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The j·th best subset problem for the generalized least squares is formulated in which statistical criteria 

as well as non-statistical conditions are introduced. Non-statistical conditions are based on a knowledge of the 

scientific field to which research is related, natural logic and common sense, while statistical criteria are t-test, 

Durbin-Watson serial correlation test, absolute relative error test, turning point test and fitting test, depending on 

the covariance matrix of a disturbance term and type of data. Various technical methods are devised to make a 

computer solve the first (j=l) to the J-th (e.g., J=10) best subset problems in one computer-run, depending on 

whether or not a researcher has a new criterion or appropriate values for the parameters used to evaluate meaningful 

subsets before estimation. Then, the ultimately best subset among the best J subsets is regarded as a practical 

solution to the variable selection problem for the generalized least squares. The System OEPP can handle the 

proposed variable selection method. 

1. Introduction 

A method to solve the variable selection problem for the generalized 

least squares, abbreviated as GLS from here on, introduced by Aitken [1] has 

not been proposed in the literature. The stepwise regression method, the 

forward selection method, the backward elimination method, the minimax 

principle method, the branch-and-bound method, the t-directed method, etc. 

([3], [6], [7]) have been proposed for the ordinary least squares. However, 

these methods and the software systems which can handle them have been rarely 

used in actual research. All possible regressions are not helpful, especially 

if the number of explanatory variables is large. Usually, non-statistical 

conditions such as the scientific knowledge related to research at hand, 

natural logic and common sense are used with statistical criteria to find an 
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estimated equation which can be used for analysis and/or prediction. Since 

these methods ignore such non-statistical conditions, they often select an 

equation which is statistically satisfactory but unacceptable for research. 

As a result, instead of using these methods, researchers load, estimate and 

evaluate many equations one at a time by adding. removing or altering variables 

until they can find satisfactory equations. This present manner to find a 

satisfactory equation is quite time-consuming, laborious and costly. 

Non-statistical conditions are concerned with (i) roles or meanings of 

variables, (ii) signs and/or magnitudes concerning regression coefficients and 

(iii) constraints and hypothetical relations on regression coefficients. The 

condition (i) is concerned with whether a subset is meaningful or meaningless 

for research at hand. A meaningful subset is defined as the one which in

cludes variables necessary to explain the behavior of an explained variable 

as well as possible but does not include any unnecessary or redundant var1a

bles. The condition (ii) is widely appli.ed to the magnitude tests for a single 

regression coefficient and the value of a linear function of regressi.on co

efficients and to the comparison of the absolute values of regression coeffi

cients. The condition (iii) is seen. for example, in economics. Zero sum of 

all price elasticities and income elasti.city in a Cobb-Doublas type demand 

function is used as a constraint to be i.mposed on regression coefficients or 

a hypothetical relation to test whether or not consumers are affected by money 

illusion. 

Thus, we need to develop a method 1:0 solve systematically the variable 

selection problem for GLS in which statj~stical criteria as well as non-statis

tical conditions are used. 

2. The j-th Best Subset Problem 

We assume that T=number of observation times; t=1,2, •••• T; N=number of 

cross-sectional units (e.g., sectors and regions); n=1.2, •••• N; NT=sample 

size; Y=(NTxl )-vector of an explained v,uiable; y (t)=observation of Y in 
n 

unit n at time t so that Y={yl(1).y2(1) .... 'yN(1) ..... yl(T),y2(T), ... 'yN(T)}·; 

X={NTX(K+l)}-matrix of all possible explanatory 

constant term; X,=i-th {NTx(K,+l)}-submatrix of 
~ ~ 2 

vector of a disturbance term with u ~ N(O,cr v); 

variables, including a 

X; i=1.2, ••• ,2
K
-l; u=(NTx l)-

2 
cr =scale factor; v=positive 

definite (NTxNT)-matrix in which all elements are known and the diagonal 

elements are normalized; A, and A.={(K.+l)xl}-vectors of true and estimated 
~ ~ 1. 

coefficients of Xi' respectively; Yi=(NTx1)-vector of Y predicted by using 
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Xi; Yi={Yi1(1)'Yi2(1)""'YiN(1)""'Yi1(T)'Yi2(T)""'YiN(T)}'; Ei=Y-Yi ; 

- - - - - - - -2 2 . 
E.={e.1(1),e.2(1)' ... ,e.N(1) .... ,e.1(T).e.2(T) •..• ,e.N(T)}'; s.=a est1mated. 
~ ~ ~ ~ ~ ~ ~ ~ 

by using E.; and tq=t-value of q% significance level and degrees of freedom r. 
~ r 

(1) 

The i-th subset can be expressed as follows: 

Y=X.A .+u 
~ ~ 

2 
with u '" N(O,a v) 

Y
i 

can be expressed as follows: 

(2) Y .=X.A. 
~ ~ ~ 

The author would like to formulate the j-th best subset problem for GLS 

as follows: 

Find subset xi from a given set X of all possible explanatory variables 
. - -2 . 

specified for an explained var1able Y and estimate Ai and si 1n one computer-

run such that 

[I] 

[Il] 

(3) 

(4) 

(5) 

[Ill] 

(6) 

subset xi is meaningful for the research at hand, 

A. and ~~ are calculated as follows: 
~ ~ 

1n the case where no constraints are imposed on Ai' 

A.=(X!v- 1x.)-l X!v-1y 
~ ~ ~ ~ 

or in the case where a set of constraints BiAi=Gi is imposed on Ai' 

A.=(X~V-1x.)-1 [X!V-1Y+B~{B.(X~v-1x.)-lB!}-1 
~ ~ ~ ~ ~ ~ ~ ~ ~ 

-1 -1 -1 
{Gi-B/Xi v x) xiv Y}] 

-2 - -1-
s.=E~V E./(NT-K.-1+M.) 
~ ~ ~ ~ ~ 

where Mi is the rank of Bi but Mi=O in (5), (7), (8), (9) and (25) unless 

constraints are imposed on Ai' 

A. satisfies the following magnitude conditions (including sign condi
~ 

tions) based on the scientific knowledge of the research, if necessary: 

and/or 

1 2 _P 
where f

h
, fh and r

hi 
for p=l,2,3 are a lower bound, an upper bound and 

a row coefficient vector of the h-th magnitude condition, respectively, 

IPPh.A.1 for p=2,3 is the absolute value of PPh.A., and ± stands for + or -
~ ~ ~ ~ 

(of course, if ~i is a zero vector, it must be ignored), 
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[IV] the following inequality must be satisfied to reject the null hypothesis 

HO and to accept the specified alternative hypothesis H
1

, if necessary: 

(7) 

(8) 

(9) 

(10) 

(11) 

[V] 

(12) 

(13) 

( 14) 

(15) 

ICdiAi-Cdl//S~i > t~~=K.-1+M. Eor H1 
~ ~ 

or 

for 

where C
di 

and cd are a row coefficient vector and a value of the d-th 

hypothetical relation, respectively, and q is a significance level (%) 

of a t-test specified by the researcher, 

the Durbin-Watson statistic DW. defined below 
~ 

for 

Q 

1 -1 0 0 

-1 2 -1 0 o 
o -1 2-1 

............... 
............... 

-1 2 -1 0 

o o -1 2-1 

o 0 -1 

satisfies the following inequalities, if time series data for N=l, T~6 

and K.-M.:;;20 are used ([4], [5], [9]) and V is diagonal: 
~ ~ 

or 

4-DW;~d~U (or 4-DW.~d"'. ) if DW.>2 
~ ~ ~ ~L ~ 

and, if V is an identity matrix and (14) or (15) does not hold, calculate 

the following: 
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( 16) 

(17) 

[VI] 

( 18) 

for 

V. 
~ 

r. 
~ 

r. 
~ 

H.Onishi 

T-l 
r. 
~ 

T-2 
r. 
~ 

r~-1 r~-2 .•.. 1 
~ ~ 

W 
and go back to condition [11] above after setting v=v

i
, where diU and 

d
W 

are the upper and lower limits of the Durbin-Watson serial correla-
iL 

tion test of W (%) significance level specified by the researcher and the 

parentheses in (14) and (15) must hold when he would like to regard 

through his subjective judgement an inconclusive case as uncorrelated, 

Y. satisfies the following absolute relative error test, if necessary: 
~ 

for all nand t 

100xl{y (t)-y. (t)}/y (t)l~vl if y (t)~O 
n ~n n n 

and 

(19) Iyin(t) l~v2 if Yn(t)=O 

[VII] 

(20) 

(21) 

(22) 

(23) 

(24) 

1 (%) d 2 . f' d b h h where v • an v are specl le y t e researc er, 

Y. satisfies the following turning point test, if necessary: 
~ 

if 

{y (t)-y (t-t.)}{y (t+t.)-y (t)}<O 
n n ~ n ~ n 

and 

100 xMin[l{y (t)-y (t-t.)}/y (t)l, 
n n ~ n 

I{y (t+t.)-y (t)}/y (t) I]~wl for y (t)~O 
n ~ n n n 

or 

Min[ly (t-t.)I,ly (t+t.) 1]~w2 for y (t)=O 
n ~ n ~ n 

then 

{y (t)-y (t-t.)}{Y. (t)-y. (t-t.)}>O 
n n ~ ~n ~n ~ 

and 

{y (t+t .)-y (t) HY. (t+t .)-y. (t) }>O 
n ~ n ~n ~ ~n 

(i) for all n, T~3 and 2~t~T-l and ti=1 in the case where no lagged 

explained variables are included in X., 
~ 

(ii) for all n, ~2Ti+l, Ti+l~t~T-Ti and ti=Ti in the case where only 
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one lagged explained variable, whose time lag number is Ti' is included 

in xi' or 

and 

(iii) for all n, T~2Ti+1, ti+1~t~T-ti and t
i

=1,2, ••• ,T
i 

in the case where 

two or more lagged explained variables are included in X. and T. stands 
~ ~ 

for the maximum among the time lag numbers of lagged explained variables, 

where w
1 

(%) and w
2 

are specified by the researcher, 

[VIII] Ai yields the j-th highest Buse's coefficient of determination ([2]) 

adjusted by the number of explanatory variables among the subsets which 

have passed the above conditions [I] to [VII]: 

(25) 

(26) 

where 

RR.=1-(1-R.)(NT-1)/(NT-K.-1+M.) 
~ ~ ~ ~ 

- -1- - -1 -
R.=l-E~V E./(Y-yu)'v (y-yu) 
~ ~ ~ 

and U=(l, 1, .•. ,1)' with dimension N'l'. 

The author wants to propose the first (j=l) best subset as a practical 

solution to the variable selection problem for GLS. if the researcher knows 

. (1 2 1 2 1 2 ) appropn.ate values for the parameters f
h

, f
h

, q, w, v , v , w , w , etc. 

and does not have any new test to evaluate subsets. On the other hand, if he 

does not know appropriate values for the parameters before estimation or if 

he has a new test to evaluate subsets, he should solve the first to the J-th 

(e.g., J=10) best subset problems in one computer-run and find by himself the 

ultimately best subset among these J subsets by comparing them with each other 

or by applying the new test to these J subsets. Such an ultimately best sub

set can be regarded as a practical solution to the variable selection problem 

for GLS. 

3. Derivation of All Meaningful Subsets from All Possible Explanatory 

Variables by the System OEPP 

Let us show a method to make a computer derive all meaningful subsets 

from a given set of all possible variables. It must be noted that any kind 

of symbols and styles can be used instead. of ours but the variable selection 

rules must be kept. We assume that an explained variable, Y, and a set, X, 

of its possible variables are loaded into a computer by a functional form 

like Y=F(X). The X is classified into 3 kinds on the basis of a knowledge of 

applied research at hand. The first is for a group of P variables from which 

at least Q but at most R variables must be selected, where P, Q and Rare 

integers satis fying O;:;;Q;:;;R;:;;P and R~ 1. Q=() implies that an empty subset can be 

meaningful with respect to these variables. These meaningful subsets are 
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regarded as equivalent to each other concerning the selection of variables 

before estimation and evaluation. Let us enclose these P variables within 

<Q< ... >R> or <R< •.• >Q>. For example, <O<WM,KS,LH,HG>l>, where p~4, Q=O and 

R=l, generates the following 5 meaningful subsets with respect to these varia

bles: {~}. {WM}, {KS}, {m} and {HG}, 

The second kind of classification is for a group of P variables whose 

degrees of importance are a priori known and among which the most important 

to the Q-th important variable must be always selected and the remaining 

variables are selected optionally. successively and additionally from the 

Q+l-st important ,to the least important variable. Lagged or powered variables 

belong to this classification. Let us assume that Xl is more important than 

X
2 

which is more important than X3 .,. X
p

_
l 

which is more important than Xp 

and enclose them within <Q< ••• » or « .•• >Q> in such a way that the most 

important variable Xl to the least important variable xp are entered from the 

<Q< side to the » side or from the >Q> side to the « side, respectively. 

where P and Q are integers satisfying O~Q~P. Q=O allows an empty subset as a 

meaningful subset with respect to these variables. Thus, we can express as 

<Q<X
l
'X

2 
•...• Xp» or «Xp'Xp_l' .••• X2'Xl>Q>. For example, <1<W.W(-1),W(-2»> 

or «W(-2).W(-1).W>1>. where w(-t) is variable W with time lag number t. 

generates the following 3 meaningful subsets with respect to these variables: 

{W}. {W.W(-l)} and {W,W(-1).W(-2)}. <0<W,W(-1).W(-2»> or «w(-2),W(-1),W>0> 

generates the following 4 meaningful subsets with respect to these variables: 

{~}, {w}. {W.W(-O} and {w.w(-O ,w(-2)}. 

The third classification is for grouped variables. Grouped variables are 

such that they cannot be selected separately but they must be selected as a 

whole just like a single variable in deriving all meaningful subsets. They 

are enclosed within ( .•. ) and appear in the above 2 classifications. For 

example. <2<A.B(Cl,C2»3> derives the following 4 meaningful subsets with 

respect to these variables: {A,B}, {A,Cl,C2}, {B,Cl,C2} and {A.B,Cl.C2}. 

Since a constant term has special meanings, it is better to treat it 

separately from non-constant variables. We give it a special symbol like @C 

and select it in all possible subsets. if it is needed. 

Let us show that these 3 kinds of variable classifications can always 

derive all meaningful subsets. Suppose that the following equations cor

respond to all meaningful subsets: 

(27) 

where a~ and X. are the constant term and the row vector of non-constant 
~ ~ 

explanatory variables in the i-th equation and Ai is the column vector of the 

coefficients of X.. (27) can be derived, whether nested or non-nested, from 
~ 
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where all Xi's are treated as sets of grouped variables. 

Let us show only how to derive the constraint suitable for each of all 

meaningful subsets from an aggregate constraint. An aggregate constraint is 

defined as a linear equation, like bA=g, of the regression-coefficients A of 

all possible explanatory variables X from which b.A.=g for X. is derived by 
~ ~ ~ 

selecting the regression-coefficients A] and the equation-coefficients b
i 

corresponding to Xi' where b, b
i 

and g are the row vector of the known equa

tion-coefficients of A, the row vector of the equation-coefficients of Ai and 

the value, respectively. In the System OEPP [8], bA=g, which is called an 

aggregate constraint, is loaded through bX'=g by using explanatory variables 

instead of regression-coefficients. Since the equation-coefficients of some 

regression-coefficients are zeros, only b*X*'=g is actually loaded, where b* 

is the row vector of non-zero equation-coefficients and x* is the row vector 

of the explanatory variables corresponding to b*. This method can be easily 

applied to aggregate magnitude conditions and general linear hypothetical 

relations. 

4. An Application to an Agricultural Production Function 

We apply the proposed variable selection method for estimation of an 

agricultural production function of Cobb-Douglas type by using the data 

observed from 1965 to 1979 in Japan. As the Japanese economy has been growing, 

the ratio of the part-time farmers (second class). who are defined as farmers 

whose agricultural incomes are less than non-agricultural as a proportion of 

their total incomes, has become larger. Part-time farmers cannot take care 

of their crops and animals as much as full-time farmers (and part-time farmers 

of the first class). because the former are involved in their non-agricultural 

jobs more than the latter. As a result, it is considered that the agricul

tural production of the part-time farmers is easily affected by unfavorable 

weather so that it has larger variances than that of the full-time farmers. 

Hence, we assume that the variances of a disturbance term during the above 

estimation period are not constant but proportional to the ratio of the part

time farmers to all farmers and the covariances are zero. 

We introduce the following notation; LY = log (products); @C 

term; DVCS = dummy variable for cold sunmer; LL = log(labor); LK 

constant 

log (capital) 

= log(KA+KP+KM) = log (animal+plant+machinery capital); LKR = log(capital 

adjusted by a use rate of machinery capi tal); LAX = log (A-X) = log (cultivated 
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acreage minus abandoned and damaged acreage); LCAX = log(A-X adjusted by rice 

production index); LQ 

technical progress. 

log (intermediate inputs); and T = time trend for 

The following functional form is appropriate: 

(29) LY=F(@C<1<LL>1><0<DVCS,T,LQ>3><1<LK,LKR>1><1<LAX,LCAX>1» 

which derives only 23x2X2 =32 meaningful subsets among 2
8

-1=255 possible sub

sets. Accordingly, the remaining 223 subsets are meaningless for this 

research. 

To check for and avoid unrealistic equations, we introduce the following 

criteria: DVCS<O; T>O; 0.1~LL<0.5; 0.1~LQ<0.3; 0.1~LK+LKR<0.5; O.l~LAX+LCAX< 

0.6; 0.85~LL+LQ+LK+LKR+LAX+LCAX~1.15; 5% t-test; 5% Durbin-Watson serial 

correlation test (an inconclusive case is treated as acceptable by the 

researcher's subjective judgement); 1% absolute relative error test; and 0.5% 

slope turning point test, where the variables imply their regression coeffi

cients. 

When we tried to solve the first and second best subset problems in one 

computer-run of the System OEPP, we obtained only the following first best 

subset in less than 2 seconds CPU time by the FACOM M-380 (about 23 MIPS): 

(30) 

LY 
(S.E. ) 
(T.R.) 

= 0.5837250 + 0.3158237*LL + 0.0208933*T + 0.1646213*LKR 
(1.343301) (0.1306969) (0.0071497) (0.0523064) 
(0.434545) (2.416459) (2.922250) (3.147253) 

+ 0.5837928*LCAX 

(0.1626294) 
(3.589713) 

BR=0.9344, BRR=0.9081, sE=0.0200. FA=-0.0074, Dw=2.032 where S.E. and 

T.R. in parentheses, BR, BRR, SE, FA and DW are standard errors and t-ratios 

of coefficients, Buse's coefficient of determination, Buse's adjusted coeffi

cient of determination, scale factor of a disturbance term, first-order auto

correlation coefficient and Durbin-Watson statistic, respectively. The 

equation satisfies all tests applied and can be regarded as reasonable. 

5. Concluding Remarks 

The variable selection problem for GLS can be solved by using non-statis

tical conditions as well as statistical criteria. Since an overall evaluation 

function which reflects various non-statistical conditions and statistical 

criteria does not exist, the author formulated the j-th best subset problem, 

suggested to solve the first to the J-th (e.g., J=10) best subset problems in 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



A Practical Variable Selection Method for GLS 431 

one computer-run, depending on whether o:c not a researcher has appropriate 

values for the parameters or a new test, and proposed to regard the ultimately 

best subset among the best J subsets as a practical solution to the variable 

selection problem for GLS. 

This method drastically saves time and reduces labor and cost, while it 

can improve the quality of applied research. 
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