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A practical path planning methodology for wire and arc additive
manufacturing of thin-walled structures

Abstract

This paper presents a novel methodology to generate deposition paths for wire and arc additive manufacturing
(WAAM). The medial axis transformation (MAT), which represents the skeleton of a given geometry, is
firstly extracted to understand the geometry. Then a deposition path that is based on the MAT is efficiently
generated. The resulting MAT-based path is able to entirely fill any given cross-sectional geometry without
gaps. With the variation of step-over distance, material efficiency alters accordingly for both solid and thin-
walled structures. It is found that thin-walled structures are more sensitive to step-over distance in terms of
material efficiency. The optimal step-over distance corresponding to the maximum material efficiency can be
achieved for various geometries, allowing the optimization of the deposition parameters. Five case studies of
complex models including solid and thin-walled structures are used to test the developed methodology.
Experimental comparison between the proposed MAT-based path patterns and the traditional contour path
patterns demonstrate significant improved performance in terms of gap-free cross-sections. The proposed path
planning strategy is shown to be particularly beneficial for WAAM of thin-walled structures.
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Abstract: This paper presents a novel methodology to generate deposition paths for wire and 

arc additive manufacturing (WAAM). The medial axis transformation (MAT), which 

represents the skeleton of a given geometry, is firstly extracted to understand the geometry. 

Then a deposition path that is based on the MAT is efficiently generated. The resulting MAT-

based path is able to entirely fill any given cross-sectional geometry without gaps.  With the 

variation of step-over distance, material efficiency alters accordingly for both solid and thin-

walled structures. It is found that thin-walled structures are more sensitive to step-over 

distance in terms of material efficiency. The optimal step-over distance corresponding to the 

maximum material efficiency can be achieved for various geometries, allowing the 

optimization of the deposition parameters. Five case studies of complex models including 

solid and thin-walled structures are used to test the developed methodology. Experimental 

comparison between the proposed MAT-based path patterns and the traditional contour path 

patterns demonstrate significant improved performance in terms of gap-free cross-sections. 

The proposed path planning strategy is shown to be particularly beneficial for WAAM of 

thin-walled structures. 

 

Keywords: path planning, additive manufacturing, medial axis transformation, thin-walled, 

material efficiency 

 

 

1. Introduction 

 

Additive manufacturing (AM) or 3D printing, which is based on layer-by-layer 

manufacturing approach instead of conventional material removal methods, has gained 

worldwide popularity over the past thirty years [1]. The original techniques include 

stereolithography apparatus [2], laminated object manufacturing [3], fused deposition 

modelling [4], 3D printing [5] and selective laser sintering [6]. These AM processes are 

typically applied to fabricate polymer parts which are usually used for prototyping or 

illustrative purposes. The current development focus of AM has shifted to producing 

functional metal components of complex shape that can meet the demanding requirements of 

the aerospace, defence, and automotive industries [7]. Wire and arc additive manufacturing 

(WAAM) is by definition an arc-based process that uses either the gas tungsten arc welding 

(GTAW) or the gas metal arc welding (GMAW) process has drawn the interest of the 

research community in recent years due to its high deposition rate [8-10]. This technique has 



been presented to the aerospace manufacturing industry as a unique low cost solution for 

manufacturing large thin-walled structures through significantly reducing both product 

development time and “buy-to-fly” ratios [11-12].  

One of the crucial tasks in WAAM is the generation of paths which guide the motion of 

the deposition head to fill the 2D layers representing the cross-sectional geometry of an 

object. Many types of path patterns have been developed for AM, as summarized in Table 1 

[13-26]. It is found that the essential step to generate paths is offsetting. Commonly used 

patterns are raster patterns which offset parallel to a given direction, and contour patterns 

which offset parallel to the boundary of geometry. Other path patterns are either variations or 

combinations from these general strategies.  

Contour path patterns are often preferred over raster path patterns for producing thin-

walled metal structures due to certain practical concerns. Raster path patterns build the whole 

component along the same direction, which means the deposition head is required to be 

turned frequently, leading to a poor building quality [26]. In addition, the fabricated 

component will have warpage and anisotropic problems.  By following the boundary trend of 

the geometry, the contour path method overcomes the warpage as well as anisotropic issues 

by changing path direction constantly along the boundary curves of the sliced layer [26].   

However, the contour path patterns pose a severe quality problem of potentially leaving 

gaps within the deposited layers. This is because the contour paths, which are generated by 

offsetting the boundary curves recursively toward its interior, do not guarantee to completely 

fill a desired 2D geometry. As shown in Fig.1, a cross-section of a simple thin-walled 

geometry is described by the boundary (Fig.1a). The contour paths (green lines shown in 

Fig.1b) are generated by offsetting the boundary towards its interior with the i
th

 contour path 

offset at distance di )
2

1
( − from the boundary, where d is the step-over distance. The step-over 

distance is defined as the distance between the next deposition track and the previous one. 

For WAAM, the overlapping of weld beads is necessary to achieve smooth surface. As 

shown in Fig.2, weld beads are overlapped with the certain step-over distance (centre 

distance d). According to different weld bead overlapping model, the optimal step-over 

distance d is the function of weld bead width w , which d = 0.667 w, or d = 0.738 w [27]. The 

deposition process can be considered as a constant-radius disk with the diameter of d being 

swept along the computed path. It is found that contour path patterns leave narrow gaps since 

there is not enough space for offsetting the next path as the middle white area shown in 

Fig.1c. The area of the produced gaps is highly dependent on the step-over distance d, which 

varies for different AM system. For powder-based AM, d could be generally small within the 

range of 0.01 mm to 1 mm. The negative effects of gaps with small area on the quality of the 

produced components could be neglected for many applications. However, for WAAM d 

typically varies from 2 mm to 12 mm depending on the diameter of the feed wire, the travel 

speed of deposition head, and the wire feed rate. Gaps resulting from poorly planned paths in 

WAAM could be a severe problem, especially for thin-walled structures. The unavoidable 

gaps may potentially lead to structural failure of highly loaded components.  

Possible solutions to the gap problem can be reducing the step-over distances or revisiting 

the gaps through overlapping the deposition path. However, as has been mentioned, the step-



over distance is limited by the deposition system, and will affect the deposition rate. 

Moreover, the work pieces may have a complex structure where wall thickness varies along 

its boundary, making it impossible to fill the entirely region using contour path patterns. On 

the other hand, the strategy of revisiting requires the deposition head to move into a small 

unfilled region that is surrounded by deposited material. Voids or gaps are often produced 

during such “infilling” due to the difficulty for material to fully reach into the confined 

corners of an unfilled region. 

Kao [28] has proposed an alternative methodology of using the Medial Axis 

Transformation (MAT) of the geometry to generate the offset curves by starting at the inside 

and working towards the outside, instead of starting from the boundary and filling towards 

the inside. This approach is able to compute paths which can entirely fill the interior region of 

geometry as the paths are generated from interior to the boundary. This strategy avoids 

producing gaps by depositing excess material outside the boundary, as illustrated in Fig. 3. 

The extra material can subsequently be removed by post-processing. Therefore, the 

traditional contour path patterns from outside to inside is natural for machining whereas 

MAT-based path starting from inside and working towards the outside is suitable for WAAM 

of void-free components. However, the authors limit their discussion to geometries with 

simple MAT paths, and the MAT-based path for general geometries or arbitrary shapes, to 

our knowledge, is still unavailable.  

This study presents a methodology of generating MAT-based paths for an arbitrary 

geometry, either thin-walled or solid structures, with or without internal holes. Gap-free paths 

are successfully obtained using the proposed approach. Furthermore, the optimal step-over 

distance corresponding to the maximum material efficiency is discussed for various 

geometries. It is found that the proposed path planning methodology is particularly beneficial 

to WAAM of thin-walled structures. After this introductory section, section 2 presents the 

Medial Axis Transform (MAT) and its computing algorithms. Section 3 introduces the 

methods for generating paths from MAT, followed by the implementation and the discussions 

of the proposed methodology in Section 4. The paper ends with the conclusions in Section 5.  

 

2. Medial axis transformation (MAT) 

 

2.1 Definition 

The Medial Axis Transformation (MAT) is a technique first proposed by Blum [29] to 

describe shapes with the medial axis which is defined as loci of centres of locally maximal 

balls inside an object. In two dimensions, as shown in Fig.4, the MAT would be the loci of 

centres of locally maximal disks inside the region. The points on the medial axis are called 

medial axis points as represented by the dash line. The medial axis points are further 

classified into end points, normal points, and branch points depending on the number of 

points where the disk touches the boundary [28]. If the disk touches the boundary at either 

two connected segments, two points, or one segment and one point, the medial axis point is a 

normal point. For those disks touching the boundary at more than two points or connected 

segments, such medial axis points are branch points. The remaining medial axis points are 

end points which are also the vertices of the geometry.  



The medial axis of geometry is also called the skeleton because of its shape. Associated 

with the medial axis is a radius function, which defines for each point on the axis its distance 

to the boundary of the geometry. The medial axis and the radius function together are 

important topological information of the given geometry, allowing the later path planning to 

be performed in a more efficient and convenient manner. 

 

2.2 Method to compute the MAT 

Medial Axis Transformation, or skeletonization, has been widely studied over the past 

few decades in the computer vision field. Lee [30] proposed a divide-and-conquer approach 

that constructs the generalized Voronoi diagram for simple polygons. The medial axis 

transformation can be easily extracted by removing the Voronoi edges connecting to concave 

vertices of the polygon. Srinivasan et al. [31] extends Lee’s algorithm to computing a 

generalized Voronoi diagram for polygons with holes. Choi [32] presents an MAT 

approximation algorithm in the planar domain via domain decomposition. Kao [34] proposes 

a method that directly associates boundary points to the corresponding proximity metrics 

based on Lee’s and Srinivisan’s methodology.  

Based on Lee’s and Kao’s approach, a simple MAT method is developed through 

computing the bisector of each pair of segments. As shown in Fig.5, the geometry is 

represented by line segments ab, bc, cd, de, and ea. For line segment ab, there are four pairs, 

and the bisectors of each pairs, B(ab, bc), B(ab, cd), B(ab, de), B(ab, ea), are computed. Each 

bisector of two closed line segments (a pair) is formed by straight lines and parabolic curves 

as shown in Fig. 5a. By definition, the MAT produces a set of lines which divide the 

geometry into several sub-regions. In each sub-region, all the points are closet to its 

associated boundary. Therefore, the medial axis is constructed by using the bisectors which 

are closest to the relevant boundary, as the bold red line shown in Fig. 5b. The detailed 

computing algorithms can be found in the literature [30-33].  

 

3. MAT Path planning methodology 

 

The overview of the developed algorithms is described as shown in Fig. 6. The flowchart 

of the algorithms consists of two phases: Phase 1, preparing the MAT of the geometry; and 

Phase 2, generating the path from the medial axis. The MATs for various geometries are 

successfully computed as shown in Fig. 7-9 (a). Algorithms for phase 1 (from CAD model to 

MAT) are not detailed in this study since they have been reported elsewhere in the literature 

[33, 34]. The detailed algorithms for Phase 2 are presented in this section. 

This study classifies the MAT into branches and sub-branches. Branches are the line 

segments consisting of the MAT points between two branch points, while sub-branches are 

line segments consisting of the MAT points between one branch point and one end point.  

Those branches are extracted by Extract branches module, as shown in Fig. 7-9 (b).  

Extracted branches are formed to various branch loops. Depending on the shape of the 

geometry, three possible situations have been found. For geometry with a single branch, a 

single branch loop is formed along the counter-clockwise direction as shown in Fig. 7c. For 

geometry with multiple branches without holes, a single branch loop is formed along the 

counter-clockwise direction as well shown in Fig. 8c. Lastly, for geometry with holes, several 



branch loops would be formed according to the number of holes. Among them, the branch 

loop is in the contour-clockwise direction corresponding to the outside boundary of the 

geometry, while other loops are in the clockwise direction corresponding to the inside hole 

boundaries, as shown in Fig. 9c.  Branch loops are stored in the format of Branch_loops { j }, 

where j represents the number of loops. 

Paths are generated by recursively offsetting contour-clockwise branch outward and 

clockwise branches inward at distance di )
2

1
( − . i represents i

th
 offset, and d represents the 

step-over distance. It should be noted that during the offsetting self-intersection may happen 

regardless of whether it is inward or outward offset. Algorithm for solving self-intersection is 

not detailed in this paper since they have been reported elsewhere in the literature [17]. As 

shown in Fig.6, Path { i, j } represents the i
th

 offset of the Branch_loops { j }. Path_B { i, j } 

represents the path outside boundary of the i
th

 path. When the area of the i
th

 path boundary j is 

larger than its relevant contour { j }, and there is no intersection between the boundary and 

the contour, the Branch_loops { j } will be updated to empty. Meanwhile the offsetting of this 

branch loop will be ceased since the region relevant to this branch loop is fully filled by 

deposition material. The iterative procedure ends when all the branch loops are updated to be 

empty and there is no more offset needed. The output is a set of untrimmed paths, and the 

structures of the untrimmed paths for the geometry in Fig.9 are shown in Fig. 10 using 

Matlab cell structures. There are three branch loops corresponding to three columns in Fig. 

10, and the iterative procedure ceases at the 6
th

 offset. The generated untrimmed paths for the 

geometry in Fig. 7 are shown in Fig. 11 (a). The whole procedure ceases after the 5
th

 offset as 

the area of the 5
th

 path boundary (the outside blue lines) is larger than the area of the 

geometry and there is no intersection between them. It can be seen from Fig.11 (a) that the 

geometry is fully filled but there is an obvious excess of deposited material. To improve the 

material efficiency, the last step is to trim the paths. The parts of blue lines outside of the 

geometry represent extra materials and the associated paths are trimmed as shown in Fig. 11 

(b).  

Using the MAT-based path generated in this study, the gaps that would be generated by 

using traditional contour path patterns are removed. However, this has been achieved at the 

cost of creating some discontinuity of the path and extra deposition at the boundary. Post-

processing, such as milling or grinding, is required to remove excess materials and improve 

the accuracy of the fabricated components. Material efficiency, which defined as the ratio of 

the real area of the geometry to the deposited area, is an important factor for the AM process. 

Material efficiency, E, is expressed as: E = Ar/Ad = A/(Ld). Ar represents the real area of the 

geometry; Ad represents the deposited material which is calculated by times of the total path 

length L and the step-over distance d.  Material efficiency at various step-over distances will 

be discussed in the next section.  

 

4. Implementation and discussions 

 

Five geometries sliced from CAD models are tested to validate the effectiveness and 

robustness of the developed algorithms. As shown in Fig. 12-16, various types of geometries 



are tested including solid structures with or without holes, and thin-walled structures. Table 2 

provides basic information of the geometries. The MATs and the trimmed paths for all 

geometries are successfully generated using the developed algorithms.   

The material efficiency of AM, based on the proposed MAT-based path at various step-

over distances, is simulated for the different geometries as shown in Fig.17. Material 

efficiency of the traditional CNC machining is also provided as a comparison. It is found that, 

in general, material efficiency decreases with the increasing of step-over distance. This is 

intuitive as step-over distance represents the resolution of the deposition system. To fill 

geometry with deposition material, the greater the step-over distance, the more excess 

material will need to be deposited. The results also show that AM technology has a much 

higher material efficiency compared to traditional subtractive manufacturing.  

The effects of the step-over distance on part building time are also discussed. The 

building time t is determined by the sum of the total path length L and the travel speed, V, of 

the deposition head. If the build time at the step-over distance of 1 mm, t1, is set to be the 

characteristic time, the non-dimensional building time T at the step-over distance of d is 

expressed as 
111 /

/

L

L

VL

VL

t

t
T ddd === . Where, Ld represents the total path length at the step-over 

distance of d; and the travel speed V is assumed to be the same at various step-over distances. 

The non-dimensional building time as the function of step-over distances are calculated as 

shown in Fig.17. With the increasing of the step-over distance, the build time T declines 

exponentially. It reveals that it is always better to have a small step-over distance for high 

material efficiency whereas that would be at the expense of productivity. 

For powder-based AM system, the step-over distance generally ranges from 0.01mm to 2 

mm.  Material efficiency in this range decreases only slightly, indicating that the step-over 

distance does not have a significant effect on the material efficiency of powder-based AM. 

As inferred above, material efficiency is determined by the resolution of the deposition 

system in relation to the size of the geometry. Building time changes significantly in this 

range, therefore, build rate will be an important factor for powder-based AM system. 

On the other hand, for WAAM technology, the typical step-over distance varies from 2 

mm to 12 mm for mild steel materials. Building time in this range as shown in Fig.17 doesn’t 

change significantly and therefore build rate for WAAM is not the major concern. Material 

efficiency in WAAM using the proposed MAT-based paths is shown in Fig. 18. It is found 

that for solid structures (Geometry 1 and Geometry 2) material efficiency is relatively 

constant, with a slight decrease as step-over distance increases. However for thin-walled 

structures, such as Geometry 3, 4, and 5, the variation of material efficiency corresponding to 

the step-over distance are significant. Although the generally-descending trend of material 

efficiency can still be found, the variation cannot be predicted since the shapes of various 

geometries are very different. The optimal step-over distances for Geometry 1 and 2 are 4 

mm, while for Geometry 3 is around 4 mm, for Geometry 4 is near 6 mm and for Geometry 5 

is approximately 3 mm.  

Variations of material efficiency in WAAM for the five tested geometries are shown in 

Fig. 19. It is clear that while the variation of material efficiency for different step-over 

distances is minimal for solid structures, it is quite significant for thin-walled structures. For 



geometry 5, by choosing the optimal step-over distance, material efficiency could be 

increased by 2.4 times from 38.63% to 94.15%. This indicates that step-over distance plays 

an important role on material efficiency when fabricating thin-walled structures using 

WAAM technology. 

Experimental results of the proposed MAT-based path generation strategy are conducted 

using a robotic welding system at the University of Wollongong as shown schematically in 

Fig. 20. The details of the system can be found in previous publications [36]. In this study, a 

section of Geometry 5 is fabricated using both the proposed MAT-based path patterns and the 

traditional contour path patterns.  

Comparisons between the proposed path patterns and the traditional contour path patterns 

are shown in Fig. 21. For the proposed path patterns (Fig. 21a), layers are generated by 

offsetting the deposition head from the medial axis to outside, and the deposited layers are 

slightly larger than real geometry. For the traditional path patterns (Fig. 21b), deposited 

layers are consistent to the real geometry boundaries; however, gaps are created since the 

thicknesses of the walls vary. After surface milling, it can be seen that, while the traditional 

contour path patterns (Fig. 21d) leaves gaps on the component, the proposed MAT-based 

path patterns are able to produce gap-free walls.  Depending on the thickness of the walls, 

more material may need to be removed for the parts generated using the proposed MAT-

based path patterns, in order to produce the desired geometry. However, for certain 

applications such as AM components subjected to high mechanical loading, the extra material 

removal is less of an issue than leaving gaps in the interior of the deposited parts using 

traditional contour path patterns. 

 

5. Conclusions 

This paper presents a novel methodology of path planning for the additive manufacturing 

process. Gap-free paths can be achieved using the proposed algorithm through offsetting the 

medial axis of the given geometry towards its boundary. This gap-free path improves the 

quality of the fabricated components partially for thin-walled structures. The developed 

algorithms and methodology are demonstrated to be effective and robust for arbitrarily 

shaped geometries through testing five complex samples. 

Material efficiency in relation to different step-over distances is discussed in details. 

While there is minimal effect of step-over distance on material efficiency for powder-based 

AM technology, the effects of step-over distance on material efficiency are significant for 

WAAM technology due to the high deposition rate and the relatively large step-over distance. 

Material efficiency is found to be particularly sensitive to step-over distance vary for thin-

walled structures. With an appropriate step-over distance, material efficiency can be more 

than doubled for some thin-walled structures.  

Experiments have demonstrated that improved part quality is achieved by using the 

proposed MAT-based path patterns in comparison to the traditional contour path patterns. 

The proposed path planning is able to produce completely gap-free component, which is not 

possible using previous path generation strategies. As a result, the MAT-based path planning 

strategy should be particularly beneficial for WAAM of thin-walled structures in terms of 

both improved quality and material efficiency.  
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Fig.1 (a) A cross-section of a simple thin-walled structure. (b) Contour path patterns generated by offsetting the 

boundary curves towards its interior. (c) Deposition of materials along the generated path. Narrow gap (middle 

white area) is left which cannot be filled by the path.  

 

 

Fig.2 Illustrations of step-over distance (or centre distance d) [27] 

 

 
Fig.3 Illustration of path generated from MAT. (a) up: original geometry (green region) and the MAT of the 

geometry (black line); down: contour path patterns with gaps in middle are clearly seen; (b) up: red region are 

deposition of excessive materials; down: the MAT path patterns without gaps [28]. 

 



 
Fig.4 The medial axis transformation (MAT) of an example shape. The dash lines represent the medial axis [28]. 

 

 
Fig.5 Computation of the bisector lines for pairs of line segments. Black lines represent the boundary of the 

geometry. Coloured lines represent the bisector lines. Bold red line in (b) represents the MAT corresponding to 

the boundary ab. Pink area is the region in which all points are closet to its associated boundary ab. 

 

 

 



 
Fig.6 Flowchart of the developed approach for generating path from MAT 

 

 

 
Fig.7 Example of the shape with single branch and one branch loop. (a) Computed MAT as represented by 

dotted  lines; (b) Single branch from point A to point B as described by red lines; and (c) Formed one branch 

loop along counter-clockwise direction. 

 



 
Fig.8 Example of the shape with multiple branches but one branch loop. (a) Computed MAT as represented by 

dotted lines; (b) Multiple branches as described by red lines; and (c) Formed one branch loop along counter-

clockwise direction. 

 

 
Fig.9 Example of the shape with two holes. (a) Computed MAT as represented by dotted lines; (b) Multiple 

branches as described by red lines; and (c) Formed one branch loop along counter-clockwise direction and other 

two branch loops inside along clockwise.  

 

 
Fig.10 The cell structures of untrimmed paths in the program 

 

 



 
Fig. 11 (a) Untrimmed paths for the simple shape. Black lines represent the boundary of the given geometry. 

Red lines represent the MAT. Green lines stand for the generated untrimmed paths, and blue lines represent the 

outside of each untrimmed path. (b) Trimmed paths.  

 

 
Fig. 12 Geometry 1, solid structure with multiple branches. (a) Geometry is represented by black lines, MAT 

represented by dotted red lines, and red solid lines stand for branches. (b) Generated trimmed path. 

 

 



 
Fig. 13 Geometry 2, solid structure with holes. (a) Geometry is represented by black lines, MAT represented by 

dotted red lines, and red solid lines stand for branches. (b) Generated trimmed path. 

 

 
Fig. 14 Geometry 3, thin-walled curved structure. (a) Geometry is represented by black lines, MAT represented 

by dotted red lines, and red solid lines stand for branches. (b) Generated trimmed path. 

 



 
Fig. 15 Geometry 4, thin-walled complex structure. (a) Geometry is represented by black lines, MAT 

represented by dotted red lines, and red solid lines stand for branches. (b) Generated trimmed path. 

 

 
Fig. 16 Geometry 5, thin-walled structure with varied characteristic thicknesses. (a) Geometry is represented by 

black lines, MAT represented by dotted red lines, and red solid lines stand for branches. (b) Generated trimmed 

path. 



 

 
Fig. 17 Material efficiency & non-dimensional build time vs. step-over distance. (a) Geometry 1. (b) Geometry 

2. (c) Geometry 3. (d) Geometry 4. (e) Geometry 5. 

 



 
Fig. 18 Material efficiency vs. step-over distance for five geometries in WAAM system 

 

 
Fig. 19 Variations for material efficiency in wire-feed AM for Geometry 1, 2, 3, 4, and 5. 

 

 
Fig. 20 Schematic diagram of the experimental WAAM system 



 

 
Fig. 21 Experimental comparison of layers produced by the proposed MAT path patterns and the traditional 

contour path patterns. (a) layers produced by the proposed MAT path patterns. (b) layers produced by the 

traditional contour path patterns. (c) finished surface of the layers produced by the proposed path patterns. (d) 

finished surface of the layers produced by the traditional contour path patterns. 

 

 



Table 1 A brief summary of AM tool-path generation methods. 

References Tool-path pattern Examples 

[13]  Raster 

 

[14, 15]  Zigzag 

 

[16-18]  Contour 

 
[19, 20]  Spiral 

 
[21-24]  Continuous 

 
[25, 26]  Hybrid 

 

 

 

Table 2 Basic information for five case study geometries. 

No. Geometry 1 2 3 4 5 

Area of enveloped box ( × 10
4
 mm

2
) 28.64 31.06 12.74 17.52 4.84 

Area of geometry ( × 10
4
 mm

2
) 9.25 17.06 1.29 2.78 1.44 

Volume ratio (%) 32.3 54.9 10.1 15.9 29.8 
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