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Abstract—This paper introduces the development of a practical
brain–computer interface at Tsinghua University. The system uses fre-
quency-coded steady-state visual evoked potentials to determine the gaze
direction of the user. To ensure more universal applicability of the system,
approaches for reducing user variation on system performance have been
proposed. The information transfer rate (ITR) has been evaluated both
in the laboratory and at the Rehabilitation Center of China, respectively.
The system has been proved to be applicable to 90% of people with a
high ITR in living environments.

Index Terms—Brain–computer interface (BCI), information transfer
rate (ITR), steady-state visual evoked potential (SSVEP).

I. INTRODUCTION

In recent years, brain–computer interfaces (BCI) based on noninva-
sive scalp electroencephalography (EEG) have become an increasingly
active research area. Event-related potentials, mu and beta rhythms,
event-related synchronization and desynchronization, slow cortical po-
tentials, and visual evoked potentials (VEP) are commonly used sig-
nals in EEG-based BCIs [1]–[3]. Different from other systems, the
VEP-based BCI is considered a dependent BCI because the generation
of the VEP depends on the control of eye movements via the output
pathways of cranial nerves and extraocular muscles. Therefore, for the
few people with severe neuromuscular disabilities, who may even lack
the output channel of extraocular muscle control, this BCI is inappli-
cable. However, for most people, the VEP-based BCI is more feasible
than other systems. It has the advantages of a high information transfer
rate (ITR), convenient system preparation, and little user training.

In 1992, Sutter developed a BCI based on transient VEP (TVEP),
which was called the brain response interface (BRI) [4]. A subject
with implanted electrodes reached communication rates of 10 to 12
words/minute. In other dependent VEP-based systems, two different
methods utilizing steady-state VEP (SSVEP) as the communication
medium were employed. One approach was to train the user to self-reg-
ulate the amplitude of SSVEP through slight shift of gaze [5]. The other
approach was to use frequency detection of frequency-coded SSVEP
to determine the gaze direction of the user [5]–[7]. We employ the
latter approach to implement our system. Different from the above ap-
proaches, Kelly et al. recently presented an independent VEP-based
BCI controlled by left/right visual spatial attention [8].

As a common problem in BCI research, a high user variation also
exists in the SSVEP-based system [1], [6]–[8]. In our previous study,
the average ITR was about 25 bits/min; whereas, five of the 13 subjects
had an average ITR of only 3.05 bits/min [6]. Realizing this problem,
we consciously focused our study on the problem of user applicability.
Our investigation has demonstrated that user variation can be signifi-
cantly reduced by carefully selecting the channel location, the stimulus
frequency, and the speed of selection.
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Fig. 1. Block diagram of system.

II. METHODS

A. Physiological Background

VEPs are derived from the brain’s response to visual stimulation.
They reflect the visual information processing mechanism in the brain.
SSVEP is a response to a visual stimulus modulated at a frequency
higher than 6 Hz. SSVEP can be recorded from the scalp over the vi-
sual cortex, with maximum amplitude at the occipital region. Photic
driving response, which is characterized by an increase in amplitude at
the stimulus frequency, results in significant fundamental and second
harmonics. Therefore, it is possible to detect the stimulus frequency
based on measurement of SSVEP.

Large areas of the visual cortex are allocated to process the center of
our field of vision, so the acuity is greatest when the stimulus is located
in the center of the visual field [4], [16]. This effect is called central
magnification, i.e., the amplitude of SSVEP increases enormously as
the stimulus is moved closer to the central visual field. Different SSVEP
can be produced by directly looking at one of a number of frequency-
coded stimuli. This is the basic principle of an SSVEP-based BCI.

B. System Configuration

Fig. 1 is the block diagram of the system, which is similar to other
BCI designs [1]. It includes a visual stimulator, EEG acquisition equip-
ment, signal processing algorithms, and device control methods. A vir-
tual keypad consisting of several buttons on a CRT monitor was de-
signed as the stimulator [6]. The output device was controlled by alter-
ation of the user’s gaze direction.

A number of buttons flash at different repetition rates, composing
a frequency-coded flashing matrix. The subject was asked to gaze at
the target attentively, ignoring the other buttons in the operation. At
this time, the target will be located in the center of the visual field,
only causing an increased response associated with the target. Then,
signal processing technology can be used to determine the stimulus
frequency. The button, which matches the detected frequency, is the
target the user wants to select.

The task of signal processing is to detect the existence of the SSVEP
and determine its frequency. The target will induce a peak in the ampli-
tude spectrum at the stimulus frequency, which is larger than the mean
amplitudes of the lower and higher frequency bands. The first step is to
search for the peak value and determine the corresponding frequency.
To avoid false positives caused by spontaneous EEG signals, the next
step is to make sure that the normalized signal amplitude at the deter-
mined frequency is above a predefined threshold. This step is effective
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Fig. 2. (a) Spatial distributions of amplitude spectra on scalp over visual cortex. (b) Amplitude spectra on two pairs of channels, i.e., PO2-POz and PO2-T8.

for discriminating SSVEP and spontaneous EEG signals. A predefined
command is executed if these two criteria can be satisfied.

C. System Optimization

To overcome the problem of individual diversity, a preparation ex-
periment was implemented before a real practical application. The pur-
pose of the experiment is to find three optimal parameters for each spe-
cific subject. The parameters will be used in his/her further applica-
tions.

The setup of the preparation experiment was as follows. Mul-
tichannel EEG signals were recorded with a BioSemi ActiveTwo
system using 32 channels. Thirteen channels were located between
Pz and Oz to record signals over the visual cortex with a high spatial
resolution [Fig. 2(a)]. A blinking light-emitting diode (LED) modu-
lated by square wave was used as the stimulator. The integer stimulus
frequency covered the bandwidth from 9 to 17 Hz. Sixty-second-long

data were acquired in each test with different stimulation frequencies.
Signals were sampled at 256 Hz and preprocessed by a 50-Hz notch
filter and a 4–35-Hz band-pass filter. Three important parameters (in-
cluding channel location, stimulus frequency, and speed of selection)
were obtained from offline analyses of the recorded data.

1) Channel Location: To detect the frequency of SSVEP accu-
rately and conveniently, a proper bipolar lead should be selected for
real-life application. In practice, the channel with the most significant
amplitude of SSVEP can be considered as the signal channel that com-
monly locates the visual cortex. The precise position can be deter-
mined with the study of EEG power mapping at the stimulus frequency.
The difficulty is to determine the reference channel, which should en-
hance the signal-to-noise ratio (SNR). Here, two factors for reference
channel selection are under consideration: the amplitude of SSVEP and
the distance from the signal channel. To retain the signal, the refer-
ence channel must have lower SSVEP amplitude. To reduce the noise,
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it should have similar background activities with the signal channel.
Therefore, some channels close to the signal channel could be good
candidates.

The channel selection of one representative subject is displayed in
Fig. 2, which significantly increases user performance when compared
with the conventional ear reference channel. Independent component
analysis (ICA) is used for decomposition of signal and noise from
single channel EEG [9], [10]. The detailed procedures are described
as follows.

1) Independent component analysis. Thirteen-channel EEGs XXX

(with embedded SSVEP at 13 Hz) between Pz and Oz are se-
lected as the input. Thirteen independent components (ICs) are
calculated as sources SSS through ICA, i.e., SSS =WWW �XXX , where WWW
is the demixing matrix.

2) Decomposition and reconstruction of signal and noise. The ICs
with highest normalized amplitude [defined in Part C(2)] at the
stimulus frequency are supposed to be signal activities and the
remaining are considered as noise activities. They are denoted as
SSSSignal and SSSNoise. Then, SSS can be expressed as

S = [
SSignal

SNoise ]:

With the equationXXX =WWW�1 �SSS;XXX can be divided into two com-
ponents: XXXSignal =WWW�1 �SSSSignal and XXXNoise =WWW�1 �SSSNoise.
XXXSignal andXXXNoise are the reconstructions of signal and noise ac-
tivities over the scalp. The number of signal ICs is predetermined
empirically (e.g., 4).

3) Amplitude spectra analyses of XXX;XXXSignal and XXXNoise. Fig. 2(a)
displays the results of the thirteen channels over the scalp. For
each group, the amplitude spectrum ofXXX is in the bottom,XXXSignal

on the top right corner, and XXXNoise on the top left corner.
The signal correlation and noise correlation between different chan-

nels are the basis of channel selection. Besides calculating the correla-
tion coefficients between different channels, they can also be obtained
directly by observing the spatial distributions of amplitude spectra over
the scalp [10]. As shown in Fig. 2(a), the SSVEP of this subject is con-
taminated by strong spontaneous EEG signals. From the original EEG
data, we are unable to choose the signal channel. The key point is to
reduce the background noise. Through signal decomposition by ICA,
the spatial distribution of signal activities shows that PO2 has the most
significant SSVEP. Therefore, the channels close to PO2 are preferable
to be selected as a reference channel. As shown in Fig. 2(b), PO2-POz
is a good choice to weaken the background activities; in contrast, the
SSVEP is drowned out by the spontaneous EEG signal with the con-
ventional channel, e.g., PO2-T8.

2) Stimulus Frequency: The second parameter is the stimulus fre-
quency. In order to implement a practical system, two problems related
to stimulus frequency have to be solved. The first one concerns false
positives. If the stimulus frequency band overlaps with alpha rhythms
(8–13 Hz), the spontaneous EEG may likely satisfy the criteria of peak
detection, without the user performing any intentional action. To imple-
ment an asynchronous BCI that allows the user to operate the system at
any moment, avoidance of false positive is absolutely necessary. The
second problem that needs to be solved concerns the efficiency of fre-
quency detection. For most subjects, background components in the
SSVEP are depressed, while the signal amplitude at the stimulus fre-
quency increases enormously. However, for some subjects (see Fig. 3),
a majority of signal energy lies within the alpha region. Fig. 3 displays
the normalized amplitude spectra corresponding to three different stim-
ulus frequencies (i.e., 13, 15, and 17 Hz) for a subject. Normalized am-
plitude spectrum is calculated by

P =
jFFT(x)j

jFFT(x)j

Fig. 3. EEG amplitude spectra corresponding to three different stimulus fre-
quencies.

where x is the preprocessed EEG data and FFT(x) is the fast Fourier
transform of x. jFFT(x)j denotes summating over the total fre-
quency points of the spectrum, thereby sum of the amplitude spectrum
is normalized to one. The normalized amplitude at the stimulus fre-
quency reflects the SNR of the SSVEP. Although the peak at stimulus
frequency can be clearly identified, for this subject, the SNR of the
peak value cannot reach the predefined threshold. This shows that the
lower stimulus frequency is improper for this user. To exclude the fre-
quency components in the alpha region, a high-pass filter is adopted
in the system. For this subject, 12 Hz is a good choice of low cutoff
frequency for the filter, which can effectively avoid the interference of
alpha rhythms.

3) Speed of Selection: The third parameter is the speed of selection
(seconds per selection). Self-regulation of epoch length is an effective
approach to increase the information transfer rate of BCIs [8], [11]. Due
to physiological individual variation, the SNRs of the SSVEP have great
inter-user differences. Suppose the background noise is a random signal
and the SSVEP a deterministic one; then, the SNRs can be enhanced
through increasing the length of the data for FFT. In order to reach the
signal-to-noise threshold of operation, subject-specific speed, i.e., the
length of EEG data per selection, needs to be considered. Fig. 4 displays
normalized amplitude spectra corresponding to different data lengths (1,
2, 4, and 8 s) for two subjects. The data x was padded with zeros if it
is shorter than 8 s (2048 points). With the same paces, subject (b) has
a much better SNR than subject (a). If the threshold is set as 0.02, the
data length for subject (a) has to be above 4 s, while that of subject (b)
is less than 2 s. The SSVEP of most subjects has already reached a good
SNR when the data length is 8 s in our experiments. In order to obtain the
best system performance, an adaptive approach of data length regulation
has been provided. A buffer with a length of 2048 points is prepared
for FFT. During the operation, the buffer is filled with continuous EEG
data in chronological order. If the buffer is filled up, the data will be
shifted to the left, discarding the beginning points. Real-time calculation
of frequency detection is executed every several hundred milliseconds
using the total 2048 points data in the buffer. A decision will be made
if the same frequency is detected in several consecutive calculations.
Then, the buffer will be cleared out and will start to receive new data
accompanied by the next operation. Empirically, the self-regulating data
length for most users is less than 8 s with the aid of channel location and
stimulus frequency optimization. This approach reduces the inter-user
variation and makes the system more flexible and reliable.

D. Experiment Conditions and Performance Measure

After the preparation experiment, subject-specific parameters can be
determined. Only one bipolar lead is needed for the operation task. The
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Fig. 4. Normalized amplitude spectra corresponding to different data lengths for two subjects (a) and (b).

TABLE I
ONLINE OPERATION RESULTS OF THREE SUBJECTS IN LABORATORY ( : BACKSPACE : ENTER)

stimulator is a virtual number keypad consisting of 13 buttons [6]. The
frequency resolution is set to 0.25 Hz, so the required stimulus fre-
quency band is 13�0.25=3.25 Hz, which can be easily selected away
from the alpha band. Frequency detection is calculated by a 1024-point
(1/0.25=4 s) FFT. The buffer used for adaptive pace regulation is di-
vided into two 4-s sections. The amplitude spectrum is obtained by
summating the two spectra derived from two sections, respectively.

System performance is evaluated by ITR. The measurement of ITR
is obtained through the task of completing 12 commands consecutively

with the virtual keypad. The bit rate of each selection can be calculated
with the method presented in [1]. The subjects were asked to input
randomly arranged commands using a rectangular frame surrounding
the instructed target as a cue. When a correct decision was made, the
cue disappeared and the next target would appear. If a wrong decision
was made, a new cue would appear around the wrong target, instructing
the subject to clear it by gazing at it.

Implementation and evaluation of the demonstration system should
be carried out with a large number of subjects. Sixteen volunteers (six
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Fig. 5. (a) Three SSVEP subsystems of subject. (b) SNR curves corresponding to subsystems.

female and ten male, 22–42 years old, randomly selected from the stu-
dents in the department) with normal vision participated in the experi-
ments in the laboratory. All participants were seated in a comfortable
armchair in an unshielded room, which is dim and quiet without any
distractions. The subjects varied in their prior experience of this BCI.
Five subjects (two of them from our previous study [6]) had expe-
rienced many online experiments of digit number input, and the re-
maining subjects had some knowledge of this BCI but without any ex-
perience. Furthermore, to investigate system applicability under dif-
ferent conditions, the demonstration system had also been tested in the

Rehabilitation Center of China. A BCI-based environmental controller
[12] was used to help the motion-disabled to control home appliances.
A trainable infrared remote controller was used to control a TV in a
doctor’s office. Eleven volunteers (two female and nine male, 22–53
years old) with spinal cord injury (range C4-C7 injured) served as sub-
jects.

III. RESULTS AND DISCUSSION

After subject-specific parameters were derived from the preparation
experiment, all 16 subjects in the laboratory fulfilled the 12-target tasks
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successfully. The average ITR was 43 bits/min (range 29–63 bits/min).
Table I lists the detailed results of three representative subjects cor-
responding to different performance levels. Two of them completed
the task without errors. Subject MJ made a wrong input “.” and then
cleared it while the task was to input a “ ”. The mistake is denoted
as “(.. )” in the table. In the Rehabilitation Center, ten subjects
could operate the system without any training and the average ITR was
21 bits/min (range 8–36 bits/min). The decrease in ITR may be caused
by the following factors: environmental brightness and noise, lack of
training practice, large distance between the stimulator and the subject
“locked” in the wheelchair, physical discomfort caused by the dura-
tion of the pose, and the temporary inability to adapt to the flickering
stimulation. The results indicate that the SSVEP-based BCI can be ap-
plicable to >90% of people with a high ITR in living environments.

The ITR depends on the number of possible selections, accuracy, and
speed of operation. For SSVEP-based BCI, lower speed can enhance
the SNRs of SSVEPs, leading to a higher accuracy. The tradeoff be-
tween these two factors should be considered carefully to obtain the
highest intra-user ITR. A possible way to enhance the SNR is opti-
mization of the stimulus parameters such as flicker modulation depth,
modulation wave, and alternation color. Our investigation shows that
the white/black alternation modulated by a square wave with a modu-
lation depth of about 40% is good for eliciting the SSVEP.

An increase in the number of possible selections is another effective
approach to improve ITR. Here are two possible methods. The first is to
decrease the frequency resolution, and the second is to extend the stim-
ulus frequency bandwidth. The former will increase the difficulty of
frequency detection thereby decreasing the accuracy, and the latter has
more potential to improve the system performance. For this reason, we
have tried to employ high-frequency SSVEP (>20 Hz) in the system.
This is also because the participants’ subjective feelings show that the
high-frequency stimulation has the advantages of reducing the visual
fatigue caused by flicker and making them more comfortable. Since
flicker is believed to be a contributing factor to eyestrain, to some ex-
tent, this phenomenon can be explained by flicker fusion effect [13]
under high-frequency stimulations.

According to research done in the area of human brain electrophys-
iology, the amplitude of the SSVEP varies in a complex manner with
the frequency of stimulation [12], [14]–[16]. The amplitude response
has several peaks within three regions, often referred to as subsystems:
low-frequency region, medium-frequency region, and high-frequency
region [16]. The amplitudes in the subsystems depend on many factors
including electrode position, luminance, and flicker modulation depth.
The amplitude versus frequency response curves for the three SSVEP
subsystems of a subject are shown in Fig. 5(a). The stimulus frequency
varied from 5 to 45 Hz (2 Hz each step). Filled dots indicate the original
results and solid lines denote the polynomial fitting results. The three
subsystems are centered at 15-Hz low frequency, 31-Hz medium fre-
quency, and 41-Hz high frequency, respectively. The lower frequency
region has the larger amplitude response.

The lower amplitude response may decrease the SNR if the back-
ground noise is unchanged. Fortunately, the noise, i.e., spontaneous
EEG, also decreases in higher frequency bands. In fact, the SNRs of the
three subsystems have almost identical levels [as shown in Fig. 5(b)].
Here, SNR is defined as the ratio of y(f) to the mean value of the n

adjacent points

SNR =
n� y(f)

n=2
k=1[y(f + 0:25� k) + y(f � 0:25� k)]

where y is the amplitude spectrum calculated by a 1024-point FFT
and f is the stimulus frequency. Offline frequency detection has been
done in medium- and high-frequency regions. The detection accuracy

is above 95% when the stimulation frequencies are in the medium-fre-
quency region (31–35 Hz) and the high-frequency region (39–45 Hz).
For this subject, the additional bandwidth in these two regions is about
10 Hz and the total usable bandwidth in the three subsystems can allow
more than 60 targets.

Current BCIs are mostly at the stage of laboratory demonstrations
due to problems associated with high user variation, cumbersome
recording preparation, and low ITR. By solving these problems
through subject-specific system optimization, the SSVEP-BCI has
become a practical system which can be easily implemented for most
people. This is truly a good preparation for the future development of
a commercial product.
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