given a BSSRDF, the outgoing radiance is computed
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Figure 1: Scattering of light in (a) a BRDF, and (b) a BSSRDF.

by integrating the incident radiance over incoming directions and
area, A:

Lo(xo, ~ωo)=

∫

A

∫

2π

S(xi, ~ωi; xo, ~ωo) Li(xi, ~ωi) (~n·~ωi) dωidA(xi).

Light propagation in a participating medium is described by the
radiative transport equation, often referred to in computer graphics
as the volume rendering equation:

(~ω·~∇)L(x, ~ω)= −σtL(x, ~ω)+σs

∫

4π

p(~ω, ~ω′)L(x, ~ω′) dω′+Q(x, ~ω).

In this equation, the properties of the medium are described by
the absorption coefficient σa, the scattering coefficient σs, and the
phase function p(~ω, ~ω′). The extinction coefficient σt is defined
as, σt = σa + σs. We assume the phase function is normalized,
∫

4π
p(~ω, ~ω′) dω′ = 1 and is a function only of the phase angle,

p(~ω, ~ω′) = p(~ω · ~ω′). The mean cosine, g, of the scattering angle
is

g =

∫

4π

(~ω · ~ω′)p(~ω · ~ω′) dω′.

If g is positive, the phase function is predominantly forward scat-
tering; if g is negative, backward scattering dominates. A constant
phase function results in isotropic scattering (g = 0).

For an infinitesimal beam entering a homogeneous medium,
the incoming radiance will decrease exponentially with distance s.
This is referred to as the reduced intensity:

Lri(xi + s~ωi, ~ωi) = e−σtsLi(xi, ~ωi).

The first-order scattering of the reduced intensity, Lri, may be
treated as a volumetric source:

Q(x, ~ω) = σs

∫

4π

p(~ω′, ~ω)Lri(x, ~ω′) dω′.

To gain insight into the volumetric behavior of light propaga-
tion, it is useful to integrate the radiative transport equation over all
directions ~ω at a point x which yields

~∇ · ~E(x) = −σaφ(x) + Q0(x). (1)

This equation relates the scalar irradiance, or fluence,
φ(x) =

∫

4π
L(x, ~ω) dω, and the vector irradiance,

~E(x) =
∫

4π
L(x, ~ω)~ω dω. In the absence of loss due to ab-

sorption or gain due to a volumetric light source (Q0 = 0), the
divergence of the vector irradiance equals zero. In this equation,
we introduce a 0th-order source term, Q0, and later we will need

the 1st-order source term, ~Q1, where

Q0(x) =

∫

4π

Q(x, ~ω) dω, ~Q1(x) =

∫

4π

Q(x, ~ω)~ω dω.

S BSSRDF
Rd Diffuse BSSRDF
Fr Fresnel reflectance
Ft Fresnel transmittance
Fdr Diffuse Fresnel reflectance
~E Vector irradiance
φ Radiant fluence
σa Absorption coefficient
σs Scattering coefficient
σt Extinction coefficient
σ′

t Reduced extinction coefficient
σtr Effective extinction coefficient
D Diffusion constant
α Albedo
p Phase function
η Relative index of refraction
g Mean cosine of the scattering angle
Q Volume source distribution
Q0 0th-order source distribution
~Q1 1st-order source distribution

Figure 2: Selected symbols.

2.1 The Diffusion Approximation

The diffusion approximation is based on the observation that
the light distribution in highly scattering media tends to become
isotropic. This is true even if the initial light source distribution
and the phase function are highly anisotropic. Each scattering event
blurs the light distribution, and as a result the light distribution tends
toward uniformity as the number of scattering events increases.

In this situation, the radiance may be approximated by a two-
term expansion involving the radiant fluence and the vector irradi-
ance:

L(x, ~ω) =
1

4π
φ(x) +

3

4π
~ω · ~E(x).

The constants are determined by the definitions of fluence and vec-
tor irradiance.

The diffusion equation follows from this approximation. Specif-
ically, we substitute this two-term expansion of the radiance into
the radiative transport equation and then integrate over ~ω; for the
algebraic details consult Ishimaru [12]. The result is

~∇φ(x) = −3σ′
t
~E(x) + ~Q1(x). (2)

Here we have used the reduced extinction coefficient, σ′
t, which is

given by

σ′
t = σ′

s + σa where σ′
s = σs(1 − g) .

The reduced scattering coefficient σ′
s scales the original scattering

coefficient by a factor of (1 − g). Intuitively, once light becomes
isotropic, only backward scattering terms change the net flux; for-
ward scattering is indistinguishable from no scattering.

In the case where there are no sources, or where the sources are
isotropic, ~Q1 vanishes from Equation 2. Then the vector irradiance
is the gradient of the scalar fluence,

~E(x) = −D~∇φ(x).

Here D = 1
3σ′

t

is the diffusion constant. This equation makes pre-

cise the intuitive notion that there is net energy flow (i.e., non-zero
vector irradiance) from regions of high energy density (high flu-
ence) to regions of low energy density.

Finally, substituting Equation 2 into Equation 1, we arrive at the
classic diffusion equation

D∇2φ(x) = σaφ(x) − Q0(x) + 3D~∇ · ~Q1(x).

2
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The diffusion equation has a simple solution in the case of a sin-
gle isotropic point light source in an infinite medium.

φ(x) =
Φ

4π D

e−σtrr(x)

r(x)
,

where Φ is the power of the point light source, r is the distance to

the location of the point source, and σtr =
√

3σaσ′
t is the effective

transport coefficient. The point source results in an energy density
in the volume with an exponential falloff.

In the case of a scattering medium in a finite region of space, the
diffusion equation must be solved subject to the appropriate bound-
ary conditions. The boundary condition is that the net inward dif-
fuse flux is zero at each point, xs, on the surface

∫

2π−

L(xs, ~ω)(~ω · ~n(xs)) dω = 0.

Here, 2π− denotes integration over the hemisphere of inward di-
rections. Using the two-term expansion, the boundary condition is

φ(xs) − 2D(~n · ~∇)φ(xs) = 0. (3)

The minus sign in the second term results from the convention that
the surface normal points outward, whereas the integral is over in-
ward directions.

Equation 3 covers the case where the two layers have matching
indices of refraction, but another important case is where these in-
dices differ. When an interface exists between media with different
refractive indices, there is a reflection at the interface. Assuming Fr

is the Fresnel formula for the reflectance at a dielectric interface, the
average diffuse Fresnel reflectance is

Fdr =

∫

2π

Fr(η, ~n · ~ω′)(~n · ~ω′) dω′,

where η is the relative index of refraction of the medium with the
reflected ray to the other medium. Fdr may be computed analyti-
cally from the Fresnel formula [13]. However, we will use a rational
approximation of the measured diffuse reflectance [7]:

Fdr = −1.440

η2
+

0.710

η
+ 0.668 + 0.0636η.

The resulting boundary condition between two media with different
indices of refraction is

∫

2π−

L(x, ~ω)(~ω · ~n−)dω = Fdr

∫

2π+

L(x, ~ω)(~ω · ~n+) dω.

Here the + and − subscript means outward and inward directions
respectively. This yields

φ(xs) − 2D(~n · ~∇)φ(xs) = Fdr

[

φ(xs) + 2D(~n · ~∇)φ(xs)
]

.

Note that the difference in signs between the two sides of this equa-
tion occurs because one integral is over outward directions and the
other is over inward directions. Rearranging terms,

φ(xs) − 2AD(~n · ~∇)φ(xs) = 0.

This boundary condition is the same as when the indices of refrac-
tion match (Equation 3); the only difference is that 2D is replaced
by 2AD, where

A =
1 + Fdr

1 − Fdr

.

Finally, the boundary condition allows us to compute the diffuse
BSSRDF, Rd. Rd is equal to the radiant exitance divided by the

incident flux. The radiant exitance leaving the surface (~n · ~E(xs))
is equal to the gradient of the fluence at the surface

Rd(r) = −D
(~n · ~∇φ)(xs)

dΦi(xi)
,

where r = ||xs − xi||.
In the case of finite media, the diffusion equation does not in

general have an analytical solution. In this paper we are interested
in subsurface reflection, which is often modeled as a semi-infinite
plane-parallel medium. Several authors have analyzed the plane-
parallel problem for simple source geometries, in particular, ap-
proximations of a cylindrical beam entering the media. Exact for-
mulas exist, but they involve an infinite sum of Bessel functions
[9, 16]. We seek a simple formula suitable for modeling subsurface
reflection that does not involve infinite sums or numerical solution
of a partial differential equation.

Eason [6] and Farrell et al. [8] have developed a method for
approximating the volumetric source distribution using two point
sources; that is, a dipole. Eason introduced this idea and derived
explicit formulae for the dipoles for various source geometries,
such as a cylindrical beam, by expanding the source distributions
in terms of their moments. Farrell et al. proposed using a single
dipole to represent the incident source distribution. They found a
single dipole to be as accurate as, or, in some cases, more accurate
than using the diffusion approximation with the true source distri-
bution.

The dipole method consists of positioning two point sources near
the surface in such a way as to satisfy the required boundary con-
dition [6] (see Figure 3). One point source, the positive real light
source, is located at the distance zr beneath the surface, and the
other, the negative virtual light source, is located above the surface
at a distance zv = zr + 4AD. The resulting fluence is

φ(x) =
Φ

4π D

(

e−σtrdr

dr

− e−σtrdv

dv

)

,

where dr = ||x−xr|| is the distance from x to the real source, and
dv = ||x − xv|| is the distance from x to the virtual source. Far-
rell et al. [8] proposed positioning the real light source at distance
zr = 1/σ′

t, or one mean free path, below the surface. They only
considered light parallel to the normal. For other light directions
reciprocity can be enforced by still placing the light source 1/σ′

t

straight below xi.
The diffuse reflectance due to the dipole source can now be com-

puted.

Rd(r) = −D
(~n · ~∇φ(xs))

dΦi

=
α′

4π

[

(σtrdr + 1)
e−σtrdr

σ′
td

3
r

+ zv (σtrdv + 1)
e−σtrdv

σ′
td

3
v

]

.

(4)

Lastly, we need to take into account the Fresnel reflection at the
boundary for both the incoming light and the outgoing radiance.

Sd(xi, ~ωi; xo, ~ωo) =
1

π
Ft(η, ~ωi)Rd(||xi − xo||)Ft(η, ~ωo) (5)

where Sd is the diffusion term of the BSSRDF. This term represents
multiple scattering (one scattering event is already included in the
conversion to a point source). The next section explains how to
compute the contribution due to single scattering.

3
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Figure 3: An incoming ray is transformed into a dipole source for
the diffusion approximation.

2.2 Single Scattering Term

Hanrahan and Krueger [10] have derived a BRDF model for subsur-
face reflection that analytically computes the total first-order scat-
tering from a flat, uniformly lit, homogeneous slab. In this section,
we show how their BRDF can be extended to a BSSRDF in order
to account for local variations in lighting over the surface.

The total outgoing radiance, L
(1)
o , due to single scattering is

computed by integrating the incident radiance along the refracted
outgoing ray (see Figure 4):

L
(1)
o

(xo, ~ωo) = σs(xo)

∫

2π

F p(~ω
′

i
· ~ω

′

o
)

∫

∞

0

e
−σtcs

Li(xi, ~ωi) ds d~ωi (6)

=

∫

A

∫

2π

S
(1)

(xi, ~ωi; xo, ~ωo) Li(xi, ~ωi) (~n · ~ωi) dωidA(xi).

Here F = Ft(η, ~ωo)Ft(η, ~ωi) is the product of the two Fresnel
transmission terms, and ~ω′

i and ~ω′
o are the refracted incoming and

outgoing directions. The combined extinction coefficient σtc is
given by σtc = σt(xo) + Gσt(xi), where G is a geometry fac-

tor; for a flat surface G =
|~ni·~ω

′

o
|

|~ni·~ω
′

i
|
. The single scattering BSSRDF,

S(1), is defined implicitly by the second line of this equation. Note
that there is a change of variables between the first line, which in-
tegrates only over the configurations where the two refracted rays
intersect, and the second line, which integrates over all incoming

and outgoing rays. This implies that the distribution S(1) contains
a delta function.

2.3 The BSSRDF Model

The complete BSSRDF model is a sum of the diffusion approxima-
tion and the single scattering term:

S(xi, ~ωi; xo, ~ωo) = Sd(xi, ~ωi; xo, ~ωo) + S(1)(xi, ~ωi; xo, ~ωo)

Here Sd is evaluated using Equation 5 and S(1) is evaluated us-
ing Equation 6. The parameters for the BSSRDF are: σa, σ′

s, η,
and possibly a phase function (without a phase function the scat-
tering can be modeled as isotropic). This model accounts for light
transport between different locations on the surface, and it simu-
lates both the directional component (due to single scattering) as
well as the diffuse component (due to multiple scattering).

Finally, note the distances involved in both the single scattering
term and the diffusion approximations. The average exit point is
approximately one mean free path from the entry point. However,
these two mean free paths have quite different length scales. In
the single scattering case, the mean free path equals 1/σt; in the
diffusion case, the mean free path equals 1/σtr . For translucent
materials where σa ≪ σ′

s and consequently σtr ≪ σt, the single
scattering term decreases much faster than the diffusion term as the
distance to xo increases.

x�

s✁

i x�

o

Figure 4: Single scattering occurs only when the refracted incoming
and outgoing rays intersect, and is computed as an integral over path
length s along the refracted outgoing ray.

2.4 BRDF Approximation

We can approximate the BSSRDF with a BRDF by assuming that
the incident illumination is uniform. This assumption makes it pos-
sible to integrate the BSSRDF over the surface. By integrating the
diffusion term we find the total diffuse reflectance Rd of the mate-
rial as:

Rd = 2π

∫ ∞

0

Rd(r) r dr =
α′

2

(

1 + e−
4
3

A
√

3(1−α′)
)

e−
√

3(1−α′) .

Notice how the diffuse reflectance only depends on the reduced
albedo and the internal reflection parameter A.

The integration of the single scattering term results in the model
presented in [10]. For a semi-infinite medium this gives:

f (1)
r (x, ~ωi, ~ωo) = αF

p(~ω′
i · ~ω′

o)

|~n · ~ω′
i| + |~n · ~ω′

o|
.

The complete BRDF model is the sum of the diffuse reflectance
scaled by the Fresnel term and the single scattering approximation:

fr(x, ~ωi, ~ωo) = f (1)
r (x, ~ωi, ~ωo) + F

Rd

π
.

This model has the same parameters as the BSSRDF. It is similar
to the BRDF model presented in [10], but with the important differ-
ence that the amount of diffusely reflected light is computed from
the intrinsic material parameters. The BRDF approximation is use-
ful for opaque materials, which have a very short mean free path.

3 Measuring the BSSRDF

To verify our BSSRDF model, and to determine appropriate pa-
rameters for rendering different kinds of materials, we used the
diffusion theory of Section 2 to make measurements of subsurface
scattering in several media. Our measurement approach applies to
translucent materials for which σa ≪ σs, implying that far enough
away from the point of illumination, we may neglect single scatter-
ing and use the diffusion term to relate measurements to material
parameters.

When multiple scattering dominates, Equation 4 predicts the ra-
diant exitance per unit incident flux that will be observed due to a
narrow incident beam, as a function of distance from the point of
illumination. To make the corresponding measurement, we illumi-
nate the surface of a sample with a tightly focused beam of white
light and take a photograph using a 3-CCD video camera to observe
the radiant exitance across the entire surface. We keep our obser-
vations at constant angles so that the Fresnel term remains constant
for all the measurements. Figure 5(a) illustrates our measurement
setup.

4
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50˚
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A Camera

Source

Sample
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�
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˚

σ′
s [mm−1] σa [mm−1] Diffuse ReflectanceMaterial

R G B R G B R G B
η

Apple 2.29 2.39 1.97 0.0030 0.0034 0.046 0.85 0.84 0.53 1.3
Chicken1 0.15 0.21 0.38 0.015 0.077 0.19 0.31 0.15 0.10 1.3
Chicken2 0.19 0.25 0.32 0.018 0.088 0.20 0.32 0.16 0.10 1.3
Cream 7.38 5.47 3.15 0.0002 0.0028 0.0163 0.98 0.90 0.73 1.3
Ketchup 0.18 0.07 0.03 0.061 0.97 1.45 0.16 0.01 0.00 1.3
Marble 2.19 2.62 3.00 0.0021 0.0041 0.0071 0.83 0.79 0.75 1.5
Potato 0.68 0.70 0.55 0.0024 0.0090 0.12 0.77 0.62 0.21 1.3
Skimmilk 0.70 1.22 1.90 0.0014 0.0025 0.0142 0.81 0.81 0.69 1.3
Skin1 0.74 0.88 1.01 0.032 0.17 0.48 0.44 0.22 0.13 1.3
Skin2 1.09 1.59 1.79 0.013 0.070 0.145 0.63 0.44 0.34 1.3
Spectralon 11.6 20.4 14.9 0.00 0.00 0.00 1.00 1.00 1.00 1.3
Wholemilk 2.55 3.21 3.77 0.0011 0.0024 0.014 0.91 0.88 0.76 1.3

(a) (b)

Figure 5: (a) Measurement apparatus, (b) measured parameters for several materials.

Because the signal falls off exponentially away from the point of
illumination, the measurement must span a wide dynamic range. To
this end we used a series of different exposure times, ranging from 1
millisecond to 4 seconds, and assembled a high-dynamic-range im-
age using a modified version of Debevec and Malik’s technique [4].
To reduce the effects of stray light and fixed-pattern CCD noise, we
subtracted a dark image, taken with the illumination beam blocked
just before the focusing lens (point A in Figure 5(a)), from each
measurement and reference image. The resulting images had a dy-
namic range of around 105 (the small amount of total energy in the
image reduces the effects of lens and camera flare, allowing higher
dynamic range than might otherwise be possible).

To interpret the measurements, we examined only a 1D slice
of each measurement image, corresponding to a line on the sur-
face through the illumination point and perpendicular to the cam-
era’s view direction. Under the assumption that light exits dif-
fusely1, the pixel values pi in this slice (see Figure 6 for an ex-
ample) are measurements of radiant exitance as a function of dis-
tance on the surface. Since Rd gives the ratio of this quantity to Φ,
pi = KΦRd(ri), where K is an unknown constant. To eliminate
the scale factor, we also took a reference image with the sample
replaced by a white ideal diffuse reflector (Labsphere Spectralon,
reflectance > 0.99). By summing all the pixels in this image, we
can integrate the radiant exitance to get the total flux exiting the sur-
face, which for this special material is equal to the incident flux Φ.
With the same constant K as above, this sum is KΦ/A, where A
is the (known) area on the sample’s surface subtended by one pixel.
The measured value for Rd(ri) can then be computed as pi/(KΦ).

In principle, σa and σ′
s can be determined by fitting the rela-

tive reflectance curve with Equation 4 over a range of distances
far enough from the illumination point to allow the use of diffu-
sion theory [8]. However, we found this fitting problem to be ill-
conditioned enough that the uncertainty in the resulting parameters
led to too much uncertainty in the appearance of the material, espe-
cially the total diffuse reflectance.

We remove this ill-conditioning by measuring the total diffuse
reflectance R (which is the sum of the measurement image divided
by the sum of the reference image) and computing the least-squares
fit subject to the constraint

∫

Rd dA = R.

Figure 6 shows how these measurements confirm the diffusion
theory for a sample of white marble (only the camera’s green chan-

1We verified this assumption for marble by examining the reflectance for

different outgoing angles, and it closely resembled a Lambertian material

scaled by a Fresnel transmission term.
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Figure 6: Measurements for marble (green wavelength band) plot-
ted with fit to diffusion theory and confirming Monte Carlo simula-
tion.

nel is shown). Fitting the theory (solid line) to the data (points) led
to the parameters σa = 0.0041/mm, σ′

s = 2.6/mm. The reflectance
computed by a Monte Carlo simulation using these values (dashed
line) confirms the correctness of the computed parameters. Fitted
values for several other materials appear in the table in Figure 5(b).
Note, that we used empirical values for the index of refraction for
most of the materials. Also note that the diffusion theory is assum-
ing that σs ≫ σa, and as such the parameters for the relatively
opaque materials (such as the blue wavelength in ketchup) may be
less accurate.

4 Rendering Using the BSSRDF

The BSSRDF model derived in the theory section only applies to
semi-infinite homogeneous media. A similar derivation is not pos-
sible in the presence of arbitrary geometry and texture variation.
However, we can use some of the intuition behind the theory to ex-
tend it to a practical model for computer graphics. Specifically, we
need to consider:

5
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(a) (b)

Figure 7: (a) Sampling a BRDF (traditional sampling), (b) sampling
a BSSRDF (the sample points are distributed both over the surface
as well as the light).

• Efficient integration of the BSSRDF including importance
sampling

• Single scattering evaluation for arbitrary geometry

• Diffusion approximation for arbitrary geometry

• Texture (spatial variation on the object surface).

In this section we explain how to do this in a ray-tracing context.
Integrating the BSSRDF: At each ray-object intersection tra-

ditional lighting models (based on BRDFs) need just a point and
a normal to compute the outgoing radiance (Figure 7(a)). For the
BSSRDF it is necessary to integrate the incoming lighting over an
area of the surface (Figure 7(b)). We do this by stochastically sam-
pling the location of both endpoints of the shadow ray — this can
be seen as an extension of the classical distribution ray tracing tech-
nique for sampling area light sources [2]. To efficiently sample
locations on the surface we exploit the exponential falloff in the
diffusion term and the single scattering term. We sample the two
terms of the BSSRDF separately, since the single scattering sam-
ple locations must be along the refracted outgoing ray whereas the
diffusion samples should be distributed around xo.

More specifically, for the diffusion term, we use standard Monte
Carlo techniques to randomly sample the surface with density
(σtre

−σtrd) at some distance d from xo.
Single scattering is reparameterized since the incoming ray and

the outgoing ray must intersect. Our technique is explained in the
following section.

Single scattering evaluation for arbitrary geometry: Sin-
gle scattering is evaluated using Monte Carlo integration along
the refracted outgoing ray. We pick a random distance, s′o =
log(ξ)/σt(xo), along the refracted outgoing ray. Here ξ ∈ ]0, 1]
is a uniformly distributed random number. For this sample location
we compute the outscattered radiance as:

L(1)
o (xo, ~ωo)=

σs(xo)Fp(~ωi · ~ωo)

σtc

e−s′
i
σt(xi)e−s′

o
σt(xo)Li(xi, ~ωi).

Here s′i is the distance that the sample ray moves through the mate-
rial. Optimizing this equation to sample direct illumination (with
shadow rays) is difficult for arbitrary geometry since it requires
finding the point at the surface where the shadow ray is refracted.
However, in practice a good approximation can be found by using
a shadow ray that does not refract at the surface — this assumes
that the light source is far away compared to the mean free path of
the medium. We can use Snell’s law to estimate the true refracted
distance through the medium of the incoming ray:

s′i = si
|~ωi · ~ni|

√

1 −
(

1
η

)2
(1 − |~ωi · ~n(xi)|2)

.

Here si is the observed distance and s′i is the refracted distance.

(a) (b)

Figure 8: Scattering of laser light in a marble block. The marble
block is 40mm. wide and has a significant amount of subsurface
scattering. The picture on the left is a photograph of the marble
block, and the picture on the right is a synthetic rendering of a sim-
ilarly sized cube using the BSSRDF model and the measured scat-
tering properties of the marble. Note how the appearance of the two
images is very similar.

Diffusion approximation for arbitrary geometry: An impor-
tant component of the diffusion approximation is the use of the
dipole source. If the geometry is locally flat we can get a very
good approximation by using a similar dipole source configuration
as that for flat materials (i.e., we always place the light source 1/σ′

t

straight below xi). Special care must be taken in the presence of
highly curved surfaces; we handle this case by always evaluating
the diffusion term with a minimum distance of 1/σ′

t. In this way
we eliminate singularities at sharp edges where the source can be
placed arbitrarily close to xo. We found this approach to work very
well in our experiments.

Texture: We approximate textured materials by making a few
small changes to the usage of the BSSRDF. We only consider tex-
ture variation at the surface — effects due to volumetric texture
variation would require a full participating media simulation. For
the diffusion approximation we always use the material parameters
at xi, which ensures a natural local blending of the texture proper-
ties. For the single scattering term we use σs(xo) and σt(xo) along
the refracted outgoing ray, and σt(xi) along the refracted incident
ray. This variation is included in Equation 6.

5 Results

We have implemented the BSSRDF model in a Monte Carlo ray
tracer, and in this section we will present a number of experimen-
tal results obtained with this implementation. All simulations have
been done on a dual 800MHz Pentium III PC running Linux and the
images have been rendered with 4 samples per pixel and a width of
1024 pixels.

Our first simulation is shown in Figure 8, which compares a
side photograph of a marble cube illuminated from above with a
synthetic rendering. The synthetic image is rendered using the
BSSRDF model and the measured parameters for marble (from the
table in Figure 5). We only used a simple cube to approximate the
rounded marble block, so there are natural visible differences along
the edges. Nonetheless, the BSSRDF model faithfully renders the
appearance including the scattered light exiting from the side of the
marble cube.

Figure 9 shows several different simulations of subsurface scat-
tering in a marble bust (1.3 million triangles) illuminated from be-
hind. The BSSRDF simulation mostly matches the appearance of
the full Monte Carlo simulation, yet is significantly faster (5 min-
utes vs. 1250 minutes). The hair at the back of the head is slightly
darker in the BSSRDF simulation; we believe this is due to the
forced 1/σ′

t distance in the diffusion approximation. A similar ren-
dering was done using photon mapping in [5] in roughly 12 min-
utes (scaled to the speed of our computer). However, the photon
mapping method requires a full 3D-description of the material, it
requires memory to store the photons, and it becomes costly for
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(a) (b) (c)

(d) (e) (f)

Figure 9: A simulation of subsurface scattering in a marble bust. The marble bust is illuminated from behind and rendered using: (a) the
BRDF approximation (in 2 minutes), (b) the BSSRDF approximation (in 5 minutes), and (c) a full Monte Carlo simulation (in 1250 minutes).
Notice how the BSSRDF model matches the appearance of the Monte Carlo simulation, yet is significantly faster. The images in (d–f) show
the different components of the BSSRDF: (d) single scattering term, (e) diffusion term, and (f) Fresnel term.

highly scattering materials (such as milk and skin).

A particularly interesting aspect of the BSSRDF simulation is
that it is able to capture the smooth appearance of the marble sur-
face. In comparison the BRDF simulation gives a very hard ap-
pearance where even tiny bumps on the surface are visible (this is
a classic problem in realistic image synthesis where objects often
look hard and unreal).

For the marble we used synthetic scattering and absorption co-
efficients, since we wanted to test the difficult case when the av-
erage scattering albedo is 0.5 (here the contribution from diffusion
and single scattering is approximately the same). Figure 9 demon-
strates how the sum of both single scattering and the diffusion term
is necessary to match the Monte Carlo simulation.

Figure 10 contains three renderings of milk. The first render-
ing uses a diffuse reflection model; the others use the BSSRDF
model and our measurements for skim milk and whole milk. Notice
how the diffuse milk looks unreal and too opaque compared to the
BSSRDF images, even though multiple scattering dominates and
the radiant exitance due to subsurface scattering is very diffuse. It
is interesting that the BSSRDF simulations are capable of capturing
the subtle details in the appearance of milk, making the milk look
more bluish at the front and more reddish at the back. This is due
to Rayleigh scattering that causes shorter wavelengths of light to be
scattered more than longer wavelengths.

Skin is a material that is particularly difficult to render using
methods that simulate subsurface scattering by sampling ray paths
through the material. This is due to the fact that skin is highly
scattering (typical albedo is 0.95) and also very anisotropic (typi-
cal average cosine of the scattering angle is 0.85). Both of these
properties mean that the average number of scattering events of a
photon is very high (often more than 100). In addition skin is very
translucent, and it cannot be rendered correctly using a BRDF (see
Figure 11). A complete skin model requires multiple layers, but a

reasonable approximation can be obtained using just one layer. In
Figure 11 we have rendered a simple face model using the BSSRDF
and our measured values for skin (skin1). Here we also used the
Henyey-Greenstein phase function [11] with g = 0.85 as the esti-
mated mean cosine of the scattering angle. The skin measurements
are from an arm (which is likely more translucent than skin on the
face), but the overall appearance is still realistic considering the lack
of spatial variation (texture). The BSSRDF gives the skin a soft ap-
pearance, and it renders the color bleeding in the shadow region
below the nose. Here, the absorption by blood is particularly no-
ticeable as the light that scatters deep in the skin is redder. For this
simulation the diffusion term is much larger than the single scat-
tering term. This means that skin reflects light fairly diffusely, but
also that internal color bleeding is an important factor. The BRDF
image was rendered in 7 minutes, the BSSRDF image was rendered
in 17 minutes.

6 Conclusion and Future Work

In this paper we have presented a new practical BSSRDF model
for computer graphics. The model combines a dipole diffusion ap-
proximation with an accurate single scattering computation. We
have shown how the model can be used to measure the scattering
properties of translucent materials, and how the measured values
can be used to reproduce the results of the measurements as well
as synthetic renderings. We evaluate the BSSRDF by sampling the
incoming light over the surface, and we demonstrate how this tech-
nique is capable of capturing the soft and smooth appearance of
translucent materials.

In the future we plan to extend the model to multiple layers as
well as include support for efficient global illumination.
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(a) (b) (c)

Figure 10: A glass of milk: (a) diffuse (BRDF), (b) skim (BSSRDF) and (c) whole (BSSRDF). (b) and (c) are using our measured values.
The rendering times are 2 minutes for (a), and 4 minutes for (b) and (c); this includes caustics and global illumination on the marble table and
a depth-of-field simulation.

BRDF

BSSRDF

Figure 11: A face rendered using the BRDF model (top) and the
BSSRDF model (bottom). We used our measured values for skin
(skin1) and the same lighting conditions in both images (the BRDF
image also includes global illumination). The face geometry has
been modeled by hand; the lip-bumpmap is handpainted, and the
bumpmap on the skin is based on a gray-scale macro photograph
of a piece of skin. Even with global illumination the BRDF gives a
hard appearance. Compare this to the faithful soft appearance of the
skin in the BSSRDF simulation. In addition the BSSRDF captures
the internal color bleeding in the shadow region under the nose.
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