
A Practical Universal Forgery Attack against
PAES-8

Yu Sasaki and Lei Wang

NTT Secure Platform Laboratories, Japan
sasaki.yu@lab.ntt.co.jp

Nanyang Technological University, Singapore
Wang.Lei@ntu.edu.sg

Abstract. PAES is an authenticated encryption scheme designed by Ye
et al., and submitted to the CAESAR competition. The designers claim
that PAES-8, which is one of the designs of the PAES-family, provides
128-bit security in the nonce misuse model. In this note, we show our
forgery attack against PAES-8. Our attack works in the nonce misuse
model. The attack exploits the slow propagation of message differences.
The attack is very close to the universal forgery attack. As long as the
target message is not too short, e.g. more than 10 blocks (160 bytes),
a tag is forged only with 211 encryption oracle calls, 211 computational
cost, and negligible memory.

Key words: PAES-8, Universal Forgery Attack, Nonce Misuse

1 Specification of PAES-8

PAES-8 is one of the designs of the PAES-family designed by Ye et al. [1]. It
exploits the AES round function that consists of three operations SubBytes,
ShiftRows, and MixColumns. PAES-8 encryption function takes a 128-bit key
K, a 128-bit nonce N , variable length associated data A, and variable length
plaintext P as input, and outputs the corresponding ciphertext C and a 128-bit
tag T .

The encryption function consists of 4 parts: initialization, processing asso-
ciated data, processing plaintext, and finalization, which are computed in this
order. The computation structure is illustrated in Fig. 1 and Fig. 2, where the bit
size of each arrow line in those figures is 128 bits. In PAES-8, the state consists
of eight 128-bit values, or eight AES states. 128-bit values are called “blocks” in
PAES.

Initialization. In the initialization part, a 128-bit key K and a 128-bit nonce
N are mixed and expanded to 1024-bit internal state. We omit the details due
to the irrelevance to our attack.

K

N

initialization

A
0

A
s-1

RF
8

RF
8

State after A

processing
associated data

Fig. 1. Initialization and Asso-
ciated Data Processing

0

RF
9

P
0

C
0

RF
9

P
1

C
1

RF
9

P
m-1

C
m-1

State after A

Len
0

RF
8

Len
13

RF
8

T

finalizationprocessing plaintext

RF
8

Fig. 2. Plaintext Processing and Finalization

Processing Associated Data. The associated data A is first padded to a
multiple of 128 bits (A0, A1, . . . , As−1), and then processed block by block with
the round function RF 1. The round function RF 1 of PAES-8 generally takes
an 9-block (or 1152-bit) value as input, of which 1024 bits are for the previous
internal state value and 128 bits are for processing other data. The output of RF 1

is either an 8-block value (updated internal state) or an 9-block value (updated
internal state and 1-block key stream). We denote the round function by RF 1

8

when the output size is 8 blocks, and by RF 1
9 when the output size is 9 blocks.

In RF 1
8 , an 8-block internal state value is split into eight 1-block variable

S1, S2, . . . , S8. Let M be another 1-block input value. Then, the updated state
value V1, V2, . . . , V8 are computed as follows, which is also illustrated in Fig. 3.

V1 ← AES1R(S6 ⊕ S8), V5 ← AES1R(S4),
V2 ← AES1R(S1), V6 ← AES1R(S5),
V3 ← AES1R(S2), V7 ← AES1R(S7 ⊕ S6),
V4 ← AES1R(S3), V8 ← AES1R(S8 ⊕M),

where AES1R applies the AES round function.
Finally, by taking the 8-block state value after the initialization, state, as

input, the associated data is processed by computing RF 1
8 (state, Ai) for i =

0, 1, . . . , s− 1.

Processing Plaintext. The plaintext P is first padded to a multiple of 128 bits
(P0, P1, . . . , Pm−1), and then processed block by block with the round function
RF 1

9 . RF 1
9 is almost the same as RF 1

8 . The only difference is that it produces
another 1-block output value r by r ← S7 ⊕ V7. The computation of RF 1

9 is
illustrated in Fig. 4. The additional 1-block output value r is used as a key

AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

M

�� �� �� �� �� �� �	 �

�� �� �� �� �� �� �	 �

Fig. 3. Round function with 8-block output
AES1R stands for the AES round function.

�

AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

M

�� �� �� �� �� �	 �
 ��

�� �� �� �� �� �	 �
 ��

Fig. 4. Round function with 9-block output

stream. Namely, the ciphertext block Ci for the plaintext block Pi is computed
by Ci ← Pi⊕r. Finally, by taking the 8-block state value after the associated data
processing, state, as input, the plaintext is processed by computing as follows:

state ← RF 1
8 (state, 0),

for i = 0 to m− 1

(state, ri) ← RF 1
9 (state, Pi),

Ci ← Pi ⊕ ri.

Finalization. In the finalization, the state is updated by using the bit length
of the associated data |A| and the bit length of the plaintext |P |. However, the
state updating function is different from RF 1

8 and RF 1
9 . In short, the internal

state S1, S2, . . . , S8 is updated by using the public function and the public input
values |A| or |P |. Finally, the 128-bit tag T is computed as S7 ⊕ S8. We omit
the details due to the irrelevance to our attack.

Claimed Security of PAES-8. The claimed security of PAES-8 is given in Table
1. In particular, 128-bit security is claimed for the integrity in the nonce-misuse
model.

2 Practical Universal Forgery Attack against PAES-8

In this section, we show a universal forgery attack against PAES-8 in the nonce-
misuse model, which only requires a small complexity .

Table 1. Bits of security goals in PAES-8[1]

Goal Nonce-respecting Model Nonce-repeating Model

confidentiality for the plaintext 128 /

integrity for the plaintext 128 128

integrity for the associated data 128 128

integrity for the public message number 128 128

2.1 Slow Diffusion of Message Difference in PAES-8

The core of our observation is as follows.

1. Injecting a difference in subsequent two plaintext blocks so that they cancel
each other with high probability.

2. If they cancel each other, only 1 block has the difference for 8 rounds as
shown in Fig. 5. Then, the input and output differences of the 1 AES round
function can be recovered from the key stream, which leads to the significant
information about the internal state.

Note that the designers also mentioned the 8-round differential propagation [1,
Figure 4.3]. The designers point out the difficulty to control the differential
propagation over 8 AES rounds, while our attack uses the trail in a completely
different way.

2.2 Message Structure

Our attack is very close to the universal forgery attack. However, because the
attack requires to observe the ciphertext difference caused by the plaintext dif-
ference, the plaintext cannot be too short. The attack can forge the tag of any
message as long as its block size is greater than or equal to 15 blocks, or 240
bytes. Note that there is no restriction for the associated data.

2.3 Attack Details

Suppose that the target plaintext to forge is long enough. The attack mainly
analyzes the first 13 blocks of the target denoted by P0‖P1‖ · · · ‖P12. The attacker
queries the first 13 blocks to the encryption oracle and obtains the corresponding
ciphertext blocks. Then, the key stream value is recovered from the plaintext and
the ciphertext. Note that the tag value is never used in this attack. The attacker
aims to fully recover the internal state for this message. Once the internal state
is fully recovered, the remaining computation can be computed offline. Hence,
the attacker can compute the tag for the original target offline.

AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P0
AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P1
AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P2
AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P3
AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P4
AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P5
AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P6
AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P7

�

�

�
AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P8
AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P9

�

AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

�

Fig. 5. Differential Propagation When ∆α and ∆β Cancel Each Other

Choosing Plaintext Differences ∆α and ∆β. The attacker generates the
difference ∆α on P0 and ∆β on P1. The attacker wants to cancel the impact of
∆α with ∆β to avoid activating state S8. Thus, ∆α and ∆β are chosen so that
the cancellation can occur with high probability. To be more precise, ∆α should
have only 1 active byte. Let α and β be the 1-byte input and output difference
of the S-box, respectively, in which α changes to β with probability 2−6. Then,
∆α and ∆β are written as follows.

∆α = (α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
∆β = MixColumns ◦ ShiftRows(β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

∆α will change to ∆β with probability 2−6.

Detecting the Cancellation between ∆α and ∆β. The attacker can detect
whether or not AES1R(∆α) and ∆β cancel each other by observing the key
stream after 8 rounds. The differential propagation when the cancellation occurs
is shown in Fig. 5.

From the computation structure, ∆R7 becomes ∆R8 ⊕∆R7 by AES1R oper-
ation. Moreover, each byte difference of ∆R7 becomes the corresponding byte
difference of ShiftRows−1 ◦ MixColumns−1(∆R8 ⊕ ∆R7) through S-box. If the
cancellation occurs, the differential propagation through S-box will be always
possible one.

On the other hand, suppose that AES1R(∆α) and ∆β do not cancel each
other. Then, the differential propagation becomes as shown in Fig. 6. In this case,
∆R7 is XORed with an unknown random difference from S6, and thus impossible
differential propagation from ∆R7 to ShiftRows−1◦MixColumns−1(∆R8⊕∆R7)
may be observed.

Note that a randomly given two differences are impossible difference for the S-
box operation with probability about 2−1. Thus, the probability to be a possible
differential propagation in all bytes is 2−16, which is small enough to detect the
cancellation with probability 2−6. Also note that the same distinguishing method
can be applied to 4 subsequent rounds, in total 5 rounds. Thus the probability
to be a possible differential propagation becomes 2−80.

To be more precise, the procedure is as follows.

1. Query the first 13 plaintext blocks of the target (P0‖P1‖ · · · ‖P12), and ob-
tains the key stream R7, R8, · · · , R12.

2. FOR i = 1 to 27 DO
3. Choose a 1-byte difference αi and obtain the corresponding βi.
4. Query (P0⊕αi‖P1⊕βi‖ · · · ‖P12) and obtain the key stream R7i, R8i, · · · , R12i.
5. Check if R7⊕R7i can produce R7⊕R7i⊕R8⊕R8i by the AES1R operation.
6. Check the same property for additional 4 rounds.
7. Pick up the pair that passes all the above checks.
8. END FOR

In the end, two pairs that follow the differential propagation in Fig. 5 are ob-
tained. Note that, if the attacker unluckily cannot obtain 2 pairs even with trying
all choices of α, β with differential probability 2−6, then α and β can be chosen
from 2−7 differential propagation of the S-box.

Recovering S7 and S8. From the knowledge of the input and output dif-
ferences of the S-box, the attacker can recover the state value for processing
(P0‖P1‖ · · · ‖P12). This can be applied to 1 active byte of S8 right after inserting
P0 and all bytes of S7 in 5 rounds where the differential propagation is con-
firmed. The candidate values can be reduced to at most 4 choices for each S-box
per pair. Therefore, by analyzing two pairs, the internal state value is uniquely
detected.

To recover the all bytes in S8, the same analysis needs to be repeated 16
times with changing active byte positions. Hence, the analysis requires 16 times

AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P0
AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P1
AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P2
AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P3
AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P4
AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P5
AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P6
AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P7

�

�

�
AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P8
AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P9

�

AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

�

 ≠ �

 ≠ �

 ≠ �

Fig. 6. Differential Propagation When ∆α and ∆β Do Not Cancel

of the cost for a fixed byte position. S8 is never affected from S1, S2, . . . , S7.
Hence, once S8 is recovered, S8 in all rounds can be recovered.

Recovering S1 to S6 and Forging Tag. The internal state S3 to S6 for the
block processing P8 are easily recovered from the recovered value of S7. The
procedure to recover S6 is explained in Fig. 7.

From the knowledge of ∆R7 and ∆R8, the internal state of S7 is recovered
and from the knowledge of ∆R8 and ∆R9, the internal state of S7 after 1 round
is recovered. By taking XOR of the recovered state values, the internal state of
S6 is recovered. In Fig. 7, the recovered variables are stressed by dashed circles.

AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P
7

���
AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P
8

AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

P
9

���

AES1R AES1R AES1R AES1R AES1R AES1R AES1R AES1R

��	

Fig. 7. Internal State Recovery of S6

The attacker can observe up to ∆R12, and thus the state value for S3, S4, S5,
and S6 can be recovered.

To recover the internal state S1 and S2, we simply iterate the attack by
shifting the attacked rounds by 2 rounds. Namely, we use the first 15 blocks
of the target message and the plaintext differences are generated in P2 and P3.
Because the internal state S8 is already recovered in all rounds, we can choose
the proper pair of ∆α and ∆β easily. Therefore, the cost to recover S1 and S2

is negligible. Finally, all state values are recovered.
Once all the internal state is recovered, the remaining computations including

the tag generation is public. Therefore, the attacker can simulate the tag value
of the target message offline, and succeeds in the universal forgery attack.

Complexity Evaluation. For each active byte position, the attack requires to
find two pairs that satisfies the differential propagation in Fig. 5. Therefore, the
attack requires 16×2×26 = 211 encryption oracle calls. The computational cost
is also 211. Because each pair can be analyzed one after another, the memory
complexity is negligible.

3 Concluding Remarks

In this note, we proposed a practical universal forgery attack against PAES-8 in
the nonce-misuse model. Our attack can forge a tag of any message that is longer
than or equal to 15 blocks with 211 encryption oracle calls, 211 computational
cost, and negligible memory. The attack clearly breaks the security claim of
PAES-8, i.e. 128-bit security for integrity in the nonce-misuse model.

References

1. Dingfeng Ye, Peng Wang, Lei Hu, Liping Wang, Yonghong Xie, Siwei Sun, and Ping
Wang. PAES v1. Submitted to the CAESAR competition, March 2014.

