
“When I finally stumbled onto power analysis, and 
managed to overcome the handicap of a background 
with no working math beyond high school algebra 
(to say nothing of mathematical statistics), it was as 
if I had died and gone to heaven.” 

—Jacob Cohen

Power analysis is one of the most fundamental tools that 
researchers can use when planning studies. It was pio-
neered in psychology more than fifty years ago by Jacob 
Cohen (1962, 1990). Since then, many have recommended 
its use and suggested it as good research practice (Wilkinson 
& TSFI, 1999) within the Null-Hypothesis Significance 
Testing (NHST) framework.1 However, interest in power 
analysis has increased considerably only during the last 
few years. One reason for this is the recent replicabil-
ity crisis in  psychology; one of the main culprits for the 
 difficulty in replicating some results was that original stud-
ies were often underpowered to start with (Asendorpf et 
al., 2013; Bakker, van Dijk & Wicherts, 2012; Swiatkowski 
&  Dompnier, 2017). In the presence of publication bias, 
systematically performing studies that lack the power 
to detect effect sizes of interest results in a prevalence 
of false-positive findings in the literature (Button et al., 
2013; Maxwell, 2004). One of the main benefits of power 
analysis when planning studies is that  researchers become 
aware of their chances of finding an effect of interest. If 

these chances are insufficient, they should consider 
changes that could increase the probability of observing 
a significant effect.

This article aims to remind readers what power analysis 
is, why it matters, and when and how it should be used. 
The focus is on simple experimental designs often encoun-
tered in social psychology, and we will provide illustrative 
examples throughout the article. We will focus mainly on 
between-subject designs, and we will limit our discussion 
of repeated-measures designs to the simplest case of two 
dependent groups. We will also discuss some important 
issues related to power analysis. The goal is to present 
a practical primer to power analysis that complements 
other reviews of power analysis (Cohen, 1992a, 1992b; 
Faul, Erdfelder, Buchner & Lang, 2009; Faul, Erdfelder, 
Lang & Buchner, 2007; Maxwell, Kelley & Rausch, 2008) 
as well as more comprehensive and advanced textbooks 
(Cohen, 1988; Liu, 2014).

What Power Analysis Is and Why It Matters
Within the NHST approach, the main goal is to ascertain 
whether the null hypothesis (H

0
) can be rejected. There 

are two types of errors: rejecting the null hypothesis when 
it is true (False Positive, typically referred to as α or Type 
I error) and failing to reject it when it is false (False Nega-
tive, typically referred to as β or Type II error). Within this 
framework, the power of a statistical test is the probabil-
ity of successfully rejecting the null hypothesis when it is 
false (1 – β). Power depends on sample size, effect size, 
and the decision criterion (α-level): given three of these 
elements, one can derive the fourth. In particular, power 
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increases with increasing sample size, increasing effect 
size, and more lenient decision criteria (e.g., α = .10 instead 
of α = .01). The conventional value of power as .80 (and of  
β as .20) considers the cost of a Type I error four times  
more serious than the cost of a Type II error when α is 
also set to its conventional value of .05 (thus β/α = 4). Dif-
ferent values of β can be appropriate, depending on the 
desired balance between Type I and Type II errors (Cohen, 
1988). This latter relation might give a wrong impres-
sion that one can only choose between the two types of 
errors, that is by balancing false positives (α) against false 
negatives (β). However, given a certain α level, increasing 
statistical power by collecting larger samples increases 
the accuracy of any result that emerges, which means 
that inferences from data are in general more correct 
(Maxwell et al., 2008; see also Ioannidis, 2005; Sterne & 
Davey Smith, 2001). When results are more accurate and 
inferences from data more correct, everything else being 
equal, they are more likely to be replicable (Asendorpf et 
al., 2013; Maxwell, 2004). In brief, statistical power mat-
ters not only because it directly increases the likelihood 
of finding an effect if it exists, but also because it contrib-
utes indirectly to reducing the overall rate of data infer-
ence errors (O’Brien & Castelloe, 2007). Said otherwise, an 
appropriate use of power analysis when designing a study 
increases the chance of getting it right, which is a main 
motivating factor for a scientist.

How Power Analysis Works and When To Use It
If statistical power is so important, a key question becomes 
how to increase it. The answer is simple: for any given 
α-level, statistical power goes up with increasing samples 
sizes and effect sizes. What it means to increase sample 
size is straightforward. We shall briefly address some pos-
sible strategies for increasing effect sizes as well. Several 
indicators of effect sizes can be used depending on the 
specific study design and the level of measurement of the 
variable of interest. We restrict our attention to interval 
level (continuous) dependent variables and moderately 
simple study designs. Interested readers should consult 
dedicated literature for further details on effect size types 
and their corresponding equations (Ellis, 2010; Fritz, 
 Morris & Richler, 2012; Lakens, 2013). We assume that 
most readers are familiar with Cohen’s d, which expresses 
effect size as the standardized mean difference between 
two conditions ( )1 2

pooled

M M
SDd -= , and with its conventional values  

of 0.20, 0.50, and 0.80 used to indicate a small, medium, and  
large effect size, respectively. They might be less familiar, 
however, with the corresponding benchmark values when 
expressed in other metrics. For this reason, in Table 1 we 
provide a simple conversion to other common effect size 
indicators, such as r, f, and η2. The lesser-known effect size 
area under the receiver operating characteristics (AUC) 
requires a brief explanation. This index expresses effect 
size as the probability that a person picked at random 
from one group will have a higher score than a person 
picked at random from the other group (Ruscio, 2008; 
Ruscio & Mullen, 2012). An AUC value of 0.50 means that 
the effect size is null (e.g., no improvement from a random 
selection device, such as tossing a coin); whereas, values 

going towards 1 imply larger effect sizes, until every per-
son from one group has a greater score than every person 
from the other group (i.e., the two distributions do not 
overlap). This index of effect size also applies to ordinal 
dependent variables and is robust to violations of normal-
ity and to outliers.

Power crucially depends on the population effect size, 
which is typically unknown. When performing power 
analysis, a researcher should always use the best avail-
able guess of the population effect size. If previous 
research is available, especially meta-analyses, one can 
estimate the population effect size using sample-based 
effect size indices. However, different sample estimates 
of effect size are often available for the same popula-
tion quantity, each index having different degrees of 
bias. Many sample  estimates of effect sizes are upwardly 
biased: using these indices, as compared to unbiased 
estimates, tends to affect power analysis towards sug-
gesting smaller samples or larger power. It is evident that 
one should try to input the least-biased index available. 
Note, however, that for many indices the difference in 
bias tends to become increasingly small as the sample 
becomes larger. For instance, Cohen’s d is defined for the 
population (Cohen, 1988) and using the same formula 
on sample data to estimate the population parameter 
leads to biased results. It is known that Hedges’ g is a 
less-biased estimate2 of Cohen’s d (Hedges, 1981), and its 
bias tends to become negligible for sample sizes N > 20 
(Hunter and Schmidt, 2004). Thus, it may be used in soft-
ware that requires a standardized difference as the input 
effect size index.

When data are not available as the basis for the effect 
size estimation, the researcher needs to guess the popu-
lation effect size. There are effect sizes that are easier to 
guess because they correspond better to what a researcher 
may anticipate about the expected data. In the following 
pages, we try to outline different methods and several 
effect size indices that are, in our opinion, relatively easy 
to anticipate given some general hypotheses about the 
expected results.

There are different ways to perform power analysis (cf. 
Faul et al., 2007). The most common is a priori (prospec-
tive) power analysis in which the goal is to achieve a given 
desirable power level (e.g., .80) given a certain α-level. This 
value is commonly fixed to .05, but one should consider 
also using .005, in line with recent calls to redefine the 
significance threshold for novel findings (Benjamin et al., 
2018), or justifying an α-level before beginning a data 
collection (Lakens et al., 2018). Once power and α-level 

Table 1: Conversion between some effect sizes.

small medium large

d 0.20 0.50 0.80

r 0.10 0.24 0.37

f 0.10 0.25 0.40

η2 0.01 0.06 0.14

AUC 0.56 0.64 0.71
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are fixed, it is required to estimate an expected effect size 
and then calculate how many participants are needed to 
achieve the desired power. The relative simplicity of this 
calculation masks an important problem: the expected 
effect size is one’s best guess, and its inaccuracy has sub-
stantial implications for the actual sample size needed to 
achieve the desired level of power. Researchers should 
routinely consider different scenarios by varying the 
expected effect size and ascertaining what would be the 
implications regarding achieved levels of power given a 
certain effect size and needed sample sizes, given a certain 
desirable power level. They can also formally consider the 
uncertainty in the estimate, which is reflected in its confi-
dence interval, and then settle on a sample size that takes 
into account the desired level of protection against over-
estimating the effect size and consequently running an 
underpowered study (Safeguard Power Analysis; Perugini, 
et al., 2014; see also Anderson, Kelley & Maxwell, 2017). 

Sometimes, however, researchers do not have much 
leeway for increasing sample size and instead have a rela-
tively fixed maximum sample size. Under these relatively 
common conditions, power analysis can still be useful 
for determining the strength of an effect that can be reli-
ably detected. This approach is called sensitivity analysis 
(Faul et al., 2007) and requires fixing a certain α-level, the 
available sample size, and a desired level of power to iden-
tify the minimum size of the effect that can be reliably 
detected. By plotting power levels and effect sizes, one can 
inspect their interplay. An interesting variation of this sce-
nario is to calculate the minimum detectable effect size 
(MDES; Bloom, 1995) or, similarly, the smallest effect size 
of interest (SESOI; Lakens, 2014). The basic idea is that, 
given a certain α-level, sample size, and desired level of 
power, there is a minimum effect size that can be signifi-
cantly detected. Effect sizes smaller than that value will 
not be significant. Researchers could commit to collecting 
a sample whose size is sufficient to detect “the smallest 
effect size that is deemed worthwhile to study” (Albers 
& Lakens, 2018). The implied value can be calculated by 
transforming the probability distribution statistics (e.g., 
t-value) into the effect size estimate (e.g., Cohen’s d; see 
for instance Lakens, 2013).

Finally, we wish to stress that power calculated based on 
the results of the study (post hoc or retrospective power 
analysis) is pointless and potentially misleading. It amounts 
to a trivial transformation of the obtained p-value and pro-
vides no valid information concerning the actual power of 
the study (cf. Zumbo & Hubley, 1998). Therefore, requiring 
a power analysis after a study has been conducted (e.g., 
for the revision of a manuscript) is of questionable utility. 
Instead, a sensitivity analysis, whereby the minimum effect 
size that could reliably yield (e.g., with power 0.80) a sta-
tistically significant result (e.g., setting α = .05) given the 
sample size, could be more informative. In fact, in this way, 
a reader will have some elements to judge whether the 
minimum effect size is realistic given knowledge accumu-
lated in the field. Another possible approach is to calculate 
the safeguard sample ratio, which reflects the strength of 
empirical evidence provided by a given study by compar-
ing the required sample size, as estimated with safeguard 

power analysis, and the sample size of the original study 
(Perugini, Gallucci & Costantini, 2014). For example, sup-
pose that in one study with that 100 participants one 
obtains d = 0.50. One can calculate the needed sample size 
to obtain a safeguard power at 80% is 232 participants. 
Hence, the safeguard sample ratio (required sample size 
divided by original sample size) is 2.32. If, instead, another 
study obtained the same effect size value with 200 partici-
pants, the needed sample size was 176 participants, result-
ing in a safeguard sample ratio of 0.88. Therefore, one can 
infer that this second study provides more robust evidence 
than the first one, everything else being equal.

How To Do Power Analysis
Power analysis can be performed with a range of dedicated 
packages and routines. We shall focus on the most known 
and widely used free software for power analysis, G*Power 
(Faul et al., 2009), and on packages and routines available 
in the most known free statistical package, R (R Core Team, 
2017). The software allows estimating power parameters 
for the same research design using different methods and 
different user interfaces. In the following examples, we 
present one way to resolve each of the discussed designs, 
with the implicit assumption that the methods we employ 
are not the only ones available. In general, we wish to use 
the same method for as many research designs as possible, 
with the aim of reducing the number of software com-
mands and interfaces the user needs to learn. 

Main features of G*Power

One of the simplest applications of power analysis is on a 
two independent groups design, where a dependent vari-
able is measured in two groups of participants, with each 
participant belonging to one group only. Often, the aim 
of the study is to compare the means of the dependent 
variable between the two groups, employing a t-test, and 
the most commonly used effect size index for this design 
is Cohen’s d (Cohen, 1988). In the simplest scenario, the 
researcher finds substantial evidence in the literature to 
estimate the expected effect size. For instance, suppose 
that a meta-analysis on the effect under investigation 
suggests a Cohen’s d of 0.50, that the conventional sta-
tistical significance level is set to α = .05, and that the 
desired power to 1–β = .80. The aim of the power analysis 
in the following examples is prospective to estimate the 
minimum sample size N necessary to obtain a statistically 
significant test with a certain likelihood applied to the 
expected effect size index.

The first action needed in G*Power is to select the 
 appropriate test in the Test Family menu by choosing 
t-test (cf. Figure 1). This action makes the list of applica-
tions of the t-test available in the Statistical Test menu. 
In this menu, select “Means: Difference between two 
 independent means (two groups)”, and then select “A 
priori […]” as the type of power analysis to be executed. 
The lower panel of the window presents the analysis input 
parameters that are required. The three actions taken so far 
are common to any power analysis run in G*Power: select 
a test family, a specific application of the test, and the type 
of power analysis. For this prospective power analysis, the 
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input parameters are the effect size d (0.50), the direc-
tion of the test (two-tailed or one-tailed, in this example 
it is two-tailed), the α level (.05), and the expected power 
(.80). The last parameter, “Allocation ratio N2/N1” gives 
the possibility of analyzing unbalanced designs by specify-
ing the ratio of the two planned group sizes. In the follow-
ing sections, we assume that the planned designs feature 
equal-sized groups, but one can easily adjust many of the 
examples for unbalanced designs.

After setting the input parameters, hitting the calculate 
button results in the output filling in the output param-
eters. The required N in this case is 128, meaning that 
if one collected 128 cases divided into two groups of 64 
participants each, drawing from a population where the 
exact Cohen’s d is 0.50, in 80% of the cases one should 
expect the t-test to come out as statistically significant, 
fixing α = .05 (two-tailed). The top panel of Figure 1 
shows the t-distributions under the null-hypothesis (red 

Figure 1: Main window of G*Power calculating the power of a two independent samples t-test.
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curve, population d = 0) and the alternative hypothesis 
(blue curve, population d = 0.50). The shaded area under 
the blue curve indicated by β is the probability of obtain-
ing a nonsignificant result (at α = .05 level); whereas, the 
nonshaded area under the blue curve is the probability 
of obtaining a significant result, the power of the test (1– 
β). The output reports some additional parameters: the 
noncentrality parameter delta, the critical t, and the df. 
The noncentrality parameter is (almost always, cf. Cohen, 
1988) the standardized mean of the t-distribution of the 
estimates obtainable under the alternative hypothesis 
(d = 0.50), weighted by the size of the groups. Together 
with the df (degrees of freedom of the t-test) and the criti-
cal value, it may be useful in some advanced applications, 
such as computing the confidence limit of the effect size 
and conducting safeguard power analysis (Perugini et al, 
2014). In simple applications, these indices are not usually 
of particular interest for the power analysis practitioner.

So far, we have obtained one estimation of the required 
N, assuming the effect size d = 0.50 is correct. To improve 
our ability to plan more powerful designs, we can explore 
more possibilities by conducting basic sensitivity  analysis 

around the estimated required N. This can be  accomplished 
by selecting “Sensitivity: […]” in “Type of analysis,” plug-
ging in the results we just obtained (α = .05, power = .80, 
sample size group 1 = 64, sample size group 2 = 64) and 
selecting “X-Y plot for a range of values.” In the new win-
dow, one can plot different pairs of power analysis param-
eters and evaluate how each changes as a function of 
the other. An interesting pair (Figure 2) is the effect size 
change as a function of the total sample size (required N). 
In the example, the effect size d on the Y-axis indicates the 
lower bound of the set of sample effect sizes that would be 
statistically significant (with power .80) for each possible 
required N (total sample size). Here, one can appreciate 
how small increases in the sample size would not much 
change the minimum effect size that would result as sig-
nificant, but decreasing the N becomes increasingly detri-
mental for the researcher’s ability to detect an effect size 
significantly different from zero. For instance, dividing the 
required N by half (from 128 to 64) would result in sam-
ple effect sizes lower than (approximately) 0.63 being not 
significant, making the expected population effect size 
(d = 0.50) less likely to produce a significant result. 

Figure 2: Sensitivity Plot of G*Power calculating the power of a two independent samples t-test: Lowest detectable 
effect size as a function of required N.
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A similar insight can be derived by plotting the expected 
power on the Y-axis as a function of the sample size  
(Figure 3). In Figure 3, one can appreciate that given 
d = 0.50, the power of the test decreases to around .50 
with a total sample size of N = 64 participants, thus giving 
the researcher only a 50% chance of finding a statistically 
significant result. In general, the risk of reducing the sam-
ple size, or the relative advantage of increasing it, can be 
evaluated using the sensitivity plots as in Figures 2 and 3.

G*Power also allows computing the effect size starting 
from the group means and their standard deviations (cf. 
the option “Determine” in Figures 1 and 4). In recent 
years, reporting an effect size index has become common 
practice in the published literature. Thus, the researcher 
seldom needs to input the raw means and standard devia-
tion. Even when Cohen’s d is not reported in the literature, 
a t-test is usually available. If t is the observed t-test value 
for a two-groups t-test on N participants, we can obtain 
the effect size as 2 

2
t

N
d

-
= .

A cautionary note is needed about the required total 
sample suggested in output by G*Power with designs 

involving groups and the actual required sample the 
researcher needs. It is often the case, as in many exam-
ples below, that one is planning a balanced design and 
G*Power prescribes a required total sample size that is not 
divisible by the number of planned groups. For instance, 
in a planned design with four groups, G*Power may yield a 
required N = 34, which is not evenly divisible by four. The 
solution is to round up the total sample size to the first 
whole number divisible by the number of groups, such as 
N = 36 in this example.

Basic power analysis with R

Equivalent results can be obtained using R. As is often the 
case in R, one can obtain the same result in different ways, 
so here we show some basic results that require commonly 
used R functions and minimal data transformation. In R 
stats package (installed on all R distribution by default) one 
can use the function power.t.test(), which allows 
specifying the four parameters of power computation: 
n (N for each group), sig.level (the α level), power 
(1–β), the effect size, and the type of test, whether a two-

Figure 3: Sensitivity Plot of G*Power calculating the power of a two independent samples t-test: Power as a function of 
required N for fixed effect size.
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samples (the default), a one-sample, or a paired-samples 
t-test. One should specify the effect size by declaring the 
mean difference (delta) and the pooled standard devia-
tion (sd). When Cohen’s d is the effect size at hand, one 
should set the input parameter delta = d, and leave the 
sd parameter equal to 1. Optionally, one can specify the 
direction of the test with the alternative parameter.

Type of power analysis is simply decided by omitting 
the parameter that one desires to compute. a priori power 
analysis is achieved by omitting the parameter n and spec-
ifying α, power, and effect size. The line of R code:

power.t.test(power=.80, 

      sig.level=.05, 

      delta=.5, sd=1)

Produces the required N = 63.76, which can be 
rounded up to match G*Power results. Notice that the 
power.t.test() function returns the required partic-
ipants per group, so the total sample size should be twice 
as large as the returned N.

Sensitivity analysis can be obtained by changing the 
obtained N and omitting the parameter we intend to 
study. For instance, repeatedly running:

power.t.test(n=n*,  
      sig.level=.05, 

      delta=.5, sd=1)

By changing n* in the vicinity of N = 64 can inform us of 
the change in expected power (notice that the parameter 
power is not set) as we change N. The same logic applies 
to retrospective power analysis. R offers several packages 
to run power parameters. All the worked examples in the 
paper are replicated in R in additional material available at 
https://github.com/mcfanda/primerPowerIRSP.

Also for R packages, a cautionary note is needed about 
the required total sample output by the software and the 
actual required sample the researcher needs. In R, the 
required sample is often not a whole number, so it may 
seems strange to require 63.76 participants per group. 
The solution is simply to round up the required N to the 
next integer.3

Paired groups (repeated measures)

Power analysis for two-cell repeated-measures designs is 
logically simple. A paired-sample t-test is simply a one-
sample t-test on the difference score obtained by sub-
tracting one repeated measure from the other. If we know 

Figure 4: Example of derivation of the effect size based on its constituent parameters: paired t-test case.

https://github.com/mcfanda/primerPowerIRSP
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the average of the difference score (Δ) and its standard 
deviation (sd), the effect size is given by d

z
 = Δ/sd. This 

effect size is often called standardized difference score d
z
 

(Cohen, 1988). In G*Power, one selects “Means: difference 
between two dependent means” in the Statistical Test 
field and plugs the numbers as in the two-sample t-test. 
The same logic applies for comparing one sample mean 
to a theoretical value (one-sample t-test), which yields the 
same results as the paired-sample t-test, provided that the 
effect size is the same.

More interesting is the case in which the expected 
effect size is not directly available, for instance, when pre-
vious studies have employed a between-subject design 
that we want to replicate in a within-subject design. 
When this is the case, recall that the standard devia-
tion of the difference score depends on the  variances 
of the repeated measures and their correlation. Thus, to 
 transfer an independent groups Cohen’s d into repeated 
 measures d

z
, the correlation ρ between measures has to 

be known or guessed. If ρ can be guessed, one can obtain 
the correct effect size by computing ( )2 1

d
zd r⋅ -
= . To illus-

trate, assume we observe the previous example d = 0.50 
from a  between-subject design, but we plan to employ 
a repeated measure design and expect the correlation 
between measures to be ρ = .55. The within-subject effect 
size will be ( )

.50

2 1 .55
0.527zd ⋅ −

= = , which G*Power associates with 
an expected N = 31 (less than one-fourth of the sample 
required for the corresponding between-subject design). 
G*Power also offers the possibility of running the effect 
size calculation with the option Determine (cf. Figure 4). 
The corresponding R code would be

power.t.test(delta = .527, 

      sig.level = .05 

      power = .80, 

      type = “paired”)

An important note of caution is in order about the effect 
size d

z
 in paired-samples t-tests. Not all authors use the 

standardized difference score effect size, yet they may 
refer to their effect sizes as Cohen’s d. Different indices 
may yield dramatically different values; thus, it is impor-
tant to be sure that d

z
 is used in power analysis software. 

To be sure, one can take the t-test reported in the article 
and check t

z N
d = . If this is the case, d is the correct one. 

For more complex designs, such as factorial within-sub-
jects designs and mixed designs, accessible introductions 
to power analysis can be found in Brysbaert and Stevens 
(2018) and Guo, Logan, Glueck and Muller (2013).

One-way analysis of variance

The ANOVA is a well-known strategy for analyzing data 
comparing more than two group means. Most power anal-
ysis software, including G*Power, use the f parameter as 
the measure of effect size (Cohen, 1988). The f effect size 
is the expected standard deviation of the group means 
divided by the pooled within-group standard deviation. 
However, the f parameter is neither intuitive, nor com-
monly used in published empirical research, so it may 
be convenient to use more popular effect sizes. A bet-

ter choice is the eta-squared (η2). The eta-squared is the 
proportion of the total variance explained by the means 
variance. The good news is that G*Power allows comput-
ing the f parameter starting from the η2 (using the option 
Determine). The bad news is that G*Power, as any other 
power analysis software, requires the population η2. 
This may not correspond to the sample eta-squared 2

sh , 
which is the effect size computed by several well-known 
statistical software programs, such as SPSS (G*Power 3.1 
manual; Porter, 2017), and is the one commonly reported 
in published literature. The discrepancy is due to the fact 
that G*Power requires the ratio of population variances; 
whereas, SPSS eta-squared ( 2

sh ) is the sample-based estima-
tion of η2. The solution we suggest to estimate the pop-
ulation eta-squared (η2) is to use epsilon-squared (Kelly, 
1935), which has been shown to be less biased than both 
omega-squared (Hays, 1963) and eta-squared, the lat-
ter being the most biased estimator of the three (Okada, 
2013).4 Epsilon-squared can be easily computed starting 
from the sample eta-squared with a simple formula (cf. 
Eikeland, 1975):

  ( )2 2 1
1 1 s

N
N k

e h
-

= - - ⋅
-

 (1)

Where N is the total sample size and k is the number of 
groups. Epsilon-squared can then be used as the value for 
the population eta-squared input in G*Power.5

Assume that in the published literature we found 
research that obtained 2 .35sη =  in a design with 200 par-
ticipants divided in eight groups. We wish to compute the 
minimum required N (total sample size) for achieving a 
power of .80. Applying the formula in (1), we obtain ϵ2 = 
.326. We can insert it into the direct panel in the Partial η2 
field (cf. Figure 5).

Note that in one-way designs the effect size is named 
η2 but in G*Power, we find the field Partial η2 because in 
factorial designs the partial eta-squared 

2
ph  is used, and 

G*Power employs the more general term. In one-way 
designs, there is simply nothing to partial out (Richardson, 
2011). We then ask the software to compute and transfer 
the computed f into the main window. The required N we 
obtain is 40, meaning that given the effect size, we require 
5 participants per cell to attain a power of around .80.

For the previous example, we selected “F-test” in the 
Type of Test field and “ANOVA: Fixed effects, omnibus and 
one-way” in the Statistical Test field. For any other effect 
involved in the ANOVA, such as the effect estimated in fac-
torial designs, we can select “ANOVA: Fixed effects – spe-
cial, main effects and interactions.” 

Factorial designs

Power analysis for factorial designs can be obtained fol-
lowing the same steps as those for the one-way ANOVA, 
with some specifications. Because main effects and inter-
actions are embedded into a larger design, one needs 
to specify the total number of groups in the design and 
the effect degrees of freedom to obtain the correct com-
putation of the power parameters. Thus, in a 3 (A) × 2 
(B) design, the computation of the required N to attain 
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.80 power for the main effect of A requires specifying 
k – 1 = 2 degrees of freedom for the effect (numerator df 
in G*Power), the total number of groups (3 × 2 = 6), and 
the effect size. In the same design, the power of the inter-
action A × B can be estimated by inserting (3 – 1)*(2 – 1) 
= 2 as the numerator df and 3 × 2 = 6 as the number of  
groups.

The effect size index that can be used is the partial 
eta-squared ( 2

ph ). The partial eta-squared is the variance 
explained by the effect (main effects or interactions) 
expressed as a proportion of the variance not explained 
by the other effects. Thus, if 2

fs  is the population variance 
explained by the effect and σ2 is the population residual 
variance, we have:

    
2

2
2 2

f
p

f

s
h

s s
=

+
 (2)

As for the one-way design case, the expected effect size is 
the population effect size. Thus, the same considerations 
regarding its empirical estimates apply. In particular, one 
can adjust the sample eta-squared by computing the par-
tial epsilon-squared as follows:

     ( )2 21 1p p

N K df
N K

η
− +

= − − ⋅
−

ε  (3)

Where df are the degrees of freedom of the effect and K 
is the total number of groups in the design. For instance, 
if one has a two by two design with a total sample of 20 
participants and 2 .20pη = , the formula yields:

   ( )2 20 4 1 17
1 1 .20 1 .80 .15

20 4 16p

− +
= − − ⋅ = − ⋅ =

−
ε  (4)

When the effect size can be computed from previous lit-
erature as partial epsilon-squared, it can be inserted into 
the Partial η2 field. When the effect size is not available, 
it can be computed by guessing the variance explained 
and the residual variance, expressed as proportion, using 
the Determine option offered by G*Power. To do so, how-
ever, one also needs to guess the variance explained by 
the other factors in the design, because that variance 
influences the size of the residual variance. For example, 
assume that in a 2-factors design the researcher expects 
the interaction to explain around 10% of the variance. If 
the researcher expects no main effect, the proportion of 
residual variance is 1 – .10 = .90, so the 2 .10pη = . If the 
researcher instead believes that a main effect will be 
found explaining 40% of the variance, the proportion 
of residual variance will be 1 – .10 – .40 = .50, and thus 
2 .166pη = . The error variance can also be deduced from 

previous research when the overall ANOVA R2 is available. 
In fact, σ2 is roughly equal to 1 – R2. When the partial eta-

Figure 5: One-way ANOVA computation of effect size indexes and power in G*Power.
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squared is computed inserting in G*Power the expected 
proportions of variance, no transformation is needed and 
the software transfers the eta-squared estimates into the 
effect size f field.

The real difficulty with factorial designs and complex 
designs in general is obtaining a sensible guess of a rea-
sonable effect size. Factorial designs, in fact, are often 
planned to expand and revise previous literature; thus, 
the effect size may not be available in the form required 
by the power computation. A researcher may observe, for 
instance, an effect in a one-way ANOVA and may wish to 
establish whether it replicates in two different conditions, 
thus aiming at a main effect in a factorial design. Another 
case can be that the observed one-way ANOVA effect is 
expected to be moderated by a factor that suppresses 
the effect in one condition and replicates it in another, 
thus aiming at an interaction in the factorial design (cf. 
Wahlsten, 1991). In all these conditions, estimating the 
appropriate effect size value may be challenging. One pos-
sible solution is to specify the expected pattern of means 
or take inspiration from observed results and decompose 
it into contrasts (Cohen et al., 2003).

Power analysis for contrasts

When prospective power analysis is applied to contrast 
analysis, one can legitimately speak of contrasts regarding 
planned comparisons. A planned comparison is specified 
by assigning weights to the expected means and testing 
the weighted sum of the means against the mean of the 
weights. Because proper contrasts have means equal to 
zero, the contrast is tested against zero. Assume one is 
expecting a pattern of means across four groups equal to 
{10, 0, 0, 0}, with the within-group standard deviation (σ) 
equal to 5. To test any hypothesis across these four means, 
one can specify a set of weights ci, with sum equal to zero, 
that compares the desired set of means. One can, for 
instance, compare the first mean against the other three 
by specifying a contrast, such as c = {3, –1, –1, –1}, or the 
first two against the second two means by specifying a 
contrast c = {1, 1, –1–1}.

Contrasts can also be useful in complex designs because 
they allow testing main effects and interactions effects, or 
a subset of those, by guessing the pattern of means (and 
the within-group variability) or observing it in a different 
design published in the literature. The pattern of means 
{10, 0, 0, 0}, for instance, may be expected in a 2 × 2 design 
similar to the ones in Table 2.

In this design, the main effect of B can be tested with a 
contrast (going row-wise} c

B 
= {1, 1, –1, –1}, the main effect 

of A with c
A 

= {1,–1, 1, –1}, and the interaction with c
AB 

= 
{1, –1, –1, 1}.

In between-subjects designs, contrasts are tested with 
the F-test with 1 and N-k degrees of freedom (k equal to the 
number of groups). Thus, one can employ ther G*Power 
“ANOVA: Fixed effects – special, main effects and interac-
tions” statistical test to estimate the power parameters. If 
we name µi the expected means and ci the corresponding 
contrast weights, the effect size f for a contrast is

  2 2

i i

i

c
f

k c σ

∑ ⋅
=

⋅∑ ⋅

µ

 
(5)

where ∑ci ⋅ µi is the contrast value. In our example, main 
effects in Table 2 yield the same 10

4 4 25
.50f

⋅ ⋅
= = . Plugging 

the f in G*Power for a power = .80 suggests a required N 

= 34 (total sample), which can be approximated with 9 
participants per cell, yielding a required total sample of 
N = 36. For the interaction contrast c

AB
={1, –1, –1, 1}, the 

f parameter is the same; thus, one expects to achieve the 
same power for the interaction with the required 9 par-
ticipants per cell computed for the main effects. R code 
and an Excel file to help with calculations for contrasts, as 
well as for interaction, moderation, and mediation effects 
(see below), are available online at https://github.com/
mcfanda/primerPowerIRSP.

It is crucial to realize that the power associated with 
a contrast depends, given a fixed α level, exclusively on 
the expected effect size f and the degrees of freedom of 
the test. However, given a certain contrast value, the cor-
responding expected effect size can dramatically change 
depending on the design one is planning to analyze. These 
properties of contrast analysis make it easy to use power 
analysis software, when an effect size is correctly antici-
pated, because the software commands and the interpre-
tation of the results will always be the same given a certain 
effect size. However, adapting the correct effect size of a 
contrast value to the planned research design might be 
challenging. This issue is particularly important when 
results from one design are used to compute the power 
parameters of different, larger designs. We now consider 
this issue in more detail.

Guessing the interaction effect size from one-way 
designs

A common case in experimental psychology is observing 
an effect of a factor in a one-way design and planning a 
larger design where a moderator variable is included. For 
example, consider Case 1 in Table 3, in which the pattern 
of means is taken from a one-way design where A1 and A2 

Table 2: Example of 2 × 2 design.

A1 A2

B1 10 0

B2 0 0

Note: Pooled standard deviation is equal to 5.

Table 3: Example of 2 × 2 design expected results.

Case 1 Case 2

A1 A2 A1 A2

B
replicated 5 2 5 2

moderated 0 0 2 5

Note: Pooled standard deviation is equal to 1.

https://github.com/mcfanda/primerPowerIRSP
https://github.com/mcfanda/primerPowerIRSP
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show means equal to 5 and 2, respectively, and the same 
within groups variability (say equal to 1). The researcher 
observes in the literature a one-way design with only A 
as a factor and wishes to test the moderating effect of B 
in a 2 × 2 design. The B factor has two levels, which, for 
simplicity, we name replicated and moderated. The prob-
lem is determining the power parameters of the expected 
interaction effect.

This problem has raised much interest in the meth-
odology community (McClelland & Judd, 1993) and has 
recently caught the attention of several commentators 
(Gelman, 2018; Giner-Sorolla, 2018), although different 
solutions have been proposed. We suggest that in these 
situations a contrast approach can solve many difficul-
ties that accompany power analysis. Here is a step-by-step 
example followed by a general simple solution.

The first step is to compute the contrast value for the 
observed design, C

A
 = (1) ⋅ 5 + (–1) ⋅ 2 = 3, and its effect 

size, 3
2 21

  1.50f
⋅ ⋅

= = . The second step is to try to anticipate 
how the moderator will change the observed effect. A 
simple case is that the researcher expects the moderator 
to suppress the effect completely, as shown in Table 3, 
Case 1. In this case, the anticipated interaction contrast 
value is still C

AB 
= (1) ⋅ 5 + (–1) ⋅ 2 + (–1) ⋅ 0 + (1) ⋅ 0 = 3, 

but the effect size is now 3
4 4 1

  0.75f
⋅ ⋅

= = ; thus, it is half 
the original effect size, and it will require (almost) dou-
ble the size of each design cell to achieve the same power 
of the one-way design. These results led commentators 
to suggest doubling the cell size in case of interactions 
(Simonsohn, 2014) or even increasing the sample size 
by higher multipliers (Gelman, 2018) when interactions 
are involved. However, a simple sample size multiplier 
would not work in the general case, because the expected 
effect size depends on the shape of the interaction one is 
expecting. 

Consider Case 2 in Table 3, in which the researcher is 
expecting the moderator to reverse the effect, creating 
a crossover interaction. In this case, the contrast would 
result in C

AB 
= (1) ⋅ 5 + (–1) ⋅ 2 + (–1) ⋅ –2 + (1) ⋅ 5 = 6 

and the effect size will be 6
4 4 1

  1.50f
⋅ ⋅

= = , exactly as in the 
one-way design. To achieve the same power of the original 
one-way design, one would need the same cell size of the 
original study and no multiplier of the sample size would 
be required.

A simple and general way to anticipate an interaction 
effect size starting from a one-way design is to think in 
terms of percentage of moderation (pm). The researcher 
has to anticipate the percentage of expected change of the 
original effect, with 100% of change indicating a complete 
suppression of the effect and 200% indicating a complete 
reverse of the effect. When this percentage of moderation 
can be anticipated, one computes the expected effect size 
using the following formula:

  
100

m o
n o

n

p k
f f

k l
= ⋅ ⋅

⋅
 (6)

where f
n
 is the expected effect size of the interaction for 

the planned research, fo is the observed effect size of the 
original effect, ko and k

n
 are the number of cells in the 

original and the planned design, respectively, and l is the 
number of levels of the moderator. 

In the 2 × 2 design of our examples, the calculation of 
the expected interaction effect size simplifies to:

   
1

100 2
m

n o

p
f f= ⋅ ⋅  (7)

Thus, if the researcher expects a complete suppression of 
the effect (Table 3, Case 1), pm = 100% and 1

21.50 0.75nf = ⋅ =  
whereas, if the researcher expects a complete reverse of 
the effect (Table 3, Case 2), the expected effect size will be 

3 1
2 22  1.50nf = ⋅ ⋅ = , as we have shown before.

This approach makes it easy to evaluate scenarios where 
the expectations are not clear-cut. Assume the researcher 
is planning research where a moderator is expected to sup-
press the effect but not reduce it to zero. The researcher 
may, for instance, expect a reduction of 50% of the effect. 
Applying the logic of the proportion of moderation, it is 
easy to estimate that the expected interaction effect size 
will be 1

20.50 1.50 .375nf = ⋅ ⋅ = , with no need to anticipate 
the exact expected means for the moderator levels or the 
standard deviations of the cells. Power parameters can then 
be computed using the estimated interaction effect size.

An example of a more complex design 
Consider a researcher who wishes to design a moderation 
study based on a one-way design with four  conditions 
implementing an increasing intensity of a stimulus, 
such that the observed pattern of means shows a linear 
trend. In particular, the observed linear trend contrast has 
an ηp = .184, corresponding to a f = 0.475 (cf. G*Power 
manual, p. 29). The observed pattern of means is shown in  
Figure 6, as the Replicated mean pattern.

Had the observed study been conducted with 10 par-
ticipants per cell, it would have a power slightly higher 
than .80. Assume that the researcher expects the mod-
erator, featuring two conditions, to replicate the observed 
linear trend in one condition (Replicated in Figure 6) 
and to reverse it in the other condition (Moderated in  
Figure 6). However, the reverse is not expected to be com-
plete, only weak.

Employing the percentage of moderation approach, one 
needs to estimate only the percentage of change, keep-
ing in mind that 100% means suppression of the effect 
and 200% means a complete reverse. Thus, under the sce-
nario above, one can guess that the expected mild reverse 
would correspond to 125% of moderation. Because the 
original design has four cells and the planned design has 
eight, the expected interaction effect size is:

4
1.25 .475 0.296

8 2nf = ⋅ ⋅ =
⋅

Plugging the f into G*Power “ANOVA: Fixed effects – special, 
main effects and interactions,” with input α = .05, power 
= .80, numerator df = 1, and number of groups 8, G*Power 
suggests a required total sample of N = 92, which can be 
rounded to 12 participants per cell, yielding a required 
total sample of N = 96. Checking calculations of the f based 
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on expected means and variances yields the same results as 
applying formula (6) on the original effect size.

Regression analysis

From a statistical point of view, power analysis for regres-
sion is based on the same logic and the same parameters 
as power analysis for ANOVA. Regression parameters 
are tested through an F-test, and the elective effect size 
index is f 2 (Cohen, 1988). In order to estimate the power 
parameters, one needs to calculate the effect size f 2 from 
the effect size indices commonly reported in published 
papers. The partial eta-squared is again the easiest index 
to employ, and it is defined exactly as in the ANOVA. 
This should not be surprising, because both regression 
analysis and ANOVA are applications of the general lin-
ear model; thus, the same inferential tests and the same 
effect size indices are available. Not every software pack-
age allows computing the partial eta-squared within the 
regression model. SPSS, for instance, computes the par-
tial eta-squared for regression effects within the general 
linear model command, but in the regression command 
this option is not available. Fortunately, the partial cor-
relation squared is equal to the partial eta-squared, only 
presented with a different name, so the partial correla-
tion squared can be used as an estimate of eta-squared. 
In G*Power, the power parameters of any effect in multi-
ple regression can be computed employing “F test: Mul-
tiple Regression – Fixed model, R2 increase” command, 
letting the software compute f 2 based on the Partial R2. 
Notice that in the interface of the command the eta-
squared is named Partial R2 because the partial R2 gener-
alizes the eta-squared to a set of variables. Nonetheless, 

the command can be used for one independent vari-
able, and the expected eta-squared can be input in the  
Partial R2 field.

When published data are not available, one should rely 
on guessing the proportion of variance explained by the 
effect and the residual variance, as we have seen in the 
ANOVA examples. Otherwise, one can use Cohen’s guide-
lines (Cohen, 1988) and guess whether the effect under 
investigation may be small (f 2 = 0.02), medium (f 2 = 0.15), 
or large (f 2 = 0.35).

Moderated regression

For moderated regression, namely a regression with an 
interaction involving at least one continuous variable, the 
effect size can be computed as for any other effect in the 
linear model. If the literature describes a similar regres-
sion, one can use the eta-squared of the observed interac-
tion and follow the steps described for the multiple regres-
sion.7 However, interactions are somehow special terms, 
because the variance of the effect depends on the variance 
of two predictors, rather than one predictor as for the lin-
ear terms (Jaccard & Turrisi, 2003). This extra variance 
(McClelland & Judd, 1993) impacts the power of the F-test 
associated with the interaction. Furthermore, although 
OLS regression assumes the predictors are error-free, they 
are typically measured with error, which decreases their 
reliability and negatively impacts the power of the test 
associated with the predictors’ interaction (Cohen et al., 
2003). Despite these difficulties, reasonable approxima-
tions of the power function of interaction effects have 
been suggested (Shieh, 2009), but they are not readily 
available in G*Power.

Figure 6: Example of a 4 × 2 expected interaction based on a one-way observed pattern of means.
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Nonetheless, the general recommendation deduced 
from the relevant literature is that interaction effects tend 
to be less powerful than linear effects with the same effect 
size index. This general advice can be taken into account 
by setting a lower effect size than expected or by per-
forming a thorough sensitivity analysis to understand the 
range of sample sizes that would guarantee sufficiently 
high power even if the expected effect size overestimates 
the variance explained by the interaction.

Even considering this advice, researchers planning to 
estimate a moderated regression face the difficulty of 
anticipating the interaction effect size. When the interac-
tion effect size cannot be retrieved from the literature, the 
partial eta-squared is admittedly not the easiest effect size 
index to guess. Interactions often explain little variance, 
although they may reflect crucial effects for proving or dis-
proving a theory. Our suggestion is to reason in terms of 
standardized regression coefficients (beta) and to obtain, 
under some constraining assumptions, a rough but reason-
able estimate of the partial eta-squared based on the beta’s.

Standardized coefficients are regression coefficients 
computed using standardized variables; thus, their inter-
pretation can be based on the standard deviation scale. In 
simple regression, for instance, a standardized  coefficient 
equal to β indicates that the expected value of the 
dependent variable increases β standard deviations as one 
increases the predictor of one standard deviation. They 
share the same scale as the Pearson correlation, although 
in multiple regression they are neither correlations nor 
partial correlations. The interesting fact in moderated 
regression is that the standardized coefficient associated 
with the interaction indicates the difference between the 
effect of one predictor computed for two consecutive 
units of the moderator. If the moderator is dichotomous, 

for instance, the interaction coefficient is the difference 
between the predictor coefficients computed in the two 
groups defined by the moderator (cf. Figure 7a). If the 
moderator is continuous, the interaction is the difference 
of the predictor coefficients computed for the moderator 
equal to its mean and the moderator equal to one stand-
ard deviation above (or below) the mean (cf. Figure 7b).

An exact estimation of the variance explained by the 
interaction is complex and requires several pieces of infor-
mation only available in a published study. In the absence 
of this information, one can get a rough but reasonable 
estimation of the expected interaction coefficient and, in 
specific circumstances, infer the variance required to com-
pute power parameters. We consider two cases below.

Interaction between continuous and dichotomous 

predictors

It is not uncommon that a researcher observes a relation-
ship between two continuous variables and wishes to 
plan new research in which a dichotomous variable is sup-
posed to moderate the original relationship. The original 
relationship could be tested in two different experimental 
conditions or for two classes of individuals representing 
two levels of a categorical variable. 

The moderated regression applicable to this case is a 
regression featuring the linear effect of the predictor and 
the dichotomous moderator and their interaction. The 
standardized coefficient associated with the interaction is 
the difference in regression coefficients between the two 
levels of the moderator (i.e., the two groups defined by the 
moderator). The logic of the reduction of moderation can 
be applied here. Consider the following example: Imagine 
published research determines that Y and X are mildly 
related (r = .25) in the population because it is an average 

Figure 7: Geometrical interpretation of the interaction beta coefficient, with a dichotomous moderator (a) and a 
continuous moderator (b).
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between a high positive value expected under the experi-
mental condition (ra = .50) and no correlation expected 
under the control condition (rb = .00). The expected inter-
action coefficient in a planned experiment is simply βint 

= |ra – rb|, that is |.50 – .00| = |.50|. The question is now 
how to determine the variance explained by that effect. If 
one assumes that the two groups have equal size and they 
are not different in the X variable and in the Y variable, 
the effect size of the interaction can be approximated as 
follows:

  ( )
2

2

2 22 2
int

a b

f
r r

β
≈

⋅ − −  (8)

Note that the formula is an approximation of the effect 
size based on the independence of the dichotomous mod-
erator to the other variables in the model. If the modera-
tor has a main effect on the dependent variable, the power 
analysis based on the f 2 will underestimate the power of 
the test; whereas, if the moderator is correlated with the 

Figure 8: Example of power analysis for interaction in moderated regression.
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predictor (i.e., the two groups defined by the moderator 
differ in the predictor means), the power will be overes-
timated. 

In our example, we obtain f 2 = 0.0714.6 One can now use 
the G*Power “F test: Multiple Regression – Fixed model, R2 
increase” command as shown in Figure 8.

The G*Power command requires the f 2; the α and the 
required power; the number of predictors (i.e., the number 
of coefficients tested), in our case 1; and the total number 
of predictors (i.e., the total number of coefficients in the 
model), in our case 3, for two main effects and one interac-
tion. The resulting required total sample size is 112.

In G*Power, similar results can be achieved using 
t-tests—“Linear bivariate regression: Two groups, dif-
ference between slopes,” although the underlying test 
employed to compare the slopes is different (Armitage et 
al., 2002) and the interface is peculiar. Thus, we suggest 
using the G*Power command described above, because it 
is the same command used for any other power analysis 
regarding multiple regression.7

Interaction between continuous predictors

As in the previous example, the power parameters for the 
test of the interaction effect with two continuous vari-
ables are easy to compute if one has an empirical estima-
tion of the partial eta-squared inferred from the literature. 
This estimation can be plugged into the “F test: Multiple 
Regression – Fixed model, R2 increase” command, and the 
software can compute the f 2 effect size, then input the α, 
the required power, and 1 for number of predictors and 3 
for total number of predictors, and the power parameters 
will be obtained.

When the eta-squared is not available, one can obtain a 
reasonable estimate of the effect size by following a simi-
lar logic applied to the continuous by dichotomous inter-
action. In this case, however, it is necessary to anticipate 
the variance explained by the main effects. Furthermore, 
it is necessary to assume that the two independent vari-
ables are uncorrelated with each other or only mildly cor-
related. When the latter assumption cannot be met, the 
following procedure will overestimate the power of the 
interaction test, with overestimation being proportional 
to the correlation between predictors.

Under those assumptions, the interaction effect size 
can be computed following these steps. Assume y, x, and 
m are continuous variables, and we wish to compute the 
power of the test associated with the interaction x*m. 
Suppose y is time running on a treadmill, x is age, and 
m is hours of training per week (see a similar example in 
Cohen et al, 2003). The goal of the study is to ascertain 
how training moderates the relationship between age 
and endurance. The first step is to estimate the correla-
tion between endurance and age, ryx, and the correlation 
between endurance and training, rym. This can be inferred 
from research papers or other sources. Assume from previ-
ous research ryx = .35 and rym = .25. Because we designated 
training as the moderator, we can think of ryx as the aver-
age correlation between endurance and age, that is the 
correlation between endurance and age for the average 
level of training in the sample. 

The second step is to apply a proportion of moderation 
logic similar to the continuous by dichotomous interac-
tion. The relevant question is how much do we expect the 
correlation between endurance and age, ryx, to increase if 
we compare participants with an average level of train-
ing and participants who train one standard deviation 
above average? More generally, how much do we expect 
the correlation between the predictor and the criterion 
to increase for a one standard deviation increase in the 
moderator?

Framed in this way, the question is easier to answer than 
estimating an eta-squared without other available informa-
tion. One can say, for instance, that one standard deviation 
in training may increase the correlation about 50%, mak-
ing the expected correlation for people that train above 
average equal to .525, with an increase equal to .175. The 
expected coefficient of the interaction will then be βint = 
.175. Another way to anticipate the interaction beta is to 
guess, or to estimate from the literature, the expected cor-
relation at high (or low) levels of the moderator and take 
the difference between the expected correlation for high 
levels and the expected correlation for average levels of 
the moderator. This difference will be the expected βint. 

The last step is to compute the effect size f 2. Under the 
described assumptions, the following formula gives an 
approximation of it:

      

2
2
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In our example, we obtain f 2 = 0.0375. Plugging this into 
G*Power “F test: Multiple Regression – special (increase of 
R2), fixed model” yields a required total sample of N = 212 
participants. 

To recap, when previous research provides estimates 
of the eta-squared of the planned interaction, one can 
use it to compute the power parameters required. When 
the information is not available, the researcher needs to 
anticipate not only the correlations between the predic-
tors and the criterion but also the difference in correlation 
of one predictor between the average effect and the effect 
expected at one standard deviation above the average of 
the moderator. Formula (9) gives a shortcut to compute 
the effect size required for the power analysis. Although 
the suggested method is more precise than a simplistic 
estimation of the effect size based on small, medium, or 
large categorization, it is nonetheless a rough estimation 
based on specific assumptions.8

Analysis of Covariance and Other Applications 
of the General Linear Model
Once one is capable of estimating the power parameters 
for regression and ANOVA, one can apply the same rea-
soning and follow the same practical steps for any other 
application of the general linear model. Analysis of covari-
ance (ANCOVA), for instance, poses no particular challenge. 
When the researcher can guess the variance explained by 
the effect under investigation and the variance explained 
by the covariates, the eta-squared can be computed and the 
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effect size f 2 can be estimated accordingly. From a practical 
point of view, G*Power offers the “ANCOVA: fixed effects, 
main effects and interaction,” which employs the same sta-
tistical functions of the factorial ANOVA but allows specify-
ing the number of covariates. This is useful for imputing the 
correct degrees of freedom of the F-test under investigation. 

Mediation analysis

An analytic solution to power analysis has not been worked 
out for all possible models. A good example is provided 
by mediation analysis (Baron & Kenny, 1986), for which 
 analytic solutions are available only under restrictive 
assumptions. In mediation analysis (Figure 9), a researcher 
tests whether the relationship between an independent 
variable X and a dependent variable Y can be explained by 
the effect of a third variable M, called the mediator. The 
total effect of X on Y is thus decomposed into two ele-
ments: the direct effect of X on Y and the indirect effect of 
X on Y through M. The direct effect is estimated by path c 
in Figure 9, the multiple regression coefficient of Y on X, 
controlling for M. The indirect effect is estimated by the 
product of a*b, where a is the simple regression coefficient 
of M on X and b is the multiple regression coefficient of Y 
on M, controlling for X (Baron & Kenny, 1986). 

Under the assumption that the sampling distribu-
tion of the indirect a*b is normal, the standard errors, 
p-values, confidence intervals for the indirect effect can 
be computed using the Sobel test (Sobel, 1982). In this 
case, power analysis for testing the indirect effect can be 
performed analytically, using functions ssMediation.
Sobel() and powerMediation.Sobel() in the R 
package powerMediation (Qiu, 2017). 

Given a set of model parameters and an α level (parameter 
alpha, which is equal to .05 by default), the first function 
allows determining the sample size to achieve a certain power 
(argument power in ssMediation.Sobel), whereas, the 
second function allows determining the power achieved with 
a certain sample size ( argument n in  powerMediation.
Sobel). For both functions, one has to specify model param-
eters. This step is analogous to specifying an effect size for the 
general linear model but is slightly more complex for media-
tion because of the larger number of parameters and because 

different programs require different specifications. In the 
case of the R package powerMediation, model parameters are 
specified through the following arguments:

– theta.1a, which is equivalent to a in Figure 8,
– lambda.a, which is equivalent to b in Figure 8,
– sigma.x (σ

x
) and sigma.m (σm), which are 

 respectively the standard deviations of X and M, and
– sigma.epsilon (σε), which is the standard devia-

tion of the error term in the multiple regression, in 
which Y is predicted by both X and M, Yi = β

1
 Xi + β

2
 

Mi + εi, εi ∼ N (0, σε). Because 22 1R es= - , σε can be 
simply computed as 21 R- .

Typically, one has no specific idea of the standard deviations 
of X and Y or of σε Thus, it is easier to think of parameters 
a, b, and c in terms of standardized regression coefficients. 
If all variables are standardized, parameter a (theta.1a) 
is simply the Pearson’s correlation between X and M, 
whereas, b (lambda.1a) and c are the standardized 
multiple regression coefficients of Y on M and X, respec-
tively. To specify that the coefficients refer to standardized 
 variables, one must set sigma.x = sigma.m = 1 and 

( )2 21 2b c abces = - + + . This last equation can be derived 
from the definition of σε by applying the properties of 
variance.

Preacher and Hayes (2004) report an example in which 
the standardized a, b, and c coefficients are a = .8186, 
b = .4039, and c = .4334. We will consider these values for 
our examples throughout this section. The following code 
computes the sample size for obtaining 80% power in a 
Sobel test assuming the same coefficients, which results 
in a sample of 57 participants. Notice that the value of  
σε = .6020 can be easily computed from a, b, and c using 
the formula provided above.

ssMediation.Sobel(power = .80, 

       theta.1a = .8186,

        lambda.a = .4039, 

         sigma.x = 1, 

         sigma.m = 1,  

        sigma.epsilon = .6020)

Figure 9: Mediation model.
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The following code allows computing the power achieved 
from a sample size N = 100 for testing the same model, 
which results in power = .96.

powerMediation.Sobel(n = 100,  

        theta.1a = .8186, 

        lambda.a = .4039, 

         sigma.x = 1, 

          sigma.m = 1,  

        sigma.epsilon = .6020)

The assumption that the indirect effect could normally 
be distributed has been criticized; therefore, the indirect 
effect a*b is often tested not only through the Sobel test 
but also using bootstrap confidence intervals, which do not 
depend on the normality assumption (Hayes & Scharkow, 
2013; Preacher & Hayes, 2004). If the significance of the 
indirect effect is assessed through bootstrap confidence 
intervals, analytic formulae are not available. In this case, 
power can be estimated using Monte Carlo methods (Sch-
oemann, Boulton & Short, 2017; Thoemmes, MacKinnon 
& Reiser, 2010; Zhang, 2014). The general idea is simple: 
If power is the probability of rejecting H0 if H1 is true, 
one can determine power by (1) defining the expected val-
ues of the population parameters (e.g., a, b, and c) under 
H1, (2) generating a sample size N from the population 
parameters, (3) testing the significance of the target effect 
(e.g., the indirect effect) using the preferred method (e.g., 
bootstrap confidence intervals), (4) repeating steps 2 and 
3 a large number of times, and (5) estimating power as the 
proportion of R simulated samples in which H0 is rejected 
(Zhang, 2014). This strategy has several advantages: it can 
be used for estimating power not only for the indirect 
effect but also for any model parameter; it can accommo-
date for specific data characteristics, such as nonnormal-
ity and missing values; and it yields more accurate results 
than other methods. However, Monte Carlo methods have 
some drawbacks: They can be computationally cumber-
some, and power has to be estimated separately for each 
sample size (Thoemmes et al., 2010).

The R package bmem (Zhang, 2014) implements boot-
strap power analysis for bootstrap confidence intervals. 
First, it is necessary to define all model parameters using 
the lavaan model syntax (Rosseel, 2012). With this syntax, 
a model is specified as a text string in which each new 
line can represent either a regression relationship (using 
symbol ‘~’) or a variance (using symbol ‘~~’). In the fol-
lowing example, we specify the model discussed above, in 
which a = .8186, b = .4039, c = .4334, and all variables 
have unitary variance. We save the model to a variable 
called model.

model <-'

  M ~ a*X + start(.8186)*X

  Y ~ b*M + c*X + start(.4039)* 

  M + start(.4334)*X

  X ~~ start(1)*X

  M ~~ start(1)*M

  Y ~~ start(1)*Y'

In this code, the regression of M on X is specified as M = aX. 
The syntax start (.8186)*X is used to specify that a = .8186. 
Similarly, the third row specifies the regression equation bM 
+ cX, as well as the values of b and c. The remaining three 
rows specify that all variables have unitary variance. Once a 
model is specified, it can be used as the input of function 
power.boot() in package bmem, as shown in the fol-
lowing code.9

set.seed(1234)

power.result <- power.boot(model, 

     indirect = 'ab := a*b',

     nobs = 100))

summary(power.result)

Because power.boot() is based on random resam-
ples, command set.seed() can be used to ensure the 
exact reproducibility of results by forcing the R random 
number generator to draw the same sequence of random 
samples every time the code is executed. The first argu-
ment of function power.boot is the model specified 
above, the second argument is a text string that specifies 
that the power should be tested for the composite effect 
defined10 as the product of the coefficients a and b. The 
third parameter specifies a sample size for which power 
should be computed. By default, the function tests the 
hypothesis of a significant indirect effect by computing 
95% bootstrap confidence intervals using 1,000 bootstrap 
samples. Power is computed by using 1,000 Monte Carlo 
samples.11 The code returns a summary of the main results 
of the Monte Carlo simulation, including the power for 
detecting each parameter. This method suggests that the 
power for testing the indirect effect is 97%.

Schoemann and colleagues (2017) recently proposed 
two strategies that allow a substantial reduction of com-
putational time in power computations. First, instead of 
bootstrap confidence intervals, they consider Monte Carlo 
confidence intervals, which show good performance with-
out being computationally intensive (Hayes & Scharkow, 
2013; Preacher & Selig, 2012). Second, instead of estimat-
ing power separately for each sample size N, they propose 
a varying parameters approach in which sample size var-
ies across replications of the Monte Carlo simulation and 
logistic regression is used to identify a sample size that 
yields the desired power. This approach has been imple-
mented for a selected set of models in a Shiny applica-
tion, which requires no programming experience. The 
app can be found online (https://schoemanna.shinyapps.
io/mc_power_med/), or it can be installed and executed 
from R. This second option provides faster computations. 
The graphical app interface is shown in Figure 10. First, 
the app requires specifying the model for which power 
should be computed. One mediator indicates a model 
with a single mediator.12 Second, one has to specify the 
model parameters in the form of correlations13 among 
variables X, M, and Y.

These can be easily computed from standardized 
a, b, and c parameters in Figure 9 as rmx = a, ryx = c 
+ ab, and rym = b + ac. For our example, the correla-
tions are rmx = .8186, ryx = .7640, and rym = .7587. Third, 

https://schoemanna.shinyapps.io/mc_power_med/
https://schoemanna.shinyapps.io/mc_power_med/
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the user can choose between two possible values of 
Objective: Set N, Find Power and SetPower, Vary N. The 
first option (top panel of Figure 10) estimates power 
for a specific sample size, specified by Sample Size 
(N) (in this case, we set N = 100). The second option 
implements the varying parameters approach (bot-
tom panel of Figure 10). In this case, the user can 
specify the target power and a range of values of N (we 
explored samples between N = 30 and N = 130 in steps 
of 5). The remaining parameters allow setting the 
total number of replications (# of Replications, which 
defaults to 1,000), the number of draws for computing 
Monte Carlo confidence intervals (Monte Carlo Draws 
per Rep, which defaults to 20,000), a random seed to 
ensure the exact replicability of the results, and the 
confidence level (which defaults to 95%). The results 
of the first analysis show that a sample of N = 100 
participants results in 97% power. The results of the 
second analysis show the power for each of the sam-
ple sizes considered. Sixty participants are sufficient 
to achieve 80% power.

Conclusions
We have presented a review of power analysis and several 
examples of applications in some common study contexts. 
In this last section, we focus on a few additional issues 
before drawing some final considerations.

The true effect size is unknown. The (relative) simplicity 
in the mechanics of power analysis masks an essential 
problem. After deciding a priori a level of statistical sig-
nificance and desired power, the needed sample size can 
be easily determined, at least for simple designs, given an 
expected effect size. However, the problem is precisely 
this: the expected effect size is only an estimation based on 
an educated guess. This problem has far-reaching implica-
tions. First, even seemingly minor errors in estimation can 
lead to unwanted consequences. Suppose that we best 
guess an expected effect size to be d = 0.40 with a clear 
directional hypothesis. For a simple independent two-
group study, this would imply a sample size of N = 156 to  
achieve a power of .80 with α = .05 (one-tailed). However, 
if the true effect size turned out to be d = 0.30, we would 
have actually needed N = 276. Said otherwise, the study 

Figure 10: Shiny app for Monte Carlo power analysis (Schoemann et al., 2017).
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will turn out to be substantially underpowered (with 
power equal to .59). Second, the impact of offset esti-
mates is asymmetric. Overestimating the effect size has a 
stronger impact than underestimating it. Continuing the 
previous example, if the true effect turns out d = 0.50, a 
sample size of N = 100 would have been sufficient, mean-
ing that if we had collected 156 participants, the actual 
power would have been 0.93. Compare the consequences 
of the two incorrect estimations. Both are offset by 0.10 
from the true effect size. However, whereas underestimat-
ing the true effect size implies collecting 56 more partici-
pants than strictly needed and an increase in actual power 
of .13, overestimating it by the same amount implies 176 
participants less than needed and a reduction of power of 
.21. If we consider the ubiquitous optimistic biases and 
superiority illusions, it is easy to predict that underestima-
tions are more common than overestimations, with the 
implication that most studies are actually underpowered. 

There are ways to counteract this problem. Researchers 
should routinely engage in a sensitivity analysis, mean-
ing they should explore different scenarios with a range 
of plausible effect sizes, rather than focusing on a unique 
value; optionally, they could also consider the uncer-
tainty in the estimate by using safeguard power analy-
sis (Perugini, et al., 2014). Researchers can also consider 
planning for a higher level of power (e.g., .90) for their 
focal prediction as this might allow running ancillary 
analyses (e.g., a potential moderation effect suggested by 
a reviewer) without the test being hopelessly underpow-
ered.14 What is not a solution is running a small pilot study 
before the main study to have a better-expected effect 
size estimate. The problem with this seemingly sensible 
approach is that the estimate will be highly uncertain (i.e., 
with a wide confidence interval) given that it is based on a 
small sample; hence, it will be of little use and potentially 
misleading (Albers & Lakens, 2018). 

Power analysis for complex designs and multiple out-
comes is complex. We have focused on and provided 
examples of how to calculate power in a number of com-
mon but relatively simple designs. Power calculations get 
increasingly demanding with complex designs and analy-
ses (e.g., multi-level designs, structural equation models, 
longitudinal studies). A good source for the application of 
power analysis for more advanced statistical models and 
techniques with exemplary R codes is Liu (2014; see also 
Maxwell et al., 2008 for a brief review of power analysis 
in advanced statistical models). It is worth noting that in 
recent years Monte Carlo simulations have started to be 
used especially for power calculations in complex designs 
(e.g., Arnold, Hogan, Colford & Hubbard, 2011; Gelman & 
Hill, 2006; Lane & Hennes, 2017). Bear in mind, however, 
that complex designs can often be broken down into key 
predictions that can be simple if the underlying theo-
retical framework is well developed and focused analy-
ses with appropriate coding are performed (Rosenthal & 
Rosnow, 1985; Judd, McClelland & Ryan, 2017; see also 
the previous section on contrast coding). Power analysis is 
equally, if not more, complex when multiple outcomes are 
involved, meaning that the researcher aims to have ade-
quate power when testing two or more parameters in the 

same study. In these cases, there is no single definition of 
power: it depends on the researcher’s aims and theoreti-
cal expectations (e.g., one of the outcomes is significant 
versus all outcomes are significant). Power also depends 
on how many outcomes are considered, their expected 
correlations, and their expected combined effect (e.g., R2).  
Not adjusting power calculations when testing multiple 
outcomes usually leads to a decrease in individual power 
for a single outcome, but the effect can range from minor 
to substantial depending on the combinations of the 
other features (Porter, 2017). Moreover, there is no single 
ideal type of adjustment for multiple outcomes, although 
a generally well-performing adjustment is the false dis-
covery rate (Benjamini, & Hochberg, 1995). The simplest 
adjustment is to use a Bonferroni correction that consid-
ers k

a , where k refers to the number of multiple outcomes: 
if there are 5 outcomes of interest in a study, keeping 
α = .05 for each means to calculate power considering 

.05
5 .01α= = . This correction tends to be conservative and 

might suggest a larger sample size that is strictly needed to 
reach the desired level of power given an expected effect 
size. However, if one considers the tendency and the risk 
of overestimating expected effect sizes, being conservative 
on the side of multiple testing might be a wise approach. 
Other solutions can also be adopted. For example, if the 
multiple outcomes are expected to be correlated and no 
a priori distinction is made between primary and ancillary 
hypotheses, power could be calculated with a MANOVA 
approach on the set of multiple outcomes.15

Suggestions for increasing power. The single most obvi-
ous and effective way to increase power is by increas-
ing sample size. This strategy has the additional benefit 
of increasing accuracy in parameter estimates, which 
should be an important goal on its own (Maxwell et 
al., 2008). However, everything being equal, power also 
depends on the effect size. Larger effect sizes are eas-
ier to detect, requiring a smaller sample given a fixed 
power level. In their generic form, effect sizes reflect the 
proportion of the amount of variability in the data due 
to the specific effect of interest (signal) relative to the 
variability due to other sources (noise). Therefore, one 
can achieve more power with larger effect sizes that in 
turn can be obtained by increasing the signal relative to 
the noise. This can be achieved in different ways, both 
by trying to increase the signal and trying to reduce 
the noise. One should aim at using reliable measures, 
given that reliability positively influences power (LeBel 
& Paunonen, 2011; but see De Schryver, Hughes, Rosseel 
& De Houwer, 2016). Stronger experimental treatments 
also increase the signal and, hence, the effect size. The 
noise can be reduced by using highly standardized pro-
cedures and keeping the design as simple as possible, 
as this should reduce generic between-person varia-
tion (i.e., not due to the effect of interest). For the same 
reason, the use of within-subject designs can greatly 
increase power, given a certain sample size, or substan-
tially reduce the required sample size to achieve the 
desired level of power, and this effect is stronger with 
increasing correlation between the measures. More gen-
erally, bearing in mind that the effect size reflects the 
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ratio between signal and noise can be useful as it helps 
to focus on methodological improvements that increase 
this ratio when planning the study.

Final Considerations. We aimed to offer a practical 
guide to power analysis with an emphasis on the logic 
behind it and its concrete applications. We have focused 
on power analysis for a single study. However, we wish 
to stress the importance of thinking meta-analytically 
(Cumming, 2013). Science is cumulative, and empirical 
evidence is more convincing when accumulated across 
studies. Adopting a meta-analytical mindset means to 
focus on overall evidence across studies, even a few stud-
ies or one main and a replication study, rather than a 
single study. Inferences from data are more robust under 
these conditions. If an effect is actually there, an over-
all analysis across studies (i.e., a small meta-analysis) will 
be more likely to detect it (i.e., the overall power will 
increase), and as an important additional benefit, its esti-
mate will be more accurate (i.e., the confidence interval 
will be smaller). In closing, we wish to emphasize again 
that power analysis is a friend and not a foe. It helps to 
plan a successful study by estimating how many data 
points (i.e., participants) are needed to have a reasonable 
chance to find what one is looking for. Would you embark 
on a trip to the desert searching for a remote oasis with-
out making sure that you have enough fuel in your tank 
to make it there? Why would you want to run a study 
with fewer participants than needed to have a reasonable 
chance of finding the hypothesized effect? Even if you 
do not find the effect, having enough power means it is 
unlikely that it is there or that it is smaller than what you 
expected or that it is practically useful. After all, as Cohen 
wisely noted (1994), all effects exist given an infinite sam-
ple size; the real question is whether the magnitude of 
the effect is nontrivial. 

Notes
 1 In this paper, we will focus on power from an NHST 

perspective. However, other valuable approaches to 
sample size determination have been developed, such 
as the Bayes factor design analysis (e.g., Schönbrodt 
& Wagenmakers, 2017), the sequential Bayes factors 
(Schönbrodt, Wagenmakers, Zehetleitner & Perugini, 
2017), the sequential data analysis designs (Lakens, 
2014), and the accuracy in parameter estimation (AIPE; 
Maxwell, Kelley & Rausch, 2008).

 2 Note that Hedges’ g estimates Cohen’s d using 
the weighted mean of the within group variances, 
weighted by group size, to estimate the pooled stand-
ard deviation. Many authors refer to this estimator 
simply as Cohen’s d.

 3 For group-based designs, some R packages output 
the required total sample N, others the N-per-group. 
Researchers should check which N is output by the 
specific package they are using. Finally, some packages 
may report the required degrees of freedom of the 
test, and some simple calculation is needed to obtain 
the required N (see https://github.com/mcfanda/
primerPowerIRSP for examples).

 4 Note that when the sample size is larger than minimal 
(e.g., N > 50), the bias tends to be minor (e.g., .01 or 
below) under a range of conditions (Okada, 2013).

 5 The G*Power manual suggests a different formula to 
adjust the sample eta-squared. We suggest instead the 
epsilon-squared adjustment, because it is well docu-
mented in the literature (Okada, 2013).

 6 We advise against rounding up f-squared values to two 
decimals and suggest instead using three or, better, 
four decimals. Rounding might introduce a bias in the 
calculation, especially with small f-squared values. For 
instance, following the example in the main text, sup-
pose we have either f2 = 0.0749 or f2 = 0.0751. This will 
produce an estimated N = 107 in both cases. However, 
if they were rounded up as f2 = 0.07 and f2 = 0.08, the 
estimated N will be 115 and 101, respectively.

 7 If one runs the current example in G*Power—“Linear 
bivariate regression: Two groups, difference between 
slopes”—one obtains exactly the same required N. 
In other applications, the two commands may give 
slightly different results.

 8 We have noticed that formula (9) tends to overesti-
mate large effect sizes (interaction f2 > 0.15), yielding 
a required N that is smaller than the one needed to 
achieve the desired power. This is due to the instabil-
ity of correlations for small sample sizes (Schönbrodt 
& Perugini, 2013). Consider, however, that such large 
effect sizes yield small required N (N < 50); thus, the 
researcher may simply increase the sample size when 
dealing with such large effects.

 9 Running the following code can take a long time, espe-
cially on older machines. The function implements 
parallel processing to speed up computation on multi-
core machines (for details, see Zhang, 2014).

 10 In the lavaan model syntax, the operator “:=” is used 
to define a parameter as the combination of other 
parameters. For more details on the lavaan model syn-
tax, see Rosseel (2012).

 11 These default options can be overridden and sev-
eral other parameters can be specified that allow, for 
instance, considering deviations from normality in var-
iables X, M, and Y. Furthermore, although we limited 
our example to a simple mediation, package bmem can 
be used to estimate power for more complex models, 
including multiple mediators and latent variables (see 
Zhang, 2014 for a complete introduction to this pack-
age).

 12 For more details on this application and on other avail-
able models implemented, see Schoemann and col-
leagues (2017).

 13 One can also specify covariances by setting the stand-
ard deviations of each variable.

 14 We wish to thank Vincent Yzerbyt for suggesting this 
scenario.

 15 We wish to thank Roger Giner-Sorolla for suggesting 
this scenario.
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