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Abstract. Fine-grained meter readings enable applications in an ad-
vanced metering infrastructure. However, those meter readings threaten
personal privacy by implying a sketch of daily activities of households.
The privacy issue has been addressed in smart metering systems by either
a trusted third party assumption or cryptographic primitives. We address
the privacy issue by using a trusted platform module and lightweight
cryptographic primitives. Our smart metering system simultaneously
supports the billing and load monitoring applications in a privacy pre-
serving manner. It allows an electricity service provider obtain sums of
meter readings over a time period and a monitoring center obtain sums
of meter readings from meters in an area at some recent time unit while
keeping individual meter reading private. Moreover, we formally prove
that our system is privacy preserving. Our system provides a simple yet
very practical solution to a privacy preserving smart metering system.

Keywords: Trusted platform module, smart metering, privacy preserv-
ing technique, secure aggregation, pseudorandom number generator.

1 Introduction

The emergence of smart grids has established a trend towards building our next
generation of power grid systems. As shown in Fig. 1, new features include two-
way power flows and mutual communications between electricity entities. Smart
grids integrate intelligence and automation into the conventional power grid
system to increase energy efficiency and improve system reliability and quality.
We can build advanced applications upon smart grids, such as load monitoring,
automatic billing, dynamic pricing, and power generation planning.

One essential technology of smart grids is fine-grained meter reading within
a very short period of time per household. However, meter readings of a house-
hold reveal detailed information about daily activities of the household and used
appliances during a specific time period [7,14,11]. Fine-grained meter readings
cause serious privacy issues. Actually, the granularity of meter readings often
exceeds the need of some underlying applications. Current smart meters record
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Fig. 1. Power is massively generated by a power station and transmitted by a grid
operator from the generator to end-consumers. Local renewable energy can also be
transmitted to other entities.

electricity usage every 5 to 60 minutes [8]. The next generation of smart meters
will upgrade a time unit to seconds. In billing applications, the electricity service
provider (ESP) only needs the amount of power consumption per hour to com-
pute a bill. For example, in Ontario, Canada, the time-of-use price service during
winters only needs the consumption data over two hours in an on-peak time pe-
riod, six hours in a mid-peak time period, and 12 hours in an off-peak time
period [1]. In load monitoring applications, the load monitoring center (LMC)
collects the amount of electricity usage over a local area in order to monitor
current activities of the power grid. LMC requires consumption data in much
finer time granularity than ESP does. Nevertheless, LMC only needs the total
power consumption over the area at recent time units.

To address the privacy issues against service providers, an approach of secure
aggregation is proposed. By secure aggregation techniques, a service provider can
only get an aggregated result of meter readings while individual meter reading
remains private. For the billing application, previous works use public key ho-
momorphic encryption schemes, commitment schemes, or a trusted third party
to securely aggregate meter readings of a meter. For the load monitoring appli-
cation, previous works use public key homomorphic encryption schemes, secret
sharing techniques, or distributed random noise generation to securely aggregate
meter readings of meters in an area.

On the other hand, many manufactures of smart meters use a hardware com-
ponent to address various cyber-security issues. For example, Atmel provides
electricity meters with a hardware security component for cryptographic authen-
tication. Embedding a trusted platform module chip (TPM) into a smart meter
is a general practice for securing metering services [12,13,9]. We shall assume
that a TPM is embedded into a smart meter for providing securing functions.

It is a challenge to design a smart metering system that simultaneously sup-
ports multiple privacy preserving applications without using a trusted third
party and public key cryptographic primitives. We focus on the billing and
load monitoring applications and consider the privacy requirements for them.
Our main contribution is to propose a practical privacy preserving smart me-
tering system that supports billing and load monitoring applications with TPM
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technologies. Our system uses a pseudorandom number generator and hash func-
tions supported by TPM technologies. Features of our smart metering system
are as follows:

– ESP can only query a meter for a sum of meter readings over a time period.
Each meter reading remains private against ESP.

– LMC can only query a sum of meter readings from meters in an area at a
time unit. Each meter reading remains private against LMC.

– Meter readings are securely stored in a semi-trusted storage system.
– Meters can freely join or leave our smart metering system without overhead.

Moreover, we formally define a privacy model with respect to time-series meter
readings to capture privacy requirements and prove that our smart metering
system meets the requirements.

2 Related Work

We briefly introduce existing privacy preserving protocols of smart metering
systems and TPM technologies.

Privacy preserving metering protocols. Anonymous technology is suggested by
NIST to anonymizing traces of meter readings [2]. For the billing application,
Petrlic proposed a solution by using pseudonym of households against ESP where
the grid operator to be a fully trusted intermediate translator [15]. Jawurek et
al. constructed a privacy preserving billing protocol by integrating a homomor-
phic commitment scheme, zero knowledge proofs and a tamper-evident meter [9].
Meter readings are committed and aggregated by using the homomorphic com-
mitment scheme. Only the final bill is opened to ESP and the correctness of the
computation is verified by using zero knowledge proofs. Rial and Danezis took a
similar approach [16], where they replaced the tamper-evident meter by TPM.

For the load monitoring application, Garcia and Jacobs proposed a solution
by using a trusted aggregator in a substation and an additively homomorphic
encryption scheme [6]. Each meter encrypts meter readings by using LMC’s
public key. The aggregator aggregates encrypted meter readings and only sends
the aggregated result to LMC. Shi et al. proposed a privacy model for aggregation
of time-series data (such as meter readings) while individual datum remains
private [17]. In their system, the number of meters is fixed after the system is
setup. The system must to be reset when meters join or leave. Later, Shi et al.
proposed a new solution by using the subset cover technique to tolerate leaving
meters [5]. Kursawe et al. proposed a privacy friendly aggregation method [10].
An aggregator and meters secretly share 0 for multiple times in parallel such that
no share of a meter is revealed. Ács and Castelluccia [3] proposed a solution by
using random noise and secret sharing. Meters independently generate random
noise and pairs of meters secretly share 0. Meter readings are masked by random
noise and encrypted by secret shares. The sum of masked and encrypted meter
readings gives a noisy sum of meter readings.

Bohi et al. proposed a privacy model and two approaches for the billing and
load monitoring applications, respectively [4]. First, they used a trusted third
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party to compute the bill for the billing application. Second, they introduced
random noises on meter readings, where the distribution of the noise has a known
mean and variance. LMC gets only an approximate sum of meter readings while
individual reading is private.

Our work is distinguished as it simultaneously addresses both applications but
only requires a simple and lightweight use of TPM for generating pseudorandom
numbers without a trusted third party and without mutual communications
among meters.

TPM technologies. TPM is a microcontroller that offers facilities for secure
generation of cryptographic keys, the ability to limit the use of keys, non-volatile
storage and a hardware pseudorandom number generator. It enables platform
attestation and cryptographic primitives, such as RSA and SHA-1. The TPM
specification is defined by the trusted computing group and the latest version is
TPM 1.2 revision 1161.

A TPM chip itself is a solid component through platform attestation. It em-
ploys platform configuration registers to record configurations of platform and
software, and prevents unauthorized modifications on these configurations. By
verifying configurations, TPM assures that the platform is initialized from a
secure and correct condition.

3 System Model

We describe our time notation, smart metering system, and the billing and load
monitoring applications. We also brief privacy requirements. Detailed descrip-
tions of privacy requirements are provided in Section 5.

3.1 Time Notations

Time is divided into basic time units t1, t2, · · · . Let l be a fixed positive integer,
where l ≥ 2. We set l to be the minimum number of time units where ESP gets
the sum of meter readings. Based on the parameter l, we define time periods and
the current time window. A time period T consists of al continuous time units
for any positive integer a. The current time window W is the latest continuous
l time units tz−l+1,tz−l+2, · · · , tz , where tz is the current time unit.

3.2 Smart Metering System

Our smart metering system consists of meters, a storage system, ESP and LMC,
as shown in Fig. 2. We assume that meters are purchased by households and
deployed by the grid operator. Households trust the grid operator that it honestly
deploys meters. We assume that meters are trusted, that is, meters honestly
follow defined steps. We also assume that ESP and LMC are honest-but-curious,
that is, they follow defined steps but try to dig out individual meter readings

1 The specification is available as international standard ISO/IEC 11889.
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Fig. 2. Our system model consists of meters, a storage system, ESP, and LMC

from what they obtain from communications. Moreover, we assume that ESP
and LMC do not collude.

A household Hi has a meter Mi that records power consumption di,j of Hi at
time unit tj. Households may physically move in or out an area. A meter Mi has
a serial number SN i assigned by the meter manufacture. A meter Mi encrypts
a meter reading di,j as ci,j and stores ci,j into the storage system. The storage
system stores the encrypted meter reading according to the meter and the time
unit. We assume that ESP and LMC can freely access the storage system after
being authenticated by the storage system.

Meter readings are conceptually arranged in a matrix in the storage system,
where a row represents meter readings of a household over time and a column
represents meter readings of households in an area at a time unit. An example is
shown in Fig. 3. From the time unit t1, Areas 1 and 2 have 3 and 5 households,
respectively. Each household Hi has a meter Mi for 1 ≤ i ≤ 9. At t4, new
household H9 moves in Area 3 and then a row of M9 is added in the matrix.
When household H7 moves out Area 2 at t9, the row of H7 in Area 2 is deleted
from the matrix.

3.3 Supporting Billing Applications

ESP is allowed to query the meter for decryption information of a sum of meter
readings over a time period T . ESP sums up encrypted meter readings over T .
By the decryption information, ESP decrypts the encrypted sum to obtain the
power consumption of the household over T . In the example in Fig. 3, l is set
to 4. ESP queries the meter M1 for decryption information of the time period
T = (t2, t3, t4, t5, t6, t7, t8, t9) and decrypts the encrypted sum c =

∑9
j=2 c1,j to

obtain the sum ξ =
∑9

j=2 d1,j of the meter readings between t2 and t9.
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Fig. 3. Meter readings are conceptually arranged in a matrix

Fig. 4. We model a meter in three layers

The correctness for ESP is that ESP obtains the correct sum ξ of a household
over T . The privacy requirement for ESP is that it cannot get individual meter
readings of a household.

3.4 Supporting Load Monitoring Applications

LMC is allowed to query meters in an area for approximate decryption informa-
tion of a time unit tj in the current time window W . LMC sums up encrypted
meter readings in the area at tj to get the encrypted sum. By the approximate
decryption information, LMC decrypts and gets an approximate overall power
consumption of households in the area at tj . In the same example, the current
time unit is t10 and the current time window is (t7, t8, t9, t10). LMC can query
meters in Area 2 for decryption information at t7 and decrypts the encrypted
sum c =

∑8
i=4 ci,7 to obtain an approximate sum for ξ =

∑8
i=4 di,7.

The correctness for LMC is that LMC obtains a good approximate sum ξ̃ for
ξ. We formulate the approximation by the error ratio ω = |ξ̃ − ξ|/ξ, a threshold
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value ε and a confidence probability δ as Pr[ω ≤ ε] > 1−δ. With sufficiently small
ε and δ, LMC obtains a good approximate sum ξ̃ for ξ with a higher probability.
The privacy requirement for LMC is that it cannot get exact individual meter
readings of a household.

3.5 Meter Model

As shown in Fig. 4, we have a three-layer model for a meter. The hardware
layer consists of hardware components, such as a TPM chip, a metering engine,
a processing and communication engine. The kernel layer consists of drivers of
hardware components. We assume that a driver is in charge of meter readings
of the metering system. The application layer is built upon the kernel layer to
provide services, such as a web interface for observing current meter readings.

The power consumption is often measured in kWh. Since we consider a finer
time granularity, the unit of measurement is changed to Wh so that integer
representation is enough. Moreover, we assume that meter readings (in integers)
at a time unit are much less than a defined number p. From the statistics of U.S.
Energy Information Administration, in 2009, the average power consumption
per household per month is 908 kWh. That is 105Wh per 5 minutes. Thus, we
set p to be of length 64 bits.

4 Privacy Preserving Smart Metering System

We describe our smart metering system and two types of queries supporting
billing and load monitoring applications.

4.1 Metering System Construction

We assume that a meter is deployed or reset by the grid operator when a house-
hold moves in an area. At the beginning, the metering system consists of a
storage system, ESP and LMC. Later, meters join in. Choose a large number p,
where p ≥ 2

√
p. Let the initial time unit be t1. Let the pseudorandom number

generator be g, where g : {0, 1}τ × {0, 1}λ → Zp. Let h and h′ be cryptographic
hash functions, where h : {0, 1}∗ → {0, 1}λ and h′ : {0, 1}∗ → {0, 1}τ . A meter
Mi runs as follows.
Meter initialization.

1. Mi takes a user input as a seed si. The TPM of Mi generates a master key
ki by using the seed si, the serial number SN i, and the hash function h′,
where ki = h′(si||SN i) and || is the operator of concatenation. The master
key ki is then securely stored in non-volatile storage of the TPM of Mi.

2. The driver of Mi creates and initializes l first-in first-out memory slots as 0.
3. The TPM of Mi generates l pseudorandom numbers ri,1, ri,2, · · · , ri,l−1 and

Ri,1, where

ri,j = g(ki, tj), 1 ≤ j ≤ l − 1, and

Ri,1 = g(ki, h(t1||t2|| · · · ||tl))
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Fig. 5. The TPM generates random numbers r1,1, r1,2, · · · , r1,l−1 and R1,1 in the ini-
tialization part and a random number R1,i+1 at time unit ti. Random numbers r1,i for
i ≥ l are computed on the fly.

Then, the TPM of Mi passes all pseudorandom numbers to the driver of
Mi.

4. The driver of Mi computes ri,l as follows:

ri,l =

⎛

⎝Ri,1 −
l−1∑

j=1

r1,j

⎞

⎠ mod p

Then, the driver stores l pseudorandom numbers ri,1, ri,2, · · · , ri,l in memory
slots.

Storage of meter readings at tj, j ≥ 1.

1. Mi measures the consumption di,j and encrypts it as ci,j , where

ci,j = (di,j + ri,j) mod p

ci,j is sent and stored to the storage system.
2. The TPM of Mi generates a random number Ri,j+1 and passes it to the

driver of Mi, where

Ri,j+1 = g(ki, h(tj+1||tj+2|| · · · ||tj+l)).

The driver of Mi computes

ri,j+l =

⎛

⎝Ri,j+1 −
j+l−1∑

α=j+1

ri,α

⎞

⎠ mod p.

The driver then replaces ri,j with ri,j+l in the memory slot.

An example of M1 is shown in Fig. 5. The TPM of M1 generates l random
numbers in the initialization part and generates a random number at each time
unit on the fly. For any time period T with l continuous time units, a random
number generated by the TPM of M1 helps decrypt the sum of meter readings
over T . The snapshots at tl of M1 is shown in Fig. 6. At any time unit, the
driver of M1 maintains the random numbers used for time units in W .
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Fig. 6. Snapshot of the meter M1 at tl

4.2 Supporting Billing Application

To compute a bill of a household Hi, ESP queries the meter Mi of Hi for a
time period T of al continuous time units, where T = (tβ , tβ+1, · · · , tβ+al−1).
The application layer of Mi divides the time period into a sub-periods and asks
the TPM to regenerate the corresponding random numbers Ri,β , Ri,β+l, Ri,β+2l,
· · · , Ri,β+(a−1)l. The application layer of Mi computes the sum B of random
numbers and sends B to ESP, where

B =

⎛

⎝
a−1∑

j=0

Ri,β+jl

⎞

⎠ mod p

ESP gets encrypted meter readings (ci,β , ci,β+1, · · · , ci,β+al−1) over T from the
storage system and computes

β+al−1∑

j=β

di,j =

⎛

⎝
β+al−1∑

j=β

ci,j −B

⎞

⎠ mod p (1)

ESP correctness is that ESP can obtain the consumption of a household Hi over
T . Note that for 0 ≤ j ≤ a− 1,

Ri,β+jl = (

l−1∑

k=0

ri,β+jl+k) mod p.
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Thus,

⎛

⎝
β+al−1∑

j=β

ci,j −B

⎞

⎠ mod p =

⎛

⎝
β+al−1∑

j=β

(di,j + ri,j)−B

⎞

⎠ mod p

=

⎛

⎝
β+al−1∑

j=β

di,j

⎞

⎠ mod p (2)

By Equation (2), Equation (1) holds when

β+al−1∑

j=β

di,j = (

β+al−1∑

j=β

di,j) mod p

That is, the sum of meter readings must be less than p. By choosing a large p,
ESP correctness is guaranteed. In practice, it is sufficient to set p to be of 64-bits
when each meter reading is of 32-bits and al is up to 232.

4.3 Supporting Load Monitoring Application

To monitor the power consumption in an area, LMC queries meters in an area
at tj in current time widow W . A meter Mi in the area should reply. The driver
of Mi chooses a random number n according to a normal distribution N(0, σ2)
with the mean 0 and the variance σ2 and computes the noise ni,j as the floor
of the chosen random number n, i.e. ni,j = �n�. The variance σ shall be defined
later. The driver of Mi then passes a noised random number r̃i,j to LMC, where

r̃i,j = (ri,j + ni,j − �√p	) mod p

Recall that the stored meter reading ci,j = (di,j + ri,j) mod p. By r̃i,j , LMC

computes a noised meter reading d̃i,j of the meter Mi as follows:

d̃i,j = (ci,j − r̃i,j mod p)− �√p	
= (di,j − ni,j + �√p	 mod p)− �√p	

The number
√
p is used to prevent an overflowing issue for correctness. Note

that d̃i,j may be negative. To obtain d̃i,j = di,j − ni,j , we need

di,j + �√p	 ≥ ni,j ≥ di,j − p+ �√p	

Since p ≥ 2
√
p , we bound the probability by

Pr[|ni,j | ≤ di,j + �√p	] ≥ 1− σ2

p

Since p is very large and σ is sufficiently small, the error probability is negligible.
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Let LMC obtain m noised meter readings d̃iα,j from m meters Miα , where

1 ≤ α ≤ m. LMC computes an approximate value ξ̃ for the overall consumption
ξ at tj in the area, where

ξ̃ =

m∑

α=1

d̃iα,j and ξ =

m∑

α=1

diα,j

Since some meters may fail to reply due to various reasons, LMC needs to set a
maximal waiting time period Tmax.

LMC correctness requires that LMC obtains an approximate value for the
overall consumption. The error between the approximate sum ξ̃ and ξ depends
on the number m and the variance σ2. Form meter readings at tj , let x = ξ̃−ξ =
∑m

α=1 niα,j . We measure the error by using the error ratio ω = |x|/ξ. Let d̂ be

the average value of meter readings per time unit. Thus, we assume ξ = md̂.
Since each noise is randomly chosen from a normal distribution N(0, σ2),

the distribution of x is a normal distribution N(0,mσ2). By the Chebyshev
inequality, we have

Pr[ω ≤ ε] = Pr[|x|/ξ ≤ ε] = Pr[|x− 0| ≤ ξε] ≥ 1− mσ2

(ξε)2
= 1− σ2

md̂2ε2
(3)

Let δ = σ2

md̂2ε2
. Equation (3) shows that when σ is sufficiently small and m is

sufficiently large, LMC obtains a good approximate with high probability 1− δ.
We set d̂ to be 105 (an average meter reading in Wh per 5 minutes) according
to the statistics of U.S. Energy Information Administration. We fix δ = 1%
and present values of m and σ for achieving ε = 10%, ε = 7%, and ε = 5% in
Fig. 7. When m = 600, σ is about 25, 18 and 12, respectively. The parameter
σ is a tradeoff between LMC correctness and LMC privacy requirement. Here
we obtain that a better approximate needs a smaller σ. We will see that LMC
privacy requirement needs a larger σ in the subsection 5.2.

5 Privacy Requirements and Analysis

We formally define ESP and LMC privacy requirements and show that our sys-
tem meets the requirements. We also show that meter readings are securely
stored.

5.1 ESP Privacy Requirement and Analysis

ESP privacy requirement is that ESP cannot get individual meter readings of
a household, where ESP gets sums of meter readings in time periods and ac-
cesses encrypted meter readings. We capture the ESP privacy requirement in a
security game G, where the power of ESP is enlarged to adaptively decide meter
readings for non-challenge time periods. Even having the ability of adaptively
setting meter readings and observing resulting encrypted meter readings, ESP
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Fig. 7. Values of m and σ for achieving the error ratio ω less than 10%, 7%, and 5%,
respectively, where d̂ = 105 and δ = 1%

still cannot distinguish meter readings from two possible sets of meter readings
in the game G. The security game G is described in the following.

The challenger C represents the metering system of a household Hi and the
adversary A represents the honest-but-curious ESP. A query phase proceeds at
beginning. A adaptively chooses meter readings di,j at time units tj from j = 1
and C returns the encrypted meter readings ci,j back to A. A then decides to en-
ter the challenge phase at tj1 . This phase simulates that A reveals meter readings
and their decryption information at time units earlier than tj1 . In the challenge
phase, A chooses a time period from the time unit tj1 to a later time unit tj2 ,
where j2−j1 = al for a positive integer a, and two challenge sets D0, D1 of meter
readings for time units between tj1 and tj2 , where Dv = {dvi,j1 , dvi,j1+1, · · · , dvi,j2}
for v ∈ {0, 1} and

∑j2
s=j1

d0i,s =
∑j2

s=j1
d1i,s. A sends D0 and D1 to C. C throws

a random coin b and encrypts meter reading dbi,s in Db as ci,s for s ∈ [j1, j2].
Let C = {ci,j1 , ci,j1+1, · · · , ci,j2}. After getting encrypted meter readings C, A
enters the second query phase. Again, A adaptively chooses a meter reading di,j′

for arbitrary time unit tj′ where j
′ > j2 and C adaptively returns the encrypted

meter reading c1,j′ back to A. A then outputs a guessing b′ for b.
If b′ = b, A wins the game G. That is, A successfully distinguishes which set

Db is encrypted. The advantage of an adversary is defined as |Pr[b′ = b]− 1/2|.
Definition 1. A smart metering system satisfies ESP privacy requirement if
for any probabilistic polynomial time algorithm A and a negligible function ε,
|PrA[b′ = b]− 1/2| < ε.

A similar game is defined in [17], where the adversary needs to choose challenge
sets D0 and D1 at the very beginning. It only captures a snapshot of meter
readings at a time unit. In our security game, the queries from the adversary is
adaptive. As a result, our security game models a stronger security requirement.
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ESP Privacy Analysis. We first rephrase the description of the pseudorandom
number generator in our smart metering system in Definition 2. Consider a set
E0 of a polynomial number f(τ) of elements randomly and uniformly chosen
from Zp and a set E1 of the same number f(τ) of elements generated by g.

Definition 2. Let b̃ ∈ {0, 1} be a random coin. A function g : {0, 1}τ×{0, 1}λ →
Zp is a pseudorandom number generator if given a set Eb̃ of elements, no prob-

abilistic polynomial time algorithm guesses b̃ with an advantage more than ε′,
where ε′ is a negligible function in τ .

Theorem 1 states that our system satisfies ESP privacy requirement.

Theorem 1. Let g be a pseudorandom number generator. Our smart metering
system satisfies ESP privacy requirement, where ε ≤ 2ε′ .

Proof. We prove by contradiction. Assume that an adversary A wins the game
with an advantage at least 2ε′. We construct an algorithm S such that given Eb̃,

where b̃ = 0 and b̃ = 1 with equal probabilities, S guesses b̃ with an advantage
more than ε′ by using A as follows.

S acts as C and interacts withA in the security game. S embeds elements in Eb̃

as random numbers {ri,1, ri,2, · · · , ri,l−1, Ri,1, Ri,2, · · · , Ri,f(τ)−l+1}. For queries
di,j from A, S returns ci,j , where ci,j = (di,j + ri,j) mod p. For j ≥ l − 1, S
computes ri,j as (Rj−l+2 − ∑j−1

k=j−l+2 ri,k) mod p. For challenges D0 and D1

from A, S chooses Db, which is either D0 or D1 with equal probabilities, and
computes C = {ci,s|ci,s = (dbi,s + ri,s) mod p, s ∈ [j1, j2]}. After S sends C to
A, again, S answers queries from A. Finally, if A successfully guesses b′ for b,
i.e., b′ = b, S outputs 1. Otherwise, S outputs 0.

When b̃ = 1 (E1 contains pseudorandom numbers), the simulated environ-
ment is identical to our system. Thus, A outputs b′ , where b′ = b, with a
probability at least 1/2+2ε′ by our assumption. When b̃ = 0 (E0 contains truly
random numbers), for each possible set Db, there exists a unique set of values
ri,j1 , ri,j1+1, · · · , ri,j2 satisfying that ci,s = (dbi,s + ri,s) mod p for s ∈ [j1, j2].
The distributions of C conditioned on D0 and D1 are identical. Thus, A has no
advantage. Therefore, A correctly guesses b with probability 1/2. As a result, S
outputs 1 with probability 1/2. S guesses b̃ with an advantage at least ε′:

Pr[S correctly guesses b̃]

= Pr[S outputs 0|b̃ = 0]Pr[b̃ = 0] + Pr[S outputs 1|b̃ = 1]Pr[b̃ = 1]

= Pr[A outputs b′, b′ �= b|b̃ = 0]Pr[b̃ = 0]

+ Pr[A outputs b′, b′ = b|b̃ = 1]Pr[b̃ = 1]

≥ (
1

2
)
1

2
+ (

1

2
+ 2ε′)

1

2

=
1

2
+ ε′

It contradicts with the assumption. �
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5.2 LMC Privacy Requirement and Analysis

LMC Privacy Requirement. For LMC privacy requirement, we require that
LMC only gets an approximate value d̃i,j for di,j with a non-negligible proba-
bility.

Definition 3. A metering smart system satisfies LMC privacy requirement if
LMC guesses value d̃i,j for di,j with Pr[d̃i,j �= di,j ] ≥ η for some significant
probability η.

LMC privacy requirement is slightly weak. Nevertheless, it is practical enough
for smart grids. In smart grid deployments, the load monitoring system is often
bundled with the grid operator. The grid operator can physically measure the
power consumption at a power substation. By cooperating with the grid oper-
ator, LMC can get individual meter readings. Our LMC privacy requirement
guarantees that when LMC does not get help from the grid operator, LMC
cannot get exactly individual meter readings with a significant probability.

LMC Privacy Analysis.

Theorem 2. Let a noise be the floor of a randomly chosen number from the
normal distribution N(0, σ2) in our system. Our smart metering system satisfies
LMC privacy requirement, where δ = 1/2− 1/(4πσ2)

Proof. We analyze Pr[d̃i,j �= di,j ]. The event of d̃i,j �= di,j implies that the noise
ni,j is not 0. Since the noise ni,j is the floor of a randomly chosen value n from
N(0, σ2), the event ni,j = 0 implies that 0 ≤ n < 1. Since Pr[ni,j �= 0] and
Pr[n < 0] = (1− Pr[n = 0])/2,

Pr[ni,j �= 0] >
1

2
− 1

4πσ2

Thus, for a meter reading di,j and a noised meter reading d̃i,j , we have η =
1
2 − 1

4πσ2 , which is significant for properly chosen σ. It concludes the proof for
the LMC privacy requirement. �

When σ is larger, LMC has less probability to get a correct meter reading.
Nevertheless, when σ is small, LMC has a better guess ξ̃ for ξ. Based on the
previous chosen condition of ε = 10% and δ = 10% for LMC correctness, we
consider σ = 25 and m = 600 for achieving that Pr[ω ≤ 10%] ≥ 99%. Under
this setting, we have Pr[ni,j �= 0] > 0.4998. Similarly, when ε = 7% (σ = 18)
and ε = 5% (σ = 12), we have Pr[ni,j �= 0] > 0.4997 and Pr[ni,j �= 0] > 0.4994,
respectively.

5.3 Storage Security

We show that meter readings are computationally securely stored in the storage
system. Note that ESP has more information than the storage system does and
our smart metering system satisfies the ESP privacy requirement.
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Table 1. Summary of performance analysis

Actor Storage system Meter

Subject Storage Computation Communication
for storing for ESP for LMC for ESP for LMC

Result 9MB 7(l + 1)ms 14ams 14ms 64 bits 64 bits

We define the security requirement of storage in a security game G′. The
security game G′ is the same as G except that the attacker A in G′ represents
the storage system. Thus, the security game G′ captures that the storage system
colludes with ESP. The storage security requirement is then defined:

Definition 4. A metering system satisfies secure storage requirement if for any
probabilistic polynomial time algorithm A and a negligible function ε, |PrA[b′ =
b]− 1/2| < ε.

Theorem 3 states that our smart metering system satisfies secure storage re-
quirement.

Theorem 3. Let g be a pseudorandom number generator. Our smart metering
system satisfies secure storage requirement, where ε ≤ 2ε′ .

Proof. Since the proof is the same as the proof of Theorem 1, here we refer
readers to the proof of Theorem 1. �

6 Performance Analysis

We use the previous setting of �log2 p	 = 64 and set a time unit as 5 minutes.
We evaluate the storage cost, computation cost, and communication cost in the
following. Table 1 gives a summary.

Storage cost. Inside each meterMi, l pseudorandom numbers ri,z−l+1, ri,z−l+2,
· · · , ri,z are stored. The total storage size is l�log2 p	, i.e. 8l bytes.

For the storage system, each household uses �log2 p	 bits per time unit. Let a
time unit be 5 minutes. The total storage size for meter readings of a household
over 10 years is about 9 MB.

Computation cost. Computation operations of ESP and LMC are modular
additions, which are efficient in modern computers. We focus on the compu-
tation cost of a meter. For a meter Mi, to store a meter reading di,j , one
pseudorandom number Ri,j is generated by the TPM and l modular addi-
tions are performed by the driver of Mi. To reply a query of al continuous
time units tβ , tβ+1, · · · , tβ+al−1 from ESP, a pseudorandom numbers Ri,β+kl for
0 ≤ k ≤ a − 1 are generated and a modular additions are performed by the
driver of Mi. To reply a query of a recent time unit tj from LMC, the driver of
Mi generates a random noise ni,j and performs a modular addition to compute

the noised meter reading ˜di,j .
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A recent commercial TPM chip2 consists of a cryptographic accelerator capa-
ble of computing a 1024-bit RSA signature in 100 ms. Since generating a 1024-bit
random number by using the pseudorandom number generator is no slower than
the task of generating a 1024-bit RSA signature, each 64-bit random number can
be generated in less than 7 ms. Similarly, we assume that a modular addition
over Zp can be done in less than 7 ms. Thus, the smart meter can store a meter
reading in less than a time unit (5 minutes) when l < 42856 and reply a query
in less than a time unit when a < 21428. The numerical results show that the
computation of our system is well supported by current hardware technologies.

The communication cost between a meter and ESP or LMC for a query is
�log2 p	 bits. That is, for a query from ESP or LMC, a meter transmits a 64-bit
sum B of random numbers or a 64-bit noised random number r̃i,j .

7 Conclusion and Future Works

We proposed a smart metering system that simultaneously supports the billing
and load monitoring applications in a privacy preserving manner. ESP can only
query for consumption of a household over a time period. LMC can only query
an approximate consumption in an area at a recent time unit. Our construc-
tion is based on the layered meter model and uses the pseudorandom number
generator in the TPM. According to our performance analysis, based on current
TPM technologies, our construction is a practical and feasible solution to privacy
preserving smart metering systems.

In addition to the billing and load monitoring applications, fine-grained con-
sumption data contribute to other intelligent smart grid applications, such as
demand prediction and power distribution planning. It is interesting to design a
secure smart metering system that supports more applications.
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ing). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958,
pp. 118–132. Springer, Heidelberg (2011)

4. Bohli, J.M., Sorge, C., Ugus, O.: A privacy model for smart metering. In: Pro-
ceedings of the 1st IEEE International Workshop on Smart Grid Communications
(2010)

2 Atmel AT97SC3203S.

http://www.ontarioenergyboard.ca/OEB/Consumers/Electricity/Smart+Meters
http://www.ontarioenergyboard.ca/OEB/Consumers/Electricity/Smart+Meters


560 H.-Y. Lin et al.

5. Chan, T.H.H., Shi, E., Song, D.: Privacy preserving stream aggregation with fault
tolerance. In: Proceedings of the 16th International Conference on Financial Cryp-
tography and Data Security - FC 2012. LNCS. Springer (2012)

6. Garcia, F.D., Jacobs, B.: Privacy-Friendly Energy-Metering via Homomorphic En-
cryption. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM 2010.
LNCS, vol. 6710, pp. 226–238. Springer, Heidelberg (2011)

7. Hart, G.W.: Nonintrusive appliance load monitoring. In: Proceedings of the IEEE,
pp. 1870–1891. IEEE Press (1992)

8. Inc., A.P.L.S.: Aclara ami industry glossary (2008)
9. Jawurek, M., Johns, M., Kerschbaum, F.: Plug-in privacy for smart metering

billing. Computing Research Repository - CoRR (2010)
10. Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-Friendly Aggregation for the
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