
A Practical-Time Related-Key Attack on the

KASUMI Cryptosystem Used in GSM and 3G
Telephony

Orr Dunkelman, Nathan Keller�, and Adi Shamir

Faculty of Mathematics and Computer Science
Weizmann Institute of Science

P.O. Box 26, Rehovot 76100, Israel
{orr.dunkelman,nathan.keller,adi.shamir}@weizmann.ac.il

Abstract. The privacy of most GSM phone conversations is currently
protected by the 20+ years old A5/1 and A5/2 stream ciphers, which
were repeatedly shown to be cryptographically weak. They will soon be
replaced by the new A5/3 (and the soon to be announced A5/4) algo-
rithm based on the block cipher KASUMI, which is a modified version of
MISTY. In this paper we describe a new type of attack called a sandwich
attack, and use it to construct a simple distinguisher for 7 of the 8 rounds
of KASUMI with an amazingly high probability of 2−14. By using this
distinguisher and analyzing the single remaining round, we can derive
the complete 128 bit key of the full KASUMI by using only 4 related
keys, 226 data, 230 bytes of memory, and 232 time. These complexities
are so small that we have actually simulated the attack in less than two
hours on a single PC, and experimentally verified its correctness and
complexity. Interestingly, neither our technique nor any other published
attack can break MISTY in less than the 2128 complexity of exhaustive
search, which indicates that the changes made by ETSI’s SAGE group
in moving from MISTY to KASUMI resulted in a much weaker cipher.

1 Introduction

The privacy and security of GSM cellular telephony is protected by the A5 family
of cryptosystems. The first two members of this family, A5/1 (developed primar-
ily for European markets) and A5/2 (developed primarily for export markets)
were designed in the late 1980’s in an opaque process and were kept secret until
they were reverse engineered in 1999 from actual handsets [14]. Once published,
it became clear that A5/2 provided almost no security, and A5/1 could be at-
tacked with practical complexity by a variety of techniques (e.g., [2,12,16]). The
most recent attack was announced in December 2009, when a team of cryptog-
raphers led by Karsten Nohl [1] published a 2 terabyte rainbow table for A5/1,
which makes it easy to derive the session key of any particular conversation with
minimal hardware support.
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In response to these developments, the GSM Association had stated in [26]
that they might speed up their transition to a new cryptosystem called A5/3,
and they plan to discuss this matter in a meeting that was held in February 2010.
This algorithm was developed for GSM telephony in 2002, and its specifications
were published in 2003 [24]. It is already implemented in about 40% of the three
billion available handsets, but very few of the 800 mobile carriers in more than
200 countries which currently use GSM cellular telephony have switched so far
to the new standard. Once adopted, A5/3 will become one of the most widely
used cryptosystems in the world, and its security will become one of the most
important practical issues in cryptography.

The core of the A5/3 cryptosystem, as well as of the UAE1 cryptosystem
(which replaces A5/3 in the third generation telephony networks), is the KA-
SUMI block cipher, which is based on the MISTY block cipher which was pub-
lished at FSE 1997 by Matsui [22]. MISTY has 64-bit blocks, 128-bit keys, and a
complex recursive Feistel structure with 8 rounds, each one of which consists of
3 rounds, each one of which has 3 rounds of nonlinear SBox operations. MISTY
has provable security properties against various types of attacks, and no attack is
known on its full version. The best published attack can be applied to a 6-round
reduced variant of the 8-round MISTY, and has a completely impractical time
complexity of more than 2123 [15]. However, the designers of A5/3 decided to
make MISTY faster and more hardware-friendly by simplifying its key schedule
and modifying some of its components. In [25], the designers provide a ratio-
nale for each one of these changes, and in particular they analyze the resistance
of KASUMI against related-key attacks by stating that “removing all the FI
functions in the key scheduling part makes the hardware smaller and/or reduces
the key set-up time. We expect that related key attacks do not work for this
structure”. The best attack found by the designers and external evaluators of
KASUMI is described as follows:

“There are chosen plaintext and/or related-key attacks against KASUMI
reduced to 5 rounds. We believe that with further analysis it might be
possible to extend some attacks to 6 rounds, but not to the full 8 round
KASUMI.”

The existence of better related-key attacks on the full KASUMI was already
shown in [8,21]. Their attack had a data complexity of 254.6 and time complex-
ity of 276.1, which are impractical but better than exhaustive search. In this
paper we develop a new attack, which requires only 4 related keys, 226 data, 230

bytes of memory, and 232 time. Since these complexities are so low, we could
verify our attack experimentally, and our unoptimized implementation on a sin-
gle PC recovered about 96 key bits in a few minutes, and the complete 128 bit
key in less than two hours. Careful analysis of our attack technique indicates
that it can not be applied against the original MISTY, since it exploits a se-
quence of coincidences and lucky strikes which were created when MISTY was
changed to KASUMI by ETSI’s SAGE group. This calls into question both the
design of KASUMI and its security evaluation against related-key attacks. How-
ever, we would like to emphasize that even though our attack on the underlying
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cryptosystem has a practical time complexity, we do not claim that we can prac-
tically apply such a related key attack to the way KASUMI is used in the f8 and
f9 modes of operation in cellular telephony.

We use a new type of attack which is an improved version of the boomerang
attack introduced in [27]. We call it a “sandwich attack”, since it uses a dis-
tinguisher which is divided into three parts: A thick slice (“bread”) at the top,
a thin slice (“meat”) in the middle, and a thick slice (“bread”) at the bottom.
The top and bottom parts are assumed to have high probability differential
characteristics, which can be combined into consistent quartet structures by
the standard boomerang technique. However, in our case they are separated by
the additional middle slice, which can significantly reduce the probability of the
resulting boomerang structure. Nevertheless, as we show in this paper, careful
analysis of the dependence between the top and bottom differentials allows us in
some cases to combine the two properties above and below the middle slice with
an enhanced probability. In particular, we show that in the case of KASUMI we
can use top and bottom 3-round differential characteristics with an extremely
high probability of 2−2 each, and combine them via a middle 1-round slice in
such a way that the “price in probability” of the combination is 2−6, instead
of the 2−32 we would expect from a naive analysis. This increases the proba-
bility of our 7-round distinguisher from 2−40 to 2−14, and has an even bigger
impact on the amount of data and the time complexity of the attack due to the
quadratic dependence of the number of cases we have to sample on the distin-
guishing probability. Such a three level structure was used in several previous
attacks such as [10,11] (where it was called the “Feistel switch” or the “middle
round S-box trick”), but to the best of our knowledge it was always used in the
past in simpler situations in which the transition probability through the mid-
dle layer (in at least one direction) was 1 due to the structural properties of a
single Feistel round, or due to the particular construction of a given SBox. Our
sandwich attack is the first nontrivial application of such a structure, and the
delicacy of the required probabilistic analysis is demonstrated by the fact that a
tiny change in the key schedule of KASUMI (which has no effect on the differ-
ential probabilities of the top and bottom layers) can change the probability of
the transition in the middle of the distinguisher from the surprisingly high value
of 2−6 to 0.

This paper is organized as follows: Section 2 describes the new sandwich
attack, and discusses the transition between the top and bottom parts of the
cipher through the middle slice of the sandwich. Section 3 describes the KASUMI
block cipher. Section 4 describes our new 7-round distinguisher for KASUMI
which has a probability of 2−14. In Section 5 we use the new distinguisher to
develop a practical-time key recovery attack on the full KASUMI cryptosystem.

2 Sandwich Attacks

In this section we describe the technique used in our attacks on KASUMI. We
start with a description of the basic (related-key) boomerang attack, and then
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we describe a new framework, which we call a (related-key) sandwich attack, that
exploits the dependence between the underlying differentials to obtain a more
accurate estimation of the probability of the distinguisher. We note that the idea
of using dependence between the differentials in order to improve the boomerang
distinguisher was implicitly proposed by Wagner [27], and was also used in some
simple scenarios in [10,11]. Therefore, our framework can be considered as a
formal treatment and generalization of the ideas proposed in [10,11,27].

2.1 The Basic Related-Key Boomerang Attack

The related-key boomerang attack was introduced by Kim et al. [20,18], and
independently by Biham et al. [7], as a combination of the boomerang attack [27]
and the related-key differential attack [19]. In this attack, the cipher is treated as
a cascade of two sub-ciphers E = E1 ◦E0, and related-key differentials of E0 and
E1 are combined into an adaptive chosen plaintext and ciphertext distinguisher
for E.

Let us assume that there exists a related-key differential α → β for E0 under
key difference ΔKab with probability p. (i.e., Pr[E0(K)(P )⊕E0(K⊕Kab)(P ⊕α) =
β] = p, where E0(K) denotes encryption through E0 under the key K). Similarly,
we assume that there exists a related-key differential γ → δ for E1 under key
difference ΔKac with probability q. The related-key boomerang distinguisher
requires encryption/decryption under the secret key Ka, and under the related-
keys Kb = Ka ⊕ΔKab, Kc = Ka ⊕ΔKac, and Kd = Kc ⊕ΔKab = Kb ⊕ΔKac.

A boomerang quartet is generated by picking a plaintext Pa at random, and
asking for its encryption under Ka, namely, Ca = EKa(Pa). Then, Pb = Pa⊕α is
encrypted under Kb to obtain Cb = EKb

(Pb). Two new ciphertexts are computed,
Cc = Ca ⊕ δ and Cd = Cb ⊕ δ. Then, Cc is decrypted under Kc, and Cd is
decrypted under Kd, i.e., Pc = E−1

Kc
(Cc) and Pd = E−1

Kd
(Cd). If Pc ⊕ Pd = α,

a right boomerang quartet is found. The left side of Figure 1 describes such a
right related-key boomerang quartet.

For a random permutation the probability that the last condition is satisfied
is 2−n, where n is the block size. For E, the probability that the pair (Pa, Pb)
is a right pair with respect to the first differential (i.e., the probability that
the intermediate difference after E0 equals β) is p. Assuming independence, the
probability that both pairs (Ca, Cc) and (Cb, Cd) are right pairs with respect to
the second differential is q2. If all these are right pairs, then E−1

1 (Cc)⊕E−1
1 (Cd) =

β = E0(Pc) ⊕ E0(Pd). Thus, with probability p, Pc ⊕ Pd = α. Hence, the total
probability of this quartet of plaintexts and ciphertexts to satisfy the condition
Pc ⊕ Pd = α is at least (pq)2. Therefore, if pq � 2−n/2, the algorithm above
allows to distinguish E from a random permutation given O((pq)−2) adaptively
chosen plaintexts and ciphertexts.

The distinguisher can be improved by considering multiple differentials of the
form α → β′ and γ′ → δ (for the same α and δ). We omit this improvement
here since it is not used in our attack on KASUMI, and refer the reader to [7]. For
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a rigorous treatment of the related-key boomerang attack, including a discussion
of the independence assumptions the attack relies upon, we refer the interested
reader to [21,23].

2.2 Related-Key Sandwich Attacks

In this framework we consider the cipher as a cascade of three sub-ciphers:
E = E1 ◦ M ◦ E0. Our assumptions are the same as in the basic attack: We
assume that there exists a related-key differential α → β for E0 under key
difference ΔKab with probability p, and a related-key differential γ → δ for
E1 under key difference ΔKac with probability q. The attack algorithm is also
exactly the same as in the basic attack (ignoring the middle sub-cipher M).
However, the analysis is more delicate and requires great care in analyzing the
dependence between the various distributions.

The main idea behind the sandwich attack is the transition in the middle. In
the basic boomerang attack, if the pair (Pa, Pb) is a right pair with respect to
the first differential, and both pairs (Ca, Cc) and (Cb, Cd) are right pairs with
respect to the second differential, then we have

(Xa ⊕ Xb = β) ∧ (Xa ⊕ Xc = γ) ∧ (Xb ⊕ Xd = γ), (1)

where Xi is the intermediate encryption value of Pi, and thus

Xc ⊕ Xd = (Xc ⊕ Xa) ⊕ (Xa ⊕ Xb) ⊕ (Xb ⊕ Xd) = β ⊕ γ ⊕ γ = β, (2)

resulting in Pc ⊕ Pd = α with probability p (see Figure 1).
In the new sandwich framework, instead of condition (1), we get

(Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ) ∧ (Yb ⊕ Yd = γ). (3)

Therefore, the probability of the three-layer related-key boomerang distinguisher
is p2q2r, where

r = Pr
[
(Xc ⊕ Xd = β)

∣∣∣(Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ) ∧ (Yb ⊕ Yd = γ)
]
. (4)

Without further assumptions on M , r is expected to be very low (close to 2−n),
and thus the distinguisher is expected to fail. However, as observed in [10,11,27],
in some cases the differentials in E0 and E1 can be chosen such that the proba-
bility penalty r in going through the middle sub-cipher (in at least one direction)
is 1, which is much higher than expected.

An example of this phenomenon, introduced in [27] and described in [11]
under the name “Feistel switch”, is the following. Let E be a Feistel cipher,
decomposed as E = E1 ◦ M ◦ E0, where M consists of one Feistel round (see
Figure 2). Assume that the differentials α → β (for E0) and γ → δ (for E1) have
no key difference (i.e., ΔKab = ΔKac = 0), and satisfy βR = γL (i.e., the right
half of β equals the left half of γ). We would like to compute the value of r.
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Fig. 2. A Feistel construction. M is the second round

Assume that condition (3) holds. In this case, by the Feistel construction,
XR

i = Y L
i for all i, we have

XR
a ⊕ XR

b = βR = γL = XR
a ⊕ XR

c = XR
b ⊕ XR

d , (5)

and thus,
(XR

a = XR
d ) and (XR

b = XR
c ). (6)

Therefore, the output values of the F-function in the Feistel round represented
by M , denoted by (Oa,Ob,Oc,Od), satisfy

(Oa = Od) and (Ob = Oc).

Since by the Feistel construction, XL
i = Y R

i ⊕Oi and by condition (3), Ya⊕Yb⊕
Yc ⊕ Yd = 0 , it follows that

Xa ⊕ Xb ⊕ Xc ⊕ Xd = 0,

which by condition (3) implies Xc ⊕ Xd = β. Thus, in this case we get
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r = Pr
[
(Xc ⊕ Xd = β)

∣∣∣(Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ) ∧ (Yb ⊕ Yd = γ)
]

= 1,

independently of the choice of the F-function used.
Other examples of the same phenomenon are considered in [10] (under the

name “middle round S-box trick”), and in [11] (under the names “ladder switch”
and “S-box switch”). All these examples are methods for r = 1.

Our attack on KASUMI is the first non-trivial example of this phenomenon
in which a careful analysis shows that r is smaller than 1, but much larger than
its expected value under the standard independence assumptions. In our attack,
the cipher E (7-round KASUMI) is a Feistel construction, M consists of a single
round, and β = γ. However, the argument presented above cannot be applied
directly since there is a non-zero key difference in M , and thus a zero input
difference to the F-function does not imply zero output difference. Instead, we
analyze the F-function thoroughly and show that in this case, r = 2−6 (instead of
2−32, which is the expected value for a random Feistel round in a 64-bit cipher).

Remark 1. We note that our treatment of the sandwich distinguisher allows us to
specify the precise independence assumptions we rely upon. Since r is defined as
a conditional probability, the only independence assumptions we use are between
the differentials of E0 and E1, and thus the formula p2q2r relies on exactly the
same assumptions as the ordinary boomerang attack. Moreover, in our case the
assumptions seem more likely to hold since the insertion of M in the middle
decreases the potential dependencies between the differentials for E0 and the
differentials for E1. In [10,11,27], this situation was treated as a “trick” allowing
to increase the probability of the distinguisher, or in other words, as a failure of
the formula p2q2 in favor of the attacker. This approach is problematic since once
we claim that the entire formula does not hold due to dependencies, we cannot
rely on independence assumptions in other places where such dependencies were
not found yet.

3 The KASUMI Block Cipher

KASUMI [24] is a 64-bit block cipher with 128-bit keys. It has a recursive Feistel
structure, following its ancestor MISTY. The cipher has eight Feistel rounds,
where each round is composed of two functions: the FO function which is in
itself a 3-round 32-bit Feistel construction, and the FL function that mixes a
32-bit subkey with the data in a linear way. The order of the two functions
depends on the round number: in the even rounds the FO function is applied
first, and in the odd rounds the FL function is applied first.

The FO function also has a recursive structure: its F -function, called FI, is
a four-round Feistel construction. The FI function uses two non-linear S-boxes
S7 and S9 (where S7 is a 7-bit to 7-bit permutation and S9 is a 9-bit to 9-bit
permutation), and accepts an additional 16-bit subkey, which is mixed with the
data. In total, a 96-bit subkey enters FO in each round — 48 subkey bits are
used in the FI functions and 48 subkey bits are used in the key mixing stages.
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Table 1. KASUMI’s Key Schedule Algorithm

Round KLi,1 KLi,2 KOi,1 KOi,2 KOi,3 KIi,1 KIi,2 KIi,3

1 K1 ≪ 1 K′
3 K2 ≪ 5 K6 ≪ 8 K7 ≪ 13 K′

5 K′
4 K′

8

2 K2 ≪ 1 K′
4 K3 ≪ 5 K7 ≪ 8 K8 ≪ 13 K′

6 K′
5 K′

1

3 K3 ≪ 1 K′
5 K4 ≪ 5 K8 ≪ 8 K1 ≪ 13 K′

7 K′
6 K′

2

4 K4 ≪ 1 K′
6 K5 ≪ 5 K1 ≪ 8 K2 ≪ 13 K′

8 K′
7 K′

3

5 K5 ≪ 1 K′
7 K6 ≪ 5 K2 ≪ 8 K3 ≪ 13 K′

1 K′
8 K′

4

6 K6 ≪ 1 K′
8 K7 ≪ 5 K3 ≪ 8 K4 ≪ 13 K′

2 K′
1 K′

5

7 K7 ≪ 1 K′
1 K8 ≪ 5 K4 ≪ 8 K5 ≪ 13 K′

3 K′
2 K′

6

8 K8 ≪ 1 K′
2 K1 ≪ 5 K5 ≪ 8 K6 ≪ 13 K′

4 K′
3 K′

7

(X ≪ i) — X rotated to the left by i bits.

The FL function accepts a 32-bit input and two 16-bit subkey words. One
subkey word affects the data using the OR operation, while the second one affects
the data using the AND operation. We outline the structure of KASUMI and
its parts in Fig. 3.
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The key schedule of KASUMI is much simpler than the original key schedule
of MISTY, and the subkeys are linearly derived from the key. The 128-bit key K
is divided into eight 16-bit words: K1, K2, . . . , K8. Each Ki is used to compute
K ′

i = Ki ⊕Ci, where the Ci’s are fixed constants (we omit these from the paper,
and refer the intrigued reader to [24]). In each round, eight words are used as the
round subkey (up to some in-word rotations). Hence, each 128-bit round subkey
is a linearly modified version of the secret key. We summarize the details of the
key schedule of KASUMI in Table 1.

4 A Related-Key Sandwich Distinguisher for 7-Round
KASUMI

4.1 The New Distinguisher

In our distinguisher, we treat rounds 1–7 of KASUMI as a cascade E = E1 ◦M ◦
E0, where E0 consists of rounds 1–3, M consists of round 4, and E1 consists of
rounds 5–7. The related-key differential we use for E0 is a slight modification of
the differential characteristic presented in [13], in which

α = (0x, 0010 0000x) → (0x, 0010 0000x) = β.

The corresponding key difference is ΔKab = (0, 0, 8000x, 0, 0, 0, 0, 0), i.e., only
the third key word has the single bit difference ΔK3 = 8000x. This related-key
differential is depicted in Figure 4. The related-key differential we use for E1 is
the same differential shifted by four rounds, in which the data difference is the
same, but the key difference is ΔKac = (0, 0, 0, 0, 0, 0, 8000x, 0) (to handle the
different subkeys used in these rounds).

As shown in [13], the probability of each one of of these 3-round differential
characteristics is 1/4. In order to find the probability of the related-key sandwich
distinguisher, we have to compute the probability

Pr
[
(Xc ⊕ Xd = β)

∣∣∣(Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ) ∧ (Yb ⊕ Yd = γ)
]
, (7)

where (Xa, Xb, Xc, Xd) and (Ya, Yb, Yc, Yd) are the intermediate values before
and after the middle slice of the sandwich during the encryption/decryption of
the quartet (Pa, Pb, Pc, Pd) (see the right side of Figure 1). This computation,
which is a bit complicated, spans the rest of this subsection.

Consider a quartet (Pa, Pb, Pc, Pd) for which the condition

(Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ) ∧ (Yb ⊕ Yd = γ) (8)

is satisfied. As explained in Section 2, since M is a single Feistel round, this
implies that

(XR
a = XR

d ) ∧ (XR
b = XR

c ), (9)

where XR
i denotes the right half of Xi that enters the function FO4. Moreover,

as the right quarter of the differences β = γ is zero, we have
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XRR
a = XRR

b = XRR
c = XRR

d , (10)

where XRR
i denotes the right half (i.e., the 16 right bits) of XR

i .
Consider now the computation depicted in Figure 5. The function FO4 is a

3-round Feistel construction whose 32-bit values after round j are denoted by
(Xj

a, Xj
b , Xj

c , Xj
d), and the function FI is a 4-round Feistel construction whose

16-bit values after round j are denoted by (Ij
a, Ij

b , Ij
c , Ij

d). Note that the key
differences ΔKab and ΔKac affect in round 4 the subkeys KI4,3 and KI4,2,
respectively, and in particular, there is no key difference in the first round of
FO4. As a result, Equation (9) implies that

(X1
a = X1

d) ∧ (X1
b = X1

c ). (11)

Furthermore, there is no key difference in the pairs corresponding to (Pa, Pb)
and (Pc, Pd) in the second round of FO4, and thus Equation (10) implies

(I2
a = I2

b ) ∧ (I2
c = I2

d). (12)

Combining equations (11) and (12), as depicted in Figure 5, we get the following
relation in the right half of the intermediate values after round 3 of FO4:

X3R
a ⊕ X3R

b ⊕ X3R
c ⊕ X3R

d = 0. (13)

In the F-function of round 3 of FO4 we consider the pairs corresponding to
(Pa, Pd) and (Pb, Pc). Since the key difference in these pairs (that equals Kab ⊕
Kac) affects only the subkey KI4,3,1, Equation (11) implies

I3R
a ⊕ I3R

b ⊕ I3R
c ⊕ I3R

d = 0 (14)

in the right hand side of the output. In the left hand side of the output, the XOR
of the four values is not necessarily equal to zero, due to the subkey difference
that affects the inputs to the second S7 in FI4,3. However, if these 7-bit inputs,
denoted by (Ja, Jb, Jc, Jd), satisfy one of the conditions:

((Ja = Jb) ∧ (Jc = Jd)) or ((Ja = Jc) ∧ (Jb = Jd)) , (15)
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then Equation (14) implies

I3L
a ⊕ I3L

b ⊕ I3L
c ⊕ I3L

d = 0. (16)

Since we have Ja ⊕ Jd = Jb ⊕ Jc (both are equal to the subkey difference in
KI4,3,1), each one of the two conditions in Equation (15) is expected to hold1

with probability 2−7. Therefore, combining Equations (13), (14), and (16) we
get that the condition

X3
a ⊕ X3

b ⊕ X3
c ⊕ X3

d = 0 (17)

holds with probability 2−6.
Finally, since the FL function is linear for a given key and there is no key

difference in FL4, we can conclude that whenever Equation (17) holds, the
outputs of the F-function in round 4 (denoted by (O4

a, O4
b , O4

c , O4
d)) satisfy

O4
a ⊕ O4

b ⊕ O4
c ⊕ O4

d = 0 (18)

with probability 2−6. Since by condition (8),

Y L
a ⊕ Y L

b ⊕ Y L
c ⊕ Y L

d = 0,

it follows that
XL

a ⊕ XL
b ⊕ XL

c ⊕ XL
d = 0 (19)

also holds with probability 2−6. Combining it with Equation (9) yields

Pr
[
(Xc ⊕ Xd = β)

∣∣∣(Xa ⊕ Xb = β) ∧ (Ya ⊕ Yc = γ) ∧ (Yb ⊕ Yd = γ)
]

= 2−6.

(20)
Therefore, the overall probability of the related-key sandwich distinguisher is

(1/4)2 · (1/4)2 · 2−6 = 2−14, (21)

which is much higher than the probability of (1/4)2 · (1/4)2 · 2−32 = 2−40 which
is expected by the naive analysis of the sandwich structure.

4.2 Experimental Verification

To verify the properties of the new distinguisher, we used the official code avail-
able as an appendix in [24]. The verification experiment was set up as follows: In
each test we randomly chose a key quartet satisfying the required key differences.
We then generated 216 quartets by following the boomerang procedure described
above. We utilized a slight improvement of the first differential suggested in [13]
that increases its probability in the encryption direction by a factor of 2 by fixing
the value of two plaintext bits. Hence, we expect the number of right quartets
in each test to be distributed according to a Poisson distribution with a mean
value of 216 · 2−14 · 2 = 8. We repeated the test 100,000 times, and obtained
a distribution which is extremely close to the expected distribution. The full
results are summarized in Table 3.
1 This estimate is based on a randomness assumption that could be inaccurate in

our case due to dependence between the differential characteristics. However, the
experiments presented below verify that this probability is indeed as expected.
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Fig. 5. The Development of Differences in FO4 and in FI4,3

5 Related-Key Sandwich Attack on the Full KASUMI

Our attack on the full KASUMI (depicted in Figure 6) applies the distinguisher
presented in Section 4 to rounds 1–7, and retrieves subkey material in round 8.
Let ΔKab = (0, 0, 8000x, 0, 0, 0, 0, 0) and ΔKac = (0, 0, 0, 0, 0, 0, 8000x, 0), and
let Ka, Kb = Ka ⊕ ΔKab, Kc = Ka ⊕ ΔKac, and Kd = Kc ⊕ ΔKab be the
unknown related keys we wish to retrieve.

The attack algorithm is as follows:

1. Data Collection Phase:
(a) Choose a structure of 224 ciphertexts of the form Ca = (Xa, A), where

A is fixed and Xa assumes 224 arbitrary different values. Ask for the
decryption of all the ciphertexts under the key Ka and denote the plain-
text corresponding to Ca by Pa. For each Pa, ask for the encryption of
Pb = Pa ⊕ (0x, 0010 0000x) under the key Kb and denote the resulting
ciphertext by Cb. Store the pairs (Ca, Cb) in a hash table indexed by the
32-bit value CR

b (i.e., the right half of Cb).
(b) Choose a structure of 224 ciphertexts of the form Cc =(Yc, A⊕0010 0000x),

where A is the same constant as before, and Yc assumes 224 arbitrary dif-
ferent values. Ask for the decryption of the ciphertexts under the key Kc

and denote the plaintext corresponding to Cc by Pc. For each Pc, ask for
the encryption of Pd = Pc⊕(0x, 0010 0000x) under the key Kd and denote
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the resulting ciphertext by Cd. Then, access the hash table in the entry
corresponding to the value CR

d ⊕ 0010 0000x, and for each pair (Ca, Cb)
found in this entry, apply Step 2 on the quartet (Ca, Cb, Cc, Cd).

In the first step described above, the (224)2 = 248 possible quartets are filtered
according to a condition on the 32 difference bits which are known (due to the
output difference δ of the distinguisher), which leaves about 216 quartets with
the required differences.

In Step 2 we can identify the right quartets instantly using an extremely lucky
property of the KASUMI structure. We note that a pair (Ca, Cc) can be a right
quartet if and only if

CL
a ⊕ FL8(FO8(CR

a )) = CL
c ⊕ FL8(FO8(CR

c )), (22)

since by the Feistel structure, this is the only case of which the difference af-
ter round 7 is the output difference of the sandwich distinguisher (i.e., δ =
(0x, 0010 0000x)). However, the values CR

a and CR
c are fixed for all the consid-

ered ciphertexts, and hence Equation (22) yields

CL
a ⊕ CL

c = FL8(FO8(A)) ⊕ FL8(FO8(A ⊕ 0010 0000x)) = const. (23)

Thus, the value CL
a ⊕ CL

c is equal for all the right quartets. This allows us to
perform the following simple filtering:

2. Identifying the Right Quartets:
(a) Insert the approximately 216 remaining quartets (Ca, Cb, Cc, Cd) into a

hash table indexed by the 32-bit value CL
a ⊕ CL

c , and apply Step 3 only
to bins which contain at least three quartets.

Since the probability of a 3-collision in a list of 216 random 32-bit values is
lower than

(
216

3

) ·2−64 ≤ 2−18, with very high probability only the right quartets
remain after this filtering.

In the following step, we treat all the remaining quartets as right quartets.
Under this assumption, we know not only the actual inputs to round 8, but also
the differences in the outputs of round 8.

3. Analyzing Right Quartets:
(a) For each remaining quartet (Ca, Cb, Cc, Cd), guess the 32-bit value of

KO8,1 and KI8,1. For the two pairs (Ca, Cc) and (Cb, Cd) use the value
of the guessed key to compute the input and output differences of the
OR operation in the last round of both pairs. For each bit of this 16-
bit OR operation of FL8, the possible values of the corresponding bit
of KL8,2 are given in Table 2. On average (8/16)16 = 2−16 values of
KL8,2 are suggested by each quartet and guess of KO8,1 and KI8,1.2

Since all the right quartets suggest the same key, all the wrong keys are
discarded with overwhelming probability, and the attacker obtains the
correct value of (KO8,1, KI8,1, KL8,2).

2 The simple proof of this claim is given in Section 4.3 of [8].
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Table 2. Possible Values of KL8,2 and KL8,1

OR — KL8,2 AND — KL8,1

(X ′
bd, Y ′

bd) (X ′
bd, Y ′

bd)
(X ′

ac, Y
′

ac) (0,0) (0,1) (1,0) (1,1) (X ′
ac, Y

′
ac) (0,0) (0,1) (1,0) (1,1)

(0,0) {0,1} — 1 0 (0,0) {0,1} — 0 1
(0,1) — — — — (0,1) — — — —
(1,0) 1 — 1 — (1,0) 0 — 0 —
(1,1) 0 — — 0 (1,1) 1 — — 1

∗ The two bits of the differences are denoted by (input difference, output difference):
(X ′

1, Y
′
1) for one pair and (X ′

2, Y
′
2) for the other pair.

Table 3. The Number of Right Quartets in 100,000 Experiments

Right Quartets 0 1 2 3 4 5 6 7 8

Theory (Poi(8)) 34 268 1,073 2,863 5,725 9,160 12,214 13,959 13,959

Experiment 32 259 1,094 2,861 5,773 9,166 12,407 13,960 13,956

Right Quartets 9 10 11 12 13 14 15 16 17

Theory (Poi(8)) 12,408 9,926 7,219 4,813 2,962 1,692 903 451 212

Experiment 12,230 9,839 7,218 4,804 3,023 1,672 859 472 219

Right Quartets 18 19 20 21 22 23 24 25

Theory (Poi(8)) 94 40 16 6 2 0.8 0.26 0.082

Experiment 89 39 13 12 2 0 0 1

(b) Guess the 32-bit value of KO8,3 and KI8,3, and use this information
to compute the input and output differences of the AND operation in
both pairs of each quartet. For each bit of the 16-bit AND operation of
FL8, the possible values of the corresponding bit of KL8,1 are given in
Table 2. On average (8/16)16 = 2−16 values of KL8,1 are suggested by
each quartet and guess of KO8,3, KI8,3, and thus the attacker obtains
the correct value of (KO8,3, KI8,3, KL8,1).

4. Finding the Right Key: For each value of the 96 bits of (KO8,1, KI8,1,
KO8,3, KI8,3, KL8,1 ,KL8,2) suggested in Step 3, guess the remaining 32
bits of the key, and perform a trial encryption.

The data complexity of the attack is 225 chosen ciphertexts and 225 adaptively
chosen plaintexts encrypted/decrypted under one of four keys. The time com-
plexity is dominated by the trial encryptions performed in step 4 to find the last
32 bits of the key, and thus it is approximately equal to 232 encryptions. The
probability of success is approximately 76% (this is the probability of having at
least three right pairs in the data pool).

The memory complexity of the attack is also very moderate. We just need to
store 226 plaintext/ciphertext pairs, where each pair takes 16 bytes. Hence, the
total amount of memory used in the attack is 230 bytes, i.e., 1 GByte of memory.
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Table 4. The Number of Identified Right Quartets in 1,000 tests

Right Quartets 0/1/2 3 4 5 6 7 8 9 10 11 12

Theory (Poi(4)) 238 195 195 156 104 60 30 13 5 2 0.6

Experiment 247 197 180 167 112 52 30 7 4 3 1
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Fig. 6. The 7-Round Related-Key Sandwich Distinguisher of KASUMI

5.1 Experimental Verification

We performed two types of experiments to verify our attack. In the first experi-
ment, we just generated the required data, and located the right quartets (thus
verifying the correctness of our randomness assumptions). The second experi-
ment was the application of the full attack (both with and without the final
exhaustive search over the remaining 32 key bits). All our experiments were car-
ried out on an Intel Core Duo 2 machine with a T7200 CPU (2 GHz, 4 MB L2
Cache, 2 GB RAM, Linux-2.6.27 kernel, with gcc 4.3.2 and standard optimiza-
tion flags (-O3, -fomit-frame-pointers, -funroll-loops), single core, single
thread).

The first experiment was conducted 1,000 times. In each test, we gener-
ated the data and found candidate quartets according to Steps 1 and 2 of the
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attack algorithm. Once these were found, we partially decrypted the quartets,
and checked how many quartets were right ones. Table 4 details the outcome of
these experiments, which follow the expected distribution.

The second experiment simulated the full attack. We repeated it 100 times,
and counted in each case how many times the final exhaustive search over 232

possible keys would have been evoked. In 78 out of these 100 experiments, the
key was found when 3 or more quartets were identified to be right ones (the
expected number was 76.1).

About 50% of the tests were able to identify the right key by invoking either 2
or 4 exhaustive searches. As the first part of the attack (which identifies candidate
quartets) takes about 8 minutes, and each exhaustive search (using the official
KASUMI source code) takes about 26 minutes, we could find the full 128 bit
key in about 50% of our tests in less than 112 minutes (using a single core). It
is important to note that by increasing the running time, one can increase the
success rate of the attack without increasing its data requirements.

6 Summary

In this paper we develop a new sandwich attack on iterated block ciphers, and use
it to reduce the time complexity of the best known attack on the full KASUMI
from an impractical 276 to the very practical 232. However, the new attack uses
both related keys and chosen messages, and thus it might not be applicable to
the specific way in which KASUMI is used as the A5/3 encryption algorithm
in third generation GSM telephony. Our main point was to show that contrary
to the assurances of its designers, the transition from MISTY to KASUMI led
to a much weaker cryptosystem, which should be avoided in any application in
which related-key attacks can be mounted.
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