
A Practitioner's Introduction to Database Performance
Benchmarks and Measurements

S. W. DIETRICH*,
1
 M. BROWN,

2
 E. CORTES-RELLO

2
 AND S. WUNDERLIN

2

1
 Department of Computer Science and Engineering, Arizona State University, Tempe, AZ 85287-5406, U.S.A.

2
 Bull Worldwide Information Systems, Inc., 13430 N. Black Canyon Highway, Phoenix, AZ 85029, U.S.A.

Database performance benchmarks provide an important measure for the comparison of database management systems.
This paper provides an introduction to performance benchmarks for centralised databases. The introduction includes
benchmarks for transaction processing, such as DebitCredit, TPC-A and TPC-B, and benchmarks for decision support,
such as the Wisconsin benchmark and its extension by Bull to a vendor benchmark, known as the Single-User Decision
Support benchmark. An important contribution of this paper is a practitioner's perspective of the issues involved in
performance measurement.

Received January 1992, revised March 1992

1. INTRODUCTION

The performance of a database management system
(DBMS) plays an integral role in the decision of a
company to utilise that database. The price of the
database is also an important factor. Such decisions must
be based on information that compares the performance
and price of database management systems of different
vendors. Benchmarks provide a yardstick with which to
measure these important factors.

Database performance benchmarks have evolved over
time. The performance folklore, as recorded by a group
of computer professionals1, includes several benchmarks.
One benchmark for measuring the performance of trans-
action processing in a database system is the DebitCredit
benchmark. The flexibility in this transaction processing
benchmark, however, provided incomparable results.
The need for industry standard benchmarks led to the
development of the Transaction Processing Performance
Council (TPC), whose varying membership includes
many computer organisations. The council modified the
DebitCredit benchmark into an industry standard bench-
mark TPC-A,14 which has specific guidelines for the
measurement of performance and price.

Although TPC-A provides very specific guidelines, the
measurement of the benchmark is not a trivial task.
Depending on the tools available on the system to be
tested, the measurement may take a matter of weeks or
months. Once a measurement is taken, the performance
group may tune the system configuration to increase
performance and to reduce the cost. This tuning process
is iterative and may take much longer than the initial
measurement.

This paper provides a practitioner's introduction to
performance benchmarks for centralised databases, and
reports on the experience of practitioners in the
measurement of database benchmarks. This paper is not
meant to be a comprehensive survey but an introduction
to the benchmarks that defined the database performance
area, such as DebitCredit, TPC-A, TPC-B and the
Wisconsin benchmark. The paper also describes an
extension of the Wisconsin benchmark to a vendor

* Work supported by Bull Worldwide Information Systems under
Grant CRP 91228. Correspondence should be addressed to this author.

benchmark by Bull, known as the Single-User Decision
Support benchmark or SUDS. Other benchmarks exist
that target various domain-specific applications and
assumptions, such as the AS3AP benchmark,16 the Set
Query benchmark,12 the Engineering database bench-
mark,5 and the Neal Nelson database benchmark®.11 A
description of these benchmarks can be found in a recent
book by Gray,9 which is an invaluable reference in the
field of performance measurement.

2. TERMINOLOGY

Many speciality areas are laden with built-in terminology
that prevents persons outside that speciality to com-
municate effectively. This section defines the terminology
within the specialty of database performance
benchmarks.

2.1 Types of benchmarks

There are three types of benchmarks: industry-standard,
vendor, and customer-application. Although benchmarks
ultimately measure the performance of the system, each
type of benchmark has its own goal.

An industry-standard benchmark provides an external
view of the product and therefore, samples the per-
formance of the database system on a specific, usually
simple, application. The measurements of an industry-
standard benchmark are meant to be published to
provide information for comparison across various
^ retry /A A r r
V V11VJV1 O.

Before the specification of industry-standard
benchmarks, however, vendors were running their own
benchmarks to identify performance improvements for
their product. Today, vendors continue to run their own
benchmarks since industry-standard and vendor
benchmarks address different goals. A vendor benchmark
must be comprehensive, providing an introspective view
of the evolving product. As the product evolves, so must
the benchmark that tests its performance. The
measurements of a vendor benchmark are meant to stay
within the company to guide development efforts and to
provide sales support.

Customer-application benchmarks are designed by the
customer for an important application where perform-

322 THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/4

/3
2
2
/3

4
8
1
8
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

DATABASE PERFORMANCE BENCHMARKS AND MEASUREMENTS

ance is critical. After designing and documenting the
benchmark, customers provide selected vendors with the
benchmark. The vendors then compete for the customer's
business by measuring the benchmark to provide the
customer with cost and performance figures. The cost of
designing and documenting application benchmarks,
however, is a considerable factor for the customer. This
cost may lead to increased usage of industry-standard
measurements in the decision making process for the
customer. The Transaction Processing Performance
Council, however, warns that while industry-standard
benchmarks play an important role in comparing
products of different vendors, there are times when
specific customer-application benchmarking is critical.

2.2 Transactions and the ACID test

A transaction is informally defined as an atomic (all or
nothing) program unit that performs database accesses
or updates, taking a consistent (correct) database state
into another consistent database state. The atomicity
and consistency requirements of a transaction have
necessary implications on concurrency control and
recovery control. Concurrency control must guarantee
that a transaction remains consistent during concurrent
execution; this property is known as isolation. Recovery
control must guarantee that a transaction is preserved
across failures; this property is known as durability. The
Atomicity, Consistency, Isolation and Durability
properties of a transaction are known as the ACID
properties of a transaction.

The Transaction Processing Performance Council1415

defines the ACID properties of a transaction as follows.
Atomicity. 'The system under test must guarantee that

transactions are atomic; the system will either perform
all individual operations on the data, or will assure that
no partially-completed operations leave any effects on
the data.'

Consistency. 'Consistency is the property that requires
any execution of the transaction to take the database
from one consistent state to another.'

Isolation. 'Operations of concurrent transactions must
yield results which are indistinguishable from the results
which would be obtained by forcing each transaction to
be serially executed to completion in some order.'

Durability. 'The testbed system must guarantee the
ability to preserve the effects of committed transactions
and insure database consistency after recovery ' from
single failures, which are clearly specified in the TPC
documents.14'l5

Typically, database texts (e.g. Ref. 8) characterise a
transaction by the properties of Atomicity, Consistency,
Isolation., Durability and Serialisability. The additional
property of serialisability states that the result of the
concurrent execution of transactions is equivalent to
some serial execution of the transactions. This definition
of serialisability is equivalent to the definition of isolation
above. The database texts, however, usually refer to
isolation as the property of a transaction such that the
transaction does not reveal its uncommitted results to
other transactions. Forcing the results to be equivalent to
some serial execution order of the transactions would
also enforce the textbook definition of isolation, since a
transaction would only reveal committed results in a

serial execution. Thus, the above ACID properties
capture the desired properties of a transaction.

2.3 Transaction processing versus decision support

Transaction processing environments typically consist of
update-intensive database services characterised by
'significant disk input/output, moderate system and
application execution time, and transaction integrity'15.
The term 'transaction integrity' refers to the ACID
properties of a transaction.

Performance metrics for transaction processing are
typically a measure of throughput, which is the rate at
which transactions are completed. Thus, the metric unit
is transactions per second, which is abbreviated tps.
Another important measure is the response time of the
transaction, which is the elapsed time for the execution
of the transaction. In practice, a combination of these
measures is used. The transaction processing bench-
marks, discussed in the next section, optimise throughput
with constraints on response time. These benchmarks
also include a cost metric. Since there is a relationship
between the performance of a system and its cost, the
price of a system is normalised with respect to tps. Thus,
a system is benchmarked with respect to its performance
in tps and its price in $/tps.

Decision support differs from transaction processing.
A decision support environment is typically not update-
intensive and is characterised by 'a wide range of
functions, provided over small to large databases'.4 The
use of ad hoc queries for decision support is facilitated by
the flexibility of query specification offered by relational
database query languages, such as SQL.

Performance metrics for decision support are typically
a measure of response time, which is also called query
elapsed time. Other performance data, however, is
typically collected on the utilisation of the CPU and I/O
so that the performance of the system can be analysed.
Although decision support benchmarks do not typically
include a throughput or cost component, the Set Query
benchmark12 includes both the computation of the
average query throughput in units of query per minute
(QPM) and a calculation for pricing.

3. BENCHMARKS

This section describes various performance benchmarks
with respect to the type of processing that the benchmark
is designed to test. The two categories of benchmarks
described include update-intensive transaction processing
and the ad hoc query processing of decision support.
Most benchmarks, including those discussed in this
section, measure the use of the system in transaction
processing and querying rather than the performance of
the utilities of the DBMS, such as bulk loading and
organisation of the database. An example of a benchmark
that includes tests to measure database loading and
structuring, in addition to transaction processing and
querying, is the AS3AP benchmark.16

The transaction processing benchmarks, DebitCredit,
TPC-A and TPC-B, are designed to test update-intensive
operations in a particular banking enterprise. The
decision support benchmarks, Wisconsin and SUDS, are

THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992 323

21-2

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/4

/3
2
2
/3

4
8
1
8
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

S. W. DIETRICH, M. BROWN, E. CORTES-RELLO AND S. WUNDERLIN

branches

N

tellers

N

Tellerld DeltaAmount

accounts

Time

TellerBalance

Accountld

Figure 1. Entity relationship diagram for bank enterprise.

designed to test ad hoc querying on a carefully
constructed database. The semantics of the enterprises
are implicit in the database and the benchmark programs.
Database technology is evolving toward making the
semantics of an enterprise explicit through the
specification of semantic constraints. The next generation
of benchmarks, with the standardisation of the extension
to SQL, known as SQL2,6 will probably address the
performance impact of the added responsibility of the
DBMS to manage these constraints.

3.1 Transaction processing

The transaction processing benchmarks are designed to
test update-intensive operations. We describe the original
DebitCredit benchmark, followed by its evolution to the
industry standard benchmarks: TPC-A and TPC-B. The
TPC is currently working on another benchmark for
order entry transaction processing, called TPC-C.

3.1.1 DebitCredit

As its name implies, the DebitCredit benchmark1 is in the
domain of banking, where the operation of interest is a
debit or credit to an account performed by a teller at a
particular branch. Historically, the origin of the bench-
mark is based upon the on-line requirements of a retail
bank for 1000 branches with 10000 tellers and 10000000
accounts. The additional requirement for the system was
a peak load of 100 transactions per second (tps).

The DebitCredit database maintains information on
accoun t s , t e l l e r s , and branches and a h i s -
t o r y file of bank transactions. Figure 1 is an Entity-

Relationship (ER) diagram for the bank enterprise. ER
diagrams are a common tool used for the conceptual
modelling phase of a database design.8 The entities,
denoted by rectangles, are accounts , t e l l e r s and
branches. The relationships are denoted by diamonds.
The relationships account-of and t e l l e r _ o f in-
dicate the branch associated with the account and teller,
respectively. The relationship h i s t o r y is a ternary
relationship, relating the account, teller and branch
involved in the transaction. The attributes, denoted by
ovals, indicate properties of the entities or relationships
to which they are connected. The underlined attributes
are key attributes, which are uniquely identifying
attributes for the entities.

The schema for the relational data model represen-
tation of the bank enterprise is shown in Figure 2. The
relations for branches , t e l l e r s and accounts
include the attributes associated with the entities from
the ER diagram. In addition, the accounts and
t e l l e r s relations include the attribute Branchld,
which indicates the associated branch as given by the
relationships account_of and t e l l e r _ o f . The pri-
mary keys of the accounts , t e l l e r s and branches
relations are given by the corresponding key attributes
from the ER diagram. The records for the relations
accounts , t e l l e r s and branches must be 100
bytes in length, which can be achieved through the use of
an additional filler field to construct a record of the
required size. The h i s t o r y relation contains the
attributes corresponding to the key attributes of the
branches, t e l l e r s and accounts entities and the
relationship's descriptive attributes DeltaAmount and
Time. The h i s t o r y record consists of 50 bytes, using
filler if needed, and the benchmark assumes that there is

324 THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/4

/3
2
2
/3

4
8
1
8
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

DATABASE PERFORMANCE BENCHMARKS AND MEASUREMENTS

branches(Branchld, BranchBalance)

tellers(TellerId, Branchld, TellerBalance)

accounts(Accountld, AccountBalance, Branchld)

history(AccountId, Tellerld, Branchld, DeltaAmount, Time)

Figure 2. Relational schema for bank enterprise.

one history file that must be able to store 90 days worth
of history data.

The DebitCredit transaction represents a change to an
account, either a debit or a credit, that is performed by
a teller at a particular branch. The transaction includes
input from the terminal, the updates to the account,
teller, and branch information, the writing of the history
record for the transactions and an output message to the
terminal. The message processing assumes the use of an
X.25 wide area network protocol on block mode
terminals, such as IBM 3270.

The input and output processing to the terminal in the
DebitCredit transaction tests the tasks associated with
on-line transaction processing (OLTP), which adds an
additional requirement of multiple on-line terminal
sessions to the requirements of transaction processing
previously introduced. An important component of
OLTP is the transaction arrival distribution. After
receiving a response, each emulated terminal must wait
before sending its next request to update the database.
This waiting is known as 'Think Time'. The think time
in the DebitCredit benchmark is 100 seconds, indicating
that each terminal waits, on the average, 100 seconds
before submitting the next transaction. Therefore, to
meet the requirement of a peak load of 100 tps, the
benchmark specifies that there are 100 terminals per tps.

The statements used to process the updates of the
transaction in the industry-standard query language
SQL are shown in Figure 3. (Note that the terminal I/O
statements that are part of the transaction are not
shown.) The transaction updates the balance of
accounts , t e l l e r s , and branches and inserts a
h i s t o r y record, including a timestamp, of the trans-
action. The identifiers prefixed by: represent the values
for the particular transaction under consideration.
Identifiers that are not prefixed represent attribute names,
which are the same as in Figure 2.

The DebitCredit transaction has to satisfy additional
requirements, including response time, concurrency
control and recovery control. The benchmark requires
that 95% of the transactions provide less than one
second response time, as measured at the system under

test (SUT). Concurrency control requirements necessitate
the protection of all data files by locking and logging.
For recovery control, the log file is assumed to be
replicated to handle single failures.

The DebitCredit benchmark provided guidelines but
the implementation of the benchmark was vulnerable to
interpretations by the implementer. This degree of
flexibility and the lack of full disclosure of how the
performance measurements were obtained, resulted in
measurements that were not necessarily comparable.
These incomparable results led to the development of the
first industry-standard benchmark TPC-A by the Trans-
action Processing Performance Council.

3.1.2 TPC-A

The TPC-A benchmark specification,14 consisting of 42
pages, provides substantial guidelines. TPC-A requires
strong ACID properties of the system with specific tests
for checking these properties. TPC-A also requires scaling
rules for the database to maintain a fixed relationship
between the size of the relations and the transaction load
on the system. In addition, a full disclosure of the
reporting procedure is required for TPC-A with auditing
strongly recommended but not required. However, before
any TPC-A results can be announced, the disclosure
report must be given to the TPC.

There is also a difference between DebitCredit and
TPC-A with respect to the requirements on the history
file. In TPC-A, the history file may be horizontally
partitioned, whereas DebitCredit required a unified
history file. The DebitCredit benchmark also required
storage for the history file for 90 days. TPC-A uses a
more realistic constraint that requires storage for the
history file for eight hours of operation of the SUT, with
pricing requirements for 90 days of history data.

The TPC-A transaction strongly resembles the
DebitCredit transaction.13 The main difference is that the
terminal I/O is outside the boundaries of the transaction.
There is a driver system that emulates the terminal
requirements. Recall that after receiving a response, each
emulated terminal must wait before sending its next

update accounts

set AccountBalance = AccountBalance + : DeltaAmount

where Accountld= : Accountld

update tellers

set TellerBalance=TellerBalance+ :DeltaAmount

where Tellerld= : Tellerld

update branches

set BranchBalance=BranchBalance+ :DeltaAmount

where Branchld= : Branchld

insert into history(Accountld, Tellerld, Branchld, DeltaAmount, Time)

values(:Accountld, :Tellerld, :Branchld, :DeltaAmount, :CurrentTime

Figure 3. SQL statements for updates in transaction.

THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992 325

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/4

/3
2
2
/3

4
8
1
8
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

S. W. DIETRICH, M. BROWN, E. CORTES-RELLO AND S. WUNDERLIN

request to update the database. In TPC-A, the average of
the think time added to the response time must be ten
seconds. The think time is approximated by a delay,
which provides an essentially random arrival distribution.
In DebitCredit, the average think time is 100 seconds.
Due to the differences in the average think time between
the two benchmarks, the 100 terminals per tps in
DebitCredit was updated to 10 terminals per tps in TPC-
A.

The response time requirements of TPC-A specify that
90% of the transactions must respond within two
seconds, with the response time being measured at the
remote terminal emulator (RTE) rather than at the SUT.
Note that the response time measured at the RTE
includes the delay across the communication network,
which in TPC-A may include local area networks. Due to
the differences in communication delay between local
area networks and wide area networks, the reporting
metrics for tps in TPC-A include the specification of
tpsA-Wide or tpsA-Local.

3.1.3 TPC-B

The Transaction Processing Performance Council
designed another benchmark, TPC-B,15 that tests the
database aspects of the transaction. TPC-B does not
generate transactions through terminal emulation but
through driver programs, which generate transactions as
quickly as possible without allowing for any think time.
This relaxation is expected to lead to increased
throughput, which is measured in transactions per second
(tps). The reporting metric used for TPC-B is tpsB, which
denotes the tps metric following the specification of
TPC-B, and is not comparable to results from TPC-A.

TPC-B requires the throughput to be subject to a
residence time constraint specifying that 90% of all
transactions must have a residence time of less than 2
seconds. Since TPC-B does not include terminal emu-
lation, residence time is measured by the elapsed time at
the driver between supplying the inputs to the transaction
and receiving a corresponding response. This residence
time constraint is similar to the response time constraint
of TPC-A, where response time is measured by the
elapsed time between sending the first byte of the input
message and receiving the last byte of the output
message.

The TPC-B benchmark is viewed by performance
practitioners as a precursor to the TPC-A benchmark
with respect to performance measurement. Typically,
TPC-B is installed and measured to test the database
installation and to tune the system. TPC-A, which has
added requirements for on-line processing, is then
installed and measured.

3.2 Decision support

Relational databases provide the capability of ad hoc
query specification, typically through the use of the
industry-standard query language SQL. A decision
support environment takes advantage of this flexibility
to specify ad hoc queries to the database. This flexible
environment requires a more comprehensive approach to
benchmarking the performance of the database across a
wide range of functions. The Wisconsin benchmark,2

which consists of a carefully constructed database and a

comprehensive set of queries, provides a systematic
approach to benchmarking relational database systems.
This paper reports on the database and queries for the
original Wisconsin benchmark as they appeared in a
later paper7 and discusses the extension of the benchmark
for parallel database systems.7 The Wisconsin benchmark
is also extensible for use as a vendor benchmark, as
illustrated by the development of the Bull Single-User
Decision Support (SUDS) benchmark.4 The TPC is
currently working on a decision support benchmark,
called TPC-DSS.

3.2.1 Wisconsin

The database for the Wisconsin benchmark does not
correspond to a particular application, such as the TPC
benchmarks, but is carefully designed to produce
predictable results for decision support benchmarking.
The names of the relations and the attributes provide a
self-description of its contents. This systematic naming
convention allows for the design of an extensive database
for systematic benchmarking.

A relation is named by the number of tuples that the
relation contains, which is called its cardinality. For
example, the relation ONEKTUP denotes a relation that
contains one thousand tuples. More than one relation of
the same cardinality can exist in the database. For
example, TENKTUP1 and TENKTUP2 denote two
relations both having ten thousand tuples. The Wisconsin
database consists of ONEKTUP, TENKTUP1 and
TENKTUP2 relations. The specification of the attributes
in a relation, e.g. TENKTUP, is given in Figure 4.3

Attribute name

unique 1
unique2
two
four
ten
twenty
hundred
thousand
twothous
fivethous
tenthous
odd 100
even 100
stringul
stringu2
string4

Attribute domain

0..9999
0..9999
0..1
0..3
0..9
0..19
0..99
0..999
0..1999
0..4999
0..9999
1,3,5, ...,99
2,4,6, ..., 100
per template
per template
per template

Attribute value

unique, random
unique, random
cyclic: 0, 1
cyclic: 0, 1, 2, 3
cyclic: 0, 1, ..., 9
cyclic: 0, 1, ..., 19
cyclic: 0, 1, ..., 99
cyclic: 0, 1, ..., 999
cyclic: 0, 1, ..., 1999
cyclic: 0, 1, ...,4999
cyclic: 0, 1, ...,9999
cyclic: 1, 3, ..., 99
cyclic: 2,4, ..., 100
derived from unique 1
derived from unique2
cyclic: A, H, O, V

Figure 4. Original Wisconsin benchmark: attribute
specification.

A relation contains two unique (integer-valued)
attributes: uniquel and unique2 . The values of the
uniquel and unique2 attributes in the relation
instance are determined randomly in the range between
0 and one less than the cardinality of the relation. Thus,
both attributes are candidate keys although the unique2
attribute serves as a designated sort key, when required.

An integer-valued attribute, in general, is named by
the number of distinct values that the attribute contains
in the relation. For example, the attribute ten has ten
distinct values (0..9). The range of values that the

326 THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/4

/3
2
2
/3

4
8
1
8
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

DATABASE PERFORMANCE BENCHMARKS AND MEASUREMENTS

attribute assumes appears with a uniform distribution in
the relation by cycling through its possible values.
Obviously, an attribute named in this way is typically a
non-unique attribute, since the value of the attribute
appears in the relation more than once (assuming that
the cardinality of the relation exceeds the number of
distinct values of the attribute). For example, the
TENKTUP1 relation of the Wisconsin database contains
the following non-unique integer-valued attributes with
cyclic order: two, four , t en , twenty, hundred,
thousand, twothous, f i ve thous , t e n t h o u s ,
oddlOO and evenlOO. The attributes, oddlOO and
evenlOO, represent the odd and even numbers,
respectively, in the range of 1 to 100. These non-unique
integer-valued attributes are used to model various
selectivity factors.

The database also has string attributes to test string
operations. Each string consists of 52 letters, and must
obey the following template:

$xxxxxxxxxxxxxxxxxxxxxxxxx$xxxxxxxxxxxxxxxxxxxxxxxx$

where $ designates a letter in the set {A.. V}, which
consists of 22 letters. There is a substring consisting of 25
x's between the first and second S, and a substring
consisting of 24 x's between the second and third $. This
basic string pattern allows 10648 (22*22*22) unique
string values, and may be easily modified to allow for
additional values.

A relation contains three string attributes:
s t r i n g u l , s t r i n g u 2 and s t r i n g 4 . The attributes
s t r i n g u l and s t r i n g u 2 are string versions of
un ique l and un ique2 , respectively. Either attribute
may be used as a key attribute. The s t r i n g u 2 attribute
is typically used for sorting and indexing. The attribute
s t r i n g 4 has four distinct values. The unique values are
constructed by forcing the $ positions of the string to
have the same value and to be chosen from a set of four
letters: {A, H, O, V}. The s t r i n g 4 attribute plays a
similar role as the non-unique integer-valued attributes.

The Wisconsin Benchmark contains a set of queries
that test various operations: selection, projection, join,
aggregation, append, delete, and modify. There are
variations on each type of query for selectivity factors
and the availability of primary/secondary indexes. The
benchmark is considered an industry-standard bench-
mark since it has a fixed set of queries and was used to
compare the performance of products across several
vendors.2

The Wisconsin benchmark provides a very useful tool
for performance comparison. A retrospective view of
the benchmark by (some of) its authors3 indicated
suggestions for improvement. A revised Wisconsin
benchmark7 addresses scalability issues for bench-
marking of parallel database systems.

The schema of the relations in the scalable Wisconsin
benchmark have been updated, resulting in the attribute
specification shown in Figure 5.7 The u n i q u e l attribute
remains unchanged, representing a candidate key of the
relation with its 0 to (cardinality — 1) values being
randomly distributed. All other attributes have been
changed either with respect to its domain of values or its
computation of values. The updated unique2 attribute
is a declared key and is ordered sequentially. The
attributes two, fou r , t en and twenty now have a
random rather than a cyclic ordering of values, which is

Attribute name

uniquel
unique2
two
four
ten
twenty
onePercent
tenPercent
twentyPercent
fiftyPercent
unique3
evenOnePercent
oddOnePercent
stringul
stringu2
string4

Attribute domain

O..(MAX-1)
O..(MAX-1)
0..1
0..3
0..9
0..19
0..99
0..9
0..4
0..1
O..(MAX-1)
0,2,4, ...,198
1,3,5, ...,199
per template
per template
per template

Attribute value

unique, random
unique, sequential
uniquel mod 2
uniquel mod 4
uniquel mod 10
uniquel mod 20
uniquel mod 100
uniquel mod 10
uniquel mod 5
uniquel mod 2
uniquel
onePercent*2
(onePercent *2)+ 1
derived from uniquel
derived from unique2
cyclic: A, H, O, V

Figure 5. Scalable Wisconsin benchmark: attribute
specification.

derived by an appropriate mod of the u n i q u e l values.
For the TENKTUP1 relation in the original benchmark,
the attributes hundred , t housand , twothous and
f i v e t h o u s were used to provide access to a known
percentage of values in the relation, respectively, 1 %,
10%, 20%, and 50%. In the revised benchmark, these
attributes have been replaced by new attributes
onePercent , t enPercen t , twen tyPercen t , and
f i f t y P e r c e n t . The order of the values of these
'percentage' attributes are random and are based on a
mod of the uniquel value. The t en thous attribute of
the TENKTUP1 relation referred to a single tuple. This
attribute has been replaced by the attribute un ique3 ,
which takes on the value of u n i q u e l . The evenlOO
and oddlOO attributes have been updated to even-
OnePercent and oddOnePercent, deriving attribute
values from an appropriate function defined over the
value of the new attribute onePercent .

The string attributes in the revised benchmark have
also changed. Although the length of the strings are the
same, the template for the strings has been modified. The
s t r i n g u l and s t r ingu2 attributes derive their values
from the uniquel and unique2 values, and must obey
the following template:

$$$$SS$xxx

where the first seven characters in the string, indicated by
$, are a letter in the set {A.. Z} and there is a concluding
substring consisting of 45 x's. This template allows 267

possible values of the string, and is easily modifiable.
This change to the string template addresses the concern
that most strings are differentiated in the early portion of
the strings. The original benchmark had differentiating
positions in the middle and at the end of the string. The
s t r i n g 4 attribute still takes on four unique values in a
cyclic fashion. The unique values are constructed by
forcing the first four positions of the following string
template

SSSSxx

to have the same value and to be chosen from a set of
four letters: {A, H, O, V}.

The Wisconsin benchmark provides for the systematic
benchmarking of database systems. Its extensibility is

THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992 327

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/4

/3
2
2
/3

4
8
1
8
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

S. W. DIETRICH, M. BROWN, E. CORTES-RELLO AND S. WUNDERLIN

evident both from its revision into a parallel database
system benchmark and from its extension into a
comprehensive vendor benchmark.

3.2.2 Single-user decision support

The Bull Single-User Decision Support (SUDS) bench-
mark4 developed as an extension of the Wisconsin
benchmark to measure the performance of INTEREL,
the Bull decision support product for Bull's proprietary
operating system GCOS 8. INTEREL is a relational
system that uses the industry-standard query language
SQL. INTEREL also has the capability to access data
contained in several file types. For example, INTEREL
provides decision support on data in an IDS/II (network)
database through the use of a utility that provides a
relational view of the network schema. INTEREL can
then access the data in the network database using SQL.

The SUDS benchmark analyses the performance of
INTEREL, with the goal of identifying areas within the
system that require performance enhancement. The
benchmark assumes a single-user execution environment.
For each statement executed, an internal performance
monitor measures and reports on response time, pro-
cessor time, input/output and memory usage.

The benchmark contains approximately 230 SQL
statements, whereas the Wisconsin benchmark contains
32 statements. SUDS measures the performance of
various retrievals, such as unique versus non-unique and
indexed versus non-indexed retrievals, variations of the
where clause, scalar aggregation, the order by clause, the
group by clause, the unique qualification, updates,
insertions, deletions, set operations, simple joins, views
and complex joins.

The SUDS benchmark results provide a detailed and
comprehensive view of the INTEREL product, leading
to a substantial performance improvement.4 Also, the
knowledge learned from the benchmark provides useful
information for technical customer support personnel,
who can share this knowledge with the developers of
customer applications.

4. PERFORMANCE MEASUREMENT

The task of measuring performance is a complex process,
and many iterations and adjustments are needed to
obtain the best performance possible in a given computer
system. The following sections describe the tasks involved
in a 'serious' measurement of database performance,
using the TPC-B benchmark as an example. Although we
describe the measurement process for industry-standard
benchmarks, the measurement process for vendor-
specific and customer-application benchmarks is similar
but differs slightly due to the dissimilarities in constraints
and objectives of the various types of benchmarks.

4.1 Hardware configuration

As a first step, the hardware configuration to be measured
must be specified. The specification includes the model
and some other characteristics, for example, a Bull DPX-
2/340 with four processors, 32 MBytes of memory in
each processor, three disk controllers and 16 disk drives.
Also a specification of the basic software that will run on
top of the hardware platform is needed, for example,

BOS 2.0 - the Bull version of the UNIX operating
system.

Even at this early stage, an estimation of the expected
performance is required. Based upon previous
measurements, the expected number of transactions per
second can be inferred. The database instance needed for
the performance measurement is then scaled to the
expected number of transactions per second. In TPC-B,
for each tps configured, the database instance must have
a minimum of 100000 accounts, 10 tellers, and 1 branch.
The ratios between these numbers must also be
maintained. A change in any value must be reflected by
a proportional change in the other values. (For TPC-A,
additional scaling rules dictate that a minimum of 10
terminals is included for each tps configured.) Given the
capacity and I/O rate of available disks and controllers
and the average number of I/Os per transaction, it is
possible to anticipate the number of disks and controllers
needed. It is always better to have some excess storage
and I/O rate capacity. Once the machine is available, it
has to be physically installed and possibly hooked up
into a network.

4.2 System software configuration and tuning

Once the machine and the basic software are available,
they have to be configured and tuned. The system has
several layers that need configuration: the operating
system, communications software and the database
management system. Initially, most of the configuration
parameters will be set to default values. Some operating
system parameters may have to be adjusted in order to be
able to start running the database management system.

In the process of tuning, tools must be used to monitor
the overall behaviour of the system. Examples of such
tools are UNIX's sar or easytune, which is a special
performance monitoring tool of Bull BOS. The tools
provide real time information on important parameters
such as memory utilisation, swapping activity, processor
utilisation, buffer and caching activity, and physical and
logical I/O activity. Other tools provide real time
information on DBMS critical parameters such as
buffers, and the status of locking and logging. The
information is used to detect bottlenecks and tune the
operating system (OS) and the database management
system (DBMS). An example of such a tool is INGRES'
Interactive Performance Monitor.10

4.3 Application tuning

The next layer to tune is the benchmark software. In a
normal case, such as TPC-B, the benchmark is a series of
programs and scripts. Some programs perform setup and
statistical functions, while others execute transactions.
Some examples of the statistics that must be collected
are: tps, response time per transaction, and logging and
locking statistics. Some examples of the setup functions
are: setting up database tables, setting up temporary
tables to collect statistics and setting up timing plans for
the execution of the benchmark. The database is scaled
with respect to the expected throughput to avoid a
completely in-core database. This scaling process involves
estimating the expected throughput. If the measured
throughput is larger than the estimated throughput, the

328 THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/4

/3
2
2
/3

4
8
1
8
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

DATABASE PERFORMANCE BENCHMARKS AND MEASUREMENTS

database has to be re-sized, which is a time consuming
process.

In a more complex case, such as TPC-A, a terminal
driver is needed to emulate terminals that issue
transactions through a network. The benchmark
programs must be optimised to minimise the con-
sumption of processor time and memory. An objective of
the optimisation is to minimise the overhead of execution
of the statistical functions compared to the load to be
measured.

Particular attention must be given to problems with
locking and concurrency control. While the ultimate goal
of a performance measurement is to obtain a metric
such as tps or SK/tps, the measurement process has
some important constraints. The measurement must
preserve the ACID properties of the database. The TPC-
B document15 clearly describes tests to run to verify the
ACID properties.

4.3.1 Performance

The objective of this phase is to maximise the transactions
per second (tps) metric. At this time, the real work
begins. Each one of the relevant configuration parameters
from the OS and the DBMS should be analysed, and a
'reasonable' value must be assigned.

On the operating system side, the parameters related
to file system, system buffers and allocation of memory
are key to performance. On the database side the data
buffers, the concurrency control parameters, the
logging/archiving and recovery parameters are the most
influential.

Some database management systems have special
features that may increase performance with the
constraints of the benchmark. For example, some
databases, such as Ingres and Oracle, provide 'fast-
commit' facilities, or faster ways to execute the trans-
action, such as stored (precompiled) database procedures
in Ingres and macroexecution in Teradata RDBC.

Many operating system parameters are directly related
to the database management system parameters; in some
other cases the relationship is indirect. Some apparently
independent parameters may affect each other in an
indirect manner. For example, the block size of the
database management system is related to the block size
of the operating system.

Once the parameters have been set up, the physical
structure of data must be considered. Some databases
provide multiple storage structures. For example, in
Ingres the database designer has the choice of btree,
heap, isam and hash storage structures. In many cases,
the tables and indexes can be spread over multiple
devices. The choice of storage structure depends on what
is best for the benchmark, the database management
system and the operating system.

Once an initial setup has been configured, the tuning is
done via experimentation. The process is painful, and a
lot of patience and discipline are needed. Good records
must be kept of the step-by-step process.

The objective of the measurement process is not only
to generate a number but to analyse whether the number
is reasonable and repeatable. For example, a measure-
ment that indicates a 100% processor utilisation may not
indicate that the maximum transaction rate has been
achieved. An analysis of the processor utilisation by the

operating system, database management system and
application is needed to understand how the processor is
being used by the different components. Once the tps
metric has been obtained, other runs of the benchmark
under the same conditions (hardware, software and
configuration) should yield the same results; that is, the
measurements must be repeatable.

By this process, diminishing returns are obtained per
unit of effort. At first the most obvious flaws are
discovered; and later, given the same unit of effort less
improvement will be observed in the transactions per
second (tps) metric.

It is difficult to know when to stop. There are no good
guidelines. The measurement process stops when you run
out of time, resources, or simply when the probability of
improvement to the tps metric is negligible.

4.3.2 Cost

Up to this point the effort has been targeted toward
maximising of the transactions per second (tps) metric.
Once the maximum tps has been obtained from the basic
hardware/software platform, the next consideration is
cost; that is, the metric thousands of dollars per tps
($K/tps). To minimise $K/tps, the benchmark must be
run in the least expensive configuration of hardware and
software in terms of dollars.

Technical factors. At this stage, a lot will be known
about the utilisation of resources such as memory,
processor and I/O. For example, the number of physical
I/O operations per transaction will be known; and this
information, along with the knowledge about the I/O
rates of disks and controllers will be enough to decide the
optimal combination of controllers and disks, and the
optimal allocation of the tables.

Also, the database may be re-scaled to reflect, in a
more precise manner, the expected performance of the
DBMS. The implication is that less disks may be needed
to store the database, and the total cost of the system
may decrease.

Marketing factors. The problem of minimising the
$K/tps is not only a matter of increasing the tps and
decreasing the hardware and software resources; it is
also a marketing problem, and specifically it is a pricing
problem.

Technical people tend to work in an isolated en-
vironment were the decisions are based on technical
arguments; but in the case of minimising SK/tps
marketing people can play a major role. Certain
combinations of software and hardware can be priced in
special ways. Of course, the configuration being priced
must be available to the public - at the price quoted.

4.4 Integration

After the tps metric has been maximised and the SK/tps
has been minimised, a disclosure report must be written.
It is recommended to audit the measurement, in order to
check compliance with the benchmark definition.

From the description above, the reader may get the
misleading impression that the process of measuring
performance, although complicated and lengthy, is
sequential. Figure 6 shows a more realistic picture of the
performance measurement process.

Problems may occur at any of the phases. For example,
sometimes the hardware configuration process can be

THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992 329

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/4

/3
2
2
/3

4
8
1
8
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

S. W. DIETRICH, M. BROWN, E. CORTES-RELLO AND S. WUNDERLIN

performance

Figure 6. Integration of performance and cost tuning.

slowed because some trivial connectors or cables were
not ordered or were lost. Also, as measurements are done
as early as possible in the development cycle, some of
the layers involved may not be stable enough, and the
measurement process will be an opportunity to discover
certain hard-to-detect problems.

The system software configuration and tuning is an
iterative process. Initially, the default values of the
system parameters are used, and sometimes they are
inadequate. Tuning is an experimental process; but the
experiments are not random: they are guided by the
knowledge of the operating system and the database

management system. During the process, the hardware
resources may prove to be inadequate and the entire
process may start all over again.

In the application tuning phase, the knowledge about
the database management system, the operating system
and their relationships is again crucial. During this
phase, the system software tuning continues as a parallel
activity.

Tuning for performance (tps maximisation) can un-
cover problems in any of the three previous phases. For
example, we may discover that the benchmark ap-
plication is using too much memory, that a crucial
parameter of the operating system must be changed, or
that there are problems with the DBMS configuration.

Finally, tuning the cost ($K/tps minimisation) involves
a very difficult dialogue between people with technical
and marketing backgrounds. The cost minimisation
process may affect the choice of software components or
may involve changes in the hardware configuration.

5. SUMMARY

This paper provided an introduction to performance
benchmarks that defined the database performance area,
including benchmarks for transaction processing, such as
DebitCredit, TPC-A, TPC-B, and benchmarks for
decision support, such as the Wisconsin benchmark and
its extension by Bull to a vendor benchmark, known as
the Single-User Decision Support benchmark. We also
gave a practitioner's perspective of the issues involved in
performance measurement. The task of measuring
performance is a time consuming and complex process.
The measurement of benchmarks typically requires an
optimisation phase. For industry-standard benchmarks,
the goal is to maximise the performance metrics and to
minimise the cost metrics. This optimisation phase is an
iterative process. Each layer of the system must be tuned
according to its own parameters but the tuning of one
layer probably has an effect on another layer. The
optimisation is also not limited to pure technical factors;
marketing factors play an important role in minimising
the cost metric.

Acknowledgements

The authors would like to thank the anonymous referee
for thoughtful comments that improved the paper.
Thanks are also due to Forouzan Golshani, Aime Bayle
and the performance Group at Bull Worldwide In-
formation Systems in Phoenix for feedback on earlier
versions of this paper.

REFERENCES

1. Anon, A measure of transaction processing power.
Datamation, (1 April 1985) pp. 113-116. Also appears in
Readings in Database Systems, edited M. Stonebraker, pp.
300-312. Morgan Kaufmann, San Mateo, CA (1988).

2. D. Bitton, D. J. DeWitt and C. Turbyfill, Benchmarking
database systems — a systematic approach. In Proceedings
of Ninth International Conference on Very Large Data
Bases, pp. 8-19 (1983).

3. D. Bitton and C. Turbyfill, A retrospective on the
Wisconsin benchmark. In Readings in Database Systems,

edited M. Stonebraker, pp. 280-299. Morgan Kaufmann,
San Mateo, CA (1988).

4. M. Brown, Vendor benchmarking for relational decision
support. BullHN Technical Update, pp. 8-13 (April
1990).

5. R. G. G. Cattell, An engineering database benchmark. In
Ref. 9, pp. 247-281.

6. C. J. Date, An overview of SQL2. In Relational Database
Writings 1989-1991, edited C. J. Date, pp. 413^23.
Addison-Wesley, Reading, MA (1992).

330 THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/4

/3
2
2
/3

4
8
1
8
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

DATABASE PERFORMANCE BENCHMARKS AND MEASUREMENTS

7. D. DeWitt, The Wisconsin benchmark: past, present, and
future. In Ref. 9, pp. 119-165.

8. R. Elmasri and S. Navathe, Fundamentals of Database

Systems. Benjamin-Cummings, Menlo Park, CA (1989).
9. J. Gray (ed.), The Benchmark Handbook for Database and

Transaction Processing Systems. Morgan Kaufmann, San
Mateo, CA (1991).

10. INGRES Interactive Performance Monitor User's Guide,

64-9(9)47913.
11. N. Nelson, The Neal Nelson benchmark®: A benchmark

based on the realities of business. In Ref. 9, pp. 283-300.
12. P. E. O'Neil, The set query benchmark. In Ref. 9, pp.

209-245.

13. O. Serlin, Measuring OLTP with a better yardstick.
Datamation, pp. 62-64 (15 July 1990).

14. Transaction Processing Performance Council, TPC Bench-

mark^ A, Standard Specification (10 November 1989).
Also appears in Ref. 9, pp. 39-78.
Transaction Processing Performance Council, TPC bench-
mark51* B, Standard Specification (23 August 1990). Also
appears in Ref. 9, pp. 79-117.
C. Turbyfill, C. Orji and D. Bitton, AS3AP: an ANSI SQL
standard scaleable and portable benchmark for relational
database systems. In Ref. 9, pp. 167-207.

15

16

Book Review

F. MADDIX

Human-Computer Interaction: Theory and
Practice Ellis Horwood, 1990. £18.95 ISBN
0-13-446220-3

For a reluctant book reviewer, the page of
errata that fell out of my copy was less than
encouraging. Secondly, glancing at the refer-
ences, a mere 71 of them, it was obvious to me
that this book is seriously under-referenced,
particular as my name did not appear in
appendix A, where the references are buried.
In fact, one of my papers is referenced, but is
so at a chapter end. Indeed, there is a problem
with the whole style of referencing in the book
which is inconsistent (sometimes names and
dates, sometimes name and numbers, and
some references in appendix A and some not).

If the references are one problem with this
book, the content index is a more important
second problem. At five pages, in double-
column format, it at first looks adequate.
However, the naturally suspicious will note
that each index item has few page numbers
associated with it, and at most only six, and
this is a very rare exception. Taking what, for
me, is becoming a standard test of HCI books,
I looked up a couple of vital and difficult index
entries: (i) task analysis; (ii) user modelling.
Apart from my expertise in these two areas of
HCI, they are informative because task analy-
sis and the whole concept of tasks is central to
HCI, as is user modelling, and both are
technically difficult. In a word, the index is
inadequate. 'Task analysis', 'Task model'
and 'Tasks' yields but four index entries and
'User model' a mere two. Within the book
there are numerous references to these two
topics, some of them in bold (e.g. p. 226, 'The
task') and some even as section headings (e.g.
p. 44, ' Other User models'; p. 88, ' Task
Analysis'), which just do not occur in the
content index at all. I estimate that these two
topics between them require two to three times
the little indexing they enjoy. Indeed, one of
my major criticisms of the book is that user
modelling is not dealt with adequately as a
topic. In fact, there is a great deal on users in
the book, as is essential for any HCI book, but
it is dispersed and it appears that the author is
often not aware of the need to deal with the

whole issue in a coherent manner. To take one
example for illustration, there is a whole
section on 'Operator psychology' (pp. 247-8)
which describes users in the context of their
personality attributes, which is clearly an
aspect of user modelling, yet, of course, it is
not indexed either under ' User model' or even
under 'Operator psychology'.

I wish I had had a chance to be the editor of
this book, as overall it makes a very valuable
contribution to the HCI textbook literature.
Unfortunately I think it is structured in a
manner that is odd and less than helpful. Like
many HCI textbooks it has a few chapters of
irrelevant material, most particularly chapter
3 on 'Information processing'. The focus of
the chapter is wrong simply because infor-
mation theory's definition of the bit is in-
appropriate for describing the information
content of stimuli perceived by people because
the actual content is determined by the state
(knowledge, goals, task constraints) of the
perceiving information processor (the mind).
Furthermore, while I would have replaced this
chapter with one on user modelling, 1 would
still question it utility for practical HCI. To
me it seems that there is a tremendous gap
between a lot of psychological waffle (and I do
have a doctoral degree in experimental psy-
chology) about people and the impact (little)
all this psychology has on the design of
computer systems. Furthermore, I question
how even some relevant user psychology can
be transmitted to system designers, who
generally do not have a background in
'difficult' subjects such as psychology,
sociology, philosophy, economics, etc.

The division of chapters 7 and 8,' Interfaces'
and 'Visual interfaces' respectively, seems to
me arbitrary. I also question the utility of
chapter 12's 'Experimental studies', which
describe four very brief student experiments
and the results of which I would not trust for
the design of real computer systems, which
have to support particular types of user
performing specific types of task. Certainly
there is a need to balance these small examples
with real software engineering examples, and
it is here that chapter 13 (' HCI and design')
fails. The author's heart is in the right place

with respect to the need to go beyond the
direct end-user or operator, and that a social
perspective is also essential, but this view,
expressed in the early chapters, is not carried
through the rest of the book. Similarly, I
would have appreciated a section, if not a
chapter, on ethical issues associated with
computers since HCI, it has been argued, by
being inherently interdisciplinary and user-
centred, is particularly well positioned to
address this topic.

Whatever it says in the preface, this is a
student textbook and really one for computer
science or information technology students. It
has sufficient computer technology to maintain
some interest for such an audience, but too
much for those learning about HCI from
other disciplines such as psychology. In this
context, its overall weakness in psychology
may be seen as an advantage. Since I do teach
computer science undergraduates and master-
level students about HCI, I intend to rec-
ommend this book next year as a primary
reference source for my students. The book is
not suitable for those in industry because of its
weakness at providing advice and practical
example of HCI in real system design and
software engineering.

Finally, this is a book with a layout of which
the publishers should be thoroughly ashamed.
1 would guess that this book has been prepared
on the author's computer system and that the
publishers have simply taken the author's
version and printed it. The pictures, tables,
etc. are not floated so that there are frequent,
large blank sections at the bottom of pages.
These blanks are not just unaesthetic but
actually interfere with the book's semantics,
since they do not denote the meaningful end
of a section or topic. I know that Ellis
Horwood have been publicly criticised in
reviews before over such matters, and this is
yet another example of what is wrong with far
too much technology publishing today. I think
the author got a raw deal, and what is really
quite a good textbook has been ruined by an
absence of the services that I demand from the
publishers I deal with.

DAN DIAPER

Liverpool

THE COMPUTER JOURNAL, VOL. 35, NO. 4, 1992 331

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/4

/3
2
2
/3

4
8
1
8
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

