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A practical solution to pseudoreplication bias in
single-cell studies
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Cells from the same individual share common genetic and environmental backgrounds and

are not statistically independent; therefore, they are subsamples or pseudoreplicates. Thus,

single-cell data have a hierarchical structure that many current single-cell methods do not

address, leading to biased inference, highly inflated type 1 error rates, and reduced robustness

and reproducibility. This includes methods that use a batch effect correction for individual as

a means of accounting for within-sample correlation. Here, we document this dependence

across a range of cell types and show that pseudo-bulk aggregation methods are conservative

and underpowered relative to mixed models. To compute differential expression within a

specific cell type across treatment groups, we propose applying generalized linear mixed

models with a random effect for individual, to properly account for both zero inflation and the

correlation structure among measures from cells within an individual. Finally, we provide

power estimates across a range of experimental conditions to assist researchers in designing

appropriately powered studies.
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The rapid evolution of single-cell technologies will enable
novel interrogation of fundamental questions in biology,
accelerating discoveries across many biological disciplines.

Common fields of application for single-cell technologies include
cancer, neurological disease, developmental biology, diabetes, and
autoimmune disease. Thus, researchers are developing methods
that leverage or account for the unique properties of single-cell
RNA sequencing (scRNA-seq) data, particularly their increased
sparseness and heterogeneity compared to bulk sequencing
counterparts1–3. An important characteristic of single-cell
experiments is that they use many cells from the same indivi-
dual, and therefore the same genetic and environmental back-
ground. Here we empirically document correlation among
measures from cells within an individual, and demonstrate how
testing for differential expression analysis in scRNA-seq data
within a cell type across conditions without considering this
correlation — the current common practice — violates funda-
mental assumptions and leads to false conclusions. While dif-
ferential expression analysis can be computed across all cell types,
throughout this manuscript, differential expression analysis is
generally considered to be computed within a specific cell type of
interest (i.e., after cell clustering and cell type identification).

Proper identification of the experimental unit (i.e., the smallest
observation for which independence can be assumed) for the
hypothesis is critical for proper inference. Observations nested
within an experimental unit are referred to as subsamples, tech-
nical replicates, or pseudoreplicates. Pseudoreplication, or sub-
sampling, is formally defined as “the use of inferential statistics
where replicates are not statistically independent”4. There are two
types of pseudoreplication commonly occurring in single-cell
experiments: simple and sacrificial. Simple pseudoreplication
occurs when “samples from a single experimental unit are treated
as replicates representing multiple experimental units”4–6. Sacri-
ficial pseudoreplication occurs when “samples taken from each
experimental unit are treated as independent replicates”4–6.
Pseudoreplication has been addressed repeatedly in ecology,
agriculture, psychology, and neuroscience and acknowledged as
one of the most common statistical mistakes in scientific litera-
ture4–9. New technologies are particularly prone to this error.
Thus, it is not surprising that, when performing a literature
review prior to conducting these analyses, we found pseudor-
eplication to be pervasive in the single-cell literature. Properly
identifying the right experimental unit, and analyzing the data
accordingly, need to be urgently addressed in single-cell studies
before a lack of reproducibility tarnishes the single-cell technol-
ogy itself as potentially unreliable.

In this study, we simulate hierarchical single-cell expression
data and evaluate the type 1 error rates and power of mixed
models relative to some of the most frequently applied differential
expression methods. We assess a number of commonly applied
differential expression methods, but we primarily focus on the
computation of a two-part hurdle model. This model explicitly
accounts for the common problem of zero inflation in scRNA-seq
data by simultaneously modeling the rate of expression and the
positive expression mean10. Using the two-part hurdle model, we
compute differential expression as it is most typically applied in
the literature: without a random effect for individual. We then re-
evaluate the two-part hurdle model’s performance when com-
puting differential expression with a random effect for individual,
and after applying a batch effect correction for individual.
Additionally, we examine the type 1 error control and power of
aggregation (i.e., pseudo-bulk) methods, where gene expression
values are averaged across all cells within an individual and the
test statistic is computed on the individual means11–13. Aggre-
gation methods are implemented to control for both zero-
inflation and within-sample correlation, but are conservative in

unbalanced situations, which are common in single-cell data.
Overall, these simulations indicate how properly accounting for
the correlation structure among measures from cells within an
individual will greatly increase both robustness and reproduci-
bility, thereby leveraging the very features that make single-cell
methods powerful.

Results
Intra-individual correlation. We hypothesize that measures
from cells from the same individual should be more (positively)
correlated with each other than cells from unrelated individuals.
Empirically, this appears true across a range of cell types (Fig. 1).
We demonstrate this effect by estimating the pairwise correlation
of cells within an individual and across any two different indi-
viduals. For a given cell type, the correlation of cells within an
individual (intra-individual correlation) is always higher than the
correlation of cells across individuals (inter-individual correla-
tion). Thus, single-cell data have a hierarchical structure in which
the single cells may not be mutually independent and have a
study-specific correlation (e.g., exchangeable correlation within
an individual). Within a cell type, cells appear to also exhibit
some correlation across individuals (Fig. 1). We hypothesize this

Fig. 1 Intra-individual correlation. Intra- and inter-individual Spearman’s
correlations for gene expression values across ten different pancreatic
cell types and a random sample of different cell types. The respective
numbers of cells and individuals used for each cell type are listed in the
Methods section. Median correlation among a donor’s own cells (intra-
individual) is always greater than the mean correlation across individuals
(inter-individual). The “random cell types” boxplots represent a random
sampling of alpha, beta, and ductal cells. The center line represents the
median. The lower and upper box limits represent the 25% and 75%
quantiles, respectively. The whiskers extend to the largest observation
within the box limit ±1.5 × interquartile range. n= 40,775 cells from 43
different individuals over four independent experiments. More details about
each experiment are provided in Methods.
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is due to stability in functional gene expression that is needed for
a cell to be classified as a specific type (e.g., T-cells need to have
some consistent signals of gene expression related to their func-
tion as T-cells).

Simulation. We completed a simulation study that reproduced
both the inter- and intra-individual variance structures estimated
from real data and documented the effect of intra-individual
correlation on the type 1 error rates of the most frequently used
single-cell analysis tools (Fig. 2 and Supplementary Figs. 1–4).
Our simulation captures some of the most important aspects of
single-cell data (Supplementary Figs. 1–4) and was used to
compare methods that do and do not account for the repeated
observations within an experimental unit (see Methods). We
varied the number of individuals and cells within an individual,
and all methods considered use asymptotic approximations and
admit covariates.

Type 1 error evaluations. The generalized linear mixed model
(GLMM), employing either a tweedie distribution or a two-part
hurdle model with a random effect (RE) for the individual, out-
performed other methods across a variety of conditions (Table 1
and Supplementary Tables 1–4).

Among the methods that explicitly model the correlation
structure, GLMM consistently better controlled for type 1 error

rate than generalized estimating equation (GEE1) models. The
latter performed poorly for all numbers of subsamples until the
number of independent experimental units approached 30.
However, all models that explicitly model the correlation
structure have more appropriate type 1 error rates than methods
that do not account for lack of independence among experimental
units (Table 1 and Supplementary Tables 1–4). As the number of
correlated cells rose, performance of all methods that treat
observations independently grew increasingly worse (Table 1 and
Supplementary Tables 1–4).

One of the most heavily cited single-cell analysis tools, model-
based analysis of single-cell transcriptomics (MAST), is a two-part
hurdle model built to handle sparse and bimodally distributed
single-cell data10. Although to our knowledge no publications have
employed MAST to account for pseudoreplication as discussed
here, Finak et al. note that MAST “can easily be extended to
accommodate random effects”10. When implementing MAST with
a random effect for individual (i.e., MAST with RE), the type 1
error rate is well-controlled. However, its type 1 error rate is just as
inflated as other tools when it is not implemented with a random
effect for individual. However, one suggested approach to account
for within-individual correlation is the aggregation of cell-type-
specific expression values within an individual by using either a
sum or a mean11–13. Such analysis methods, as would be expected,
do control for the type 1 error rate, but are conservative (Table 1
and Supplementary Tables 1–4).

Another method that could be used to account for within-
sample correlations is to apply a batch effect correction method
prior to differential expression, for which the batches are different
individuals. Here, when we applied batch effect correction via
ComBat14 prior to differential expression analysis within a cell
type, type 1 error rates markedly increased (Table 1 and
Supplementary Tables 1–4).

In addition to evaluating type 1 error rates, we examined the
preservation of the rank-order of results from these methods
(Supplementary Table 5). We also evaluated the sensitivity (the
proportion of correctly identified true positives) at varying fold
changes of the two-part hurdle model when ignoring the within-
individual correlation (MAST), correcting it for “batch effect”
prior to differential expression (MAST ComBat), or correcting it
with a random effect for individual (MAST RE) (Supplementary
Fig. 5). We did not explicitly evaluate specificity (the proportion
of correctly identified true negatives), which is simply computed
as 1-type error. Thus, when the type 1 error rate for a method is
inflated, the specificity is small. We found the highest correlations
between the absolute value of the simulated-log(fold-change) and
the methods that properly account for within-person correlation.
The methods that do not do so maintained some semblance of
rank-order, except for batch effect-corrected results (Supplemen-
tary Table 5). As expected, not properly accounting for within-
person correlation leads to extremely high sensitivity with very
low specificity (Supplementary Fig. 5).

Power analyses. We computed an extensive simulation-based
power analysis to provide estimates across a wide range of
experimental conditions. We used a two-part hurdle model with
random effects for individuals as implemented in MAST10. We
also computed power when expression values are averaged across
cells within an individual. Increasing the number of independent
experimental units (e.g., individuals) in a study is the best way to
increase power to detect true differences (Fig. 3a). Empirically,
when sample sizes become greater than 20, there are only mar-
ginal gains in power when more than 100 cells per individual are
sampled for a particular analysis unit (i.e., computing the analysis
within a single cell type of interest or across all cell types).

Fig. 2 Simulation workflow. A gamma [Γ(α, β)] distribution was fit to the
global mean transcript-per-million (TPM) value of each gene and used to
obtain a grand mean, μi The variance of the individual-specific means
(inter-individual variance) was modeled as a linear function of the grand
mean, f1(μi). Using a normal N(μ, σ2) distribution with an expected value of
zero and a variance computed by the linear relationship, f1(μi), a difference
in means was drawn for each individual in the simulation. This difference
was summed with the grand mean to obtain an individual mean, μij. Within-
sample dispersion was simulated as a logarithmic function of the inter-
individual mean, f2(μij). A Poisson (λ) distribution with a λ equal to the
expected number of cells desired for each individual was then used to
obtain the count of cells per individual. The probability of dropout was
estimated as a gamma distribution. For each cell assigned to an individual, a
count, Yijk, was drawn from a negative binomial distribution.
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Methods that aggregate information across cells within an indi-
vidual by averaging or summing (i.e., “pseudo-bulk”methods) are
only slightly underpowered relative to mixed-effects models when
there is balance in the number of cells per individual. However,
these are not as well powered as mixed-effects models when the
number of cells per individual grow increasingly imbalanced
(Supplementary Figs. 6–8).

Discussion
Single-cell studies designed to identify differentially expressed
genes rarely mention or address the correlation among cells from
the same individual or experimental unit. Excellent reviews of the
field and methodologic work have largely focused on challenges
presented by properly classifying cell types, multimodality,
dropout, and higher noise derived from biological and technical
factors. However, they fail to highlight the effects of pseudor-
eplication. Furthermore, papers evaluating the performance of
single-cell-specific tools all compute the simulations as if cells
were independent15–21. The result is reduced reproducibility with
real data, leading to the conclusion that tools built specifically to
handle single-cell data do not appear to perform better than tools
created for bulk data analysis22–24.

Here, we have empirically documented the correlation among
measures from cells within an individual for a few independent
datasets and different cell types (Fig. 1). These findings imply that
the current practice — testing for differential expression analysis
across conditions in scRNA-seq data within a cell type without
considering this correlation — leads to pseudoreplication.

Pseudoreplication, formally defined as “the use of inferential
statistics where replicates are not statistically independent”, has
been addressed repeatedly in both new and well-established sci-
entific fields4–8. Recently, it was acknowledged as one of the most
common statistical mistakes in scientific literature9. Here we hope
to address pseudoreplication in single-cell analyses by demon-
strating what a large and long-standing body of statistical lit-
erature already confirms: applying statistical inference to
replicates that are not statistically independent without properly
accounting for their correlation structure will inflate type 1 error
rates and lead to spurious results4–6,9,25–28.

In our results, models that explicitly parameterized the corre-
lation structure all showed improved type 1 error control com-
pared to methods that did not account for the lack of
independence among experimental units (Table 1 and Supple-
mentary Tables 1–4). Furthermore, as the number of correlated
cells increased, performance of all methods that treated obser-
vations independently increasingly worsened (Table 1 and Sup-
plementary Tables 1–4).

Both the two-part hurdle mixed model and the tweedie mixed
model showed type 1 error control when adjusting for individual
as a random effect (i.e., MAST with RE/Tweedie GLMM), but
their type 1 error rates were highly inflated when not doing so.
These specific evaluations of models with and without a random
effect for individual illustrate why accounting for pseudoreplica-
tion is so important. As the denominator of most statistical tests
(e.g., Wald test) is a function of the variance, not accounting for
the positive correlation among sampling units underestimates the
true standard error and leads to false positives27,28. In addition,

Table 1 Type I error rates of some currently applied tools in single-cell analyses. Type I error rates of ten different methods
under twenty different conditions and a significance threshold of p < 0.05. In all, 250,000 iterations were computed to obtain an
error rate for each method. The inflated type I error rates computed with mixed models at the lower number of individuals per
group are a consequence of the two-part hurdle model simultaneously testing two hypotheses and an overabundance of
subsampling with small sample sizes. Type I error rates are well-controlled for with mixed models and pseudo-bulk methods,
while type I error rates increase with other methods as additional independent samples or more cells are added. Pseudo-bulk
methods are overly conservative. Confidence intervals (95%) are included in the enlarged version of this table (Supplementary
Table 1).

Nind Ncells Two-part hurdle Tweedie GEE1 Pseudo-bulk Tobit Modified t

Default Corrected RE GLMM GLM Mean Sum

5 50 0.561 0.637 0.069 0.082 0.340 0.114 0.023 0.035 0.353 0.400
100 0.677 0.719 0.064 0.084 0.463 0.110 0.022 0.032 0.471 0.510
250 0.798 0.778 0.066 0.083 0.609 0.103 0.023 0.028 0.628 0.644
500 0.862 0.803 0.065 0.081 0.705 0.104 0.023 0.026 0.725 0.718

10 50 0.563 0.611 0.055 0.064 0.350 0.076 0.024 0.021 0.345 0.397
100 0.689 0.718 0.053 0.065 0.462 0.077 0.024 0.020 0.470 0.502
250 0.810 0.793 0.049 0.064 0.610 0.074 0.022 0.019 0.624 0.635
500 0.875 0.827 0.049 0.061 0.705 0.073 0.021 0.018 0.722 0.717

20 50 0.562 0.606 0.051 0.056 0.344 0.063 0.024 0.016 0.343 0.393
100 0.687 0.705 0.048 0.056 0.459 0.064 0.024 0.014 0.466 0.503
250 0.817 0.805 0.042 0.058 0.610 0.060 0.022 0.011 0.619 0.637
500 0.884 0.844 0.042 0.055 0.705 0.062 0.021 0.010 0.720 0.716

30 50 0.563 0.604 0.053 0.054 0.341 0.058 0.025 0.013 0.344 0.395
100 0.691 0.698 0.049 0.056 0.463 0.058 0.025 0.012 0.469 0.504
250 0.818 0.803 0.044 0.055 0.608 0.057 0.022 0.010 0.624 0.636
500 0.886 0.853 0.041 0.055 0.707 0.058 0.022 0.009 0.719 0.706

40 50 0.561 0.602 0.051 0.054 0.345 0.055 0.025 0.013 0.340 0.393
100 0.689 0.699 0.049 0.053 0.455 0.055 0.026 0.012 0.467 0.502
250 0.820 0.803 0.044 0.053 0.607 0.053 0.022 0.010 0.622 0.639
500 0.888 0.856 0.042 0.053 0.704 0.054 0.022 0.008 0.721 0.713

Default denotes MAST was implemented without random effects, RE denotes random effects, Corrected denotes data were batch-corrected for individual with ComBat prior to analysis without using
individual as a random effect, GLM denotes generalized linear model, and GLMM denotes generalized linear mixed-effects model.
Two-part hurdle model as implemented in MAST, Tweedie distribution as implemented in “glmmTMB”, GEE1 as implemented in “geepack”, Pseudo-bulk averaged or summed across cells within an
individual and was implemented in DESeq2, Modified t as implemented in ROTS, and Tobit as implemented in Monocle.
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treating each cell as independent inflates the test degrees of
freedom, making it easier to falsely reject the null hypothesis
(type 1 error). This approach leads to apparently greater sensi-
tivity among methods that do not properly account for pseu-
doreplication (Supplementary Fig. 5). However, the type 1 error
rates (and, thereby, specificity) indicate that, while these methods
capture most results at the lower fold-changes, they also capture a
large proportion of false positives. Too many false positive results
can mask true associations, especially when multiple comparison
procedures such as false discovery rate are applied. In combina-
tion, this will adversely affect downstream analyses (pathway
analysis), robustness, and reproducibility— all increasing the cost
of science.

One potential method to remove inter-individual differences
prior to analysis is to apply batch effect correction prior to dif-
ferential expression analysis, where the batches are individuals.
Using these techniques to correct for intra-individual correlation
should, in fact, be used more often before cell-type clustering, to
more accurately identify cell types upstream of testing for dif-
ferentially expressed cell-type marker genes with mixed models.
However, when using these methods prior to differential
expression analysis within a cell type, they show markedly
increased type 1 error rates (Table 1 and Supplementary
Tables 1–4). In these analyses, we used the batch effect correction
tool, ComBat14. Many other batch effect correction tools are
available. However, the underlying concept common to all is that

Fig. 3 Power calculations using MAST with a random effect for the individual. Power curves for various, but likely, single-cell scenarios using MAST with
a random effect for individual. Fold-change is simulated by multiplying the global mean gene expression values by the fold-change value for one group. All
power is computed at α= 0.05. a Differences in power when sample sizes range between 5 individuals per group to 100 when the number of cells per
individual is held constant at 250. b–d Differences in power when increasing the number of cells per individual (100, 250, 500, 1000) for 10, 20, and 50
individuals per group, respectively. Additional power curves are supplied in the supplementary material.
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they should not be applied to account for within-person corre-
lation when estimating the variance used in testing the hypothesis
of differential expression. This is primarily because regressing out
the person-specific effect as a batch effect and subsequently
analyzing each cell as an independent observation will under-
estimate the overall variance by removing inter-individual dif-
ferences while maintaining an inappropriately large number of
degrees of freedom when treating cells as if they are independent.
In addition, applying a batch effect correction in this manner will
greatly disturb the rank-order of results (Supplementary Table 5).
However, batch correction methods are valuable when used as
designed.

Another method recommended before analysis is to aggregate
individual gene expression values within a person by summing or
averaging them11–13. Such approaches, labeled “pseudo-bulk”
techniques, can be appropriate ways of handling the correlation
structure, but averaging within-subject measurements reduces the
number of data points and loses information. The fewer data
points and decreased confidence in the estimated population
mean make this a conservative approach when the number of
cells per individual are imbalanced. Averaging within-subject
measurements ignores within-subject variability. Furthermore,
when within-subject variability is large with respect to between-
subject variability, averaging within-subject measurements fails to
estimate the true data variability26.

Overall, mixed-effects models lead to the most accurate results
when analyzing data with a hierarchical structure6,25,26. As we
demonstrate here, aggregating values across cells from the same
experimental unit will actually lead to an increased type 2 error
rate and decreased power (Table 1 and Supplementary Figs. 6–8).
This is due to an overestimation of the mean-square error relative
to mixed-effects models, particularly when imbalance exists and
the intra-individual variance is larger than the inter-individual
variance, as appears to be typical with scRNA-seq data25,26. In
imbalanced situations, “pseudo-bulk” methods also cause cells
from individuals with fewer cells to be more heavily weighted,
where mixed models have consistent estimators and do not
require balanced data29. Taking the mean across all cells within
an individual will also cause problems when used together with
tools that require integers for the input. In addition, taking the
mean in this situation generates heterogeneity in certainty of the
estimates of the mean— that is, the data are not independent and
identically distributed. Errors-in-variables regression should be
explored as a means of accounting for this heterogeneity30.

The two-part hurdle model also has the ability to test for dif-
ferences in both the proportion of zeros and the magnitude of
effect across treatment groups separately. In some scenarios,
combining the data will cause a significant difference in the
magnitude of effect to be washed out by a significant difference in
the proportion of zeros or vice versa (i.e., Simpson’s paradox).
Such scenarios occur infrequently in our simulated data, which
holds the probability of zeros constant across treatment groups,
but such scenarios may be more common in real data. “Pseudo-
bulk” techniques may control the type 1 error rates and may help
account for zero-inflation; however, we recommend mixed-effects
models based on long-standing statistical justifications for the
analysis of subsamples, including increased power. This is parti-
cularly so in scenarios with heavy imbalance and where within-
subject variability is large compared to between-subject
variability.

Among the methods that explicitly model the correlation
structure, GLMMs consistently better controlled for type 1 error
rate than GEE1 models. Here, GEE1 exhibited elevated type 1
error rates for any number of subsamples until the number of
independent experimental units approached 30. When the
number of experimental units was small, the GEE1 sandwich

estimator of the variance provided standard errors that were too
small and therefore inflated the type 1 error rate31,32.

Here, we emphasize the two-part hurdle mixed model,
implementable in MAST, as an already well-established tool in
the field. We demonstrate that this implementation performs
exceptionally well when adjusting for individual as a random
effect10. MAST with RE is testing a two-part hypothesis that the
other tools are not directly testing. The discrete and continuous
components being tested fit together — meaning that higher
mean expression will generally correlate with a higher proportion
of expressing cells, but assuming that the two will always relate is
incorrect. There will be specific instances in the simulated data
when the inter-individual means are not significantly different,
but the proportion of cell dropout is significantly different (even
though the probability of dropout for any one gene across cells is
held constant) and is driving a significant result. This will be
particularly true with smaller sample sizes, and may contribute to
the slightly elevated type 1 error rates with smaller sample sizes
and cell counts.

While we recommend computing differential expression ana-
lysis using MAST with RE, alternative methods include using
MAST with fixed-effects for individual, a tweedie GLMM, or
permutation testing. Accounting for the within-sample correla-
tion with a fixed-effect term for individual, will have a slight
difference in interpretation, but should be considered an alter-
native option to random effects — particularly when the number
of independent experimental units is modest33. To not violate the
exchangeability assumption, permutation methods must rando-
mize at the independent experimental unit (e.g., individual) and
properly account for covariates (i.e., conditional permutation).
The tweedie GLMM method, which was selected for its dis-
tributional flexibility that can account for zero inflation, could be
implemented using the “glmmTMB” R-package34, but other
mixed models could also be applied using a more appropriate
distribution if, for example, the observed data do not exhibit zero
inflation. However, none of these alternative approaches explicitly
incorporates some single-cell-specific concepts implemented in
MAST (e.g., cellular detection rate).

We computed power analyses for a variety of sample sizes and
cell amounts. Empirically, we demonstrated that increasing the
amount of cells captured per sample returns very little gain in
power after 100 cells per individual in most scenarios, particularly
after sample sizes increase (Fig. 3 and Supplementary Figs. 9–11).
Instead, we suggest that increasing sample size is the most effi-
cient way to improve power (Fig. 3a). Increasing the number of
cells per individual does provide more precision in the estimate
for an individual. However, it has limited effects on the power for
detecting differences across individuals, such as differences
among treatments applied to individuals (i.e., case/control stu-
dies). Estimating power with more than 1000 cells per individual
is computationally expensive; run times for the random effects
models are significantly higher than the other tools (Supple-
mentary Table 6). Because using thousands of cells per individual
is not atypical for single-cell experiments, tools that account for
the correlation structure when analyzing these data need to be
further developed to increase computational efficiency (e.g.,
parallel code, use of GPU). In addition, while mixed models will
compute for only two individuals per treatment group, many
genes will fail due to complete separation when the sample size is
so small, especially when the number of cells per individual is also
small (<50).

Most papers compare cells across very few individuals, some-
times even a single case and control (simple pseudoreplication).
In the former case, the estimate of the inter-individual variance is
possible, but has wide bounds on parameter confidence intervals;
in the latter case the variance is not estimable from the data.
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Simulations indicate that most published studies are under-
powered (Fig. 3 and Supplementary Figs. 9–11).

Most single-cell papers show a deep understanding of the
underlying biology and conduct otherwise very informative
experiments, appropriately published in high-visibility journals.
However, our type 1 error and power simulations document that
many such studies are missing important true effects while
reporting too many false positive effects generated via
pseudoreplication.

As single-cell technology continues to evolve and costs
decrease, scientists need to be aware of this issue to improve study
design and avoid proliferation of irreproducible results. Our
results encourage the use of mixed models, such as the two-part
hurdle model with a random effect (e.g., as implemented in
MAST with RE), as a way to account for repeated observations
from an individual while being able to adjust for covariates at the
individual level and, if appropriate, at the individual cell level.
Additional random effects, such as sampling time, may also be
included35. Our extensive simulation study provides valuable
information for understanding the power of specific designs and
can be used in grant reviews as one justification of the design and
analyses employed. A limitation of our simulation engine here is
that it was modeled using plate-based data. However, we
demonstrate that droplet-based single-cell data also contain a
hierarchical correlation structure (Fig. 1). Although our focus
here is on hypothesis testing for finding differentially expressed
genes within a cell type across conditions, the concept is applic-
able when comparing expression patterns between cell types and
is broadly appropriate for all single-cell sequencing technologies
such as proteomics, metabolomics, and epigenetics. In addition,
there are numerous fields such as cancer, neurological disease,
developmental biology, diabetes, and autoimmune disease, in
which these results apply.

Methods
Literature review. A PubMed search in January 2019 for the keywords “single-cell
differential expression” returned 251 articles published in the last 3 years; these
were subsequently sorted and filtered by each of their abstracts. Many of the
returned articles were associated with bulk RNA sequencing or completely irrele-
vant to differential expression analyses in single cells and were therefore eliminated.
Of the 251 original hits, 76 were deemed appropriate for further consideration. Of
those, 10 were reviews, 36 were methods papers, and 30 were implementation
papers. Each of the methods and implementation articles was thoroughly reviewed
along with its number of citations, date of publication, and any other pertinent
information, such as number of independent samples, tools used, or number of
cells captured.

Intra- and inter-correlation analyses. We made pairwise comparisons between
all cells of interest to compute intra- and inter-individual correlations. Genes were
removed if the average transcript-per-million (TPM) value was equal to zero. To
control for the correlation structure between genes, genes were sampled one at a
time, and any genes with a Spearman’s correlation coefficient >0.25 relative to the
gene that was drawn were subsequently trimmed from the dataset. This step was
repeated until either no more uncorrelated genes remained or a total of 500
uncorrelated genes were obtained, whichever happened first. For intra-individual
correlations, Spearman’s correlation was computed for all possible pairs of cells
within an individual. For inter-individual correlations, Spearman’s correlation was
computed for all possible pairs of cells from a random draw of one cell from each
individual. We computed 1000 draws. To compute the correlation structure across
multiple cell types, intra-individual correlations were assessed by repeatedly
drawing one cell per cell type within an individual and computing all pairwise
correlations. Inter-individual correlations were assessed by dividing the data into a
balanced set of observations, with 10 cells of each of the three main cell types
retained for each individual. The intra- and inter-individual correlations and their
means were examined for differences (Fig. 1). The measures were compared in ten
different cell types across four different single-cell studies. These studies are all
publicly available (accession numbers GSE81861, GSE72056, E-MTAB-5061, and
EGAS00001004082). The GSE81861 dataset contains 161 normal mucosal cells
from 6 individuals and were sequenced on Fluidigm’s C1. All individuals were
patients with colorectal cancer, but tissues were taken from healthy mucosa. The
GSE72056 data were also sequenced on Fluidigm’s C1. The dataset used here
contains 337 B-cells from tumor tissues of 11 individuals (all with melanoma) and

1186 T-cells from tumor tissues of 17 individuals (also all with melanoma). E-
MTAB-5061 data were sequenced using the Smart-Seq2 protocol and contains
pancreatic cells taken from 10 individuals, 6 healthy controls, and 4 with type 2
diabetes. Here, only data from 886 alpha cells, 270 beta cells, and 336 ductal cells
were used. The EGAS00001004082 dataset contains 77,969 cells sampled from the
respiratory tract of 10 healthy donors. The single-cell capture of these data was
carried out using the 10X Genomics Chromium device (3′ V2). For these analyses,
we used 24,138 basal cells, 2722 endothelial cells, 2417 macrophages, and 8322
multiciliated cells. Cell type designations were as given by the authors of these
studies. More details are provided in their respective papers36–39.

Simulation engine. A simulation engine was designed to simulate independent
genes to approximate the hierarchical structure of real data by empirically esti-
mating the range of parameters (i.e., grand mean of the TPM values, within-sample
variance, between-sample variance, relationship between the grand mean and
dispersion, and dropout) that define the observed distribution of TPM values for a
gene. To estimate these parameters, genes were pruned to a set of uncorrelated
genes that captured the most representative patterns of detectable TPM values,
without the resulting parameter estimates being primarily driven by dropout.
Specifically, genes were sequentially sampled one at a time; any other genes with
transcript abundances that correlated (Spearman’s correlation coefficient >0.25)
with the gene were removed. To estimate the grand means independently from the
hierarchical correlation structure, we estimated the grand means by sampling one
cell from each individual and computing the mean TPM value 1000 times. The
mean of each of those means was used to approximate the grand mean.

To approximate the variance of the within-sample means (inter-individual
variance), the means of all non-zero TPM values were computed across all cells
within each individual and the variance between those values was subsequently
computed. To estimate the within-sample dispersion values, the non-zero TPM
values were first used to compute a within-sample variance and within-sample
mean. Consistent with the classical definition of the negative binomial
distribution’s dispersion parameter, the within-sample dispersion parameter was
then computed as:

αij ¼
μ2ij
σ2ij

� μij ð1Þ

where αij represents the dispersion parameter, μij represents the within-sample
mean, and σ2ij represents the within-sample variance for gene i and individual j.

The grand means and variances were computed empirically from the TPM
values previously reported in six different cell types across three different single-cell
studies36–38. Once consistent patterns were identified across cell types, alpha cells
from the pancreatic cell dataset were used as the model data for our simulation. A
gamma distribution was fit to the global mean of the TPM values of each gene
using maximum-likelihood estimation. For each independently simulated gene i, a
random value was sampled from this gamma distribution to obtain a grand mean,
μi. The variance of the within-sample means (inter-individual variance) was
modeled as a linear function of the grand means, f1(μi) and the within-sample
dispersion (intra-individual variance) was estimated as a logarithmic function of
the within-sample means, f2(μi). The probability of dropout was estimated
independently as a gamma distribution (Fig. 2). Using a normal distribution with
an expected value of zero and a variance computed by the first linear relationship,
f1(μi), a difference in means was drawn for each of the individuals j in the
simulation. This difference was summed with the grand mean to obtain an
individual mean, μij.

Three different methods were used to simulate the number of cells per
individual. To simulate scenarios where each individual had an identical number of
cells, the number of cells desired for each individual was fixed at a constant value.
To simulate scenarios where the number of cells per individual demonstrated slight
imbalance, a Poisson distribution with a λ equal to the expected number of cells
desired for each individual was then used to obtain the count of cells for each
individual. To simulate scenarios where the number of cells per individual
demonstrated greater imbalance, the number of cells per individual was modeled as
a negative binomial random variable with a mean equal to the expected number of
cells and a dispersion parameter of one. For each gene i and cell k assigned to an
individual j, a read count value, Yijk, was drawn from a negative binomial
distribution with an expected value equal to the individual’s assigned read count
value, μij, and a dispersion parameter, αij, computed by the logarithmic function of
the grand mean f2(μi). Along with the distributions of the primary parameters of
interest, we made tSNE plots of the simulated data to assess how realistic the
simulated data appeared (Supplementary Figs. 1–4).

Evaluation of type 1 error. To estimate type 1 error rate, we simulated TPM values
for an individual gene 250,000 times for each simulation condition. We varied the
simulation conditions by the number of individuals per treatment group and the
number of cells per individual. For each iteration, the number of individuals per
treatment group was fixed at either 5, 10, 20, 30, or 40. For each iteration at a fixed
number of individuals per treatment group, the number of cells per individual was
drawn from a Poisson distribution with either a λ of 50, 100, 250, or 500.
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The type 1 error rate for differential expression testing was computed for each
of the ten methods evaluated in this manuscript. For each, the number of results
that met our significance threshold were counted and the type 1 error computed as
the proportion of significant results. Type 1 error was computed for a tweedie
mixed-effects model34, MAST10, MAST with random effects10, MAST with a batch
effect correction using ComBat10,14, DESeq2 with aggregation methods (“Pseudo-
bulk” summing and averaging)11–13,40, Monocle41, ROTS42, Tweedie GLM34, and a
GEE1 with a Gaussian link and exchangeable correlation43. MAST was
implemented with and without the use of a random effect for individual, and the
remaining single-cell tools were implemented exactly as their vignettes instruct.
GEE1 with exchangeable correlation was implemented to compare its performance
to the mixed-effects model, particularly where the numbers of donors were low.
Except for DESeq2 and ROTS, which both require raw counts, all methods were
computed on the log(x+ 1) transformed gene expression matrix. To control for
any differences in library size that DESeq2 might be falsely estimating, we fixed all
of DESeq2’s size factors to one. Type 1 errors were computed using significance
thresholds of 0.05, 0.01, 0.001, and 0.0001 (Table 1 and Supplementary Tables 1–4).

MAST models a log(x+ 1) transformed gene expression matrix as a two-part
generalized regression model10. As in Finak et al.10, the addition of random effects
for differences among persons is:

logit Pr Zki ¼ 1 Xkjð Þð Þ ¼ Xkβi þWkγj ð2Þ

Pr Yki ¼ y Zkij ¼ 1ð Þ ¼ NðXkβi þWkγj; σ
2
i Þ ð3Þ

where Yig is the expression level for gene i and cell k, Zki is an indicator for whether
gene i is expressed in cell k, Xk contains the predictor variables for each cell k, and
Wk is the design matrix for the random effects of each cell k belonging to each
individual j (i.e., the random complement to the fixed Xk). βi represents the vector of
fixed-effects regression coefficients and γj represents the vector of random effects
(i.e., the random complement to the fixed βi). γj is distributed normally with a mean
of zero and variance σ2γk . To obtain a single result for each gene, the likelihood ratio
or Wald test results from each of the two components are summed and the
corresponding degrees of freedom for each component are added10. These tests have
asymptotic χ2 null distributions; they can be summed and remain asymptotically χ2

because Zi and Yi are defined conditionally independent for each gene10.

Evaluation of rank-order preservation. To approximate how well rank-order was
preserved across each of the ten methods evaluated, we simulated TPM values for an
individual gene 2000 times with random fold-changes between 0 and 4. The number
of individuals per treatment group was fixed at 30 and the number of cells per
individual was fixed at 100. Fold-change was drawn from a uniform distribution with
a minimum equal to 0 and a maximum equal to 4. Genes were retained along with
their fold-change information to evaluate rank-order correlation and to complete the
sensitivity analysis. The genes simulated under the null for the type 1 error rate
calculations were used to estimate specificity (1-type error) for each method. With
each of the different methods, p-values were computed and were ranked alongside the
absolute value of the simulated-log(fold-change) values. Spearman’s rank-correlation
coefficients were computed between each of the different methods.

Evaluation of power. To estimate the power of the respective tests, TPM values were
simulated for an individual gene 1000 times for each incremental fold-change of 0.01
between 1 and 5. Here, fold-change is a constant that was multiplied by the global
mean gene expression values to spike the expression of those genes in the desired
treatment group. The direction of the fold-change was simulated with a Bernoulli
distribution with a probability of 0.5 to allow the direction of effect to vary equally
between treatment groups. We varied the simulation conditions by the number of
individuals per treatment group and the number of cells per individual. For the
datasets used to compare the performance of mixed models with pseudo-bulk methods
dependent on the degree of cellular imbalance between individuals, the number of cells
per individual were either fixed at an exact number, allowed to vary under a Poisson
distribution with a λ equal to the expected number of cells, or allowed to vary under a
negative binomial distribution with an overdispersion parameter equal to 1.

Using the two-part hurdle model with a random effect for individual, we
computed power curves to estimate how well this method functions with varying
numbers and ratios of cells and individuals. When evaluating the power of the
pseudo-bulk methods, the size factors for DESeq2 were forced to one to keep
DESeq2’s normalization from normalizing out the simulated effects. Power was
computed for fold changes between 1 and 5 (Supplementary Figs. 9–11).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data are publicly available. Two of the datasets are available on NCBI’s Gene
Expression Omnibus under the accession numbers GSE8186136 and GSE7205637. A third
dataset is hosted on EMBL-EBI’s ArrayExpress under the accession number E-MTAB-
506138. The fourth dataset is hosted on EMBL-EBI’s European Genome-phenome
Archive under the accession number EGAS0000100408239.

Code availability
Data were simulated in R-3.5.1. All of the code for the simulations and the evaluation of
intra- and inter-individual correlation structure is available on GitHub at https://github.
com/kdzimm/PseudoreplicationPaper. This base code was modified to run type 1 error
and power analyses in parallel on Wake Forest’s High Performance Computing
Cluster, DEMON.
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