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Metabonomic/metabolomic studies can involve the analysis of large numbers of
samples for the detection of biomarkers and confidence in the analytical data,
generated by methods such as GC and HPLC-MS, requires active measures on the
part of the analyst. However, quality control for complex multi-component
samples such as biofluids, where many of the components of interest in the
sample are unknown prior to analysis, poses significant problems. Here the repeat
analysis of a pooled sample throughout the run, thereby enabling the analysis to
be monitored and controlled using targeted inspection of the data and pattern
recognition, is advocated as a pragmatic solution to this problem.

Introduction

The acquisition of robust and meaningful

global metabolite profiles from complex

biological samples, including biofluids,

such as plasma and urine, or tissue

extracts poses an interesting set of

problems for the analyst. Obtaining such

profiles forms the core of the rapidly

emerging sciences known variously as

metabonomics and metabolomics, where

the hope is that such techniques will

uncover important biomarkers of e.g.

toxicity or disease.1,2 Variability in the

samples can arise from a number of

sources including physiological differ-

ences (e.g. strain, gender, age, diurnal

and hormonal effects etc) (see ref. 3 for

a discussion of this topic) and variability

in the analytical method itself (both

sample preparation and analysis). For

certain techniques, such as 1H NMR

spectroscopy, where sample preparation

for biofluids is minimal, analytical repro-

ducibility has been demonstrated to be

very good.4 However, analytical methods

for metabonomics that employ either

HPLC or GC-MS generally require more

sample preparation, which in the case of

GC-based analysis is often extensive,

followed by a chromatographic separa-

tion and then mass spectrometry.

Chromatographic techniques are liable,

to a greater or lesser extent (depending

upon the technique and sample type), to

degradation of performance over time as

columns become contaminated, and the

response of mass spectrometers can also

decline with time for similar reasons. In

conventional target compound analysis

these factors are controlled by the

incorporation of internal standards, most

often a deuterated version of the analyte,

into the analytical procedure to counter,

if not entirely eliminate, such effects. In

addition, specific quality control samples

(QCs) are employed to monitor the

performance of the method. In the case

of validated methods, e.g. drug analysis,

the QCs are blank matrix samples spiked

with known concentrations of the analyte

designed to cover the range of concen-

trations that can be determined with

reasonable accuracy and precision.

These samples are usually found at the

beginning and end of the sample set and

also scattered randomly through the

analytical run. Examination of the QC

data at the end of the analysis against a

set of predefined criteria enables the

analytical scientist to decide whether or

not to accept or reject the batch. In such

targeted analysis, retention is also mon-

itored but, given the specificity of the

technique, some variation through the

run is more easily tolerated. Such rigor is

not merely good analytical practice but,

where data is to be used to support drug

registration, is covered by regulatory

guidance.5

This approach is not viable for meta-

bonomics analysis for the following

reasons.

(1) The samples typically contain 100s

to 1000s of components covering a wide

range of concentrations and structural

types, of variable and unknown MS

response.

(2) The bulk of the analytes in the

sample are unknown prior to the analysis

and indeed, because of limitations in the

state of our knowledge at the moment,

potential biomarkers may remain uni-

dentified at the end.

(3) By definition, stable isotope

labelled internal standards cannot be

used where the identity of the analytes

are unknown, even if it were a realistic

economic proposition to prepare them all

and spike them in.

(4) The post analysis processing of the

data, if it makes use of the 3-dimensional

data set provided by mass, retention

and intensity information, cannot easily
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tolerate significant changes in chromato-

graphic retention or mass spectrometer

response.

A partial solution to this problem is to

accept that it is not possible to control

the analysis of all of the compounds and

instead to opt for the control of a limited

number of them for which deuterated

internal standards are available. This is

done in the hope that if these analytes

‘‘behave’’ themselves then the system is

under control and thus the analysis of all

of the remaining analytes is also under

control. The selected standards can be

spiked in to samples prior to analysis as

pseudo internal standards, or run simply

as QCs alongside the test samples. Whilst

such an approach might have been

sustainable a few years ago, increasing

experience of quantitative HPLC-MS,

where ion suppression/ion enhancement

and source contamination can cause

highly variable responses during analysis,

has done much to dim such optimism

amongst the authors. In addition to MS-

related effects, changes in column selec-

tivity are also likely as columns age,

which might well lead to differential

changes in retention for e.g. bases vs.

acids etc., especially if in HPLC silano-

philic interactions are involved in the

retention mechanisms of any of the

analytes.

Against this backdrop we have

attempted to formulate a pragmatic

strategy for controlling the multi-compo-

nent, multi-parametric, analytical pro-

cess encountered in metabonomics. At

the heart of this approach are the

samples themselves that, between them,

contain all of the analytes that will be

encountered during the analysis.

We therefore advocate taking aliquots

from every sample which are then com-

bined in a representative pool sample.

The pool sample is then split to form a

multi-sample QC set which is analysed at

the beginning, end and randomly

through the analytical run. The same

pool sample can also be used for

performing a system suitability test prior

to beginning the main analytical run if

required. For batches of 100 or so

samples the QCs would represent a

minimum of 10% of the total analysed

(more if the batch was small).

Post analysis, the pool sample QC data

can be examined visually for gross

changes to give a rapid assessment of

how well the run has gone. Similarly, a

small number of selected components

can be rapidly screened for peak shape,

intensity, mass accuracy and retention

time against predetermined acceptance

criteria. Assuming that these criteria are

met then the whole data set can be taken

forward for initial multivariate statistical

analysis, using an unsupervised method

such as principal components analysis

(PCA) with the QC data expected to

cluster closely together, and show no

time related trends (supervised methods

should not be used as these will ‘‘force’’

the QCs to cluster together potentially

masking variability). If statistical analy-

sis reveals more subtle, time-related,

changes the analyst can use the results

to determine if there was a gradual

change during the analysis or whether a

sudden deterioration had occurred at

some point midway through the analysis.

Here we give two examples of the use

of this strategy for the control of GC-MS

analysis of rat plasma samples and the

reversed-phase gradient HPLC-ToF-MS

of human urine.

For GC-MS analysis, plasma samples

from 4 different strains of rat (100 mL)

were protein precipitated using 3 volumes

of acetonitrile, followed by centrifuga-

tion, and then 100 mL of each super-

natant was evaporated to dryness prior

to derivatisation. In addition, prior to

analysis, 50 mL of each original sample

were pooled to generate the QC and

aliquots of 100 mL of this pooled sample

were taken through the same process. All

samples were then subjected to a double

derivatisation procedure involving meth-

oxylamine hydrochloride and then

MSTFA at 37 uC.6 Capillary GC-MS,

using a 20 m 6 180 mm 6 0.18 mm DB5

column, with a temperature gradient

from 85 to 320 uC, was then used to

generate profiles in both EI and CI

modes (separate batches of sample were

used for the EI and CI runs). The result-

ing GC-MS data were processed using

the Waters MarkerLynx Application

Manager. The results of the PCA of the

GC-EIMS and GC-CIMS data are

shown in Fig. 1 and 2 respectively. As

these figures show, despite extensive and

lengthy sample preparation and subse-

quent GC-MS, the QC samples generally

cluster closely together in the PCA scores

plot, providing a degree of confidence

that the results obtained for the test

samples are suitable for further data

analysis with the aim of finding biomar-

kers. The one QC sample which does not

cluster with the others in the GC-CIMS

example (Fig. 2) was the second injection

of the batch (the first having been

automatically discarded). Such beha-

viour in the first few samples run in both

GC and LC-MS is not unusual in our

experience and, as discussed below, has

led us to a change our analytical practice.

For UPLC-MS analysis, urine samples

from a set of human samples (100 mL)

were diluted by the ratio 1 : 4 with 0.1%

formic acid, followed by centrifugation,

and then injected onto the LC-MS. In

addition, prior to analysis, 50 mL of each

original sample were pooled to generate a

QC sample and aliquots of 100 mL of this

pooled sample were taken through the

same process. The samples were analysed

on a Waters ACQUITY UPLC system

Fig. 1 All samples were plasma from 20 week

old male rats. The figure shows the PCA scores

plot of PC1 versus PC2 obtained from the

GC-EIMS data. Key: (&) QCs; (#) Wistar-

derived rats; (e) Zucker (fa/fa) rats; (n) Zucker

lean/(fa) cross; (,) Zucker lean rats.

Fig. 2 All samples were plasma from 20 week

old male rats. The figure shows the PCA scores

plot of PC1 versus PC2 obtained from the

GC-CIMS data. Key: (&) QCs; (#) Wistar-

derived rats; (e) Zucker (fa/fa) rats; (n) Zucker

lean/(fa) cross; (,) = Zucker lean rats.
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with a 10 cm 6 2.1 mm, 1.7 mm BEH

C18 ACQUITY column coupled to a

QTof Micro mass spectrometer. The

column was maintained at approximately

40 uC and elution was performed using a

gradient of 0.1% formic acid and acet-

onitrile. The resulting LC-MS data were

processed using the Waters MarkerLynx

Application Manager, with statistical

analysis in SIMPCA-P. The results for

the PCA of the UPLC-MS data are

shown in Fig. 3, and once again show

that, although there is some variability in

the QCs, these samples nevertheless

cluster closely together and indicate that

the analysis is under control.

In any QC approach the question of

course then arises as to how ‘‘tight’’ the

data should be to be considered accep-

table. Currently our practice is to use the

QC data as a means of rejecting batches

as, if the QCs are widely scattered in the

scores plot, it is fairly easy to decide that

the analysis was not fit for purpose.

However, we are not then advocating the

blind acceptance of the remaining

batches but, having filtered out obviously

bad data, it then seems reasonable invest

more time analysing the results from runs

that appear, on the basis of the PCA

result, to have been under good analy-

tical control. For potential biomarkers

detected in the samples it would then be

reasonable to examine the reproducibility

of the method for that component,

taking into account the intensity of the

ion of interest (so that intense ions giving

good signal-to-noise (S/N) ratios should

perhaps be required to exhibit a higher

degree of precision than those of low

intensity). In this respect the FDAs

guidance on bioanalytical method vali-

dation5 would probably provide a good

starting point. Thus, coefficients of var-

iation of less than 15% would be required

for ions with good S/N and 20% for those

with an S/N of perhaps only 3 times

greater than background.

For both HPLC and GC, when the

potential biomarkers have been identified

by statistical analysis of the data, it is

possible to re-examine the QC data

specifically to look at the variability of

the results obtained for those specific

ions in the QC-data set. Once satisfied

that the results are unlikely to be

artefacts of the analysis, it may then be

worth devoting the time to the identifica-

tion of these interesting metabolites with

the aim of developing specific and

validated methods for them to prove

the hypothesis that they are indeed

biomarkers for the biological state under

investigation.

On the basis of our observations made

using this approach we know that the first

few analytical runs are the most variable

(e.g. see the GC-CIMS data above).

Whilst the reasons for this are not clear

the consequences are obvious, and we

would therefore strongly advocate that,

prior to beginning an analytical run,

several QC samples are run first to

effectively ‘‘condition’’ the chromato-

graphic system. The data from these initial

runs should not form part of total QC

data set used subsequently to ‘‘validate’’

the quality of the metabolite profiles

generated, but could be used as supporting

data to show system suitability.

The methodology outlined here has

been specifically designed for use on

relatively small batches of samples (from

a few tens of samples up to a few

hundred) that could be accommodated

in a single analytical run on one instru-

ment. Such a sample size would be

typical of the sorts of numbers generated

in toxicological studies in animal species,

investigative studies in disease models or

Fig. 3 The PCA scores plot obtained following the UPLC-MS analysis of human urine samples (grey circles). To generate QCs 50 mL of each

original sample were pooled (black squares). The samples were analysed by reversed-phase UPLC on a 10 cm 6 2.1 mm, 1.7 mm BEH C18

ACQUITY column coupled to a QTof Micro mass spectrometer.
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small scale studies in humans. In such

applications, the QC policy described

here seems to be appropriate to demon-

strate ‘‘within day’’ analytical control.

Whether or not the use of such QCs

would enable ‘‘split’’ batches, run on

different days, to be combined is less

clear. This is clearly an area that requires

further investigation as there are circum-

stances when it would be highly desirable

to be able to combine ‘‘between’’ day

datasets (e.g., after instrument failure

partway through a run, or where there

are more samples than can be easily

accommodated in a single analytical

run).

There are, in addition, the QC require-

ments of larger epidemiological or clinical

studies, to be considered. Such types of

study are more problematic because the

large numbers of samples collected (often

over a period of some years) means that

analysis in a single batch is not possible.

In such cases, as there is a need to also

ensure between batch as well as within

batch data quality, it would almost

certainly not be practicable to use a pool

QC prepared from the samples them-

selves, and instead the use of a single bulk

sample prepared at the start of the study

and split into a large number of sub-

aliquots and stored with the study sam-

ples may be preferable. However, such an

approach assumes sample stability over

the collection period of the study.

Clearly, if confidence is to be placed in

the data generated from complex sample

analysis of the type encountered in

metabonomics studies, some assurance

of the quality of the data is required. This

is especially the case if data are to be

submitted in support of regulatory stu-

dies, but also forms an important part of

any analytical study in this area. There

are already initiatives working towards

the standardisation of the reporting of

metabonomics data,7 and quality control

procedures need to form part of this

debate. Probably the best way to use the

approach described above is as an initial

screen of the analytical results. Thus, if

the QC data is highly variable the run

fails and re-analysis is required. In

contrast, if the QC data are close, this

does not necessarily mean that the

analysis is satisfactory, but allows provi-

sional acceptance of the run, and justifies

devoting more time to a more exhaustive

interrogation of the data with more

advanced statistical procedures.

Whilst this approach of repeat analysis

of a pooled sample can be criticized in

any number of ways it at least has the

advantages of ease of implementation,

speed (it can be performed by the analyst

at the instrument) and relevance to the

samples being analysed. We therefore

offer it as one possible route towards a

viable QC policy for monitoring global

metabolite profiling that covers that part

of the analytical process involving sam-

ple preparation and chromatographic/

mass spectroscopic analysis, in the hope

of stimulating a debate on what we

believe to be an important problem

facing investigators in this area.
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