A Practical Oligomeric (salen)Co Catalyst for Asymmetric Epoxide Ring Opening Reactions

Joseph M. Ready and Eric N. Jacobsen*

Department of Chemistry and Chemical Biology

Harvard University, Cambridge, Massachusetts 02138

General

All ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and spectra were recorded using Bruker DMX 500, AM 500 or AM 400 FT spectrometers at ambient temperature. IR spectra were recorded as either KBr discs or thin film between NaCl plates on a Matterson FTIR 3000. Solvents were used as received from commercial suppliers. Gas chromatographic (GC) analyses were performed on Hewlett-Packard 5890 Series II instruments equipped with FID detectors and HP 3396 integrators. HPLC analyses were performed on a Hewlett-Packard 1050 Series quaternary pump gradient instrument with a diode-array detector interfaced with HP ChemStation software for data analysis.

Materials

1,2-epoxyhexane was purchased from Aldrich and distilled from CaH_{2} before use. Cyclohexene oxide, propylene oxide, and styrene oxide were purchased from Aldrich and used as received. Phenols and alcohols were purchased from Aldrich and used as received. 3-nitrobenzenesulfonic acid was purchased from TCI America and used as received.

Catalyst Preparation

Complex 5 is commercially available.
For preparation of complexes $6-8$, see the supporting information of reference 1 .

Dialdehyde 10

9
10
1,3 Diisopropylcarbodiimide ($4.60 \mathrm{~mL}, 29.4 \mathrm{mmol}, 2.1$ equiv.) was added to a solution of 3-tert-Butyl-2,5-dihydroxy benzaldehyde ${ }^{\square}(\mathbf{9})(5.57 \mathrm{~g}, 28.7 \mathrm{mmol}, 2.05$ equiv), DMAP ($0.34 \mathrm{~g}, 2.8 \mathrm{mmol}, 0.2$ equiv) and pimelic acid ($2.24 \mathrm{~g}, 14 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(27 \mathrm{~mL})$ and $\operatorname{DMF}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2}. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min and at rt for 2 h . The reaction solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ and extracted with $0.1 \mathrm{M} \mathrm{HCl}(150 \mathrm{~mL})$ and brine $(150 \mathrm{~mL})$. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The resulting residue was suspended in hexanes (200 mL), filtered through filter paper and extracted with 2% $\mathrm{K}_{2} \mathrm{CO}_{3}(4 \times 50 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to provide $7.11 \mathrm{~g}(99 \%)$ yellow oil. . ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=1.40(\mathrm{~s}, 18 \mathrm{H}), 1.52-1.63(\mathrm{~m}$,
$2 \mathrm{H}), 1.83(\mathrm{q}, J=7.6,4 \mathrm{H}), 2.61(\mathrm{t}, J=7.3,4 \mathrm{H}), 7.17(\mathrm{~d}, J=2.5,2 \mathrm{H}), 7.20(\mathrm{~d}, J=3.0$, 2H), $9.79(\mathrm{~s}, 2 \mathrm{H}), 11.7(\mathrm{~s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=24.7,28.7,29.2,34.2,35.3,120.2$, 123.4, 128.2, 140.4, 142.6, 159.2, 172.5, 196.6. IR (thin film) 1618, 1657, 1758, 2872, 2959, $3426 \mathrm{~cm}^{-1} . \mathrm{FAB}+\mathrm{MS}, m / z: 535[\mathrm{M}+\mathrm{Na}]^{+}$.

Oligosalen 11:

THF (22 mL) was added to a solution of (R, R)-1,2-diammoniumcyclohexane-mono-(+)-tartrate salt ($1.75 \mathrm{~g}, 6.59 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.84 \mathrm{~g}, 13.32 \mathrm{mmol})$ in distilled $\mathrm{H}_{2} \mathrm{O}(8.2 \mathrm{~mL})$. The solution was heated to reflux and $\mathbf{1 0}(3.41 \mathrm{~g}, 6.66 \mathrm{mmol})$ was added as a solution in THF (22 mL). The reaction was stirred at reflux for 2 h , cooled to rt and diluted with EtOAc (100 mL). The organic layer was separated, extracted with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed under reduced pressure to provide 3.88 g (quantitative) yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=1.38(\mathrm{~s}, 18 \mathrm{H}), 1.44-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.64-$ $1.82(\mathrm{~m}, 10 \mathrm{H}), 1.83-2.00(\mathrm{~m}, 4 \mathrm{H}), 2.53(\mathrm{t}, J=7.3,4 \mathrm{H}), 3.26-3.36(\mathrm{~m}, 2 \mathrm{H}) 6.77(\mathrm{~d}, J=$ $2.9,2 \mathrm{H}), 6.92(\mathrm{~d}, J=2.6,2 \mathrm{H}), 8.27(\mathrm{~s}, 2 \mathrm{H})$. Approx. 5% unidentified material is evident in the ${ }^{1} \mathrm{H}$ NMR. ${ }^{3} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=24.2,24.6,28.6,29.2,33.1,34.1,34.9,72.3$, 118.1, 121.4, 122.9, 138.6, 141.6, 158.1, 164.7, 172.5. IR (KBr) 1437, 1593, 1634, 1763, 2865, $2944 \mathrm{~cm}^{-1}$. FAB+ MS , $m / z(\%): 590(55)[\mathrm{M}]^{+} \mathrm{n}=0,1180(100)[\mathrm{M}]^{+} \mathrm{n}=1$,
$1203(75)[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{n}=1,1769(30)[\mathrm{M}]^{+} \mathrm{n}=2,1792(25)[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{n}=2,2350(10)$
$[\mathrm{M}]^{+} \mathrm{n}=3,2373(10)[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{n}=3$.

Oligo-(salen)Co(CSA) and oligo-(salen) $\operatorname{Co}(\mathbf{N B S}) \underline{3}$ and $\underline{4}:$

To a degassed solution of $11\left(0.390 \mathrm{~g}, 0.66 \mathrm{mmol}^{\left.\mathbf{4} \mathrm{m}^{\mathrm{M}}\right)^{20}(\mathrm{NBS}), \mathrm{n}=1-3}\right.$ in toluene $(\mathrm{ca} .7 \mathrm{~mL})$ was added a degassed solution of $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.329 \mathrm{~g}, 1.32 \mathrm{mmol})$ in $\mathrm{MeOH}(\mathrm{ca} .7 \mathrm{~mL})$ via canula under N_{2}. The resulting mixture was stirred with a N_{2} purge for 30 min at which time ($1 S$)-10-camphorsulfonic acid ($0.153 \mathrm{~g}, 0.66 \mathrm{mmol}$) or 3-nitrobenzensulfonic $\operatorname{acid}(0.146 \mathrm{~g}, 0.66 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added. The reaction was stirred open to the air for 2 h . Solvents were removed under reduced pressure and the brown residue was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The suspension was filtered through a pad of celite to remove excess $\mathrm{Co}(\mathrm{OAc})_{2}$ and the celite was washed with $500 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$. Solvent was removed under reduced pressure to provide the catalyst as a paramagnetic black solid in $>95 \%$ yield. IR (KBr) (for 2) 1547, 1567, 1605, 1641, 1746, 2868, 2947. FAB+MS , m / z (\%): 1294 (100) $[\mathrm{M}]^{+} \mathrm{n}=1,1317(60)[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{n}=1,1940(15)[\mathrm{M}]^{+} \mathrm{n}=2,1963$ (10) $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{n}=2,2587(5)[\mathrm{M}]^{+} \mathrm{n}=3,2610(5)[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{n}=3$.

(S)-Cyclohexane 1,2-diol (Table 2).

Entries 1, 3 and 5: Cyclohexene oxide ($0.491 \mathrm{~g}, 5.00 \mathrm{mmol}$), 1:1
$\mathrm{CH}_{3} \mathrm{CN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.11 \mathrm{~mL}, 6.0 \mathrm{mmol})$ were added to (R, R)-oligo(salen)Co 1, $\mathbf{3}$ or $\mathbf{4}$ ($0.075 \mathrm{mmol}, 0.015$ equiv) at $23^{\circ} \mathrm{C}$. The reaction was stirred for 3 (entry 1) or 4 h (entries 3 and 5) at $23{ }^{\circ} \mathrm{C}$. PPTS $(0.05 \mathrm{~g})$ and $1 \mathrm{~mL} \mathrm{1:1} \mathrm{CH}_{3} \mathrm{CN}^{\mathrm{C}}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added, and the reaction mixture was applied to a pad of silica gel. The silica gel was washed with 600 mL EtOAc. Concentration afforded 0.551 g (with 1), 0.561 g (98%) (with $\mathbf{3}$) or 0.526 g (with 4) white solid in 86 (with $\mathbf{1}$) or 93% ee (with $\mathbf{3}$ and $\mathbf{4}$) by chiral GC analysis of the bis-TFA ester (formed from 2 mg product and 0.1 mL $\operatorname{TFAA})\left(\mathrm{G}-\mathrm{TA}, 75{ }^{\circ} \mathrm{C}, t_{\mathrm{R}}(\right.$ minor $)=6.7 \mathrm{~min}, t_{\mathrm{R}}($ major $\left.)=9.6 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=$ $1.20-1.30,(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.90-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.75-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.30$ $-3.40(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=24.5,33.0,75.9$.

Entry 2. The same procedure as for Entry 1 was followed, except that the reaction was carried out at $4{ }^{\circ} \mathrm{C}$. Reaction time: 12h. Isolated $0.568 \mathrm{~g}(98 \%)$ in 94% ee.

Entries 4 and 6: The same procedure as for entries 3 and 5 was followed except 1 mL
1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{CN}$ and 0.025 mmol catalyst were used. Reaction time: 12 h . Yield: $0.522 \mathrm{~g}(90 \%)$ with $\mathbf{3} ; 0.539 \mathrm{~g}(92 \%)$ with 4 . Ee: 93%.

Entries 7 and 8: The same procedure as for entries 3 and 4 was followed except that catalyst $\mathbf{5}^{1}$ was used and following concentration of the filtrate, the crude reaction product was purified by chromatography on silica gel ($75 \% \mathrm{EtOAc}$ in hexanes). Reaction time:

36 h (entry 7), 96 h (entry 8). Yield: 0.418 g , (72\%) (entry 7), 0.093 g (16%) (entry 8) .
Ee: 71% (entry 7), 51% (entry 8).

(R)-Styrene Oxide and (S)-2-Phenyl-1,2-ethanediol (equation 1).

Styrene oxide ($3.00 \mathrm{~g}, 25 \mathrm{mmol}$), $\mathrm{H}_{2} \mathrm{O}(0.27 \mathrm{~mL}, 15 \mathrm{mmol})$, and 1:1
$\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ were added to $(R, R)-\mathbf{3}(0.020 \mathrm{~g}, 0.020 \mathrm{mmol})$ and the reaction was stirred for 2.5 h at rt . Solvent and resolved epoxide were transferred under vacuum (0.2 Torr) from the reaction mixture into a cooled $\left(-78^{\circ} \mathrm{C}\right)$ receiving flask. The solution was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to provide styrene oxide ($1.32 \mathrm{~g}, 44 \%$) in 99% ee by chiral HPLC (R, R-Whelko, 1% IPA in hexanes, $1 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, t_{\mathrm{R}}(\operatorname{minor})=7.4 \mathrm{~min} ; t_{\mathrm{R}}($ major $\left.)=9.1\right) .(S)-2$-phenylethanediol was vacuum distilled (0.2 Torr, $100^{\circ} \mathrm{C}$) to provide $1.51 \mathrm{~g}(44 \%)$ in 97% ee as determined by chiral GC analysis of the bistrifluoroacetate derivative (G-TA, $75^{\circ} \mathrm{C}$, t_{R} $($ minor $)=31.0 \mathrm{~min} ; t_{\mathrm{R}}($ major $\left.)=33.2\right)$.

(R)-Proplyene oxide and (S) Propanediol (equation 2).

Propylene oxide ($85.6 \mathrm{~g}, 103 \mathrm{~mL}, 1.475 \mathrm{~mol}$) and water ($15.9 \mathrm{~mL}, 0.89 \mathrm{~mol}, 0.6$ equiv) were added to a stirred solution of $(R, R)-\mathbf{3}(5 \mathrm{mg}, 0.0059 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(32.5$ mL) at rt . The reaction was stirred 24 h at rt . Solvent and resolved epoxide were vacuum transferred (40 Torr) from the reaction mixture into a cooled ($-78{ }^{\circ} \mathrm{C}$) receiving flask.

The recovered epoxide was distilled at ambient pressure through glass helices to provide $38.56 \mathrm{~g}(45 \%)$. The ee of the recovered epoxide was determined to be $>99 \%$ by chiral GC analysis of the 1-azido-2-trimethylsiloxypropane (obtained by ring opening with azidotrimethylsilane $)\left(\right.$ Cyclodex $\mathrm{B}, 55^{\circ} \mathrm{C}, t_{\mathrm{R}}($ major $)=12.1 \mathrm{~min} ; t_{\mathrm{R}}($ minor $\left.)=12.7\right)$. The diol was distilled at $65{ }^{\circ} \mathrm{C}$ under reduced pressure $\left(0.2\right.$ Torr) to a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ receiving flask to provide $59.1 \mathrm{~g}(51 \%)$ in 97% ee as determined by chiral GC analysis of the bistrifluoroacetate $\left(\mathrm{G}-\mathrm{TA}, 60^{\circ} \mathrm{C}, 2 \mathrm{~min}, 1^{\circ} / \mathrm{min}, t_{\mathrm{R}}(\right.$ minor $)=3.1 \mathrm{~min} ; t_{\mathrm{R}}($ major $)=$ 4.61).

Synthesis of 1-alcoxy-2-alcohols (Equations 3 and 4). General Procedure

Alcohol (2.25 mmol), epoxide (5.00 mmol) and $\mathrm{CH}_{3} \mathrm{CN}(0.2 \mathrm{~mL})$ were added to $(R, R)-4$ at $4^{\circ} \mathrm{C}$, and the solution was stirred at $4^{\circ} \mathrm{C}$ until GC analysis indicated complete conversion of alcohol. The reaction was diluted with $5 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and filtered through a plug of silica gel. The plug of silica gel was washed with $20 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$. The filtrate was concentrated under reduced pressure to provide the pure product.
(R)-1-Benzyloxy-2-hexanol: ${ }^{3}$ 4: $0.0048 \mathrm{~g}, 0.0056 \mathrm{mmol}, 0.0025$ equiv. Reaction time: 8 h. Isolated $0.426 \mathrm{~g}(91 \%)$ colorless oil in 99% ee by chiral HPLC (R, R-Whelko, $2 \% \mathrm{IPA} /$ Hexanes, $t_{\mathrm{R}}($ minor $)=7.9 \mathrm{~min}, t_{\mathrm{R}}($ major $\left.)=8.7 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=0.90$ $(\mathrm{t}, J=7.2,3 \mathrm{H}), 1.26-1.35(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.49(\mathrm{~m}, 3 \mathrm{H}) 2.22(\mathrm{bs}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J-7.9$, $9.4,1 \mathrm{H}), 3.51(\mathrm{dd}, J=2.9,9.5,1 \mathrm{H}), 3.78-3.84(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 7.28,7.38(\mathrm{~m}$, $5 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=14.2,22.9,27.9,33.0,70.5,73.4,74.7,76.8,127.66,127.70$, 128.4, 137.9.
(R)-1-(2-trimethylsilyl ethoxy)-2-hexanol: 4: $(0.0019 \mathrm{~g}, 0.00225 \mathrm{mmol}, 0.001$ equiv). Reaction tine: 2 h . Recovered $0.476 \mathrm{~g}(97 \%)$. The product was formed in 99% ee as determined by chiral GC analysis of the bis TFA ester of the deprotected diol (formed by treating 0.01 g product with $0.2 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 0.2 mL 2 M solution of LiBH_{4} in $\mathrm{CH}_{3} \mathrm{CN}$ and heating at $80^{\circ} \mathrm{C}$ for 2 h$)\left(\mathrm{G}-\mathrm{TA}, 60^{\circ} \mathrm{C}, 2 \mathrm{~min}, 1^{\circ} \mathrm{C} / \mathrm{min}, t_{\mathrm{R}}(\right.$ minor $)=8.8 \mathrm{~min}$, $t_{\mathrm{R}}($ major $\left.)=10.9 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=0.02(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{t}, J=7.4,3 \mathrm{H}), 0.90-$ $0.97(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.45(\mathrm{~m}, 3 \mathrm{H}), 2.26(\mathrm{bs}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=8.0$, $9.6,1 \mathrm{H}) 3.42(\mathrm{dd}, J=3.2,9.2,1 \mathrm{H}) 3.48-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.71-3.78(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=-1.2,14.2,18.3,22.9,27.8,33.0,68.6,70.4,74.7$.
(S)-1-(2-chlorophenoxy)-2-hexanol (equation 5).

Chlorophenol ($0.290 \mathrm{~g}, 2.25 \mathrm{mmol}$), hexeneoxide ($0.501 \mathrm{~g}, 5.00 \mathrm{mmol}$) and $\mathrm{CH}_{3} \mathrm{CN}(0.2 \mathrm{~mL})$ were added to $(R, R)-4$ at $4^{\circ} \mathrm{C}$, and the solution was stirred at $4{ }^{\circ} \mathrm{C}$ for 10 h . The reaction was diluted with $5 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}, \operatorname{PPTS}(0.015 \mathrm{~g})$ was added, and the solution was filtered through a pad of silica gel. The plug of silica gel was washed with $20 \mathrm{mLEt}_{2} \mathrm{O}$. The filtrate was concentrated under reduced pressure to provide 0.488 g (95%) colorless oil in $>99 \%$ ee as determined by chiral HPLC analysis (Chiralpak AD, $5 \% \mathrm{EtOH}$ in Hexanes, $270 \mathrm{~nm}, 1 \mathrm{~mL} / \mathrm{min} t_{\mathrm{R}}($ minor $)=7.4 \mathrm{~min} ; t_{\mathrm{R}}($ major $\left.)=9.3\right) .{ }^{1} \mathrm{H}$ $\operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=0.93(\mathrm{t}, J=7.2,3 \mathrm{H}), 1.22-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.55-$ $1.66(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{bs}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=8.1,9.9,1 \mathrm{H}), 4.01-4.08(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.95$ $(\mathrm{m}, 2 \mathrm{H}), 7.18-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.38(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=14.1,22.8$, $27.7,32.7,70.0,73.5,113.8,121.7,123.0,127.6,131.1,153.9$.

Synthesis of 3a-3b.

Aldehyde 12 and Dialdehyde 13a.

10

12

13a

THF (91 mL) was added to a solution of (R, R)-1,2-diammoniumcyclohexane-mono-(+)-tartrate salt ($4.82 \mathrm{~g}, 18.2 \mathrm{mmol}, 10$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(5.03 \mathrm{~g}, 36.4 \mathrm{mmol}, 20$ equiv) in distilled $\mathrm{H}_{2} \mathrm{O}(26 \mathrm{~mL})$. The solution was heated to reflux and $9(0.354 \mathrm{~g}, 1.82$ mmol, 1 equiv) was added as a solution in THF (4.0 mL). The reaction was stirred at reflux for 2 h , cooled to rt and diluted with $\mathrm{EtOAc}(50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude residue was dissolved in THF (9 mL) and $\mathbf{1 0}(4.67 \mathrm{~g}, 9.12 \mathrm{mmol}$, 5 equiv) was added as a solution in THF (9 mL). The reaction was stirred 4 h at room temperature, concentrated under reduced pressure and purified by flash chromatography on silica gel (20% EtOAc/hexanes) to provide $0.480 \mathrm{~g} \mathbf{1 2}(34 \%)$ as a yellow foam in 95% purity. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=1.38(\mathrm{~s}, 18 \mathrm{H}) 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.41-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.66-2.02(\mathrm{~m}, 10 \mathrm{H}), 2.55(\mathrm{t}, J$ $=7.2,2 \mathrm{H}), 2.60(\mathrm{t}, J=7.5,2 \mathrm{H}), 3.25-3.34(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=2.6,1 \mathrm{H})$, $6.82(\mathrm{~d}, J=2.9,1 \mathrm{H}), 6.92(\mathrm{~d}, J=2.6,1 \mathrm{H}), 7.16(\mathrm{~d}, J=2.6,1 \mathrm{H}), 7.20(\mathrm{~d}, J=2.5,1 \mathrm{H})$, $8.14(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 9.77(\mathrm{~s}, 1 \mathrm{H}), 11.7(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=24.4,24.7$, 28.7, 29.2, 29.3, 29.5, 29.9, 33.1, 33.2, 34.2, 35.0, 35.1, 35.3, 72.2, 72.4, 114.8, 118.26, $118.30,120.2,121.5,123.1,123.5,128.3,138.7,138.9,140.3,141.7,142.6,147.1,154.6$, 158.4, 159.2, 165.1, 165.4, 172.6, 172.9, 196.68, 196.70. IR (KBr) 1150, 14.7, 1597,
1633.8, 1655, 1757, 2864, 2949, $3447 \mathrm{~cm}^{-1}$. MS (ES+) $m / z(\%): 785.4(100)[\mathrm{M}+\mathrm{H}]^{+}$.

Dialdehyde 13a (0.58 g) was also isolated from the reaction mixture. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $=1.46,(\mathrm{~s}, 18 \mathrm{H}), 1.49(\mathrm{~s}, 18 \mathrm{H}), 1.52-1.68(\mathrm{~m}, 6 \mathrm{H}), 1.76-2.06,(\mathrm{~m}, 14 \mathrm{H}), 2.64(\mathrm{t}, J=7.5$, $4 \mathrm{H}), 2.69(\mathrm{t}, J=7.5,4 \mathrm{H}), 3.36-3.44(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=2.6,2 \mathrm{H}), 7.02(\mathrm{~d}, J=2.9,2 \mathrm{H})$, $7.26(\mathrm{~d}, J=2.9,2 \mathrm{H}), 7.29(\mathrm{~d}, J=2.6,2 \mathrm{H}), 8.31(\mathrm{~s}, 2 \mathrm{H}), 9.88(\mathrm{~s}, 2 \mathrm{H}), 11.79(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=24.2,24.50,24.53,28.5,29.0,29.2,33.1,34.0,34.9,35.1,72.3,118.1$, $120.0,121.4,122.9,123.3,128.1,138.7,140.1,141.6,142.4,158.1,159.0,164.7,172.3$, 172.5, 196.5. IR (KBr) 1437, 1597, 1633, 1657, 1759, 2866, $2951 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}$ (\%): 1103.8 (100\%), $[\mathrm{M}+\mathrm{H}]^{+}, 1125.8$. (60) $[\mathrm{M}+\mathrm{Na}]^{+}$. Unreacted dialdehyde 10 (2.50 g , $54 \%)$ was recovered from the reaction mixture.

Dialdehyde 13b.

13b: $\mathrm{n}=2$

12
1,3-diisopropylcarbodiimide ($0.023 \mathrm{~mL}, 0.15 \mathrm{mmol}, 2.2$ equiv) was added to a solution of $12(0.11 \mathrm{~g}, 0.14 \mathrm{mmol}, 2$ equiv), pimelic acid ($0.011 \mathrm{~g}, 0.069 \mathrm{mmol}, 1$ equiv) and DMAP ($0.002 \mathrm{~g}, 0.016 \mathrm{mmol}, 0.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.18 mL) and DMF (0.02 mL) at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min , then rt for 24 h . The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, extracted with $0.1 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and brine. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure and purified by flash chromatography (gradient elution, 20 to
$25 \% \mathrm{EtOAc} /$ hexanes $)$ to provide $0.065 \mathrm{~g}(56 \%) \mathbf{1 3 b}$ as a yellow foam. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta=1.37(\mathrm{~s}, 18 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}), 1.42-1.58(\mathrm{~m}, 10 \mathrm{H}), 1.64-1.84(\mathrm{~m}, 16 \mathrm{H})$, $1.84-1.97(\mathrm{~m}, 8 \mathrm{H}), 2.53(\mathrm{t}, J=8.0,4 \mathrm{H}), 2.55(\mathrm{t}, J=7.7,4 \mathrm{H}), 2.6(\mathrm{t}, J=7.5,4 \mathrm{H}), 3.28-$ $3.35(\mathrm{~m}, 4 \mathrm{H}), 6.77(\mathrm{~d}, J=3.0,4 \mathrm{H}), 7.17(\mathrm{~d}, J=2.9,2 \mathrm{H}), 7.20(\mathrm{~d}, J=2.9,2 \mathrm{H}), 8.22(\mathrm{~s}$, $2 \mathrm{H}), 8.23(\mathrm{~s}, 2 \mathrm{H}), 9.79(\mathrm{~s}, 2 \mathrm{H}), 11.71(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=24.2,24.49,24.52$, $24.6,28.5,28.6,29.0,29.2,33.1,34.0,34.1,36.9,35.1,72.2,72.3,118.1,120.0,121.39$, $121.4,122.9,123.3,128.1,138.6,138.7,140.1,141.56,141.58,142.4,158.06,158.09$, $159.8,164.7,164.8,172.3,172.47,172.50,196.5 . \operatorname{IR}(\mathrm{KBr}) 1437,1595,1634,1655$, 1757, 2865, $2947 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}(\%): 848(100)[\mathrm{M}+2 \mathrm{H}]^{+2}, 1693(20 \%)[\mathrm{M}+\mathrm{H}]^{+}$.

Pimelic Acid monoallyl ester (14)

Pimeloyl dichloride ($2.45 \mathrm{~mL}, 15 \mathrm{mmol}, 6$ equiv) was added to a solution of allyl alcohol ($0.17 \mathrm{~mL}, 0.145 \mathrm{~g}, 2.5 \mathrm{mmol}$, 1 equiv), DMAP ($0.031 \mathrm{~g}, 0.25 \mathrm{mmol}, 0.1$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.42 \mathrm{~mL}, 3 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The reaction was stirred 18 h at room temperature, at which time the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and carefully quenched with $1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$. The organic layer was separated, extracted with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure and purified by flash chromatography (gradient elution 30 to $40 \% \mathrm{EtOAc} / 0.1 \% \mathrm{AcOH} /$ hexanes) to provide $0.382 \mathrm{~g}(76 \%) \mathbf{1 4}$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=1.33-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.70$ (m, 4H), 2.30-2.38 (m, 4H), $4.57(\mathrm{ddt}, J=1.2,1.2,5.5,2 H), 5.23(\mathrm{dd}, J=0.9,10.5,1 \mathrm{H})$, 5.29-5.34(m, 1H), 5.84-5.96(m, 1H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=24.3,24.6,28.5,33.8$, 34.0, 65.1, 118.3, 132.3, 173.3, 179.6. IR (thin film) $1710,1738,2943 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{CI}+)$ $m / z(\%): 218(100)\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

Allyl ester 15.

12

14

15

1,3-diisopropylcarbodiimide ($0.036 \mathrm{~mL}, 0.23 \mathrm{mmol}, 1.2$ equiv) was added to a solution of $12(0.150 \mathrm{~g}, 0.19 \mathrm{mmol}, 1$ equiv), $14(0.040 \mathrm{~g}, 0.20 \mathrm{mmol}, 1.05$ equiv) and DMAP (0.002 $\mathrm{g}, 0.016 \mathrm{mmol}, 0.1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.27 \mathrm{~mL})$ and $\mathrm{DMF}(0.03 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 5 min , then rt for 24 h . The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, extracted with $0.1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure and purified by flash chromatography (20\% EtOAc/hexanes) to provide $0.121 \mathrm{~g}(66 \%) \mathbf{1 5}$ as a yellow glass. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=1.37(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H})$, $1.40(\mathrm{~s}, 9 H), 1.42-1.58(\mathrm{~m}, 6 \mathrm{H}), 1.64-1.84(\mathrm{~m}, 10 \mathrm{H}), 1.84-1.98(\mathrm{~m}, 4 \mathrm{H}), 2.36(\mathrm{t}, J=7.5$, $2 \mathrm{H}), 2.51(\mathrm{t}, J=7.5,2 \mathrm{H}), 2.55(\mathrm{t}, J=7.5,2 \mathrm{H}), 2.60(\mathrm{t}, J=7.5,2 \mathrm{H}), 3.25-3.37(\mathrm{~m}, 2 \mathrm{H})$, $4.58(\mathrm{dm}, J=5.9,2 \mathrm{H}), 5.23(\mathrm{dd}, J=10.4,1.3,1 \mathrm{H}), 5.31(\mathrm{dd}, J=17.0,1.6,1 \mathrm{H}), 5.86-$ $5.97(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=2.5,2 \mathrm{H}), 6.92(\mathrm{t}, J=2.4,2 \mathrm{H}), 7.17(\mathrm{~d}, J=2.9,1 \mathrm{H}), 7.20,(\mathrm{~d}, J$ $=2.8,1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 9.79(\mathrm{~s}, 1 \mathrm{H}), 11.7(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=$ $24.2,24.50,24.52,24.56,24.59,28.5,28.6,29.0,29.2,29.8,33.1,34.0,34.1,34.9,35.1$, $65.1,72.2,94.5,118.1,118.3,120.0,121.39,121.42,123.0,123.3,128.1,132.3,138.69$, $138.73,140.1,141.6,142.4,158.07,158.11,159.0,164.8,172.3,172.49,172.54,173.2$,
196.5. IR (KBr) $1437,1595,1633,1657,1757,2864,2945 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}(\%)$:
$484(15 \%)[\mathrm{M}+2 \mathrm{H}]^{+2}, 968(100 \%)[\mathrm{M}+\mathrm{H}]^{+}, 990(25)[\mathrm{M}+\mathrm{Na}]^{+}$.

Acid 16.

Under air-free conditions, morpholine ($0.065 \mathrm{~mL}, 0.66 \mathrm{mmol}, 6$ equiv) was added to a solution of $15(0.103 \mathrm{~g}, 0.11 \mathrm{mmol}$, lequiv $)$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.013 \mathrm{~g}, 0.01 \mathrm{mmol}, 0.1$ equiv) in THF (2.8 mL). The reaction was stirred for 2 h at rt , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, extracted with $0.1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$ and brine (20 mL). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure and purified by flash chromatography on silica gel (gradient elution, 20 to $30 \% \mathrm{EtOAc} / 0.2 \% \mathrm{AcOH} / \mathrm{hexanes}$) to provide $0.064 \mathrm{~g}(63 \%) \mathbf{1 6}$ in 95% purity. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=1.37(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{~s}$, $9 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.41-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.64-1.84(\mathrm{~m}, 10 \mathrm{H}), 1.84-2.00(\mathrm{~m}, 4 \mathrm{H}), 2.38(\mathrm{t}, J=$ $7.5,2 \mathrm{H}), 2.51(\mathrm{t}, J=7.5,2 \mathrm{H}), 2.55(\mathrm{t}, J=7.5,2 \mathrm{H}), 2.60(\mathrm{t}, J=7.5,2 \mathrm{H}), 3.30-3.35(\mathrm{~m}$, $2 \mathrm{H}), 6.76(\mathrm{~d}, J=2.6,2 \mathrm{H}), 6.91-6.93(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=2.6,1 \mathrm{H}), 7.19(\mathrm{~d}, J=3.0,1 \mathrm{H})$, $8.21(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 9.79(\mathrm{~s}, 1 \mathrm{H}), 11.7(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=22.8,24.2$, $24.3,24.50,24.53,58.5,29.0,29.2,33.1,33.6,34.1,34.9,35.1,72.27,72.31,118.1$, 120.0, 121.4, 122.9, 123.3, 128.1, 138.6, 138.7, 140.1, 141.5, 141.6, 142.4, 158.09, 158.12, 159.0, 164.7, 164.8, 172.4, 172.5, 196.5. IR (KBr) 1437, 1597, 1634, 1655, 1711, $1757 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}(\%): 926$ (100) $[\mathrm{M}+\mathrm{H}]^{+}$.

Dialdehyde 13c.

1,3-diisopropylcarbodiimide ($0.013 \mathrm{~mL}, 0.083 \mathrm{mmol}, 2.5$ equiv) was added to a solution of $\mathbf{1 6}\left(0.064 \mathrm{~g}, 0.069 \mathrm{mmol}, 2.1\right.$ equiv), $\mathbf{1 7}^{1}(0.015 \mathrm{~g}, 0.033 \mathrm{mmol}, 1$ equiv) and DMAP ($0.001 \mathrm{~g}, 0.008 \mathrm{mmol}, 0.2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.07 \mathrm{~mL})$ and $\mathrm{DMF}(0.007 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min , then rt for 2 h . The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, extracted with $0.1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure and purified by flash chromatography ($25 \% \mathrm{EtOAc} /$ hexanes) to provide $0.031 \mathrm{~g}(41 \%) \mathbf{1 3 c}$ as a yellow foam. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=1.38(\mathrm{~s}, 54 \mathrm{H}), 1.40$ $(\mathrm{s}, 18 \mathrm{H}), 1.42-1.48(\mathrm{~m}, 16 \mathrm{H}), 1.66-1.84(\mathrm{~m}, 24 \mathrm{H}), 1.84-1.97(\mathrm{~m}, 8 \mathrm{H}), 2.53(\mathrm{t}, J=7.9$, $8 \mathrm{H}), 2.55(\mathrm{t}, J=7.9,4 \mathrm{H}), 2.60(\mathrm{t}, J=7.6,4 \mathrm{H}), 3.30-3.36(\mathrm{~m}, 6 \mathrm{H}), 6.77(\mathrm{~d}, J=2.6,6 \mathrm{H})$, $6.92(\mathrm{~d}, J=2.9,6 \mathrm{H}), 7.17(\mathrm{~d}, J=2.9,2 \mathrm{H}), 7.20(\mathrm{~d}, J=2.5,2 \mathrm{H}), 8.22(\mathrm{~s}, 2 \mathrm{H}), 8.23(\mathrm{~s}$, $4 \mathrm{H}), 9.79(\mathrm{~s}, 2 \mathrm{H}), 11.7(\mathrm{~s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta=24.4,24.69,24.72,24.8,28.7,28.8$, $29.2,29.4,29.9,33.3,34.2,34.3,351,35.3,72.4,72.46,72.52,118.3,120.2,121.58$, 121.61, 123.1, 123.5, 128.3, 138.80, 138.81, 138.9, 140.3, 141.7, 141.8, 142.6, 158.26. $158.09,164.90,164.95,172.5,172.68,172.70,196.6 . \operatorname{IR}(\mathrm{KBr}) 1595,1634,1656,1758$, 1865, $1946 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}(\%): 926$ (100) $[\mathrm{M}+2 \mathrm{H}]^{+2}$.

Dialdehyde 13.

A degassed solution of $\mathrm{Co}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (2 equiv relative to available metal binding sites) in $\mathrm{MeOH}(0.2 \mathrm{M})$ was added to a degassed solution of $\mathbf{1 3}$ in toluene (0.025 M). The reaction was stirred under N_{2} for 30 min at which time MeOH (3 x reaction vol) was added and the reaction was cooled in an ice bath. The product was collected as a red solid by vacuum filtration.

12a. Isolated $0.508 \mathrm{~g},(80 \%)$. The aromatic, immine and aldehyde resonances of complex 12a were resolved in the ${ }^{1} \mathrm{H}$ NMR spectrum of its paramagnetic acetate complex (formed from treatment with HOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in air for 30 min). ${ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- $\left.d_{6}\right) \delta$ $=6.6-7.9(\mathrm{~m}), 8.5-8.6(\mathrm{bs}), 9.9-10.0(\mathrm{~m}) . \mathrm{IR}(\mathrm{KBr}) 1537,1604,1655,1755,2868,2949$ $\mathrm{cm}^{-1} . \mathrm{MS}(\mathrm{FAB}+) \mathrm{m} / \mathrm{z}(\%): 1159(100)[\mathrm{M}]^{+}, 1182(85)[\mathrm{M}+\mathrm{Na}]^{+}$.

12b. Isolated 0.043 g , (47%). The aromatic, immine and aldehyde resonances of complex 12b were resolved in the ${ }^{1} \mathrm{H}$ NMR spectrum of its paramagnetic acetate complex (formed from treatment with HOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in air for 30 min). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ
$=6.5-7.6(\mathrm{~m}), 8.5-8.6(\mathrm{bs}), 9.8-9.9(\mathrm{~m}) . \mathrm{IR}(\mathrm{KBr}) 1537,1605,1651,1657,1755 \mathrm{~cm}^{-1}$.
MS (FAB+) m/z (\%): 1806 (95) [M] ${ }^{+}, 1828(100)[\mathrm{M}+\mathrm{Na}]^{+}$.
12c. Isolated $0.01 \mathrm{~g}(45 \%)$. The aromatic, immine and aldehyde resonances of complex 12c were resolved in the ${ }^{1} \mathrm{H}$ NMR spectrum of its paramagnetic acetate complex (formed from treatment with HOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in air for 30 min). ${ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- $\left.d_{6}\right) \delta=6.5-$ 8.0 (m), 8.5-8.7 (bs), 9.9-10.0 (s). IR (KBr) 1411, 1535, 1610, 1635 (shoulder), 1753, 2861, 2943. MS (FAB+) $m / z(\%): 2452(40)[\mathrm{M}]^{+}, 2475(55)[\mathrm{M}+\mathrm{Na}]^{+}$.

Cyclic salen complexes 18

(R, R)-1,2-diaminocyclohexane (1.2 equiv) and 12 (1 equiv) were dissolved in equal volumes degassed THF and EtOH (final concentration of $\mathbf{1 2}=0.01 \mathrm{M}$) under N_{2}. The solution was stirred under N_{2} for 18 h . The solvent was removed under reduced pressure without exposing the reaction mixture to the atmosphere. The crude product was used without purification.

18a: The aromatic and immine resonances of complex $\mathbf{1 8 a}$ were resolved in the ${ }^{1} \mathrm{H}$ NMR spectrum of its paramagnetic acetate complex (formed from treatment with HOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in air for 30 min). No aldehyde resonance was evident. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) δ
$=6.5-7.3(\mathrm{~m}, 8 \mathrm{H}), 7.4-7.9(\mathrm{~m}, 2 \mathrm{H}), 8.2-8.6(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{IR}(\mathrm{KBr}) 1437,1604,1632,1755$, 1864, 1944. MS (FAB+) $m / z(\%): 1238$ (60) $[\mathrm{M}]^{+}$.

18b: The aromatic and immine resonances of complex $\mathbf{1 8 b}$ were resolved in the ${ }^{1} \mathrm{H}$ NMR spectrum of its paramagnetic acetate complex (formed from treatment with HOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in air for 30 min). No aldehyde resonance was evident. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta=6.8-7.4(\mathrm{~m}), 7.6-7.9(\mathrm{~m}, 4 \mathrm{H}), 8.2-8.3(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}(\%): 1828(20)[\mathrm{M}-$ $\mathrm{Co}^{+}, 1911$ (70) $[\mathrm{M}+\mathrm{Na}]^{+}, 1995(100)[\mathrm{M}+5 \mathrm{Na}]^{+}$.

18c was used without characterization.

Cyclic (salen) Co(CSA) complexes 3 .

18a: $n=1$
18b: $n=2$
18c: $n=3$

3a $M=C o(+C S A), n=1$
3b $M=C o(+C S A), n=2$
3c $M=\operatorname{Co}(+C S A), n=3$

A degassed solution of $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (2 equiv) in $\mathrm{MeOH}(0.2 \mathrm{M})$ was added via canula to a degassed solution of $\mathbf{1 8}$ (1 equiv) in toluene $(0.04 \mathrm{M})$. The solution was stirred for 1 h , at which time the reaction was exposed to air; (+)-10-camphorsulfonic acid (1 equiv) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (equal volume as toluene) were added. The reaction was stirred open to air for 1 h . Solvent was removed under reduced pressure and the residue was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through celite. The celite was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined filtrates were concentrated under reduced pressure to provide $\mathbf{3}$ as
paramagnetic black solids. The aromatic and immine resonances could be resolved in the ${ }^{1} \mathrm{H}$ NMR and are reported below.

3a. Recovered $0.072 \mathrm{~g}(77 \%)$. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta=7.1(\mathrm{bs}, 4 \mathrm{H}), 7.3(\mathrm{bs}, 4 \mathrm{H}), 7.9$ (bs, 4H). IR (KBr) 1541, 1611, 1641, 1745, 2865, $2946 \mathrm{~cm}^{-1} . \operatorname{MS}(\mathrm{FAB}+) \mathrm{m} / \mathrm{z}(\%):$ 1292 (100) [M] ${ }^{+}$.

3b. Recovered 0.056 g (quantitative). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta=6.6-7.4(\mathrm{~m}), 7.6-7.9$ (m). IR (KBr) 1541, 1617, 1637, 1745, 2866, $1945 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{FAB}+) \mathrm{m} / \mathrm{z}(\%): 1941$ (100) $[\mathrm{M}]^{+}, 1964$ (90) $[\mathrm{M}+\mathrm{Na}]^{+}$.

3c. Recovered 0.030 g (quantitative). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta=7.0-7.2$ (bs), 7.3-7.4 (bs), 7.8-7.9 (bs). IR (KBr) 1541, 1618, 1636, 1745, 2866, 1944. MS (ES+) m/z (\%): 1307 (25) $[\mathrm{M}+\mathrm{Na}]^{+2}, 1340(100)[\mathrm{M}+4 \mathrm{Na}]^{+2}$.

Hydrolysis of Cyclohexene Oxide (Figure 3).

Water ($0.011 \mathrm{~mL}, 0.6 \mathrm{mmol}, 1.2$ equiv) was added to a solution of catalyst $\mathbf{3 a - 3 c}(0.011 \mathrm{~g}$, $0.0125 \mathrm{mmol}, 0.025$ equiv), cyclohexene oxide ($0.050 \mathrm{~mL}, 0.5 \mathrm{mmol}, 1$ equiv), bromobenzene (internal standard) $(0.002 \mathrm{~mL})$ and $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{CN}(0.05 \mathrm{~mL})$ at 22 ${ }^{\circ} \mathrm{C}$. Conversion of cyclohexene oxide was measured by GC relative to an internal standard.

	\% Conversion			
time (min)	mixture (3)	3a	3b	3c
7.5	28	53	28	
15	44	78	39	3
30	64	98	52	36
45	81	100	66	41
60	92		78	50
90	99		92	
120			97	64

Table S1. Conversion and ee data for the asymmetric hydrolysis of cyclohexene oxide.

[^0]
[^0]: ${ }^{1}$ J. M. Ready, E. N. Jacobsen, J. Am. Chem. Soc. 2001, 123, 2687-2688.
 ${ }^{2}$ The molecular weights per metal binding site (7) or per $\mathrm{Co}(\mathbf{2}$ or $\mathbf{3})$ are independent of n .
 ${ }^{3}$ Bonini, C.; Righi, G.; Sotgiu, G. J. Org. Chem. 1991, 56, 6206.

