
 
 

 

 

 
Abstract—This paper deals with algorithms for image 

classification, which aim to guess “what is on the picture” using 

human-readable labels or categories. A supervised learning 

approach with Convolutional Neural Networks (CNNs) is studied 

as an effective solution to different computer vision problems, 

including image classification. Main contribution of this paper is a 

set of practical guidelines to tackle the image classification 

problem using publicly available tools and typical hardware 

platforms.  

I. INTRODUCTION 

ACHINE learning is an area of computer science, 

which assumes that a computer program may “learn” 
by experience. In other words, the performance of a program 

to do its job may improve thanks to observation and analysis 

of actual data samples. As an example, carefully crafted 

artificial neural network may learn to classify images (name 

an object on a photo), after it has been trained with 

sufficiently large number of labeled image examples. 

A. Computer vision 

The ultimate goal of computer vision research is to teach 

computers to see and understand images, in a similar way as 

humans do. Remark that normally the images (photographs, 

sketches, figures) are represented in computer memory as 

sets of pixels, and more precisely as bytes with value 

depending on color intensity of particular pixel. The 

computer representation of an image does not normally hold 

any semantic information, unless the user has explicitly 

provided some semantic context metadata. Thus, it is very 

difficult for traditional computer algorithm to guess what is 

the semantic content of a picture.   

Machine learning approach has recently been successfully 

used for solving numerous problems related with 

understanding of images: 

 Image classification. A basic problem of computer 

vision, with goal of characterizing given image by 

assigning it a human-understandable text label (what is 

on the picture – is it a person? or a dog? or a building?). 

The label is usually chosen from a known set of 

categories, thus this problem is of “classification” type. 

 Classification with localization. Instead of assigning a 

single label as in basic image classification, multiple 

labels may be more appropriate if an image displays not 

one, but several objects. Additionally, the localization 

function  provides coordinates (bounding boxes) of 

objects detected on a photo.  

 Object detection. Quite similar to the previous one, but 

it rather assumes that we would like to detect presence 

of a limited set of objects. For example, an object 

detection algorithm implemented in an autonomous car 

control system may localize pedestrians (persons) on the 

side of the road. In this case, there is a single type of 

object (“person”) to be detected.  

 Instance segmentation. The result of classification 

with localization is typically a set of identified objects 

with their approximate bounding boxes (rectangles). 

Sometimes a more detailed approach would be 

preferred, being able to assign particular pixels of the 

image to detected objects. For example, if we detect 

three persons on a photo, we would have also a precise 

boundary of each person’s shape. 

In this paper we focus specifically on the basic problem of 

image classification.  

II. CONVOLUTIONAL NEURAL NETWORKS: STATE OF THE ART 

A. Artificial neural networks 

Artificial neural network is a biologically-inspired 

machine-learning model for solving classification problems 

[1][2]. A simple model of an artificial neuron is presented in 

Fig.1. A neuron takes a set of inputs (xi) and produces output 

value y, applying a non-linear activation function on a 

weighted sum of inputs. A neural network consists of 

multiple neurons, connected to each other to form multi-

layer structures. If the output is calculated as linear 

combination of all inputs, such neuron is sometimes called a 

“fully-connected” unit. 
Before being able to actually solve a classification 

problem, a neural network must be “trained”. It means that 
its parameters (weights) are tuned by a special algorithm, 

which takes as input a large set of training data. Training 

data consist of input values together with “ground truth” 

M 

A practical study of neural network-based image classification 

model trained with transfer learning method 

 Marek Dąbrowski, Justyna 
Gromada, Tomasz Michalik 

Orange Polska, Centrum 
Badawczo-Rozwojowe, ul. 

Obrzeżna 7, 02-691 Warszawa 
Email: {marek.dabrowski, 

justyna.gromada, 
tomasz.michalik}@orange.com 

 

Position Papers of the Federated Conference on Computer

Science and Information Systems pp. 49–56

DOI: 10.15439/2016F211

ACSIS, Vol. 9. ISSN 2300-5963

c©2016, PTI 49



 
 

 

 

result, that is a result, which we know is correct for given 

input.   

 
Fig.  1 Model of a simple artificial neuron 

A special family of artificial neural networks, called 

“convolutional”, is especially successful for image 

classification [2]. Let us assume that input to the model 

consist of certain number of pixels, with value 

corresponding to color intensity (see Fig.2).    

 
Fig.  2 Model of a convolutional unit 

Instead of calculating the output value by taking a 

combination of all inputs, the output value of convolutional 

unit is based on a locally constrained region of several pixels 

(e.g. 3x3, 5x5, 7x7). Moreover, the output is calculated for 

each local area on the image, like a filter which is slided all 

over it. The idea is to take into account the structure of 

computer image and analyze in more detail pixels in a local 

neighborhood, in order to detect basic shapes, edges and 

other small characteristic graphical features. Then, a multi-

layer hierarchy of convolutional units is applied, being able 

to detect more high-level shapes and structures of an image.  

As a final layer of neural network model, fully-connected 

neurons are always used. In particular, the last layer consists 

of k neurons, where k is the number of image classes that the 

model is able to distinguish. After passing an image 

(represented as pixels intensity values) through all layers of 

neural network, the value outputted by kth neuron of the final 

layer will correspond to estimated probability that the image 

belongs to the kth class. Thus, this final layer is sometimes 

called a “classification layer” because it is aware of set of 

classes of a given model, and is trained to recognize the 

class of the image based on features that are spotted by 

internal layers. 

B. State-of-the-art models for image classification 

The basic artificial neuron structures as depicted on Fig.1. 

and Fig.2 constitute main building blocks of modern neural 

networks. But to really appreciate its power for solving 

classification tasks, we need much more complex structures 

with thousands, or even millions of such small basic units. 

Multi-layer structures appear to be more effective, which led 

to a concept “deep learning”, which denotes artificial neural 
networks consisting of many layers of connected units 

[1][2].  

 Looking back into history of research work in this area, a 

model published in 1998, named “LeNet” [3], is considered 

as pioneering work in applying convolutional neural 

networks to computer imaging problems. It had 8 layers 

(convolutional and fully-connected), with around 1mln 

parameters in total. LeNet primary application was to 

recognize handwritten digits in banking information 

systems.  

A new wave of research in neural networks came few 

years ago thanks to several breakthrough advances: 

invention of deep networks, more efficient training 

algorithms, availability of more powerful hardware for 

computationally intensive calculations, and availability of 

large data sets for training. In 2012, so-called “AlexNet” 
model was proposed [14], with 14 layers and about 60mln 

parameters. In the trend of building deeper networks, the 

“GoogleNet Inception” model [4] has been proposed in 

2014, with 22 layers (Fig.3). It consists of   convolutional 

(blue boxes on Fig.3) and fully-connected units (yellow), 

together with pooling units (red) and joining units (green). 

Thanks to more efficient use of convolutional units it had 

only 5mln parameters, which made it easier to train and run 

on less powerful hardware, while being more effective than 

the older models. A newer version of “GoogleNet” 
architecture will be used in experiments presented later in 

this paper. 

 
Fig.  3 “GoogleNet”: state-of-the-art multi-layer 

convolutional model for  image classification 

C. Imagenet image corpus 

The neural network models described in previous section 

could never work well without being trained on a very big 

sets of learning data. A publicly available ImageNet 

database [5] is a widely used repository of properly labelled 

photos (i.e. photos with text label correctly describing its 

content). The ImageNet corpus contains 21841 classes of 

images. Each class is described by a label, which is called a 

“synset” by referring to the WordNet taxonomy of concepts. 
With an ultimate goal of collecting around 1000 images for 

each class, the ImageNet repository has now about 14mln 

human-annotated images. 

Once a year the ImageNet team organizes a competition 

for computer vision researchers to propose world-best 

models for solving image classification problem. For the 

purpose of this competition, a subset of 1000 basic 

ImageNet classes has been selected as a reference corpus.  

This image corpus with 1000 classes has been used in 

experiments presented in this paper.   

x1

x2

x3

output

activation

function

w1
w2

w3 y

Input 

pixels

Convolution

filter

output

50 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016



 
 

 

 

III. TRANSFER LEARNING 

The “deep learning” approach adopts artificial neural 

network models with large number of hidden layers and 

millions of parameters. For training such models, the 

backpropagation method seems to work well [2]. Basically, 

it assumes minimization of cost function (also called loss 

function), which describes overall difference between the 

predicted and actual (ground truth) classification results, for 

a given set of training examples. Several methods are 

typically used for the optimization algorithm, usually being 

variations of Stochastic Gradient Descent [2].  

The computational cost of the backpropagation method is 

noticeable, especially that the training sets should be huge, 

with tens of millions of training examples. Despite of recent 

advances in hardware processing, distributed computing and 

Graphical Processing Units (GPUs), which greatly accelerate 

computations, it may take weeks to train a model until it 

reaches sufficient accuracy [4]. 

To avoid the lengthy learning process and allow for 

training with smaller amount of training examples, so-called 

Transfer Learning method has been proposed [6]. Transfer 

Learning is a machine learning method, which is improved 

thanks to transfer of knowledge from a related task, that has 

already been learned. In other words, new image 

classification models may be trained much faster, thanks to 

using parameters of a previously trained model. The process 

for practical usage of Transfer Learning is the following (see 

Fig.4): 

1. Get a previously trained model. Pre-trained models 

published by other researchers are available e.g. from 

[8][9]. 

2. Split the old model architecture into two parts: 

a. All hidden layers of the neural network, with 

their structure (connections) and previously 

learned weights, will be copied into the new 

model.  

b. The last layer of neural network, which 

performs actual classification into one of the 

classes, is strictly related with the old model 

and will be disregarded in the new model.  

3. Prepare a new set of training examples (images labelled 

with appropriate class name, as required for the new 

model).  

4. For a new set of training images, calculate the output 

values after passing through the first part of neural 

network (the one that is transferred into the new model). 

The numerical value calculated as output of given 

image, at the next-to-last layer of original model, will be 

called a “bottleneck”. 
5. Add a new final fully-connected layer, which will now 

constitute the last layer of new neural network model. 

This new final layer will calculate the probability of 

given image belonging to a given class. 

6. Train the new final layer with previously calculated 

“bottlenecks” as input, and a set of new “ground truth” 
labels that denote true classes of training images. 

Remark that in this method only the last layer of artificial 

neural network model has to be trained from scratch, 

while for all previous layers (and remind that for example 

the GoogleNet model has 22 of them) the weight values 

are copied from the previously pre-trained model. Thanks 

to that, we can create a new image classification model, 

with our own classes and labels, within several hours 

instead of weeks, on standard hardware.   

 
Fig.  4 Illustration of “Transfer Learning” method 

IV. DEPLOYMENT SCENARIO 

Running Machine Learning algorithms and neural 

networks especially requires certain amount of computing 

resources, not only processing power, but also storage and 

access to big repositories of training data. Thus, a practical 

deployment approach may assume a networked 

environment, with computational resources deployed in 

cloud data center, with Web Services API developed for 

client applications to upload images and receive results over 

the web. An example deployment scenario is presented in 

Fig.5. 

 
Fig.  5 Networked deployment scenario 

V. EXPERIMENTAL SETUP 

A. Tensorflow: open source tool for neural networks 

For our experiments we have used Tensorflow [9] library 

for numerical computation. Tensorflow has been created by 

Google and made available as open source. It supports 

various types of numerical computations, including complex 

neural network models, on various types of hardware, CPU 

and GPU. It supports the Transfer Learning method. 

Input 

pixels

Intermediate

output: 

„bottleneck”

Final output: 

probability of 

image 

belonging to 

each of k old

classes

Hidden

convolutional

layers of old

model

Fully-

conn. 

layer

with k

neurons

Final output: 

probability of 

image 

belonging to 

each of i new

classes

Hidden

convolutional

layers of old

model

New 

fully-

conn. 

layer

with i

neurons

OLD MODEL

NEW MODEL

WS-API

Server with 

Neural Networks 

toolset

Client 

application

MAREK DĄBROWSKI ET AL.: A PRACTICAL STUDY OF NEURAL NETWORK-BASED IMAGE CLASSIFICATION MODEL 51



 
 

 

 

B. Lab infrastructure 

It is well known that GPU hardware greatly improves 

performance of machine learning computations. Having a 

goal to find optimal hardware setup for our machine learning 

task (minimize platform cost, assuming satisfactory training 

and testing time) we have evaluated performance of several 

typical medium-level hardware platforms. 

We wanted to simulate a home or small company 

environment, in addition to large expensive data center.   

1) PC computer: a typical desktop with 4 CPU cores and 

8GB RAM. It had a GPU card NVIDIA GeForce GTX 960. 

Tensorflow computations may or may not use GPU 

depending on software configuration, so both hardware 

settings were tested (PC-CPU and PC-GPU). 

2) ODROID: „mini” home computer of SBC (Single Board 

Computer) type [12]. It is a fully-fledged computer with a 

very small size, low power consumption and low price (see 

Fig. 6). It is not as powerful as a desktop PC, but has 

sufficient capabilities  for simple home tasks. 

 

 

 ARM architecture 

 SOC: Samsung Exynos  

 32bit architecture 

 2GB RAM 

 Flash disk 

 USB, Eth, HDMI  

 Linux 

 Price: ~70$ 

Fig.  6. ODROID: exemplary SBC device (Single Board 

Computer)   

VI. EXPERIMENTAL VERIFICATION OF TRANSFER LEARNING 

METHOD 

The goal of experiments was to verify if the Transfer 

Learning method, applied to training image classification 

models, allows for achieving results that are as good as full-

fledged training, in much quicker time and with less 

computational resources. The GoogleNet model [10] trained 

with ImageNet-1000 corpus has been used as basis for re-

training. The ImageNet database of basic 1000 classes has 

been downloaded and used as re-training examples, 

following the Transfer Learning concept. 

Remark that we have decided to use in re-trained model 

the same 1000 ImageNet classes as in the original model. At 

first look it may be counterintuitive: why we would re-train 

the model to have the same result at the end? Of course, in a 

target scenario the re-training procedure would assume 

completely different target set of classes, with different set 

of training images than the original model. But remind that 

the goal of experiments presented in this paper was to 

evaluate the correctness of Transfer Learning and so it seems 

methodologically correct to compare the re-trained model 

with the original one, that was created with the same initial 

assumptions and target set of classes. 

A. Testing the image recognition capability 

First, let us discuss what is the expected result of image 

classification. Say, we have a photo, and we would like to 

tag it automatically with a text label. The result of image 

classification algorithm should thus be a word, or a few 

words, matching with certain level of confidence semantic 

contents of the photo. Strictly speaking, the result of passing 

the image through neural network model trained with 1000 

classes will be a vector of 1000 numbers, corresponding to 

the “score” associated to each class. The “scores” are 
conceptually related to a likelihood that given result is a 

correct one. The distribution of score values for all classes 

should form a proper probability distribution, so the scores 

will sum up to 1.0. 

An exemplary photo with classification result is presented  

in Fig.7 (the result has been calculated with one of the 

models trained in the scope of this study, but this is not 

important at this moment, as it is presented merely as 

illustration of intended goal of the algorithm). More 

precisely, this is a “Top-5” result, that is five class names 

with the highest values of scores. In our example, the score 

associated with class “palace” is 0.97, which means that the 

algorithm thinks with very high confidence that there is a 

“palace” on the photo, which is actually true.  

 

 

 “palace” (0.97) 
 “monastery” (0.11) 
 “fountain” (0.0036) 
 “castle” (0.0022) 
 “church, church 

building” (0.0019) 

Fig.  7. Result of re-trained classification algorithm on a 

real-life photo example  

 

This simple example shows that image classification 

algorithm put in the realistic setting produces quite accurate 

results. However, we need more rigorous and repetitive 

method to evaluate objectively the correctness of the 

method, as applied to a larger set of images. 

Assume that we have a test set of N images, drawn from 

the ImageNet corpus and thus human-annotated in controlled 

way with a “ground truth” label. Remark that according to 

Machine Learning established practice, the examples from 

the test set must not be previously used as training data, 

since that would bias the test result towards positive 

outcome. For all images of the test set, the test result is 

produced by the evaluated algorithm, in the form of 5 classes 

with maximum associated scores among the all the k classes.  

52 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016



 
 

 

 

The metric “Top-1 accuracy” will be defined as ratio of 

correct classification results in the entire test set (where 

positive result means: “the label with maximum score is 

equal to ground truth”). The Top-1 accuracy metric may be 

too restrictive in realistic scenarios. Take an example in 

Fig.1 – “palace” is a true object on the image indeed, but if 

you just look at the photo, without prior knowledge of what 

it actually is, it may appear that “castle” could also a 

possible name for an object on photograph. Thus, another 

metric, “Top-5 accuracy” has been defined to take into 

account that sometimes the ground truth label may be among 

the best recognized, but not necessarily at the first place. 

Top-5 accuracy is also defined as ratio of correct 

classification results in the test set, but the positive result is 

now: “the ground truth label is among the 5 maximum-score 

labels assigned by the classification algorithm”.  
We have validated the studied model re-trained with 

Transfer Learning method on a test set of 50000 random 

images from the ImageNet corpus.  The obtained Top-1 and 

Top-5 accuracy metric results are presented in Table 1.  

TABLE I. RESULT OF FINAL EVALUATION OF RE-TRAINED MODEL ON A 

TEST SAMPLE OF 50000 IMAGES FROM IMAGENET CORPUS  

Metric Test result 

Top-1 accuracy 88.2 % 

Top-5 accuracy 98.0 % 

 

These results for re-trained model are impressively good. 

In fact, for 88% of ImageNet photos the algorithm is able to 

classify correctly the true label, while for 98% the true label 

is among top 5 assigned ones. Surprisingly, the achieved 

accuracy appears even better than the accuracy of original 

model, reported in [10] (top-5 accuracy equal to 93.33%). 

We think that the reason for this misleading result is that for 

testing the re-trained model we have used the ImageNet 

images that belonged to the training set of original model. 

Thus, the test result is higher than expected, because in some 

sense the artificial neural network is tested with images that 

it has already seen before. Unfortunately, the test set that 

was used by authors of the original model in [10] is not 

publicly available, so we were not able to make a truly 

relevant comparison. Nevertheless, we think that the 

conclusion that can be drawn from our study is that re-

training the artificial neural network using Transfer Learning 

method may give us a model that is as good as the original 

one, in relatively short time on typical modern computers 

(see later in the paper).   

B. Finding a parameter setup for transfer learning method 

There are several parameters that we can shuffle in order 

to obtain a satisfying model within reasonable training time. 

Our goal was to achieve well trained model (not over fitted, 

nor under fitted) with the test accuracy around 90% for Top-

1 accuracy metric and close to 100% for Top-5 accuracy 

metric. The intended time for re-training a model on our 

infrastructure was max 12h, which meant running 

experiments taking 32000 training steps which is around 3 

epochs for our training data set.   

The main parameters that we tuned were: type of the 

optimizer and value of learning rate. The optimizer takes the 

loss computed in forward propagation part (in our case, it is 

the loss function for softmax classifier [1], called cross-

entropy loss), calculates the gradients in backward 

propagation and then changes the weights of the model 

trying to minimize the loss. In case of Transfer Learning 

algorithm, the optimization process concerns only one layer 

– the last one. The learning rate value is a hyper-parameter 

which tells how fast the optimizer should converge to 

minimal loss. When the learning rate is to low, the process 

of training may last very long to achieve optimal values or 

never achieve it but on the other hand when the learning rate 

is too high, the average loss may increase which is opposite 

to our goal. Hence, the choice of learning rate and 

appropriate optimizer is crucial. 

We have chosen two optimizers for our experiments: 

Stochastic Gradient Descent Optimizer (SGD) [13] and 

Adam Optimizer (Adam)  [11] and used them in training 

process with various values of hyper-parameter learning rate 

α = 0.01, α = 0.05 and α = 0.1. To choose the best 

configuration of these parameters, we were observing how 

the cross-entropy loss, training Top-1 accuracy and 

validation Top-1 accuracy behave during the training 

process (Fig.8-11). 

When we look on the graph of cross-entropy loss in 

function of training steps (Fig.8), three potential candidate 

configurations seem the most promising: the Stochastic 

Gradient Descent Optimizer with learning rate α  = 0.1, 
Adam Optimizer with α = 0.05 and Adam Optimizer with α 
= 0.01. The cross-entropy loss in these cases constantly goes 

down and within 3 epochs reaches the value of around 0.36. 

The cross-entropy loss for Stochastic Gradient Descent 

Optimizer with learning rate α = 0.01 also goes down but 
much slower than in previous three configurations. The 

cross-entropy loss for Adam Optimizer with learning rate α 
= 0.1 after 2000 training steps goes up, which is undesirable 

behavior and may suggest too large learning rate.   

 
Fig.  8. Entropy in function of training steps (log scale) for 

Stochastic Gradient Descent Optimizer (SGD), Adam 

Optimizer (Adam) and various learning rates (α) 

MAREK DĄBROWSKI ET AL.: A PRACTICAL STUDY OF NEURAL NETWORK-BASED IMAGE CLASSIFICATION MODEL 53



 
 

 

 

 
Fig.  9. Accuracy for Stochastic Gradient Descent Optimizer 

and learning rate α = 0.1 

 

Fig.  10. Accuracy for Adam Optimizer and learning rate α = 
0.05 

The Top-5 Validation accuracy for all three chosen 

configurations achieve very quickly a desirable value of 

around 97% so we will focus on training accuracy and Top-1 

validation accuracy when comparing the pointed solutions. 

For Stochastic Gradient Descent Optimizer with learning 

rate α = 0.1 (Fig.9), we can observe a big gap between the 

training accuracy and Top-1 validation accuracy. 

For Adam Optimizer with learning rate α = 0.05 (Fig. 10), 

the situation is a bit worse: the gap between training 

accuracy and Top-1 validation accuracy is not only big but it 

is even increasing.  

The big gaps between training accuracy and Top-1 

Validation accuracy for both configurations: Stochastic 

Gradient Descent Optimizer with learning rate α = 0.1 and 
Adam Optimizer with learning rate α = 0.05 suggest that the 
models might be over fitted. 

 
Fig.  11. Accuracy for Adam Optimizer and learning rate α = 

0.01 

The last candidate: Adam Optimizer with learning rate α = 
0.01 (Fig.11) gives both acceptable values for Top-1 

validation accuracy of around 0.87 and acceptable gap 

between the training accuracy and Top-1 validation 

accuracy. What is more, the figure of cross-entropy loss in 

this case also seem the best: it reaches the lowest values after 

10000 training steps and constantly goes down. Hence, this 

configuration has been chosen as a final setup for Transfer 

Learning method.  

Summarizing, chosen configuration of parameters for 

Transfer Learning method is as follows: training steps= 

10000, Adam Optimizer with learning rate α=0.01 and 

epsilon=0.1 (a small constant for numerical stability), train 

batch size=100. 

VII. PERFORMANCE BENCHMARKING 

Next, we have performed a series of experiments to 

benchmark hardware configurations available in our lab (see 

section V B) as platforms for re-training image classifier 

models. As discussed in section III, we can distinguish 

several phases in the process of Transfer Learning method 

and so the performance benchmarks were performed 

separately for each one of them.  

A. “Bottleneck” pre-calculation phase  

First computationally intensive step is to determine the 

“bottleneck” values, that is an output of pre-last layer of 

neural network, given a single image at the input. Measured 

time of performing that operation, averaged over 50 test runs 

for different images, is presented on Fig.12.  Not 

surprisingly, the Odroid platform is the slowest one, with 2s 

to calculate a single bottleneck. The PC platform with GPU 

card is a clear winner, with 0.08s time. Remark that the 

bottleneck calculation time includes the time to read the 

image file from disk. On all studied platforms this time was 

below 0.004s, so we consider it negligible. 

54 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016



 
 

 

 

 
Fig.  12. Calculation time of “bottleneck” value for 1 image 

 

The bottleneck calculation operation has to be done once 

for every image in the training corpus. The result can be 

saved in a file, for quick access during the re-training phase 

later. Taking that into account, Table II presents estimated 

total time to calculate bottlenecks for all images in the 

training set, for different number of target classes, and 

assuming approximately 1000 images per class.  We can see 

that for a 1000-class model, it takes about 1 day on our 

fastest platform to prepare “bottleneck” values for entire 

image corpus. Fortunately, this operation is done just once, 

with results saved on disk for quick access during re-training 

phase. 

 

TABLE II. ESTIMATED BOTTLENECK CALCULATION TIME FOR WHOLE 

IMAGE CORPUS 

Number of classes ODROID PC-CPU PC-GPU  

100 56h 15.3h 2.2h 

250 140h 38.3h 5.7h 

1000 23d 8h 6d 9h 22.7h 

 

B. Re-training phase  

Now, the final classification layer of neural network is 

being trained with training images. The process follows a 

Stochastic Gradient Descent algorithm [2] with “mini-
batch”. In each step, the values of loss function, gradients 

and weight updates are calculated for a batch of images, in 

our tests equal to 100, 1000 and 10000. Measured average 

time of training step, normalized for 1 training image (i.e. 

divided by batch size) is presented in Fig.13. We can 

distinguish the following time components: 

 File access time is the time to read the “bottleneck” 
value from an a-priori saved file, as discussed in section 

VIIA. Remark that this time component is highly related 

with performance of disk file system, rather than 

processor computing power. It is a little bit surprising 

that it has the biggest impact on total training time. 

Remark that at each training step, a large number of 

small files (equal to batch size: 100, 1000, 10000) is 

read from disk and then processed in-memory. We may 

presume that optimization of disk access, e.g. by using 

faster disks, or pre-caching all training data in memory 

could bring significant reduction of this phase (a single 

“bottleneck” file has about 18kB size, which means that 
for entire image corpus we need about 18GB -

unfortunately for current experiments we didn’t have a 
machine with sufficient amount of RAM). 

Still, we can see that the time to access pre-cached 

bottleneck data is still much smaller than the time to 

produce the data by doing full calculations, as measured 

previously (about 0.015s to read from disk, vs. 0.08s of 

calculations on fastest machine). This result confirms 

that it indeed makes sense to pre-calculate and save 

“bottleneck” data for later usage multiple times in re-

training. 

 Training time is the actual time to perform all 

mathematical calculations related with completing the 

training steps. This time appears to be negligible 

comparing with the time of accessing training data from 

disk.  

 Validation time. Once every 500 batches, the 

validation step is performed, i.e. the value of top-1 and 

top-5 accuracy metric is calculated for a given 

validation set. This operation is done for the purpose of 

monitoring and logging the learning process, and has no 

impact on final result. But since it is usually done, we 

report it also in time benchmarks.   

 

 
Fig.  13 Analysis of re-training time, normalized for 1 

training example  

The results presented in Fig.13 correspond to processing a 

single training image. For completeness, Table III presents 

measured total time of re-training with a corpus of images 

appropriate for a given number of classes (recall that we 

have around 1000 images per class). The reported time 

corresponds to 1 “epoch”, that is training once with a full set 

of training data. Due to the fact that file access time has 

greatest impact on training time in this phase, the differences 

MAREK DĄBROWSKI ET AL.: A PRACTICAL STUDY OF NEURAL NETWORK-BASED IMAGE CLASSIFICATION MODEL 55



 
 

 

 

between hardware platforms are not so big. Surprisingly, the 

less powerful device (Odroid) performs best for this task. 

The explanation is that this device has a fast flash disk which 

beats in terms of file access time (which, as we saw has great 

impact on performance) the magnetic disc of our lab PC.  

TABLE III. MEASURED TRAINING TIME OF 1 EPOCH (AVERAGE AND 

STANDARD DEVIATION) 

Number of 

classes 

ODROID PC-CPU PC-GPU  

100 8.57 ± 0.57 m 14.24 ± 0.08m 14.57 ± 0.57m 

250 22.91 ±  0.69m 36.55m ± 1.58m 36.66 ± 1.53m 

1000 2h7m ± 3.18m 3h39m ± 16.35m 3h30m ± 8.14m 

C. Test phase 

Finally, test phase is when we want to actually obtain a 

classification result for an arbitrary photo. Fig.13 presents 

averaged measurement of time to calculate a final result. The 

following phases are distinguished: 

 Session run time: actual time of running the 

calculations with image pixel values as input, and 

scores assigned to each class (there were 1000 classes 

in tested model), as output. 

 Result processing time: time needed to prepare the 

result, i.e. sort the result table to extract 5 best scores,  

lookup the labels table to retrieve human-readable 

names of classes, and prepare the final result as json 

structure. 

As expected, total test time is longest on the Odroid 

(session run time is around 6s). On the other hand, on a PC 

with GPU this processing is time is reduced to less than 2s. 

 
Fig.  14 Analysis of inference time (image testing) on 

different hardware platforms 

VIII. SUMMARY AND FUTURE WORK 

Transfer Learning method has been studied as efficient 

approach to training neural network models for image 

classification. Practical guidelines for setting configuration 

parameters of re-training process were given in the paper, 

which includes: number of training steps for achieving 

sufficient accuracy of re-trained model, type of optimization 

algorithm, and value of learning rate. Performance 

benchmarks for training image classification models on 

typical low- and middle-level hardware platforms were 

given. The measurements show significant advantage of 

using GPU card for computationally demanding operations, 

and, a little surprisingly, advantage of low capacity device 

equipped with ultra-fast disk, in the case of training phases 

where lots of training data must be accessed in short time. In 

future work we plan to extend the benchmarking 

experiments to cover wider range of hardware platforms, 

including machines with different CPUs, RAM size, and 

different GPU types. 

It was shown that a good quality image classification 

model with our own set of classes can be obtained in several 

hours instead of weeks, by applying Transfer Learning 

method, that is re-training an existing neural network model 

downloaded from publicly available source and re-using 

most of the parameter values of original model. In future 

work we plan to study transfer learning with different sets of 

images than basic ImageNet-1000 corpus, with a goal to 

improve realism of our scenarios and transferring learned 

features to completely different classification task. 

REFERENCES 

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, “Deep 
Learning”, Book in preparation for MIT Press, 2016, on-line version 
available at:http://www.deeplearningbook.org  

[2] Michael A.Nielsen, “Neural Networks and Deep Learning”, 
Determination Press, 2015, on-line version of the book available at: 
http://neuralnetworksanddeeplearning.com/index.html  

[3] LeCun, Y., Jackel, L. D., Boser, B., Denker, J. S., Graf, H. P., Guyon, 
I., Henderson, D.,Howard, R. E., and Hubbard, W.. Handwritten digit 
recognition: Applications of neural network chips and automatic 
learning. IEEE Communications Magazine, 27(11), 1989 

[4] Ch.Szegedy et al, “Going deeper with convolutions”, 
http://arxiv.org/abs/1409.4842 

[5] ImageNet database of computer images: http://image-net.org/ 
[6] Yosinski J, Clune J, Bengio Y, and Lipson H. How transferable are 

features in deep neural networks? In Advances in Neural Information 
Processing Systems 27 (NIPS ’14), NIPS Foundation, 2014 

[7] Caffe Model Zoo web page: 
https://github.com/BVLC/caffe/wiki/Model-Zoo 

[8] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, 
[9] Z. Chen, et al., TensorFlow: Large-scale machine learning on 

heterogeneous systems, 2015. Software available from tensorflow.org. 
[10] Ch.Szegedy et al., “Rethinking the Inception Architecture for 

Computer Vision”, http://arxiv.org/abs/1512.00567 
[11] D.Kingma, J.Ba, “Adam: A Method for Stochastic Optimization”, 

http://arxiv.org/abs/1412.6980 
[12] ODROID-XU4 hardware : http://www.hardkernel.com/main/products/ 

prdt_info.php?g_code=G143452239825 
[13] Y. LeCun, L. Bottou, G. Orr and K. Muller: Efficient BackProp, in 

Orr, G. and Muller K. (Eds), Neural Networks: Tricks of the trade, 
Springer, 1998 

[14]   A. Krizhevsky,  I. Sutskever,  and G. E. Hinton.   ImageNet 
Classification with Deep Convolutional Neural Networks. In NIPS 
2012, Neural Information Processing Systems, Nevada, 2012 

0,11
0,6

2,31

0,13

0,13

0,57

0

0,5

1

1,5

2

2,5

3

3,5

GPU CPU Odroid

P
ro

ce
ss

in
g

 t
im

e
 [

s]

Session run time

Result processing time

56 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016


