
A Practical Multi-Channel Media Access Control Protocol
for Wireless Sensor Networks ∗

Hieu Khac Le, Dan Henriksson, and Tarek Abdelzaher
Department of Computer Science, University of Illinois at Urbana-Champaign

201 N Goodwin Ave., Urbana, IL 61801
{hieule2, danhenr, zaher}@cs.uiuc.edu

Abstract

Despite availability of multiple orthogonal communica-
tion channels on common sensor network platforms, such
as MicaZ motes, and despite multiple simulation-supported
designs of multi-channel MAC protocols, most existing sen-
sor networks use only one channel for communication,
which is a source of bandwidth inefficiency. In this work, we
design, implement, and experimentally evaluate a practical
MAC protocol which utilizes multiple channels efficiently
for WSNs. A control theory approach is used to dynami-
cally allocate channels for each mote in a distributed man-
ner transparently to the application and routing layers. The
protocol assumes that sensor nodes are equipped with one
half-duplex radio interface which is most common in cur-
rent hardware platforms. The protocol does not require time
synchronization among nodes and takes the channel switch-
ing cost of current hardware into account. Evaluation re-
sults on a real testbed show that it achieves a non-trivial
bandwidth improvement using 802.15.4 radios in topologies
which are typical in WSNs. The MAC protocol was imple-
mented in TinyOS-2.x and packaged as a software compo-
nent to enable seamless use with existing applications.

1. Introduction

This paper presents a practical design, implementation,
and evaluation of a multi-channel Media Access Control
(MAC) protocol for Wireless Sensor Networks (WSNs).
There has been a lot of MAC protocols introduced for
WSNs that use only one channel for communication. How-
ever, with the new radio capabilities of WSN motes which
can communicate on multiple frequencies, this is a great
source of inefficiency. The very high density of current

∗This work has been supported in part by the Wenner-Gren Foundations
and the Hans Werthén Foundation, Sweden and in part by NSF grants CNS
05-54759, CNS 06-15318, CNS 06-26342, and CNS 06-26825

WSNs inevitably results in physical bandwidth limitations
and heavy collisions on a single channel.

There is previous work on multi-channel MAC protocols
for WSNs [16, 9, 19, 4, 23]. Some of these MAC proto-
cols assume that the time to switch between two channels
is negligible, whereas others require fine-grained time syn-
chronization among nodes. Some assume that nodes have
a multi-radio interface or can listen on different channels
simultaneously. Most of these MAC protocols have only
been evaluated in simulation, and the rest require devices
with fully fledged multi-radio interfaces. To the best of our
knowledge, all previous multi-channel protocols for sensor
networks have at least one of the aforementioned limita-
tions.

Our work is the first multi-channel MAC protocol which
is implemented for MicaZ motes with only one half-duplex
radio interface and with long channel switching times. In
[13] a multi-channel MAC protocol was developed for col-
lection WSNs, and was also implemented on MicaZ motes.
There has been similar work for dissemination in [18] and
[21]. While these efforts implemented multi-channel so-
lutions for specific applications in sensor networks (such
as data collection or dissemination), the MAC protocol de-
scribed in this paper is the first general purpose MAC pro-
tocol which is designed and implemented on sensor motes
with no specific assumptions on the application.

The main idea of the protocol is to assign a home fre-
quency to each node such that network throughput is maxi-
mized. We call each different frequency available to the net-
work, a channel. All nodes in the network start on the same
channel. When this channel becomes overloaded, some
nodes migrate to other channels to spread the communica-
tion load across non-interfering frequencies. Migration to
another home frequency does not entail loss of connectivity
with nodes that remain on the old home frequency. Instead,
our protocol involves a mechamism whereby a node can
send messages to another node that is on a different home
frequency. Briefly, when a node needs to send messages
to another on a different home frequency, it switches to the

2008 International Conference on Information Processing in Sensor Networks

978-0-7695-3157-1/08 $25.00 © 2008 IEEE
DOI 10.1109/IPSN.2008.43

70

home channel of the destination node enough to send the
message. Obviously, communication between nodes on the
same home channel incurs less overhead. This motivates
formulating the network throughout optimization problem
in a manner similar to a clustering problem in a graph,
whereby nodes that communicate frequently are clustered
into the same channel, whereas those that do not communi-
cate much (but are within each other’s interference range)
are separated into different channels.

Our protocol solves the problem in a distributed manner
where nodes locally compute their “edge costs” and make
migration decisions independently. Towards that end, nodes
exchange state information about messages received and de-
grees of estimated communication success probability. If
the estimated success probability is low, a node may switch
to another channel. The switching is done based on a prob-
ability such that while alleviating congestion we avoid hav-
ing all nodes jump to the new channel.

The algorithm design is reduced to two main problems.
First, the graph clustering algorithm conceptually attempts
to find a minimum K-way cut in the graph given by the net-
work topology in a distributed manner in order to minimize
costly inter-channel communication. Second, a configura-
tion control problem is formulated to compute the proba-
bilities of home channel switching. These probabilities are
chosen such that the network self-configures into using just
the right number of channels without excessive fluctuation
among channels and without being too slow to respond to
changes in load. The first problem is NP-complete, which
is thus approached by an efficient distributed heuristic. For
the self-configuration problem we propose a feedback con-
trol approach to compute the switch probabilities.

Our main contribution is to show that sensor nodes with a
single half-duplex radio interface can actually benefit from
channel diversity. The protocol is simple and light-weight
enough to be implemented on MicaZ motes. Evaluation on
an actual testbed shows that it works efficiently. The ex-
perimental results in both simulation and on a real test-bed
show that the new MAC protocol not only achieves higher
bandwidth, but also adaptively alleviates network conges-
tion and avoids channels with high interference due to exter-
nal sources (e.g., nearby 802.11 connections). In this work,
the MAC is independent from the routing layer. Power man-
agement in the presence of multiple channels is not in the
scope of this work.

The implemented MAC protocol component works on
top of the existing single channel MAC protocol in TinyOS-
2.x and exposes the same interface as Packet Protocols
in [14]. Hence, applications developed for TinyOS-
2.x can be adapted to the new MAC protocol seam-
lessly. The code for MicaZ motes on TinyOS-2.x can
be downloaded from http://cs.uiuc.edu/homes/
hieule2/IPSN08/.

The rest of this paper is organized as follows. Section 2
gives an overview of related work. Section 3 describes ar-
chitecture considerations and underlying analytical founda-
tions. Section 4 presents the protocol design and Section 5
describes the implementation details of the channel selec-
tion algorithm on the MicaZ motes. Section 6 presents an
evaluation both on a real testbed and in simulation. The
testbed experiments work as proof-of-concept and are used
to validate the simulation results. The simulations evalu-
ate the MAC protocol on a larger scale. Finally, the paper
concludes with Section 7.

2. Related Work

The idea of multi-channel MAC protocols is not new
in the wireless network research community. In the ad-
hoc network domain, there have already been some prac-
tical systems utilizing multiple channels for communica-
tion. However, most of them have a very simple network
topology, assuming only one base-station with the remain-
ing nodes communicating with the base-station within only
one hop. Others use heavy-weight protocols which are not
suitable for sensor network devices [24].

There has also been work based on channel hopping [5,
20]. These schemes require synchronization and frequent
switching among channels even when there is no need for
communication. Unless supported by the physical layer,
switching channels in sensor devices costs a great deal of
time and energy which makes these schemes unattractive
for WSNs. In our experiments with MicaZ motes [1], the
time to switch between two channels and wait until the fre-
quency synthesizer stabilizes is roughly equal to the time
to transmit one packet. Therefore, nodes which frequently
switch channels run out of battery faster than other nodes.
Although the radio technology is advancing, it is nontrivial
to reduce the cost of channel switching in such strictly con-
strained devices as sensor nodes. There exist efforts applied
for devices with multi-radio interfaces [4, 12], or with spe-
cially designed interfaces which can listen simultaneously
to different channels [9, 16]. However, as we have observed,
hardware equipped with one half-duplex radio interface are
much more popular.

There are also efforts in industry which utilize multi-
channel radios. TSMP [3] maintains synchronization
among nodes. Nodes employ frequency hopping accord-
ing to a shared pseudo-random schedule. TSMP requires
both sychronization and frequent channel switching. There
is also ongoing effort on the SP100.11a standard [11]. This
standard uses a simplified 3-channel hopping scheme. Sex-
ton and others have documented narrow band fading prob-
lems and promote multi-channel communication as added
diversity1.

1We thank one of our reviewers for pointing this out

71

Finally, there are results in both ad-hoc multi-hop net-
works and WSNs focusing on systems with only one half-
duplex radio interface [19, 6, 17]. Unfortunately, all of them
are done in simulation and most of them assume that the
time to switch channels is negligible. There are also pro-
tocols that have a working implementation showing signif-
icant improvements in total network throughput. However,
these protocols are limited to a specific traffic pattern such
as data collection and aggregation [13], or data dissemima-
tion [18, 21]. Networks with arbitrary traffic patterns are
not yet covered.

3. Theoretial Analysis

Our algorithm is based on three observations. First, a
new channel should be allocated only when needed. If there
is no serious interference or collisions in the neighborhood,
nodes should not switch to other channels. This reduces
the cost of inter-channel communication. Second, by de-
sign, some nodes should be more likley to initiate channel
switches than others. The more global is the view (of com-
munication) that a node has, the more informed it is, and the
better equipped it is to make the right move. Third, nodes
with a more limited view should act locally to minimize
cross-channel communication. The best local action is to
follow a node with a better view.

In this section, we present solutions and analysis to the
problems of minimizing inter-channel communication and
choosing the channel switching probabilities consistently
with the above observations. The former is formulated as a
distributed clustering problem and the latter is approached
using feedback control theory. Below, we first describe
our fundamental mechanism for communication between
neighboring nodes. We then provide solutions to clustering
and feedback control to maximize communication through-
put.

Since cross-channel communication introduces extra
cost both due to channel switching times and due to re-
transmissions caused by the deafness problem (when a node
sends messages to another but uses the wrong channel), it
is desirable to minimize cross-channel communication and
maximize same-channel traffic. This is directly related to
the objective of the K-way cut problem in graph theory and
is used as an inspiration for our channel allocation protocol.

3.1. The K-way Cut Problem

Our approach is to partition the nodes in the network into
different sets, each assigned a separate home channel, such
that two types of constraints are met. First, communication
within each set is limited to local capacity. Second, com-
munication across sets is minimized. In a graph where each

node is a communication device and where link costs rep-
resent the amount of communication, this corresponds to
solving a K-way cut problem of minimum K that respects
the capacity constraints on each cluster. There have been
several centralized approaches to solve versions of the K-
way cut problem. An optimal algorithm [7] was proposed
for a k-way cur with fixed K with O(n4) complexity for
K = 3 and O(n9) complexity for K = 4. A more ef-
ficient algorithm [10] was subsequently proposed, which
has O(n3) complexity for K = 3 and O(n4) complexity for
K = 4, which is the fastest optimal algorithm for a fixed K .
Some centralized approximation algorithms for undirected
graphs were also developed [22]. Distributed heuristic al-
gorithms were proposed for undirected graphs.

These algorithms require a-priori knowledge of K and
are quite heavy-weight. The graphs in our problem are di-
rected, weighted graphs without a fixed K , which makes the
problem harder and more complex. Due to the constraints
on the sensor devices, any algorithm with a high polynomial
complexity will lack scalability.

In the following, we will describe our adaptive algorithm
which takes only O(n2) computation time and O(n) mem-
ory and provides reasonably good performance within the
scope of our MAC protocol.

3.1.1 The Algorithm

With the above intuitions in mind, channels are organized
as a ladder, starting with the lowest channel, F0, up to the
highest channel FN , with N being the number of channels
available in the network. Whenever a node first joins the
network it starts at channel F0 (hence, initially all nodes
are the same “cluster”. Once a node figures out that there
are lots of messages lost due to collisions and interference
(i.e., the local cluster capacity constraint is violated), the
node considers switching channels. The switching decision
is based on how serious the collisions and interference are
and on the role of the node in contributing traffic to the net-
work.

To measure the effect of a crowded spectrum, each node
periodically broadcasts a tuple < s, f >, where s is the total
number of times the node successfully acquires the channel,
and f is the number of times the node is unsuccessessful (at
acquiring the channel). Periodically, every node i receives
a set of tuples from its neighbors j. Based on that, node i
estimates the probability that any of its neighbor nodes can
successfully attempt to access the channel:

αi =

∑
j sj∑

j (sj + fj)
. (1)

If αi is too low, the channel must be too crowded around
node i 2. Hence, if αi is less than a configurable value αref ,

2Notice that αi also reflects interference at i. If interference exists

72

node i will consider switching from its current home chan-
nel Fc to the next higher channel Fc+1 (unless c = N),
with a probability that depends on channel conditions. The
use of switch probabilities will reduce fluctuations between
channels that may otherwise result if many nodes switched
channels at the same time. In the next subsection, we de-
scribe how a control scheme is used to make the channel
switching process stable. For now, let’s assume that given
the history and current status of home channel c of node i,
the node has a probability to switch from channel c to the
next channel c+1, denoted by βi

c,c+1. In our algorithm this
probability increases with the difference in quality between
the source and destination channels (i.e., as the source be-
comes substantially worse than the destination).

In summary, as appropriate of a K-way cut heuristic
(with a variable K), we operate by dividing existing clusters
that exceed capacity repeatedly until capacity constraints
are met. Key to the design of this heuristic is to deter-
mine the mechanism for splitting clusters and the bound-
aries across which splitting must occur. This reduces to
two questions: who should initiate the split and who should
follow into the new cluster? The solution should be dis-
tributed and obey the goal of minimizing communication
across clusters.

To answer these questions, observe that in a wireless sen-
sor network, nodes are usually not equal in contributing to
network load. Hence, they should act differently in terms of
channel switching probability. Consider two extreme exam-
ples. The first example is a node that only sends messages
(to its neighbors) but does not receive. This pattern is con-
sistent with that of data sources. The second example is a
node that only receives messages (from its neighbors) but
does not send. This pattern is consistent with data sinks
in wireless sensor networks. Channel congestion typically
occurs at sinks. Hence, sinks have a more global view of
traffic than sources. As such, sinks are better positioned to
make decisions on channel allocation.

In our algorithm, nodes that behave predominantly as
sinks have preference to switch channels first (i.e., initiate
the cluster split). This has the desirable side-effect of creat-
ing well isolated clusters. A node that acts predominantly as
a sink does not send much traffic by definition, and hence
has a low-cost outgoing link, making it appropriate to cut
(by the K-way cut algorithm). Nodes that communicate
heavily with those who switched, follow them into the new
cluster. This works well for aggregation topologies, which
is the predominant case in data collection networks. Finally,
to communicate across clusters, a sender on one home chan-
nel simply switches to the home channel of the receiver tem-
porarily to send messages to the latter.

More specifically, the probability that a node initiates a

around i, node i will be able to sense the signal and cease to access the
channel and that affects the value of αi

cluster-split by switches channels from c to c + 1 is given
by

P i
c,c+1 = MAX

(
0, sink factori × βi

c,c+1

)
(2)

where βi
c,c+1 increases with the difference in quality be-

tween channel c and c + 1 (in favor of c + 1), and
sink factor is an indicator showing how closely a node
resembles a sink. It is computed from

sink factori =
Ini − Outi
Ini + Outi

, (3)

with Ini and Outi being the total number of messages re-
ceived and sent by i at its home channel, respectively. If
the node is a true sink, sink factor = 1. If it is a pure
source, sink factor = −1. An intermediate node in the
network might sink some traffic and forward some. Its
sink factor will thus have some intermediate value. For
example, a pure router that simply forwards all traffic will
have sink factor = 0. An aggregator that summarizes the
traffic and forwards the summary will have a sink factor
closer to 1.

By encouraging splitting when the current channel is
much worse than the target channel, our cluster splitting
mechanism guarantees that a network will allocate more
channels when it gets congested hence preserving cluster
capacity constraints. By letting sinks initiate the split with
a higher probability, we ensure that the split starts across a
low-cost link. Finally, by letting neighbors who send much
traffic to those who switched follow them to the new chan-
nel, we present a natural way to grow a new cluster in a way
that minimizes the communication across different clusters.
We call this phase channel expansion. When a channel is no
longer congested, nodes on this channel invite those from
the next (higher) channel in the ladder to switch to the un-
derutilized frequency. As before, sink-like nodes initiate
such transitions with a higher probability. Other nodes fol-
low. We call this phenomenon channel shrinking.

3.2. The Self-Configuration Problem

The self-configuration problem considers the dynamics
of channel expansion and channel shrinking. In particu-
lar, it is important that such transitions are stable. Oth-
erwise, nodes may incur a significant overhead switching
between channels. Both the channel expansion and chan-
nel shrinking mechanisms are designed using feedback con-
trol theory, where the control signal is the probability for a
node to switch channel. The use of probabilities takes the
distributed nature of the control system into account and
prevents all nodes from switching at the same time, which
would not improve the situation.

The control laws for channel expansion and channel
shrinking have been designed to be intuitive and easy to

73

implement. However, we will also present an analysis
that shows how to choose the controller gain parameters to
achieve a good trade-off between fluctuations and perfor-
mance. The analysis is based on restricting the fraction of
nodes that are allowed to switch channel during a certain
time interval related to the time delay in the system. The re-
striction ensures that the loop is stable in a control-theoretic
sense.

3.2.1 Channel Expansion

We propose the following feedback control scheme for the
channel expansion. The probability for a node i to switch
from its current channel c to the next channel c + 1 if αi

c <
αup

ref is computed as

βi
c,c+1 (k) = βi

c,c+1 (k − 1)+Kup
r

(
αup

ref − αi
c (k)

)
, (4)

where k denotes the sampling interval (i.e., the time be-
tween consecutive updates of the switch probabilities). The
controller is in integral form (i.e., its output is proportional
to the integral of inputs), where the switch probability is in-
creased for each sample as long as αi

c < αup
ref . Similarly, as

αi
c ≥ αup

ref we decrease the switch probability with a faster
rate as

βi
c,c+1 (k) = βi

c,c+1 (k − 1)−K̂up
r

(
αi

c (k) − αup
ref

)
, (5)

where K̂up
r > Kup

r

3.2.2 Channel Shrinking

Nodes switch to higher channels when their current channel
gets congested. We also need a mechanism by which nodes
may switch back to lower channels once the traffic is less
busy. This will reduce the cost of cross-channel commu-
nication. Analogous to the case of advancing channels, this
scheme has nodes inviting nodes from higher channels once
the success rate, α, is above a given threshold, αdown

ref . The
invitation probability for a node i at channel c +1 to switch
down to the current channel c if αi

c > αdown
ref is given as

βi
c,c−1 (k) = βi

c,c−1 (k − 1) + Kdown
r

(
αi

c (k) − αdown
ref

)
(6)

As before we decrease probability with faster rate when we
have αi

c ≤ αdown
ref as

βi
c,c−1 (k) = βi

c,c−1 (k − 1) − K̂down
r

(
αi

c (k) − αdown
ref

)
,

(7)
The key element in both channel expansion and shrink-

ing is to accurately set the controller gain Kup and
Kdown, which determine how aggressively or conserva-
tively switching occurs. (Higher K implies a higher switch-
ing probability or more aggressive switching.)

3.2.3 Choosing the Controller Gains

The integral controller increases the switch probability by a
small fraction at a time until enough nodes have switched
to improve the quality of the current channel. However, de-
pending on the topology of the network, there may be a
substantial delay before the effect of a channel switch of
one node has propagated to others on the old channel. It is
well-known from basic feedback control theory that delay
decreases the stability of a feedback control system, since
it takes longer for the effects of control actions to become
measurable. As a result, there is an interesting trade-off to
consider when choosing the switching probability. If it is
too big, switching is aggressive and nodes may oscillate
among channels, moving back and forth excessively and
causing overhead. On the other hand, if it is too small,
it will take longer for the network to re-configure to new
channels upon load changes. This trade-off is captured by
the controller gain parameters Kup

r and Kdown
r .

In the following, we will provide an insight into how to
choose the gain parameters such that we avoid excessive
channel fluctuations in the presence of delay. The anal-
ysis will be based on computing the worst-case switching
frequency at network delay, d (measured in controller sam-
ples). The main reason for the delay comes from propagat-
ing the domino effect of switching from a sink back through
intermediate nodes to the source. During this time, nodes
close to the source still experience the same measured poor
performance α as before the switch. The main effect of
the delay is thus increased possibility that more nodes than
necessary will switch to the new channel not knowing that
someone else has already switched and that soon perfor-
mance will consequently improve.

We will compute Kup
r and Kdown

r such that the fraction
of nodes that may switch during the propagation delay, d,
is below a given threshold, γ. For channel expansion, the
worst-case situation occurs if αi

c = 0, in which case the in-
crease in the switch probability of Equation (4) from sample
to sample is equal to Kup

r · αup
ref . During the first sample,

an average fraction Kup
r · αup

ref of the nodes will leave and
(1 − Kup

r · αup
ref) will remain at the channel. In the second

sample, the switch probability will increase to 2 ·Kup
r ·αup

ref

and the fraction of the original nodes that leave in this sam-
ple is equal to (1−Kup

r ·αup
ref)·2·Kup

r ·αup
ref . The fraction of

nodes, Γ(d, Kup
r , αup

ref), that switch channels during a time
interval of d samples can, thus, be computed as

Γ(d, Kup
r , αup

ref) =
d∑

m=1

m · Kup

r · αup
ref ·

m−1∏
j=1

(
1 − j · Kup

r · αup
ref

)

(8)
For given values of αup

ref , d, and γ (which all can be as-
sumed to be available off-line), we may compute Kup

r from
the relation Γ(d, Kup

r , αup
ref) = γ. As an example, Figure 1

74

1 2 3 4 5
0

0.03

0.06

0.09

0.12

Delay (samples)

K r ⋅
α re

f

K
r
 ⋅ α

ref
 as a function of delay for a tolerance of 0.1

Figure 1. Kup
r · αup

ref as a function of the net-
work delay for a tolerance of γ = 0.1.

shows Kup
r ·αup

ref as a function of delay for the case γ = 0.1.
The same analysis applies for the case of channel shrink-

ing, with the exception that the worst-case switch probabil-
ity is given by Kdown

r (1 − αdown
ref).

With this analysis, we have provided a more intuitive de-
sign parameter than choosing the controller gains Kup

r and
Kdown

r . Specifying γ can be interpreted as choosing the
worst-case fraction of nodes moving to a new channel. To
prevent sustained oscillations, this fraction has to be less
than 1. Smaller fractions have a larger stability margin (in
a control-theoretic sense) but fractions that are too small
cause a sluggish system response to load changes.

3.2.4 Channel Overflow

Once a home channel gets overcrowded, nodes switch to the
upper channel. When the bandwidth of the available chan-
nels is sufficient, nodes in the network will be distributed
from channel F0 and up to the number of channels needed to
accommodate the traffic. However, in the worst-case, there
is still a chance that N channels are not sufficient to avoid
network overload. Channel overflow also happens when a
closely connected set of nodes (e.g. a sink and its followers)
does not fit into one channel.

We propose a scheme to choose the threshold αup
ref for

channels, which solves the channel overflow problem. The
idea of the scheme is that the higher a channel is, the lower
its threshold should be; and the threshold of the highest
channel FN should be zero. This make nodes become more
conservative in switching every time they go up one chan-
nel. Nodes stop considering switching channels once they
get to the highest boundary channel. Based on that, the
threshold αup

ref is chosen as follows

αup
ref,c =

{
αup

ref,0 − c · ε if c < N

0 if c = N
(9)

with αup
ref,0 is the threshold at channel F0 (where everynode

starts to function at) and αup
ref,c is the threshold at channel

Fc, and ε is a chosen constant.

CC2420 Radio Interfaces TOSSIM Radio Model

Basic services of single channel MAC

The Multi Channel MAC

Other Platforms

Platform Independent Message Interface

Figure 2. Component structure of the multi-
channel MAC

4. Protocol Design

In this section we will describe the design of the multi-
channel MAC protocol and how it extends the existing com-
ponents of TinyOS-2.x.

4.1. Component Structure

The protocol is packaged in a component which exposes
the same interface found in the TinyOS-2.x Packet Protocol.
This will allow new applications developed for TinyOS-2.x
to use the new MAC without any porting effort. Further-
more, since the multi-channel MAC protocol works on top
of a single-channel MAC, we also decouple the services
provided by the basic MAC from the multi-channel MAC
so that it is independent of the platform-specific implemen-
tation. Figure 2 shows how the interfaces among layers are
split to facilitate seamless integration with both virtual plat-
forms provided by TOSSIM and an actual MAC provided
for the CC2420 ChipCon radio in the MAC of the MicaZ
motes. The white boxes are interfaces and the solid boxes
are implemented. Other platforms can be integrated simi-
larly by adding a thin layer on top of their MACs and pro-
vide the interface used by the multi-channel MAC.

4.2. Algorithm Design

There are important design decisions which need to be
taken to ensure that the algorithm will be simple and ef-
ficient enough for WSNs applications. Following we de-
scribe these decisions.

Time-triggered Activity

The MAC protocol is designed to work in a time-triggered
manner. In other words, rate control is achieved explicitly
using an interval timer as opposed to implicitly by receipt of
send done notifications. Most message types are queued and
served periodically (except a few types of messages as will
be explained later). Special messages used in the protocol
have places reserved in the network message queue so that
data messages do not occupy the whole queue and prevent
protocol messages from being sent.

75

Channel Status Updates

Nodes periodically broadcast their perceived home channel
conditions. The information broadcasted out by a node i is
a pair < si, fi > where si is the number of times the MAC
layer succeeds in accessing the channel and fi is the number
of failed attempts. This pair together with the current home
channel of node i will be put on the same message called
a Channel Update Message, and is enqueued to the same
queue as with normal messages.

Nodes collect channel update messages and use that in-
formation to estimate the channel acquisition probability as
described earlier. From channel update messages, nodes
also are able to know the up-to-date home channel of their
neighbors.

Neighbors’ Home Channel Maintenance

When a node wants to send a message to another node, it
needs to switch to the home channel of the receiver before
transmitting. Hence, a node needs to know the home chan-
nel of its neighbors who it communicates with. When nodes
first join the network, they assume that the home channels of
other nodes are the same as their own, which is F0. When
the home channel information is out of date, communica-
tion fails and the node initiates a search for neighbors on all
channels as will be described later.

In the following, we will describe the different message
types used by the MAC protocol, how these messages are
queued, and the management of neighbor tables. We then
give the functional description of the algorithm.

4.2.1 Message Types

We begin by describing the message types used by our pro-
tocol for future reference. When a node first joins the net-
work, it broadcasts a HELLO message at the home channel
to inform its neighborhood that it has joined the channel.
When a node needs to send a message to a neighbor but
does not know its home channel, it sends out WHERE IS

messages. CHANNEL UPDATE messages are sent out peri-
odically by nodes and contain the pair < ti, si > of every
node i. These messages are sent at the home channel of the
sender. BYE message are sent out by nodes that decide to
leave their current channel (because of channel expansion
or channel shrinking). When the home channel is under-
loaded (as described in Section 3) the node sends out IN-
VITATION messages to the above channel to invite nodes to
join its home channel. The last type of messages is DATA

which constitutes any messages passed to the MAC by the
upper layer via the component interface. The upper layer
will be notified whenever a DATA message is sent success-
fully, or whenever the delivery failed for several transmis-
sion attempts.

bo
ot

ed

Initialization

Se
nd

 T
im

er
 fir

ed

Pop out one message from
message queue

Su
cc

es
s

Failed (queue is empty)

Destination channel

 is known

Des
tin

ati
on c

ha
nne

l

 is
NOT kn

ow
n

send

Update Neighbor
Table

Send WHERE_IS
message to all

channgel

Update Neighbor
Table

Push message
back to the

queue

Receive WHERE_IS_RESPOND

Update Neighbor
Table

Rec
eiv

e W
HERE_IS

Push
WHERIS_RESPONSE to

message queue

Push message
back to the queue

Su
cc

es
s

Change Home

Channel Timer fired

OR (see note)

Consider change
home Channel

DON’T switch

Change home
channel

Failed

Exceed max send trial

NOT Exceed max send trial

NOT Exceed max send trial
Exceed max send trial

New home channel

Note: Nodes also consider switch
channel when receiving HELLO,
BYE messages from neighbors

Figure 3. Overall state machine of the algo-
rithm

Message Type Included Information
WHERE IS Home channel of the sender,

Id of the requested node
WHERE IS RESPONSE Home channel of the sender

HELLO Old home channel
BYE New home channel

CHANNEL UPDATE < ti, si >
INVITATION βc+1,c

DATA Data

Table 1. Summary of the seven types of spe-
cial protocol messages.

Table 1 gives a summary of the special network mes-
sages that are used by the MAC protocol.

The protocol traffic overhead happens in three cases: (i)
updating channel status to nodes’ neighbors, (ii) notifying
neighbor about channel switching, and (iii) finding neigh-
bors’ home channels. In these overhead messages, the first
type happens the most. In our implementation, channel up-
date messages are sent periodically each one second. The
length of this message is only 5 bytes. So, the overhead
traffic is only around 5 bytes/second/node.

4.2.2 Message Queuing

Apart from WHERE IS, HELLO, and BYE messages, all
types of messages – including WHERE IS RESPONSE,

76

CHANNEL UPDATE, INVITATION, and DATA - are queued
before being sent out. The MAC protocol periodically pops
messages out of the queue and sends them to the corre-
sponding destination. If the MAC fails to send a message,
it will put the message back at the end of the queue. If the
number of retry attempts exceeds a threshold, it will discard
the message and notify the upper layer if the message is a
data message.

Since the number of messages generated by the MAC
(protocol messages) is small, and they play an important
role in the behavior of the protocol, it is desirable for the
queue to favor these messages over DATA messages from
the upper layer. The queue implements this by not allowing
DATA messages to fill up the whole queue. The remaining
spaces are reserved for protocol messages. By doing this,
the protocol messages will rarely be discarded because of
queue overflow, even in heavy traffic conditions3.

4.2.3 Neighbor Table Management

Neighbor tables are required to maintain information about
neighboring nodes that a node communicates with. The
neighbor table is designed as a simple hash table in which
keys are the neighbor IDs. Since the number of entries is
finite, new entries will replace the entry which is least re-
cently used when the table is full.

4.2.4 Functional Description

The overall algorithm is captured by the state machine
shown in Figure 34 . After initialization, each node goes
to an idle state from which it executes different actions
depending on messages it receives and the expiration of
timers.

After receiving a WHERE IS RESPONSE or WHERE IS

message, the neighbor list is updated. In the latter case, a
WHERE IS RESPONSE message is also popped to the top of
the message queue before the node returns to the idle state.

A decision to switch the home channel is made each time
the change home channel timer fires. In case the node de-
cides to switch channels it executes the steps shown in the
Change Home Channel subsystem of Figure 4.

The actions performed by the node are, first, to send out a
BYE message at its current home channel, then switch to the
new home channel, and finally send out a HELLO message
on the new channel. After switching, the node returns to the
idle state.

3The fact the messages are queued before transmitted should work with
most of the application. There are chances that this may affect special
applications as Deluge [8]. However, further study need to be done to
conclude this

4Circles represent states, rounded boxes are processes, solid lines are
conditional transitions, dotted lines are unconditional transitions, and dia-
monds are condition checks. Filled boxes represent composite processes

Change home
channel

Ch
an

ge

ho
me

 ch
an

ne
l

Send BYE

Switch to New
Home Channel

Send HELLO

Ch
an

ge

ho
me

 ch
an

ne
l

Figure 4. State machine subsystem for
changing the home channel.

Send WHERE_IS
message to all

channgel

Exceed max send trial

Ch = 0

Switch to Channel Ch

Send WHEREIS

Ch = MAX_CHANNEL

Ch < MAX_CHANNEL

Ch = Ch + 1

Exceed max send trial

Figure 5. State machine subsystem for send-
ing requests asking for the home channel of
a neighbor.

The second timer used in the implementation is for send-
ing messages. As this timer fires, the first message is
popped from the message queue. If the queue is non-empty,
the next action is to determine if the home channel of the
destination is known.

If the destination channel is unknown, the message is
pushed back to the message queue if the number of trans-
mission attempts does not exceed the maximum. Thereafter,
WHERE IS messages are sent out on gradually increasing
channels as described by the subsystem in Figure 5. The
messages are sent starting at channel F0 followed by all
higher channels up to FN until an acknowledgment is re-
ceived. After the WHERE IS have been sent, the node re-
turns to the idle state.

If the destination channel is known, the message is sent.
The sending of a message is described in more detail in the
subsystem of Figure 6. If the destination is on a different
channel, the sender needs to switch channels before sending
the message. After determining if an acknowledgment was
received, the sender switches back to its home channel.

If the transmission was successful, the neighbor table is
updated and the node returns to its idle state. If the trans-
mission failed, the message is pushed back to the message

77

Switch to Destination
Channel

Send DATA

Switch back to
Home Channel

Destination channel is known

send

S
uc

ce
ss

Failed

Destination channel is known

Acked Not Acked

Switch back to
Home Channel

S
uc

ce
ss Failed

Destination is on different
channel

Destination is on
same home channel

Figure 6. State machine subsystem for send-
ing a message.

queue if the number of transmissions is below the threshold.

5. Implementation

In this section we give a brief overview of the imple-
mentation of the multi-channel MAC protocol on the MicaZ
motes.

5.1. Code Structure and Footprint

Software components are created to conform to the de-
sign described in Section 4.1. The multi-channel MAC is
implemented in the nesC programming language for MicaZ
motes with TinyOS-2.x. The code is structured so that the
platform-dependent parts are separated from the core mech-
anisms of the protocol. Therefore, in the core mechanism
implementation, there is no distinction between TOSSIM
and MicaZ. One code base is used for both platforms.

The compiled code for the multi-channel MAC is 9544
bytes in ROM and 761 bytes in RAM. In future work,
we will optimize the footprint. In the rest of this section,
we will briefly present technical issues related to enabling
multi-channel communication on MicaZ motes as well as in
TOSSIM [15].

5.2. Adopting Multi-Channel Communica-
tion Capabilities

We need the capability to communicate on different
channels dynamically at runtime. TOSSIM does not sup-
port this directly. Hence, we had to modify TOSSIM to
adopt this feature.

Making TOSSIM support dynamic channel switching re-
quires introducing new types of events in the event queue as
well as changing the implementation of the radio model.
The newly introduced event for switching channels also

takes the experimental channel switching time from real
motes into account, which make the simulation model ac-
curately reflect the physical constraint.

6. Evaluation

In this section, we present an evaluation of the multi-
channel MAC both in testbed experiments with MicaZ
motes and in simulation using TOSSIM. While the testbed
results show the performance in a small-scale network set-
ting, the evaluation in TOSSIM (with the same code base as
is run on the MicaZ motes) enables testing at a larger scale.

The evaluation settings focus on collection and aggrega-
tion traffic patterns which are most popular in WSN. Ad-
mittedly, our protocol favors this case. This is not a coinci-
dental choice. We believe that random point-to-point traffic
patterns are less popular in WSN. Hence, they are neigher
targeted not evaluated in this paper and will generally result
in poor performance of our protocol.

6.1. Experimental Testbed Evaluation

The following experimental evaluation will be run
against simulations in TOSSIM for comparison and to vali-
date the simulations with results from the real platform. The
radio model is signal-strength-based. It follows previous lit-
erature [25], already supported in TOSSIM for TinyOS-2.x
[2]. The network configuration files can be found at the link
given at the end of the paper.

321
0 0 0

321
0 1 2

Figure 7. Setups used in the cross-channel
communication evaluation.

Throughput Evaluation for Cross-Channel
Communication

0

200

400

600

800

1000

1200

1400

1 2 3

Node Id

T
o

ta
l

R
ec

ei
ve

d
 M

es
sa

g
es

cross-channel on testbed

cross-channel on TOSSIM

same-channel on testbed

same-channel on TOSSIM

Figure 8. Throughput comparison in the
cross-channel communication evaluation

78

Comparision in Ratio of Received Same-Channel Messages over
Received cross-Channel Messages

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3

Node Id

(#
sa

m
e-

ch
an

n
el

 m
es

sa
g

es
/#

cr
o

ss
-

ch
an

n
el

 m
es

sa
g

es
) on tesbed, data rate of

1message/50ms

on TOSSIM, data rate of
1message/50ms

on testbed, data rate
1message/25ms

on TOSSIM, data rate of
1message/25ms

Figure 9. More comparision between TOSSIM
and testbed results

109 11 12

65 7 8

1413 15 16

3 421

109 11 12

65 7 8

1413 15 16

3 421

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

109 11 12

65 7 8

1413 15 16

3 421

109 11 12

65 7 8

1413 15 16

3 421

1

0

1

2

1

0

1

2

1

0

1

2

1

0

1

2

Figure 10. 16-node setup used for testbed ex-
periments.

6.1.1 Cross-channel Communication

We first evaluate a cross-channel communication scheme
and compare the results from both testbed and TOSSIM.
Figure 7 shows the experimental setups. In both setups,
node 1 sends messages to node 2 and node 2 sends mes-
sages to node 3. In the first setup, all three nodes work on
the same channel. In the second setup, the three nodes are
assigned to three different channels. Hence, node 1 has to
switch to the channel of node 2 to send and node 2 has to
switch to the channel of node 3 to send. The deafness effect
will happen in the traffic from node 1 to node 2.

Figure 8 shows the number of messages received at each
node for the same-channel and cross-channel setups in both
experiments and simulation. As can be seen, there is a good
match between values from the testbed and values from the
simulation. The most significant difference between sim-
ulations and the testbed is in the number of messages re-
ceived in the cross-channel case. The lower throughput in
the simulation is due to an over-estimation of the channel
switching time. This makes our simulation model more
pessimistic, while still valid for a comparison in the more
realistic cases studied in Section 6.2.

Figure 9 shows another view in which we compare the
ratio of throughput in the same-channel case and the cross-
channel case for each node in the testbed and TOSSIM envi-
ronments. The results for both message-generating rates (1
message/25 milliseconds and 1 message/50 milliseconds)

Throughput for Testbed Evaluation on a Network of 16 Nodes

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Node Id

R
ec

ei
ve

d
 M

es
sa

g
es

Single-Channel MAC

Multi-Channel MAC

Figure 11. Testbed comparison between net-
works with a single channel MAC and with the
multi-channel MAC for the 16-node setup.

again show a good match between the simulation and the
real testbed.

6.1.2 Effect of Utilizing Multiple Channels

In this section, we evaluate how the multi-channel MAC
improves throughput in a crowded network. A testbed with
16 nodes was used with the topology shown in Figure 10.
The arrows show the traffic flows. The left figure shows the
initial channel settings and the right figure shows the chan-
nel allocation after the network stabilizes. The experiment
lasts for 10 minutes. Nodes reach the final channel allo-
cation configuration on the right of Figure 10 in less than
3 minutes. The results in Figure 11 show that the case of
using multiple channels on average outperforms the single
channel case by about 30% in terms of throughput.

Figure 12. Network with tree lightly con-
nected sub-networks

6.1.3 Network of Independent Sub-networks

We experiment with network traffic patterns shown in Fig-
ure 14. The network includes two separated sub-networks
which form two different collection trees. The experiment
was conducted in 10 minutes. After 3 minutes, the channel
allocation was as shownon the right side of the figure. The
two indepedent parts were located on two different chan-
nels. The throughput comparison is shown in Figure 15.

79

Figure 13. Testbed comparison between net-
works with a single channel MAC and with the
multi-channel MAC for the 16-node setup.

Figure 14. Networks with two separated sub-
networks. The two sub-networks later are lo-
cated on two different channels

We observe that the multi-channel MAC outperforms the
single channel MAC by 31%. This experiment also shows
the ability to avoid interference of the multi-channel MAC.
Each sub-network can consider the other as a source of in-
terference thus they end up at different channels.

6.1.4 Network of Lightly Connected Sub-networks

In this experiment, the network traffic is chosen as shown in
Figure 12. This network is organized as an aggregation tree
which includes three other sub-trees. Different data rates
are also introduced in this evaluation (the thin arrows corre-
spond to a data rate of 1 message / 1000 milliseconds, and
the thick arrows have data rate of 1 message / 10 millisec-
onds). As shown in the throughput comparison in Figure 13,
our MAC protocol out-performs the case of a single-channel
MAC at all aggregation nodes. In particular, for node 16 the
throughput improvement is roughly 25%.

6.2. Simulation and Scaling

The previous experimental evaluation in section 6.1.1
showed a good match between simulation and the real
testbed. In this section, we scale the evaluation by simula-
tion to a network of 36 nodes composed of two aggregation
trees. The roots of the trees are placed next to each other

Figure 15. Testbed comparison in network
with two separated sub-networks.

321
0 0 0

654
0 0 0

987
0 0 0

121110
0 0 0

151413
0 0 0

181716
0 0 0

212019
0 0 0

242322
0 0 0

272625
0 0 0

302928
0 0 0

333231
0 0 0

363534
0 0 0

321
1 1 1

654
0 0 0

987
1 1 1

121110
0 0 0

151413
1 1 1

181716
0 0 0

212019
1 1 1

242322
0 0 0

272625
1 1 1

302928
0 0 0

333231
1
0

1 1

363534
0 0 0

Figure 16. 36-node network with two aggre-
gation trees placed close to each other.

so they interfere. The topology of the network is shown in
Figure 16.

At the end of the simulation, the nodes in each ag-
gregation tree end up at different channels, which helps
the throughput improve considerably at each node. The
throughput increases by roughly 50% at the aggregation
points as shown in Figure 17.

7. Conclusions

This paper presented a practical design, implementation,
and evaluation of a multi-channel MAC protocol for wire-
less sensor networks (WSNs). The multi-channel MAC pro-
tocol constitutes the first real implementation that consid-
ers the hardware constraints (single half-duplex radio in-
terfaces and non-trivial channel switching times) associated
with commonly used WSN motes.

A distributed heuristic was proposed to partition nodes
among channels in a way that keeps costly cross-channel
communication to a minimum. Furthermore, a simple feed-
back control strategy was designed to oversee the partition-
ing process in a way that ensures stability and avoids con-
gestion.

The MAC protocol is simple and light-weight and was
evaluated on a proof-of-concept testbed with MicaZ motes.

80

Throughput Evaluation for an Aggregation Network of 36 Nodes

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Node Id

R
ec

ei
ve

d
 M

es
sa

g
es

with Single-Channel MAC

with Multi-Channel MAC

Figure 17. Throughput comparision for the
36-node aggregation network in simulation

The evaluation showed that the multi-channel protocol was
successful in avoiding network congestion and achieved
performance improvements compared to the single-channel
case.

In this work, we focused on improving network through-
put. Message delay, message loss, and power management
issues are left for furture studies. Details and source code
of the proposed multi-channel MAC protocol can be down-
loaded from:

http://cs.uiuc.edu/homes/hieule2/IPSN08/

References

[1] http://www.xbow.com/Products/
productdetails.aspx?sid=164.

[2] http://www.tinyos.net/tinyos-2.x/doc/
html/tutorial/usc-topologies.html.

[3] Technical overview of time synchronized mesh protocol
(tsmp). TSMP White Paper, http://www.dustnetworks.com/,
2006.

[4] A. Adya, P. Bahl, J. Padhye, A. Wolman, and L. Zhou. A
multi-radio unification protocol for IEEE 802.11 wireless
networks. In Proceedings of IEEE Broadnets’04, San José,
CA, 2004.

[5] P. Bahl, R. Chandra, and J. Dunagan. SSCH: Slotted seeded
channel hopping for capacity improvement in IEEE 802.11
ad-hoc wireless networks. In Proceedings of ACM Mobi-
Com’04, Philadelphia, PA, 2004.

[6] X. Chen, P. Han, Q.-S. He, S. liang Tu, and Z.-L. Chen. A
multi-channel MAC protocol for wireless sensor networks.
In Proceedings of The Sixth IEEE International Conference
on Computer and Information Technology (CIT’06), Seoul,
Korea, 2006.

[7] O. Goldschmidt and D. S. Hochbaum. Polynomial algorithm
for the K-cut problem. In IEEE 29th Annual Symposium on
Foundations of Computer Science, pages 444–451, 1988.

[8] J. W. Hui and D. Culler. The dynamic behavior of a data dis-
semination protocol for network programming at scale. In
Proceedings of the 2nd international conference on Embed-
ded networked sensor systems, pages 81–94. ACM Press,
2004.

[9] N. Jain, S. R. Das, and A. Nasipuri. A multichannel
CSMA MAC protocol with receiver-based channel selection
for multihop wireless networks. In Proceedings of IEEE
IC3N’01, Scottsdale, AZ, 2001.

[10] Y. Kamidoi, S. Wakabayashi, and N. Yoshida. Faster al-
gorithms for finding a minimum K-way cut in a weighted
graph. In 1997 IEEE International Symposium on Circuits
and Systems, Hong Kong, 1997.

[11] P. Kinney and D. Sexton. Isa100.11a release 1 - an update
on the process automation applications wireless standard.
http://www.isa.org/isasp100/, 2008.

[12] P. Kyasanur and N. H. Vaidya. Routing and interface assign-
ment in multi-channel multi-interface wireless networks. In
Proceedings of IEEE WCNC’05, New Orleans, LA, 2005.

[13] H. K. Le, D. Henriksson, and T. Abdelzaher. A control
theory approach to throughput optimization in multichannel
collection sensor networks. In IPSN 2007, Cambridge, MA,
2007.

[14] P. Levis. Tep 116: Packet protocols. http:
//www.tinyos.net/tinyos-2.x/doc/html/
tep116.html, 2006-06-27.

[15] P. Levis, N. Lee, M. Welsh, and D. Culler. Tossim: Accu-
rate and scalable simulation of entire tinyos applications. In
Proceedings of ACM SenSys’03, Los Angeles, CA, 2003.

[16] A. Nasipuri and S. R. Das. Multichannel CSMA with sig-
nal power-based channel selection for multihop wireless net-
works. In Proceedings of IEEE VTC’00, Boston, MA, 2000.

[17] J. A. Patel, H. Luo, and I. Gupta. A cross-layer architecture
to exploit multichannel diversity with a single transceiver. In
INFOCOM Minisymp. 2007, 2007.

[18] R. Simon, L. Huang, E. Farrugia, and S. Setia. Using multi-
ple communication channels for efficient data dissemination
in wireless sensor networks. In MASS 2005, 2005.

[19] J. So and N. H. Vaidya. A multi-channel MAC protocol for
ad-hoc wireless networks. In Proceedings of ACM Mobi-
hoc’04, 2004.

[20] A. Tzamaloukas and J. Garcia-Luna-Aceves. Channel-
hopping multiple access. In Proceedings of IEEE ICC’00,
New Orleans, LA, 2000.

[21] L. Wang and S. S. Kulkarni. appa: Gossip based multi-
channel reprogramming for sensor networks. In DCOSS,
pages 119–134, 2006.

[22] L. Zhao, H. Nagamochi, and T. Ibaraki. Approximating the
minimum K-way cut in a graph via minimum 3-way cuts. In
ISAAC ’99: Proceedings of the 10th International Sympo-
sium on Algorithms and Computation, pages 373–382, Lon-
don, UK, 1999. Springer-Verlag.

[23] G. Zhou, C. Huang, T. Yan, T. He, J. A. Stankovic, and T. F.
Abdelzaher. MMSN: Multi-frequency media access control
for wireless sensor networks. In Proceedings of the IEEE
Infocom, Barcelona, Spain, 2006.

[24] G. Zhou, J. Stankovic, and S. Son. The crowded spectrum
in wireless sensor networks. In Proceedings of the Third
Workshop on Embedded Networked Sensors (EmNets 2006),
Cambridge, MA, 2006.

[25] M. Zuniga and B. Krishnamachari. Analyzing the transi-
tional region in low power wireless links. USC Tech Report
04-823.

81

