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ABSTRACT 

Zero-knowledge interactive proofs are very promising for the problems 
related to the verification of identity. After their (mainly theoretical) 
introduction by S. Goldwasser, S. Micali and C. Rackoff (1985), A. Fiat 
and A. Shamir (1986) proposed a first practical solution: the scheme of 
Fiat-Shamir is a trade-off between the number of authentication numbers 
stored in each security microprocessor and the number of witness numbers 
to be checked at each verification. 

This paper proposes a new scheme which requires the storage of only 
one authentication number in each security microprocessor and the check 
of only one witness number. The needed computations are only 2 or 3 
more than for the scheme of Fiat-Shamir. 
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1 INTRODUCTION 

Interactive proofs and zero-knowledge protocols were recently introduced 
(Goldwasser, Micali and Rackoff, 1985). These concepts are very inter- 
esting but, at the moment, it is not possible to imagine such protocols 
in very small components (security microprocessor, tamperfree devices, 
smart c a d s ,  etc). 

A new method based on these concepts was found by Fiat and Shamir 
(1986) and is very promising. But the main problems are the number 
of iterations (interaction between the prover and the verifier) and/or the 
memory needed by the prover. We propose an optimization of this pro- 
tocol where we attain very few steps (3 steps, that is, one iteration) and 
low memory. The price to pay is longer computations. 

Before explaining the new protocol, we need some definitions. We 
recall also the basic protocol of Fiat-Shamir. 

2 DEFINITIONS: SHADOWS AND IMPRINTS FOR (RSA- 
BASED) SIGNATURES 

0 Shadow: One fist completes a short message (half the length of the 
public modulus n) with a similar-sized redundancy, named shadow, 
then extracts the dh root of this element in the chosen ring based 
on the composite integer n. The composition of these two consec- 
utive operations is the secret operation S. The dh power of a ran- 
dom element has a negligible probability of being shadowed. This 
method with shadow produces credentials, the most compact signa- 
tures. Due to  multiplicative properties of RSA, the shadow must 
not be expressed multiplicatively in terms of the message. 

0 Imprint: Rather than signing long messages as chained blocks, one 
first uses a hash function to compute an imprint (shorter than n> of 
message M ,  then extracts as appendix H the vth root of this imprint 
h. The composition of these two consecutive operations now is the 
secret operation S. The hash function must be one-way, such that 
it is infeasible to construct collisions of equivalent messages. 
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3 THE BASIC PROTOCOL OF FIAT AND SHAMIR 

Let us remember that one must use factorization of n in order to extract 
efficiently a dh root (such as a credential A = X'/" mod n)  in the ring 
of integers modulo n. The verification of such a credential reveals an 
element X carrying some identification data reflected by a redundant 
shadow. Let us name 2, the identification data, and X, the resulting 
shadowed identity. 

Suppose there exist a security device able to pick values at random 
and to multiply numbers modulo n (with about 512 bits) in a fast way. 
Each device receives from some trusted authority an authentication value 
A related to x using the method just described. 

To authenticate such a processor claiming identification data z, the 
verifier negotiates a transaction with this device by repeating 20 to 30 
times the elementary sequence described in the following paragraph. The 
number of iterations is a security parameter which exponentially limits 
the chances of a cheater. 

The elementary sequence is (here = 3): 
0 The processor picks at random an element in the ring 

(1 < T < n - l), raises it to the cube ( T ~  mod n),  and 
sends this cube to the verifier as a test T with the 
identity z. 

0 The verifier tosses a coin and transmits the outcome 
as a question q: head or t a i l .  

The processor transmits as witness t :  either element T 

for head, or product T - A mod n for t a i l .  The veri- 
fier raises this witness t to the cube modn in order to  
reveal, according to head or t a i l ,  either test T ,  or its 
product modn by shadowed identity X. 

Each successful exchange increases verifier's confidence, because the 
value of credential A is needed to produce simultaneously the two values 
of witness t ,  while the first error reveals an unlucky cheater. Provers and 
verifiers make use of similar computing resources; they are both using the 
same composite number n. This method may, as well, be reversed. This 
method may use any exponent in place of the cube, with some caution 
for the square. 

This was a first version of the method; various optimizations are pos- 
sible, and some are already published. The ne.xt section will show a very 
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interesting new version. 
This zero-knowledge interactive procedure of demonstration leads to 

the emergence of new methods of signature, by replacing the random role 
of the verifier by a deterministic function, accepted by everybody, and 
difficult to  invert, that is to say a one-way fuction. This is a summary 
of a method, due to  A& Shamir (for security reasons, k, the equivalent 
number of elementary iterations, is now about 60 so as to avoid forgery 
of signed messages). Our new method is also possible for this scheme of 
signature (see forthcoming paper: same authors). 

4 THE NEW PROTOCOL: A DEEP VERSION 

In this version, each security device with identity I receives an authenti- 
cation value B (the inverse of A modulo n) computed by some authority 
from 

A = J1/” mod n 

where J is the shadowed identity I; the factorization of n is only known 
by the authority. 

The composite integer TZ (ala RSA) is distributed to everybody. 
Here is the complete protocol for one verification: 

0 The processor picks at random an element T in the ring 
(1 < T < n - l), computes (T’ modn), and sends the 
result to  the verifier as a test T (or at least a part of 
the result) with the identity I. 

0 The verifier “tosses” a “deep” coin with integer values 
- 1 and transmits the outcome as a between 0 and 

question d. 

0 The processor transmits as witness t :  

T - Bd mod n 

0 The verifier computes 

J d .  tv mod n 

and compares with the given bits of T .  
In this version, there are only one exchange between the prover and 

the verifier (after the sending of the witness) and only one authentication 
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value needed in the security device! 

the possibilities of a cheater. 
By definition, a cheater does not know B.  Let us precisely evaluate 

0 If a cheater guesses the question d, he can pick at random any new 
witness number t and then deduce the corresponding test number 
T by computing exactly as the verifier will do. There is an evident 
winning strategy for any lucky guesser. 

0 When the test number T has been transmitted to the verifier, let 
us evaluate the situation of a cheater which would be able to pro- 
pose two witness numbers t' and t" for two different questions d' and 
d". The following short technical demonstration proves that such a 
cheater should no more be a cheater because he should easily de- 
duce authentication number B from any pair (t ' ,  t " )  of such witness 
numb ers . 

Proof of security 
By hypothesis, 0 5 d" < d' 5 v - 1 

Let us write the equation: 

Jd' . trU mod n = Jd" - t"' mod n, 

which may transformed into: 

Let us notice that d' - d" is a positive integer, smaller than v ,  and 
prime with v (because v is prime). So, there exists a unique pair of 
positive integers k and m, in the range from 1 to 21 - 1, currently named 
Bezout coefficients of v and d' - d", easily computed by the Euclidean 
algorithm, such that 

m - v - k . (d' - d") = &I. 

Let us raise the last equation to the power k and substitute: thus, 

Q.E.D. 
At each use of the procedure, a cheater has exactly one chance on v to 

fool the verifier. The verifier has exactly 21 - 1 chances on v to defeat a 
cheater. After the procedure, the verifier has essentially learned nothing 
about the authentication value B because he cannot distinguish between 
an honest user and a very very lucky cheater. 
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No repetition of the procedure is needed as long as the size of the 
exponent v is sufficient to  reach directly the level of security requested 
by the application. It is easy to specify: ten to sixteen bits for a local 
authentication, twenty to thirty bits for a remote authentication, and at 
least sixty bits for signature schemes based upon non-interactive zero- 
knowledge techniques. 

The complete paper will give more explanations about the number of 
operations which related to  the size of v. 

A paper by Shamir (1984) uses a similar function but in a very different 
context. 
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