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Abstract 

In this thesis, we propose a unified framework for the pragmatics and the semantics of agent 
communication. Pragmatics deals with the way agents use communicative acts when 
conversing. It is related to the dynamics of agent interactions and to the way of connecting 
individual acts while building complete conversations. Semantics is interested in the 
meaning of these acts. It lays down the foundation for a concise and unambiguous meaning 
of agent messages. This framework aims at solving three main problems of agent 
communication:  
 
1- The absence of a link between the pragmatics and the semantics. 
2- The inflexibility of current agent communication protocols. 
3- The verification of agent communication mechanisms. 
 
The main contributions of this thesis are: 
 
1- A formal pragmatic approach based on social commitments and arguments. 
2- A new agent communication formalism called Commitment and Argument Network. 
3- A logical model defining the semantics of the elements used in the pragmatic approach. 
4-  A tableau-based model checking technique for the verification of a kind of flexible 
protocols called dialogue game protocols.  
5- A new persuasion dialogue game protocol.  
 
The main idea of our pragmatic approach is that agent communication is considered as 
actions that agents perform on social commitments and arguments. The dynamics of agent 
conversation is represented by this notion of actions and by the evolution of these 
commitments and arguments. Our Commitment and Argument Network formalism based 
on this approach provides an external representation of agent communication dynamics. We 
argue that this formalism helps agents to participate in conversations in a flexible way 
because they can reason about their communicative acts using their argumentation systems 
and the current state of the conversation. 
 
Our logical model is a model-theoretic semantics for the pragmatic approach. It defines the 
meaning of the different communicative acts that we use in our pragmatic approach. It also 
expresses the meaning of some important speech acts and it captures the semantics of 
defeasible arguments. This logical model allows us to establish the link between the 
semantics and the pragmatics of agent communication. 
 
We address the problem of verifying dialogue game protocols using a tableau-based model 
checking technique. These protocols are specified in terms of our logical model. We argue 
that our model checking algorithm provides a technique, not only to verify if the dialogue 
game protocol satisfies a given property, but also if this protocol respects the underlying 
semantics of the communicative acts. 



ii 

 

Our persuasion dialogue game protocol is specified in our framework using a logical 
language, and implemented using a logic programming and agent-oriented programming 
paradigm. In this protocol, the agents’ decision making process is based on the agents’ 
argumentation systems and the notion of agents’ trustworthiness. 



 

 

Résumé 

Dans cette thèse, nous proposons un cadre unifié pour la pragmatique et la sémantique de la 
communication entre agents logiciels. La pragmatique traite la façon dont les agents 
utilisent les actes communicatifs lorsqu’ils participent aux conversations. Elle est liée à la 
dynamique des interactions entre agents et à la manière avec laquelle les actes individuels 
sont reliés pour construire des conversations complètes. La sémantique, quant à elle, est 
intéressée par la signification de ces actes. Elle établit la base pour une signification concise 
et non ambiguë des messages échangés entre les agents. Ce cadre unifié vise à résoudre trois 
problèmes majeurs dans le domaine de communication entre agents :  
 
1- L’absence d’un lien entre la pragmatique et la sémantique.  
2- L’inflexibilité des protocoles actuels de communication entre agents. 
3- La vérification des mécanismes de communication entre agents.  
 
Les contributions principales de cette thèse sont :  
 
1- Une approche pragmatique formelle basée sur les engagements sociaux et les 
arguments.  
2- Un nouveau formalisme pour la communication entre agents appelé Réseau 
d’Engagements et d’Arguments.  
3- Un modèle logique définissant la sémantique des éléments utilisés dans l’approche 
pragmatique. 
4- Une technique de vérification de modèles basée sur une sémantique à tableaux pour 
vérifier une famille de protocoles flexibles de communication entre agents appelée 
protocoles à base de jeux de dialogue.  
5- Un nouveau protocole de persuasion à base de jeux de dialogue.  
 
L'idée principale de notre approche pragmatique est que la communication entre agents est 
modélisée comme des actions que les agents accomplissent sur des engagements sociaux et 
des arguments. La dynamique de la conversation entre agents est représentée par cette 
notion d’actions et par l’évolution de ces engagements et arguments. Notre formalisme 
(Réseau d’Engagements et d’Arguments) basé sur cette approche fournit une représentation 
externe de la dynamique de communication entre agents. Ce formalisme peut être utilisé par 
les agents comme moyen pour participer à des conversations d’une manière flexible parce 
qu’ils peuvent raisonner sur leurs actes communicatifs en utilisant leurs systèmes 
d’argumentation et l’état actuel de la conversation.  
 
Notre modèle logique est une sémantique, à base d’un modèle théorique, pour l’approche 
pragmatique. Il définit la signification des différents actes de communication que nous 
utilisons dans notre approche pragmatique. Il exprime également la signification de 
quelques actes de discours importants dans le contexte de communication multi-agents et il
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capture la sémantique des arguments annulables. Ce modèle logique permet d’établir le lien 
entre la sémantique et la pragmatique de communication entre agents.  
 
Nous traitons le problème de vérification des protocoles à base de jeux de dialogue en 
utilisant une technique de vérification de modèles basée sur une sémantique à tableaux. Ces 
protocoles sont spécifiés sur la base de notre modèle logique. Nous montrons que notre 
algorithme de vérification offre une technique, non seulement pour vérifier si le protocole à 
base de jeux de dialogue (le modèle) satisfait une propriété donnée, mais également si ce 
protocole respecte la sémantique des actes communicatifs.  
 
Notre protocole de persuasion à base de jeux de dialogue est spécifié dans le contexte de 
notre cadre unifié en utilisant un langage logique. Il est implémenté en utilisant une 
programmation logique et un paradigme orienté-agent. Dans ce protocole, le processus 
décisionnel des agents est basé sur les systèmes d’argumentation et sur la notion de 
crédibilité des agents. 
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Chapter 1 

Introduction 

In this chapter, we introduce the context of our research which is communication between 

software agents in a multi-agent system. We also identify the motivations, problems, and 

research questions that we address in this thesis. Finally, we present our hypotheses, 

objectives, and methodology. 

 
 
 

1.1 Context of the Research 
 
This thesis is about communication between autonomous agents. In the multi-agent domain, 
it is widely recognized that this communication is one of the major topics of research. All 
the applications of Multi-Agent Systems (MASs) (Chaib-draa, 1995), (Wooldridge and 
Jennings, 1995), (Moulin and Chaib-draa, 1996) (Wooldridge, 2002) ranging from digital 
libraries through cooperative engineering to electronic commerce, have one thing in 
common: the agents operating in these systems have to communicate. These systems consist 
of multiple agents that communicate in order to solve some problems. If a problem is 
particularly complex, large, or unpredictable, the only way it can reasonably be addressed is 
to develop a number of functionally specific and modular components (agents) which are 
able to solve a particular problem aspect (Sycara, 1998). This decomposition allows each 
agent to use the most appropriate paradigm to solve its particular problem. When 
interdependent problems arise, agents in the system must communicate in order to 
coordinate with one another to ensure that interdependencies are properly managed. 
Therefore, it is clear that the success of these systems need powerful communication 
mechanisms. 
 
Agent communication is related to several disciplines: philosophy of language, social 
psychology, artificial intelligence, logic, mathematics, etc. In this domain, in order to be 
able to negotiate, solve conflicts of interest, cooperate, find proofs, agents need not only 
exchange single messages, but also take part in conversations with other agents. A 
conversation is defined as a coherent sequence of utterances. The term “coherent” means 
that the information conveyed by an utterance is related to the information conveyed by the 
other utterances in a conversation. For example, if p is the information conveyed by an 
utterance, the information conveyed by the next one can be the acceptance, the refusal, the 
challenge, the attack, etc. of p. Indeed, if agents communicate by exchanging isolated 
messages, the resulting communication is extremely poor and agents cannot participate in 
complex interactions such as negotiations, persuasions, deliberations, etc, which are formed 
by a sequence of utterances.   
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The language used by the agents for their exchanges is the Agent Communication Language 
(ACL). An ACL stems from the need to coordinate the actions of an agent with that of the 
other agents. A first attempt to come to a standardized ACL came from the DARPA 
knowledge sharing project and produced KQML (Knowledge Query and Manipulation 
Language) (Finin et al., 1995). Another effort to come to a standard ACL has started 
through the Foundation for Intelligent Physical Agents (FIPA) initiative (FIPA, 2001a, 
2002). KQML and FIPA-ACL are based on speech act theory and messages are considered 
as communicative acts whose objective is to perform some action by virtue of being sent. 
To enable agents to communicate, FIPA proposed a set of communication protocols that 
agents can follow. FIPA contract net interaction protocol is an example of these protocols 
(FIPA Interaction Protocols, 2001, 2002). In the contract net interaction protocol, one agent 
(the initiator) takes the role of manager which wishes to have some task performed by one 
or more other agents (the participants) and further wishes to optimise a function that 
characterizes the task. This characteristic is commonly expressed as the price, in some 
domain specific way, but could also be soonest time to completion, fair distribution of tasks, 
etc. Generally, agent communication protocols describe the sequence of messages that 
agents can exchange for particular applications. Although these protocols can successfully 
be used for some simple applications, they are often too rigid to be used by autonomous 
agents in their conversations. The reason is that these protocols are specified in such a way 
that agents must follow them from beginning to end without specifying how these agents 
can reason about them. To solve this problem, several researchers proposed dialogue game 
frameworks inspired by the philosophy of argumentation (Reed, 1998), (McBurney and 
Parsons, 2001, 2002), (Dignum et al., 2000, 2001). Dialogue games are abstract structures 
that can be composed in order to reflect the whole dialogue. They are interactions between 
two or more players, in which each player moves by making utterances, according to a pre-
defined set of rules. The rules typically define what locutions may or must be uttered in 
different circumstances. However, the underlying semantics and the verification of these 
dialogue games are aspects yet to be addressed. 
 

1.2 Motivations 
 
To be able to communicate, agents should use a common communication mechanism (for 
example, a communication protocol). Because agents are autonomous, this mechanism must 
be flexible enough and agents must reason about their communicative acts in order to 
decide how they can pursue their conversations. Classical protocols, like those used in 
distributed systems, are not suitable in this domain because they only describe the sequence 
of allowed actions without any reasoning mechanism. Our first motivation is to give agents 
flexible means of communication. These means must be formally specified by taking into 
account the agents’ architecture.  
 
In addition, in the domain of agent communication, semantics is one of the most important 
aspects, particularly in the current context of open and interoperable MASs. Semantics lays 
down the foundation for a concise and unambiguous meaning of agent messages. When 
agents interact to achieve a goal, the mutual understanding of the exchanged messages 
depends on the semantics given to communicative actions. Although some significant 
research work was done in this field (Singh, 2000) (Guerin and Pitt, 2001) (Amgoud et al., 
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2002), (McBurney, 2002), (Verdicchio and Colombetti, 2003), (Flores et al., 2004) the 
definition of a clear and global semantics is an objective yet to be reached. Agent 
communication pragmatics is another important aspect to be addressed in this domain. 
While semantics is interested in the meaning of communication acts, pragmatics deals with 
the way of using these acts. Pragmatics is related to the dynamics of agent communication. 
Because agents do not exchange isolated messages, but participate in complete 
conversations, the semantics must take into account the chaining of the communicative 
actions. Therefore, the semantics must be defined in a pragmatic perspective. Our second 
motivation is to contribute to the advance of research in this domain by developing a unified 
formal framework establishing the link between the pragmatics and semantics of agent 
communication. This motivation is related to the first one in the sense that the formal 
specification of the communication mechanism should allow us to verify whether or not 
agents respect the defined semantics when conversing. 
 

1.3 Problems and Research Questions 
 
The first problem that we address in this thesis is the lack of flexibility in most current agent 
communication protocols (FIPA Interaction Protocols, 2001, 2002). These protocols are 
static and agents must execute them from beginning to end in order to communicate. In 
addition, these protocols do not specify how agents can manage exceptions (messages not 
specified or not supported by the protocol), and how they can choose a communicative act 
among others. To address this problem, several researchers proposed dialogue game 
frameworks. These frameworks attempt to support more complex conversations by 
combining different atomic dialogues. Agents participating in a dialogue game framework 
must agree on all the rules of the framework. However, several proposals in this domain do 
not specify how agents can reason about these rules and participate in conversations in a 
flexible way. If the decision making process belongs to the agent architecture, the link 
between this architecture and the communication model must be specified. In addition, 
these frameworks do not take into account the link between the private mental states and the 
reasoning abilities of agents. Thus, our initial research question is: “How may autonomous 

agents participate in conversations in a flexible way?”  
 
In the literature, three main approaches have been proposed for modeling agent 
communication: the mental approach, the social approach, and the argumentative approach. 
The mental approach focuses on the agents’ private mental states like beliefs, desires and 
intentions. In this approach, the semantics of the communicative acts is defined using these 
mental states. The social approach highlights the public and observable elements like social 
commitments that agents exchange when conversing. A social semantics is defined using 
the notion of social commitment. The argumentative approach is based on the agents’ 
reasoning capabilities. The meaning of communicative acts in this approach is defined in 
terms of arguments in favor or against the content of these acts. These approaches reflect 
only a partial view of agent communication. When participating in conversations, agents 
should use their mental states, exchange observable elements, and reason about these states 
and elements. Therefore, these approaches should be combined in a unified approach. The 
question that we explore here is: “How can we unify these approaches?” Another related 
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question is: “How can the link between pragmatics and semantics be established in such an 

approach?” 
 
The third problem that we explore in this thesis is the verification of agent communication. 
Two fundamental aspects need to be verified when specifying and developing agent 
communication mechanisms: the agents’ compliance to the ACL semantics, and the 
correctness of the specification in the sense that the mechanism satisfies some given 
properties. Although this verification is extremely important in open environment and in 
complex and interoperable systems, the different protocols proposed in the literature 
(classical or based on dialogue games) do not address it. Verifying these protocols is not an 
easy task when considering the different states of agents and their reasoning capabilities. 
The question is: “How can we formally specify and verify the agent communication 

mechanisms?” In addition, the termination of agent conversations and the complexity 
analysis of the corresponding reasoning algorithms must be addressed. 
 

1.4 Research Hypotheses 
 
To take part in flexible conversations (persuasions, argumentative negotiations, 
deliberations, etc.), software agents must have a suitable communication model. Agents 
must build their conversation dynamically while it advances. Thus, our first research 
hypothesis is that in their conversations, agents do not have to follow pre-established and 
fixed protocols. Instead, they need to reason about all utterances that have been uttered 
during the conversation in order to decide about what is necessary to utter next. In flexible 
conversations, protocols are only interesting as long as agents can use them as stereotypes 
which can help them in their conversations and not as means imposing what agents must do. 
Protocols only specify the allowed communicative acts, and do not indicate how agents can 
choose between these acts. In other words, protocols do not specify the underlying decision 
making process which is fundamental for conversing agents. 
 
The second hypothesis is related to the importance of the conversation context. The 
conversation context is defined by the set of knowledge and beliefs that agents suppose they 
share during their conversations. For example, as members of the same cultural community, 
the participants in a conversation share knowledge of a general nature and knowledge 
related to the existing standards and conventions. We make the hypothesis that agents 
communicate in a particular context that they share.  
  

1.5 Objectives 
 
The main objectives of this thesis are: 
 
1- To propose a pragmatic approach for agent communication taking into account the 
different elements that agents use in their conversations. This pragmatic approach based on 
social commitments and arguments must illustrate how agents use their communicative acts 
when conversing. It must also represent the dynamics of agent communication. This 
approach, based on speech act theory and specified by a formal language, will be used to 
develop a formal framework allowing agents to take part in conversations in a flexible way. 
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This framework, specified as a mathematical structure, should be able to represent the 
various actions that can take place in agent conversations and to model the dynamics of 
these conversations. 
 
2- To develop a communication model and a corresponding agent architecture on the basis 
of the pragmatic approach. 
 
3- To define a formal semantics related to the pragmatic approach. The idea is to specify a 
unified framework for the pragmatics and the semantics of agent communication. The 
meaning of the communicative acts must take into account the dynamics of agent 
communication. 
 
4- To develop a verification method for dialogue game protocols specified using the 
unified framework. 
 
5- To specify and to implement a flexible dialogue game protocol using the unified 
framework.  
 

1.6 Methodology 
 
At the beginning of this thesis, we studied research work done in the domain of agent 
communication. We noticed that the classical protocols used in this field are not suitable in 
the context of MASs in which agents are autonomous. Particularly, we noted the absence of 
the reasoning aspect in these protocols. For this reason, we looked at the work done in 
another field: argumentation and defeasible reasoning. We had the idea to combine an 
approach proposed in the domain of agent communication, the social approach, which has 
the advantage of being semantically verifiable and an argumentative approach. 
 
In addition, we noticed that the traditional formalisms used to model agent communication 
are limited. They do not make it possible to reflect the dynamics of this communication in 
terms of the actions which agents perform when conversing and do not help agents to take 
part in these conversations in a flexible way. We thus developed a formalism addressing 
these limits using our hybrid approach. The proposed approach and formalism only reflect 
the pragmatics of agent communication. To deal with the semantic aspect, we proposed a 
logical model for the pragmatic approach. Indeed, we developed a unified framework for 
the pragmatics and semantics of agent communication. 
 
Although certain researchers recently started to emphasize the importance of verifying 
MASs, this aspect has yet to be explored in the field of agent communication. In this 
domain, only a small amount of research work addressed this complicated issue, for 
example (Wooldridge, 2000) (Huget and Wooldridge, 2004). For this reason, we studied 
more profoundly this aspect which is traditionally related to software engineering. We 
proposed a model-checking method in order to verify dialogue game protocols specified 
using our unified framework. Finally, as an application of our theoretical results, we 
specified and implemented a flexible dialogue game protocol. We proved its termination 
and we discussed its computational complexity. 



6 

 

1.7 Overview of the Dissertation 

 
This thesis is divided into two parts. 
 
Part I is about the state of the art, and it consists of three chapters: 
 

Chapter 2 introduces the agent communication. In this chapter we present some 
examples of Agent Communication Languages (ACLs), we discuss their semantics, 
and present their philosophical foundations. 

 
Chapter 3 presents some dialogue game frameworks. In this chapter, we highlight 
their theoretical foundations, advantages, and limits. These limits will be addressed 
in our proposal. 
 
Chapter 4 presents our taxonomy of the main approaches in the domain of agent 
communication and dialogue modeling. This chapter compares and discusses these 
different approaches.     

 
Part II consists of five chapters in which we present our contributions:  
 

Chapter 5 articulates a pragmatic approach combining the different approaches 
discussed in Chapter 4.  
 
Chapter 6 proposes a formalism based on the pragmatic approach presented in 
Chapter 5. The purpose of this formalism is to represent the dynamics of agent 
communication, analyze conversations, and help agents to participate in 
conversations in a flexible way. 
 
Chapter 7 defines the semantics related to the pragmatic approach as a logical 
model. This chapter establishes the link between the pragmatics and the semantics of 
our agent communication proposal. 
 
Chapter 8 proposes a verification method for dialogue game protocols. These 
protocols are specified using the unified framework presented in Chapter 7. In this 
chapter, a tableau proof system for the logical model specified in Chapter 7 is 
defined. This proof system is used in the verification method. 
 
Chapter 9 presents a persuasion dialogue game protocol based on our approach. 
This chapter discusses the formal specification, implementation, and complexity 
analysis of this protocol.  

 
We conclude this thesis by summarizing our contributions and identifying directions for 
future work. 



 

 

Chapter 2 

Agent Communication 

In this chapter, we present and discuss some proposals in the domain of agent 

communication. We briefly present three main languages developed in this domain. We 

discuss their semantics and philosophical foundations. Finally, we highlight their 

limitations which we address in detail in the next chapters.   

 
 
 

2.1 Introduction 
 
An interesting characteristic of multi-agent systems is the principle that agents can function 
more effectively in groups. Agents are designed to autonomously collaborate with each 
other in order to satisfy both their internal goals and the shared external demands generated 
by virtue of their participation in agent societies. This type of collaboration depends on a 
sophisticated system of inter-agent communication. The language used by agents for this 
communication is the Agent Communication Language (ACL). The main objective of an 
ACL is to model a suitable framework that allows heterogeneous agents to interact and to 
communicate with meaningful statements that convey information about their environment 
or knowledge (Kone, 2000). 
 
Over the last decade, two main ACLs have been proposed: the Knowledge Query and 
Manipulation Language (KQML) (Finin et al., 1995) and the Foundation for Intelligent 
Physical Agents’ Agent Communication Language (FIPA-ACL). FIPA-ACL is in turn 
based on the ARTIMIS Communication Language (ARCOL). The formal specifications and 
the semantics of these languages are based upon the philosophical foundation provided by 
Speech Act Theory. The purpose of this chapter is to introduce these languages and their 
philosophical foundations. 
 
The rest of this chapter is organized as follows. In Sections 2.2, 2.3 and 2.4, we present 
KQML, ARCOL and FIPA-ACL respectively. In Section 2.5, we discuss a taxonomy of 
ACL semantics. Section 2.6 introduces the notion of conversation protocols. The 
philosophical foundations of ACLs are explained in Section 2.7. The final discussion 
(Section 2.8) evaluates the limits of these ACLs and establishes the link with the next 
chapters of this dissertation. 
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2.2 KQML 
 
KQML arose from work sponsored by the American Government’s Defense Advanced 
Research Projects Agency (DARPA). It is the result of research done by the Knowledge 
Sharing Effort (KSE), an initiative that aims at developing a foundation for software 
systems interaction and interoperability. Three working groups compose this consortium: 
the interlingua group, the shared and reusable knowledge base group, and the external 
interface group. The first group designed the Knowledge Interchange Format (KIF) as a 
common language for describing a message content. This format is an extension of first-
order logic. The second group worked on the content of sharable knowledge bases. This 
group examined the problem of sharing the content of formally represented knowledge. The 
approach focused on common ontologies. Every knowledge-based system relies on some 
conceptualization of the world (objects, qualities, distinctions and relationships that matter 
when performing some task) that is embodied in concepts, distinctions, etc. using a formal 
representation. The group worked on the construction of ontologies for various domains. 
Each ontology, written in KIF, defines a set of classes, functions, and objects for some 
domain of discourse, and includes an axiomatization to constrain the interpretation. The 
third group produced the KQML language and looked at interactions of system components.  
 
The language’s primitives are called performatives. As the term suggests, the concept is 
related to speech act theory (Austin, 1962). Performatives define the permissible actions 
(operations) that agents may attempt when communicating with each other. KQML consists 
of a set of communication primitives aiming to support interaction between agents. In this 
language, an agent’s mental attitudes (belief, intention, and desire) are expressed in the label 
of a message that represents a communicative act. A KQML message is conceptually 
divided into three levels (Labrou et al., 1999): (1) the communicative level which specifies 
the sender and receiver agents; (2) the message level which mainly specifies the type of 
performatives (affirmation, question, etc.), the language (KIF, Prolog, etc.) and the used 
ontology; (3) the content level, which specifies the message content. An example of KQML 
message is the following: 
 
(tell  

:sender X  
:receiver Y 
:in-replay-to id1234 
:ontology Software 
:language Prolog 
:content (Price MathType 150) 

)  
 
The goal of the tell KQML performative is to convey to some receiving agent that the 
sending agent believes that a particular proposition (contained in the content field) is true. 
The example indicates that agent X answers a message of agent Y about the price of a 
software. It uses the Prolog language to describe the content and a particular ontology 
(Software) which indicates the significance of “MathType” and the currency associated with 
the value “150”. 
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Initially, KQML was proposed without a defined semantics. This criticism led researchers 
to define a new language: the FIPA-ACL. The early version of KQML presented some 
confusions and ambiguities in the usage of the performatives. Later on, its authors gave it a 
semantics and limited the use of some performatives in order to avoid some of these 
problems. The new semantics is defined in terms of: 1) preconditions on the mental states of 
the sender and the receiver before the communication of the message, 2) postconditions that 
should hold after the message is sent and 3) completion conditions that indicate when the 
perlocutionary effect has been fulfilled. However, this semantics provides no semantic 
model for mental attitudes.  
 

2.3 ARCOL 
 
The ARTIMIS agent technology developed by France Telecom is a generic framework for 
instantiating communicating agents. This technology is based on the proposal of Sadek et 
al. (1997). In ARTIMIS, an agent can cooperatively interact with humans as well as with 
other agents. Agents’ communicative acts are modeled as rational actions. Agents can 
reason about knowledge and actions pertaining to their communicative acts. ARCOL 
(ARTIMIS Communication Language) is the ACL used in ARTIMIS. An ARCOL 
expression relies on a semantic language SL for the definition of its semantics. SL, in turn, 
uses the language SCL (Semantic Content Language) to describe the semantics content of a 
communicative act. ARCOL includes the following set of primitives: 
 
Inform: An agent uses the assertive act Inform to convey a message to another agent 
provided that it believes the content of this message. 
 
Request: The directive act request enables an agent to demand an action from another agent 
provided that it has the capabilities to perform that action. 
 
Confirmation: When the sender believes that the receiver is uncertain about the information 
being transmitted, this communicative act can be used to confirm it. 
 
Inform referent: This communicative act enables an agent to inform another agent of the 
value of a referent with a given description. 
 
The most important characteristic of the ARCOL language is its formal semantics as a 
reliable support for interoperability. However, ARCOL’s fixed context with the sender 
agent required to be sincere is an impediment to heterogeneity. 
 

2.4 FIPA-ACL 
 
FIPA-ACL arose from attempts to develop an industry standard for agent communication. 
Its formal model and semantic language draw from the ARCOL Language. Conceptually, 
FIPA-ACL distinguishes two levels in communication messages. At the inner level, the 
content of messages can be expressed in any logical language. The outer level describes the 
locutions that agents can use in their communication. The content of messages is wrapped 
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in these locutions. FIPA-ACL specifies 22 locutions (FIPA-ACL, 2001b). Here we mention 
some of them: 
 
Accept Proposal: The action of accepting a previously submitted proposal to perform an 
action. 
 
Agree: The action of agreeing to perform some action, possibly in the future. 
 
Call for Proposal: The action of calling for proposals to perform a given action. 
 
Confirm: The sender informs the receiver that a given proposition is true, where the receiver 
is known to be uncertain about the proposition. 
 
Inform: The sender informs the receiver that a given proposition is true.  
 
Not Understood: The sender informs the receiver that it received a message that it does not 
recognize or it is unable to process the content of this message.  
 
Propose: The action of submitting a proposal to perform a certain action, given certain 
preconditions. 
 
Query If: The action of asking another agent whether or not a given proposition is true. 
 
Request: The sender requests the receiver to perform some action or a communicative act. 
 
FIPA-ACL is an agent communication language whose developpement involved several 
parties in industry and academia. It lays out the practical components of agent 
communication and cooperation and a well-defined formal semantics. However, some 
practical applications pointed out several limitations of the FIPA standard (Kone, 2000). For 
example, this standard provides no support for real-time and performance requirements of 
telecommunication applications. In addition, FIPA-ACL semantics rests only on the belief 
states of communicative agents. In this context, the sender does not guarantee the actual 
accomplishment of the expected outcome at the destination because the semantics offers no 
mechanism on how to infer the mental state of the receiving end. 
 

2.5 A Taxonomy of ACL Semantics 
 
As stated by McBurney (2002), when considering formal languages, different semantics can 
be defined viewing them as a mathematical logic. A semantics is a relationship between the 
language and a space M of mathematical structures, called models. A statement S in the 

language specifies a subset ( )M S  of .M  Such a statement is said to be true in a particular 

model 0M if 0 ( ).M M S∈  A statement is said to be logically valid if it is true in every 

model, i.e., if ( ) .M S M=  

 
Another type of semantics is derived from linguistics. As expressed by the linguist Morris 
(1938), the syntax of a language is the formal relation of signs to one another and the 
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semantics of the language defines the relations of signs to the objects to which the signs are 

applicable. Thus, it makes sense to speak of the truth of a sign, since this indicates that the 
sign has a relationship to external objects in the world (McBurney, 2002). 
 
Because ACLs are formal languages, their semantics can be defined as in mathematical 
logic. However, because they are also intended as communication mechanisms, a 
linguistics-based semantics can be defined. In this section, we are only interested by formal 
semantics defined from mathematical logic. We can distinguish five formal semantics: 
axiomatic semantics, operational semantics, denotational semantics, game-theoretic 
semantics, and tableau semantics1. 
 
Axiomatic semantics is defined by a set of assertions about properties of a system and how 
they are affected by program execution. For ACLs, this semantics defines each locution in 
terms of the preconditions which must be fulfilled before the locution can be uttered, and in 
terms of the post-conditions which must become true after the production of the utterance. 
We distinguish between public and private axiomatic semantics. In public axiomatic 
semantics, the pre-conditions and post-conditions describe states or conditions of the 
dialogue which can be observed by all participants. In private axiomatic semantics, pre and 
post-conditions describe states or conditions which are internal to one or more of the 
participants and thus are not directly observable by the others.  For example, the semantics 
defined for FIPA-ACL and KQML are private axiomatic semantics. For example, the 
Inform FIPA-ACL act, in which one agent tells another some proposition, may only be 
uttered if the first agent believes the proposition to be true. This is termed a sincerity 
condition. This semantic approach, based on mental notions such as beliefs and intentions, 
will be detailed in Chapter 4. On the other hand, the semantics provided for argument-based 
ACLs is a public axiomatic semantics (Amgoud et al., 2002). For example, according to this 
semantics, an agent a which asserts a proposition p is supposed to have an argument in 
favor of it. Thus, if this proposition is attacked by another agent, agent a must defend it.  
  
Operational semantics is defined by a set of rules specifying how the state of an abstract 
machine changes while executing a set of instructions. Each rule specifies certain 
preconditions on the contents of states and their new contents after the application of the 
rule. In the context of ACLs, operational semantics considers the locutions as instructions 
which operate successively on the states of some abstract machine. This semantics defines 
the locutions in terms of the transitions they apply on the states of this machine. van Eijk 
and his colleagues (2000) studied operational semantics for ACLs on the basis of an agent 
communication programming language which is a formal framework that identifies basic 
aspects of agent communication. The formal semantics of this language is given by means 
of transition rules that describe its operational behavior. Moreover, the operational 
semantics closely follows the syntactic structure of the language, and hence gives rise to an 
abstract machine to interpret the language.  
 
Denotational semantics is a technique for describing the meaning of programs in terms of 
mathematical functions. Programs are translated into functions whose properties can be 

                                                 
1 McBurney (2002) only distinguished four formal semantics: axiomatic semantics, operational semantics, 
denotational semantics, and game-theoretic semantics. 
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proved. In denotational semantics, each element of the language syntax attributes a 
relationship to an abstract mathematical entity, its denotation. The possible world semantics 
related to modal languages is an example of such semantics (Hintikka, 1962) (Kripke, 
1963). For example, the semantics of the necessarily and possibly modal connectives are 
given by introducing an accessibility relation into models for the language. This relation 
defines what worlds are considered accessible from every other world. A formula is 
necessarily true if it is true in every world accessible from the current world, and it is 
possibly true if it is true in at least one world accessible from the current world. An example 
of this semantics is given in Chapter 7 of this dissertation. Another example is given by 
Parsons (1997). In this semantics, argumentation systems are connected to qualitative 
probabilistic networks. Propositions correspond to nodes in these networks and arguments 
between propositions correspond to the associated nodes. In order to use the denotational 
semantics approach, we must be able to derive the semantic meaning of a statement 
expressed in the language from the semantic meaning of its elements, this property is called 
compositionality.  
 
In game-theoretic semantics, each well formed formula in a language is associated with a 
formal game between two players: a protagonist and an antagonist. A statement is 
considered to be true when and only when a winning strategy exists for the protagonist in 
the associated game. McBurney (2002) proposed a game-theoretic semantics for an inquiry 
dialogue protocol. In this semantics, a winning strategy for a player is a set of rules enabling 
the player to move in such a way that executing these moves guarantees that the player can 
win the game, no matter which moves are made by the opposing player.  
Tableau semantics is based on the use of assertions and proof rules. The proof rules are 
inference rules aiming to prove the truth or falsity of the assertions. Unlike traditional proof 
systems which are bottom-up approaches, tableau semantics uses a top-down or goal-
oriented approach. Proof rules are used in order to prove a certain formula by inferring 
when a state in a Kripke structure satisfies such a formula. According to this semantics, we 
start from a goal, and we apply a proof rule and determine the sub-goals to be proven. The 
proof rules are designed so that the goal is true if all the sub-goals are true. In ACLs, this 
semantics can be used to give the meaning of communicative acts by considering them as 
goals, and then determining the sub-goals by applying a set of proof-rules. To our 
knowledge, the only tableau semantics defined in the context of agent communication is the 
one that we propose in Chapter 8 of this dissertation. 
 

2.6 Conversation Protocols 
 
When conversing, agents do not exchange isolated messages, but a sequence of 
interdependent messages. To take into account this aspect, FIPA proposes to use 
conversation protocols (also called conversation policies). Conversation protocols are 
general constraints on the sequences of semantically coherent messages leading to a goal 
(Greaves et al., 2000). The coherence of messages is ensured by these constraints. These 
protocols are specified as static structures which define in a deterministic way the order in 
which communicative acts are connected. Like protocols used in distributed systems, these 
structures are generally modeled using finite state machines (Winograd and Flores, 1986) 
(Barbuceanu and Fox, 1995), Petri nets (traditional or extended) (Cost et al., 2000) or UML 
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sequence diagrams. The idea of protocols is to facilitate the task of computing the possible 
answers to a given message. Request Interaction Protocol, Contract Net Interaction 

Protocol, and English Auction Interaction Protocol (FIPA, 1997, 1999, 2001a) are 
examples of such protocols.  
 
As outlined by Greaves and his colleagues (2000) and Vongkacem and Chaib-draa (2000), 
conversation protocols must address two fundamental issues: 
 
Flexibility: The aim of conversation protocols is basically to constrain the conversational 
behavior of the participants while taking into account the fact that agents are autonomous. 
These protocols must find equilibrium between the normative aspect ensured by the 
constraints and the flexibility expected in multi-agent communications. 
 
Specification: Conversation protocols must be specified while taking into account the 
computational complexity of reasoning about them. For example, this specification must 
avoid the state-explosion problem when analyzing a sequence of utterances in order to 
decide which locution to utter next. In addition, these protocols should be designed in such 
a way that a formal verification is possible. The verification of some properties in these 
protocols, for example, deadlock, termination, correctness, etc. is extremely important in 
open environments.    
 

2.7 From the Philosophy of Language to Agent Communication 
 
2.7.1 From Speech Act Theory to Conversations 

 
The specifications of KQML, ARCOL, and FIPA-ACL are based on a philosophical theory 
called speech act theory. This theory is due originally to a philosopher of language, Austin 
(1962), and extended by Searle (1969, 1983) and Searle and Vanderveken (1985). It 
considers human utterances as actions, in that they may change the state of the world. 
Speech is not just used to designate something, it actually does something. This explains the 
use of the word “act” in the description of ARCOL and FIPA-ACL locutions. According to 
Searle, to understand language, one must understand the speaker’s intention. Since language 
is intentional behavior, it should be treated like a form of action. Thus, Searle refers to 
utterances as speech acts. The speech act is the basic unit of language used to express 
meaning, an utterance that expresses an intention. In general, speech acts are acts of 
communication. To communicate is to express a certain attitude, and the type of speech act 
being performed corresponds to the type of attitude being expressed. For example, a 
statement expresses a belief, a request expresses a desire, and an apology expresses a regret. 
As a communicative act, a speech act succeeds if the audience identifies, in accordance with 
the speaker's intention, the attitude being expressed. 
 
Speech act theory identifies three distinct levels of action beyond the act of utterance itself. 
It distinguishes the act of saying something (the “locutionary” act), what one does in saying 
it (the “illocutionary” act), and what one does by saying it (the “perlocutionary” act). 
Speech acts, being perlocutionary as well as illocutionary, generally have some ulterior 
purpose, but they are distinguished primarily by their illocutionary type, such as asserting, 
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requesting, promising and apologizing, which in turn are distinguished by the type of 
attitude expressed. The perlocutionary act is a matter of trying to get the hearer to form 
some correlative attitude and in some cases to act in a certain way. For example, a statement 
expresses a belief and normally has the further purpose of getting the addressee form the 
same belief. A request expresses a desire for the addressee to do a certain thing and 
normally aims for the addressee to intend to and, indeed, actually do that thing. A promise 
expresses the speaker's firm intention to do something, together with the belief that by his 
utterance he is obligated to do it, and normally aims further for the addressee to expect, and 
to feel entitled to expect, the speaker to do it. 
 
As outlined by Vanderveken (2001), speech act theory tends to study isolated illocutionary 
acts performed by using sentences in single context of utterance. However, it is clear that 
speech acts are seldom performed alone. Speakers perform their illocutionary acts within 
entire conversations in order to achieve common goals such as discussing news, 
coordinating their joint actions or negotiating. For this reason, Vanderveken proposed a 
theory of discourse enriching Speech Act Theory. The purpose of this theory is to analyze 
the structure of conversations whose type is provided with an internal discursive purpose 
and to provide a taxonomy of these conversations. This taxonomy is based on the fact that 
there are only four possible discursive goals that speakers can attempt to achieve by way of 
conversing: the descriptive, deliberative, declarative, and expressive goals. These goals 
correspond to one of the four possible directions of fit between words and things. Using 
these directions, the four conversation types can be described as follow: 
 
1. Conversations with the words-to-things direction of fit have the descriptive goal: 
They serve to describe what is happening in the world. Such are descriptions, debates on a 
question, persuasions, arguments, explications, interrogations, etc. 
 
2. Conversations with the things-to-words direction of fit have the deliberative goal: 
They serve to deliberate on which future actions speakers and hearers should commit 
themselves to in the world. Such are deliberations, negotiations, bargaining sessions, a 
compromise or the signing of a contract, auctions, etc.  
 
3. Conversations with the double direction of fit have the declarative goal: They serve to 
transform the world by way of doing what one says. Such are official declarations like 
declarations of war or of independence, nominations, appointments, etc. 
 
4. Conversations with the empty direction of fit have the expressive goal: They serve to 
express common attitudes of their speakers. Such are the exchanges of greetings, welcomes, 
congratulations, etc. 
 
2.7.2 Walton and Krabbe’s Classification 

 
Another taxonomy of dialogues was proposed by two philosophers of argumentation, 
Walton and Krabbe (1995). In their book: Commitment in Dialogue, Basic Concepts of 

Interpersonal Reasoning, Walton and Krabbe distinguish six main types of dialogues: 
 
1. Persuasion, which is centered around conflicting points of view. 
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2. Negotiation, in which participants aim to achieve a settlement that is particularly 
advantageous for individual parties. 
 
3. Inquiry, in which the aim is to collectively discover more information, as well as to 
destroy incorrect information. 
 
4. Deliberation, which is driven by the need to take a collective decision. 
 
5. Information-seeking, in which one party asks for information known by another. 
 
6. Eristic, in which two parties combat each other in a quarrel. 
 
While Vanderveken’s classification is based on directions of fit between words and things, 
Walton and Krabbe’s classification is based upon two factors: the initial situation and the 
goal of the dialogue. Table 2.1 illustrates these factors. 
 
 

Dialogue type Initial situation Dialogue goal 

Persuasion Conflicting point of view Resolution of conflict 

Negotiation Conflict of interest Making a deal 

Inquiry General ignorance  Growth of knowledge 

Deliberation Need for action Reach a decision 

Information-seeking Personal ignorance Spreading knowledge 

Eristic Antagonism Accommodation in 
relationship 

 

Table 2.1. Walton and Krabbe's classification 

 
These six types may be refined into subtypes, simply by specifying more elaborate 
conditions on the dialogues (e.g. the type of conflict or the degree of rigidity of the rules). 
For example, a dispute is a subtype of persuasion, where each participant tries to defend its 
point of view. In addition, this taxonomy is based on an argumentation vision and it 
coincides with the dialectical systems proposed by Hamblin (1970). These systems will be 
discussed in detail in Chapter 4, Section 4.4.2.   
 
Walton and Krabbe introduced the notion of dialectical shift to capture the change in the 
context of dialogue during a conversation from one type of dialogue to another. Indeed, 
dialogues are usually not of a single type from their beginning to their end. For instance, it 
is common to start an inquiry dialogue, to realize during the dialogue that there is a 
controversial issue at stake, to enter in a dispute sub-dialogue, and to eventually resume the 
inquiry dialogue when the issue has been resolved. This notion allows us to construct 
complex dialogues by combining different types. 
 

Table 2.1. Walton and Krabbe’s classification 
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Vanderveken’s classification can be regarded as more general than Walton and Krabbe’s 
one in the sense that the dialogue types discussed by Walton and Krabbe are subtypes of the 
four types proposed by Vanderveken. Persuasion, Inquiry, and Information-seeking are 
conversations with a descriptive goal, negotiation and deliberation are conversations with a 
deliberative goal, and Eristic is a conversation with an expressive goal.  
   

2.8 Discussion 
 
KQML, ARCOL, and FIPA-ACL have the advantage of being based on a theory largely 
studied by philosophers of language. They are also formally specified using a modal logic. 
However, their private axiomatic semantics does not provide any technique for checking the 
agents’ compliance to this semantics. In other words, it is not possible to verify whether or 
not the agents’ communicative behavior matches their mental states. To remedy this, the 
semantics must also take into account the public (the observable) attitudes and the 
argumentative considerations. Such considerations enable us to explain the reasons behind 
the performance of communicative acts and how an agent can decide about the next act to 
be performed. In Chapter 5, we show how a combined approach (mental, social and 
argumentative approach) can resolve this problem. 
 
Although FIPA protocols are practically interesting and can successfully be used in simple 
applications, they are not flexible enough to be used by autonomous agents in flexible and 
complex conversations such as persuasions, argumentative negotiations, deliberations, etc. 
When the allowed communicative acts are limited and the purpose of the communication is 
just to exchange some messages, rigid protocols provide an interesting solution and there is 
no need to define supplementary mechanisms. However, when agents must participate in 
complex conversations, for example in order to persuade each other, to negotiate, to 
deliberate, etc., they should act autonomously in the sense that they must be able to make 
decisions and to take initiatives. In this case, rigid protocols are not suitable. This is due to 
the fact that agents must follow the whole protocol in order to communicate and it is not 
clear how agents can make choices between several possible actions. For this reason, it is 
preferable to use small conversation protocols that can be put together to construct complex 
protocols. The combination rules must be formally specified and agents must be able to 
reason about these protocols in order to be able to use them flexibly. In the next chapter, we 
discuss dialogue game protocols aiming to address this issue. In Chapter 6, we propose a 
framework enabling agents to reason about their communicative acts and in Chapter 9, we 
show how this framework can be used to specify a flexible dialogue game protocol.  
 
On the other hand, KQML and FIPA-ACL grew from efforts by DARPA to develop 
technologies for knowledge sharing (Labrou et al., 1999). Such a conceptual paradigm 
explains why several communicative acts seek to request or send information (e.g. Inform, 
Inform-if, Conform, Query). Despite this, these languages have not been designed with the 
possibility that such information may be questioned or challenged. An agent receiving an 
Inform(ϕ ) message who is unsure about the truth of its content ,ϕ  or who does not hold the 

belief that ϕ  is true, has few options to express these views. In addition, these languages 

have been developed without thinking that an agent can justify or defend its beliefs, or seek 
to persuade another to change its beliefs. This is due to the absence of a logic of 
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argumentation in the specification of these languages. Such a logic is extremely useful for 
capturing the agents’ reasoning. In Chapters 3 and 4, we present some proposals using this 
type of logic. In Chapters 5 and 6, we present our proposal based on this logic and in 
Chapter 7, we present a modal semantics capturing this logic and its relation to the social 
approach. 



 

 

Chapter 3 

Dialogue Games 

In this chapter, we go through some relevant proposals in dialogue game frameworks for 

agent communication. We highlight the foundations and the structures of these frameworks. 

We also compare these proposals and discuss their limits. Our dialogue game protocol 

presented in Chapter 9 is an attempt to push these limits.      
 
 
 

3.1 Introduction 
 
To communicate, agents using traditional agent communication protocols, like those 
proposed by FIPA, must follow the protocol sequences. Hence, these protocols are often 
unsuitable for autonomous agents. This is due to the inflexibility of these protocols and to 
the fact that there is no mechanism allowing agents to choose the communicative acts they 
will perform. To solve this problem, several proposals have been put forward using formal 
dialogue games. Formal dialogue games are abstract structures that can be composed to 
construct the whole dialogue. They involve interactions between two or more players, in 
which each player moves by making utterances according to a pre-defined set of rules. The 
rules typically define which locutions may or must be uttered in different circumstances, 
and they may also indicate when the dialogue terminates. As a joint activity, the dialogue 
requires the coordination of the participants’ actions. In this context, dialogue games are 
structures enabling agents to coordinate the dialogical activity.  
 
Dialogue games have been studied in philosophy from at least the time of Aristotle (350 
B.C) (van Emeren et al., 1996), and were extensively studied and practiced in medieval 
times (Spade, 1979). They differ from the games of Economic Game Theory, in that payoffs 
for winning or losing a game are not considered, and because there is no use of uncertainty 
measures such as probabilities, to model the possible moves of opponents. Dialogue games 
have been used in argumentation theory for the contextual analysis of fallacious reasoning, 
on the assumption that what may count as a logical fallacy in one context may not be so in 
another. The main proponents of this approach were Hamblin (1970, 1971) and MacKenzie 
(1979, 1990). All Hamblin’s games have as their purpose, “the exchange of information 
among the participants” and so may be considered as models of information-seeking 
dialogues. 
 
Another strand of philosophy, led by Lorenzen (1960), has used formal dialogue games to 
provide a constructive proof-theory for statements in intuitionistic and classical logic. Here 
a speaker in a dialogue game treats a proposition in a logical language as a statement. This
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statement is subject to question and challenge by an opponent. The proponent of the 
statement must defend the statement against the opponent’s attack in pre-defined ways. In 
doing so, a proof (or disproof) of the statement is incrementally constructed. The precise 
rules of the dialogue game determine whether this proof corresponds to classical or 
intuitionistic logic. 
 
Recently, dialogue games have been proposed as a basis for agent communication. Various 
dialogue game protocols have been developed. Applications have included frameworks for 
Walton and Krabbe’s analysis of dialogue types (Reed, 1998) (McBurney and Parsons, 
2001, 2002), for negotiation protocols (Dastani et al., 2000), and for agent team-formation 
dialogues modeled as combination of information-seeking and persuasion dialogues 
(Dignum et al., 2000). Dialogue games have also been used for joint-intention-formation 
dialogues, modeled as persuasion dialogues possibly containing embedded negotiation 
dialogues (Dignum et al., 2001), for request for action (Maudet et al., 2002), and for 
inconsistent and biased information (Lebbink et al., 2004). In this chapter, we go through 
these proposals in some details. 
 
The rest of this chapter is organized as follows. In Section 3.2, we summarize Reeds’ 
dialogue frames. In Section 3.3, we present Dastani et al.s’ negotiation protocols. In Section 
3.4, we discuss the layer model of McBurney and Parsons. Maudet et al.’s DIAGAL 
language and Lebbink et al.s’ dialogue games will be presented in Sections 3.5 and 3.6. In 
Section 3.7 we review Dignum et al.s’ dialogue games. Finally, in Section 3.8, we compare 
and discuss these proposals.   
 

3.2 Reeds’ Dialogue Frames 
 
Reed (1998) proposed the notion of dialogue frames as abstract exchange structures. This 
notion is used to explore the dialogue typology proposed in (Walton and Krabbe, 1995) and 
one of its important features, the concept of functional embedding. In these frames, 
persuasion, inquiry and information seeking are epistemic, negotiation is concerned with 
contracts, and deliberation with plans. Epistemic issues can be modeled by a BDI approach 
(Rao and Georgeff, 1991), or a propositional logic encompassing beliefs, values (such as 
those employed to evaluate issues during negotiation), rules, intentions, etc. The notion of 
contract is intended to abstract from the precise structure used to reach a deal. Plan refers to 
the abstract notion of a set of partially ordered contracts. The foundation of the model is a 
set of agents, A, a set of agent’s beliefs, B, a set of agent’s contracts, C, and a set of agent’s 
plans, P.  
 
Contracts are composed of <issue, value> pairs. To make explicit the assumption that there 
is some basic result of a fulfilled contract, this result can be expressed as a conjunction of 
beliefs. Let us consider the example of a contract specifying that for agent a to receive 
information from agent b, a must pay b $10. The issue-value pairs are <Price, $10>, 
<Quality, High>. Plans can be constructed from contracts: a complete plan is a fully ordered 
set of contracts each of which is fully specified with respect to its result, r, its list of issue-
value pairs, vn , and the settings of both issue and value in each value pair vi. 
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The set of dialogue types D is defined on the basis of the sets defined above (first paragraph 
of this section). Each type is a name-substrate pair: 
 

{ , , , , , , , , , }D persuade B negotiate C inquire B deliberate P infoseek B= < > < > < > < > < >  

 
Formally, a dialogue frame is defined as a tuple with four elements: 
 

{ }
0 0

0
,...,, , ,

n n

n
y yx xu uF t D τ → →=<< ∆ >∈ ∈ ∆ >  

 
where t  is the type of this dialogue frame, ∆  is the set of beliefs, contracts or plans,τ  is the 

topic of the dialogue frame, 0 0, yx A∈ are the interlocutors, and 
i i

i
yxu → refers to the ith 

utterance occurring in a dialogue between agents ix  and ,iy in which ix  is the originator of 

the utterance 1i iyx += and 1.iiy x +=  An utterance 
i i

i
yxu →  is a pair { }0,...,, ,ns σ σ< >  in which s  

is a statement (i.e. a well formed formula in the communication language), and the i Bσ ∈  

represent the arguments supporting that statement. 
 
A dialogue frame is thus of a particular type, t , and focuses on a particular topic. For 

example, for a persuasion dialogue, the topic focuses on a particular belief, and for a 
negotiation dialogue, the topic focuses on a contract. A dialogue frame is initiated by a 
propose-accept sequence that can be considered as meta-acts whose purpose is to open the 
frame. These meta-acts have an empty support .{}  The frame terminates with a 

characteristic utterance indicating acceptance or concession to the topic on the part of one of 
the agents.   
 
Let us consider the following example of persuasion dialogue between two agents a and b.  
 

0 : ( , ( , )) ,a bu propose persuade has c information→ << > >{}  
1 : ( , ( , )) ,b au accept persuade has c information→ << > >{}  

{ }2 : ( ( , )) , _ ( ( , ), )a bu tell has c information told by has c information d→ << > >  

3 : ( ( )) ,b au tell unreliable d→ << > >{}  
4 : ( ( ( , ))) ,a bu concede unknown has c information→ << > >{}  

 
In this example, agent a initiates the dialogue to persuade agent b that some third party, c, 
has information. The dialogue is open because agent b accepts it. Agent a supports its claim 
by citing d as its source. Agent b undercuts the argument by pointing out the unreliability of 
d, and with no further supports available, agent a retracts its assertion with a concede which 
terminates the dialogue frame.  
 
Reed considers two kinds of game compositions, sequencing and embedding. Sequencing is 
the canonical ordering and embedding is captured within the model without further 
complications of the structures. Indeed, since propositions to enter a frame are moves like 
any others, they can be made within ongoing frames. When a new dialogue frame 1φ  is 

proposed at turn i by a, and accepted by b at i+1 while a frame 0φ  was open, Reed assumed 
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that 0φ is just suspended ( 1φ  is then embedded in 0φ ). When the frame terminates, 0φ  

resumes where it was stopped. Generally, the speaker who concedes in the embedding 
frame is not the speaker who resumes in the embedding frame. 
 

3.3 Protocols proposed by Dastani and his Colleagues 
 
Dastani, Hulstijn and der Torre (Dastani et al., 2000) proposed a methodology for 
constructing flexible negotiation protocols based on joint actions and dialogue games, 
following the work of (Hulstijn, 2000a, b). Negotiation is considered as a combination of 
joint actions represented by simple dialogue games from which larger interactions can be 
constructed. These dialogue games consist of initiatives followed by responses. 
 
The key notion of these negotiation protocols is coherence. An utterance or move in a 
negotiation dialogue is coherent with the dialogue context, if (i) it fits a plan that might 
achieve the apparent goals of the agent, and (ii) it fits the current interaction rules. The 
information conveyed or requested by an utterance is called the semantic content. An 
utterance has a purpose: the communicative function. Each utterance is analyzed as a 
dialogue act which is characterized by a semantic content and a communicative function. 
 
Negotiation dialogue games are sequences of moves. Each move corresponds to a type of 
utterance. Moves can be either initiatives or responses. Each initiative must be followed by 
an appropriate response, although there may be other exchanges first. For example, a 
clarification exchange may precede the answer to a question. The basic game structure is an 
exchange capturing that an initiative can be followed by either a positive or a negative 
response, or else a retry. For example, a proposal is an initiative, an acceptance is the 
corresponding positive response, a rejection is the negative response, and a counter-proposal 
is an example of a retry. An exchange is allowed, given that the coherence constraint on the 
semantic contents of the initiative and response is met. In other words, the response must 
address the initiative. Formally, an exchange between two agents, a  and b  about the 

content ζ (the response content) is specified as follows: 

 
( , , ) ( , , ); _ ( , , )exchange a b initiative a b pos response b aζ η ζ=  

| _ ( , , )neg response b a ζ  

| ( , , )retry b a ξ  

where , ( , )a bM coherent η ζ  

 

,a bM  is the shared dialogue context, η  is the initiative content, and ξ  is the retry content. 

 
Games can be composed by sequencing or chaining. A sequential combination is specified 
as follows: 
 

( , , ( . )) ( , , ); ( , , )game a b exchange a b game b aη ζ η ζ=  

 where , ( , )a bM coherent η ζ  

 



22 

 

The recursive nature of the definition indicates that it is possible to combine as many games 
as requested. Like in the basic exchange, some coherence constraints are stated between the 
games’ topic. For instance, to be combined, games have to share a common subject matter. 
With regard to chaining composition, constraints require the last dialogue act (reactive) of 
the first game being the first (initiative) of the second game. Canonical examples of such 
chaining structures are question / answer / evaluation or proposal / counter-proposal. The 
difference between sequencing and chaining is that unlike chaining, sequencing does not 
impose any constraint about the relationship between the games.    
 

3.4 The Layer Model of McBurney and Parsons 
 
McBurney and Parsons defined a model for a generic dialogue game protocol to represent 
combinations of dialogues according to the typology proposed by Walton and Krabbe 
(1995). This model is used in the development of a three-level hierarchical formalism for 
agent dialogues. The lowest level is the topic layer, the next level is the dialogue layer, and 
the highest level is the control layer. The topic layer defines the matters which may be 
discussed in the dialogue. These matters refer to real-world objects or to states of affairs.  
 
In the dialogue layer, different dialogue games are modeled as classical dialectical systems2 
with the following components: (i) beginning rules, (ii) locution rules, (iii) combination 

rules, (iv) commitment rules, and (v) termination rules. Beginning rules define the 
circumstances under which the dialogue starts. Locution rules indicate which utterances are 
permitted. Typically, legal locutions allow participants to assert propositions, to question or 
contest prior assertions. They also allow agents to justify the propositions that they have 
asserted which have been subsequently questioned or contested. Combination rules define 
the dialogue contexts under which particular locutions are permitted or not. For instance, it 
may not be permitted for a participant to assert a proposition p and subsequently to assert 
the proposition again in the same dialogue, without in the meanwhile having retracted the 
former assertion. Commitment rules define the circumstances under which participants 
express commitment to a proposition. These rules are inspired by formal dialogue systems 
proposed by Hamblin (1970) that establish public sets of commitments, called commitment 
stores, for each participant. This notion will be detailed in Chapter 4. Termination rules 
define the circumstances under which the dialogue ends. 
 
The selection of specific dialogue types and transition between these types is presented in 
the control layer. This layer is defined in terms of two components: a set of atomic dialogue 

types which include the dialogue types of Walton and Krabbe, and a set of control dialogues 
which are dialogues that have as their discussion subjects other dialogues rather than topics. 
These dialogues include beginning and termination dialogues. 
 
In addition, McBurney and Parsons propose the following combinations of atomic or 
control dialogues: 
 
Iteration: If G is a dialogue, then Gn is also a dialogue consisting of the n-fold repetition of 
G. Each dialogue starts after termination of the preceding dialogue. 

                                                 
2 The notion of the dialectical system will be discussed in Chapter 4, Section 4.4.2. 
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Sequencing: If G and H are both dialogues, then G ; H is also a dialogue consisting of 
undertaking G until its closure and then immediately undertaking H.  
 
Parallelization: If G and H are both dialogues, then G ∩  H is also a dialogue consisting of 

undertaking both G and H simultaneously until termination.  
 
Embedding: If G and H are both dialogues, then G[H| Φ ] is also a dialogue consisting of 
undertaking G until a sequence of legal locutions Φ  of G has been executed, and then 
switching immediately to dialogue H which is undertaken until its termination, whereupon 
dialogue G resumes from where it was interrupted.  
 
Testing: If p is a well formed formula, then <p> is a control dialogue testing p truth status. 
When p is found to be false, the current active dialogue ends.  
 

3.5 The DIAGAL Language proposed by Maudet and Chaib-draa  
 
Maudet and Chaib-draa (2002) proposed an agent communication language DIAGAL 
(DIAlogue Game based Agent Language) by adapting the Maudet’s work (2001) to the 
communication between software agents. An implementation of this language as a dialogue 
game simulator is described in (Labrie et al., 2003). In the model proposed by the authors, 
dialogue games are handled through a contextualization game which aims at defining how 
games are opened, combined, and closed during the conversation. This model adopts a strict 
commitment-based approach within the game structure. This approach proposed by (Singh, 
1998) and (Colombetti, 2000) will be discussed in detail in Chapter 4.  
 
In DIAGAL, games are bilateral structures capturing the different commitments created 
during the dialogue (Chaib-draa et al., 2005). These games are defined by entry conditions, 
success conditions, exit conditions, and dialogue rules. Entry conditions define conditions 
which must be fulfilled at the beginning of the game. Success conditions are conditions 
which indicate whether the game terminates successfully or not. Exit conditions define the 
goal of the participants when they are engaged in the game. Dialogue rules indicate the 
permitted communicative acts that participating agents can perform. In their formulation, 
the authors use sanctions penalizing agents that will not follow the expected dialogical 
behavior as described in the dialogue rules.  
 
Maudet, Chaib-draa, and Labrie (Maudet et al., 2002) used DIAGAL to model the request 
for action proposed by Winograd and Flores (1986) as a composition of different basic 
games. These compositions which can have conditions and effects are: 
 
Sequencing: denoted g1 ; g2, which means that g2 starts immediately after termination of g1. 
Conditions game g1 is closed. 
Effects termination of game g1 involves entering g2. 
 
Choice: denoted g1 | g2, which means that participants play either g1 or g2 non-
deterministically. This combination has no specific conditions nor consequences. 
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Pre-sequencing: denoted g2  g1, which means that g2 is opened while g1 is proposed. 
Conditions game g1 is proposed.  
Effects successful termination of game g1 involves entering game g2.  
These pre-sequencing games are used to ensure that entry conditions of a forthcoming game 
are actually established.  
 
Embedding: denoted g1 < g2, which means that g1 is now opened while g2 was already 
opened. This means that g2 is suspended and one must return to it after the termination of 
g1. 
Conditions game g1 is open. 
Effects Commitments of the embedding games are considered proprietary over those of the 
embedding game. 
 
Flores, Pasquier, and Chaib-draa (2004) proposed a conversational semantics for DIAGAL 
using social commitments. This semantics defines the meaning of messages on the basis of 
their use as coordinating devices advancing conversations. This semantics captures the 
evolution of conversations using the state of social commitments and the state of activities 
in which agents participate. According to the authors, a commitment could be either 
accepted or rejected according to whether or not agents are engaged in it. If accepted, a 
commitment is active, violated or fulfilled. If rejected, it is either inactive or cancelled. 
Commitments can move between states through four transition types: adoption, where an 
active commitment becomes accepted; violation and fulfillment, where an active 
commitment becomes violated or fulfilled, respectively; and discharge, where an accepted 
commitment becomes cancelled.   
 
In this semantics, the meaning of communicative acts is defined through four levels: 
compositional level, conversational level, commitment state level, and joint activity level. 
Compositional level deals with message classification. Definitions at this level identify 
messages based on the type and identity of their components. Conversational level indicates 
the significance of messages once they are uttered. This significance is given taking into 
account the fact that messages as part of conversations seeking agreement to advance the 
state of commitments. Commitment state level refines the definitions of messages according 
to the shared state of the commitment being manipulated. Joint activity level refers to the 
meaning given to messages when they are used as part of joint activities. Definitions at this 
level are given in terms of the type of actions the commitments bring about, and in terms of 
the roles that interacting agents play in these actions. 
 

3.6 Dialogue Games proposed by Lebbink and his Colleagues 
 
Lebbink, Witteman and Meyer (Lebbink et al., 2004) proposed dialogue games in which 
coherent conversational sequences with inconsistent and biased beliefs are described at the 
speech act level. A belief is called “biased” when more evidence exists to believe than to 
disbelieve something or vice versa. In the former, the belief is said to be biased true, and in 
the latter, the belief is said to be biased false. A special case of a biased belief is when an 
agent has evidence to believe a statement but it also has an equal amount of evidence to 
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believe the contrary. In such a situation, an agent’s belief is considered inconsistent from an 
epistemic perspective. 
 
The authors present these biased and inconsistent beliefs with bilattice structures (Fitting, 
1991) that are constructed from two complete lattices 1( , )B ≤  and 2( , ).D ≤  A complete 

lattice is a structure ( , )B ≤ such that B  is a non empty set ordered according to ≤  and for all 

S B⊆ , there is a greatest lower bound and a least upper bound of .S  A bilattice is an 

algebraic structure that formalizes an intuitive space of generalized truth-values with two 
lattice orderings B  and D . The intuition is that B  provides evidence for believing a 
statement and D  provides evidence for disbelieving a statement. A bilattice has at least four 
truth-values: t, f, u, and i. Truth-value t represents full evidence for believing and no 
evidence for disbelieving. Opposite to t is truth-value f that represents no evidence for 
believing but maximal evidence for disbelieving. Truth-values t and f correspond to the true 
and false values of classical logic. In truth-value u neither evidence for believing nor for 
disbelieving exists. In truth value i both maximal evidence for believing and for 
disbelieving exist.  
 
In addition, the authors define a multi-valued logic in order to describe dialogue games in 
which agents can communicate about their cognitive states. Whereas in classical logic terms 
are assigned a truth value true or false, in multi-valued logic, new truth-values can be 
captured to represent epistemic attitudes. These truth-values can represent unknown 
information and inconsistent and biased information. A language of multi-valued logic is 
defined in order to formalize two types of sentences: atomic sentences and conditional 

sentences. Atomic sentences consist of a propositional formula taken from an ontology ο . 

Conditional sentences resemble the conditionals of classical logic.  
 
In the dialogue games proposed by the authors, communicative acts are utterances used by 
agents to manifest parts of their cognitive states. Three communicative acts are used: 
questions, statements of belief and statements of ignorance. A question is a request for a 
belief addition, that is, an agent a asks an agent b whether it may add a sentence to its 
beliefs. In a statement of belief, an agent a states to an agent b that a given sentence is part 
of its beliefs and that b may add this to its beliefs. A belief statement can be an approval of a 
request for a belief addition. This request can also be denied, which is in effect a statement 
of ignorance, that is, an agent a states to an agent b that it is ignorant about a given 
sentence. 
 
A dialogue game is formalized by, first, defining the agent’s cognitive state as a set of 
multi-valued theories, second, by defining the dialogue rules, and last, by defining update 
rules. As a motivation to participate in a dialogue game, agents have the incentive to reduce 
an imbalanced desire and belief state (Grice, 1975). There is an imbalance in the agents’ 
belief and desire state, when these agents do not believe a proposition but they do desire to 
believe it. In such case, it is said that the agent is interested to add the proposition to its 
beliefs. For example, two roles of questions are distinguished. The first role is to reduce the 
imbalance between an agent’s desire and belief, that is, the question is about a sentence the 
agent itself is interested to believe. The second role is to reduce an imbalanced desire and 
belief state of another agent, that is, the question is about a sentence another agent is 
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interested to believe. Dialogue rules define which communicative acts are applicable in a 
dialogue game. For example, a question from an agent a to an agent b is applicable when a 
is interested in a sentence and this sentence is sensible, that is, it is not part of b’s ignorance 
as a is aware of. In addition, the question must be fresh, that is, a is not allowed to pose a 
question for the same information more than once. Update rules prescribe the cognitive state 
of both the sending and the receiving agent after the information in a communicative act is 
accepted by both agents. For example, if an agent a has uttered a belief statement to an 
agent b, agent b believes the underlying sentence, b is aware that a believes the sentence, 
and a is aware that b believes the sentence. In fact, Dialogue rules and update rules describe 
pre and post conditions on agent’s cognitive state.  
 

3.7 Dialogue Games proposed by Dignum and his Colleagues 
 
The dialogue game protocols presented in the work of Dignum, Duin-Keplicz and 
Verburgge (2000, 2001) are intended to enable agents to form teams and to agree on joint 
intentions. They present a theory for agents that are able to discuss the team formation and 
to adopt joint intentions and subsequently work as team members until the collective goal 
has been fulfilled. For both protocols, the authors assume that one agent, an initiator or 
proponent, seeks to persuade others (opponents) to join a team, and that another initiator 
(possibly the same agent) seeks, after the team formation, to persuade team members to 
adopt a group belief or intention. They present structured dialogues, with an emphasis on 
persuasion, which can be shown to lead to the required team formation and joint intentions. 
The dialogue games are formally specified using modal logics and speech acts. The team-
formation dialogue is modeled as information-seeking dialogue followed by a persuasion, 
while the joint-intentions-formation dialogue is modeled as a persuasion dialogue, which 
may include embedded negotiation dialogues. For the persuasion dialogue, the authors 
adapt the rigorous persuasion dialogue game of Walton and Krabbe (1995).  
 
The protocol for joint intention formation dialogues includes seven locutions: statement, 
question, challenge, challenge with statement, question-with-statement and final remarks. 
The statements associated with challenges and questions may be concessions made by the 
speaker. The protocol for team formation dialogues may also use the same set of locutions. 
The authors assume the participating agents have a belief-desire-intention architecture 
(BDI) and vest the locutions with a private axiomatic semantics, the locutions being defined 
in terms of their impacts on agent mental states. 
 
For team formation by dialogue, the authors postulate that agent architecture should contain 
a number of specific modules. The heart of the system is the reasoning module. When 
realizing the consecutive stages leading ultimately to team formation, interaction with the 
planning, communication and social reasoning modules is necessary. All these modules 
contain a number of specific reasoning rules. Each rule refers to a specific aspect of the 
reasoning process. 
 
The first task of the initiator in the team formation protocol is to form a partial plan for the 
achievement of the overall goal. For this reason, it determines which agents might be most 
suited to form the team. In order to determine this match, the initiator tries to find out the 
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properties of the agents, being interested in three aspects, namely their abilities, 
opportunities, and their willingness. The initiator has to form beliefs about these aspects of 
the individual agents. Thus, it may first investigate the willingness of particular agents, and 
on this basis ask the interested ones about their abilities and opportunities. The questions in 
this stage form part of an information seeking dialogue game. To establish a collective 
intention within the team, agents start a persuasion dialogue consisting of three main stages: 
information exchange, rigorous persuasion, and completion. 
 

3.8 Comparison and Discussion 
 
In this section, we compare and discuss the dialogue game frameworks presented in this 
chapter using the following factors: the formal language used for the specification, the 
dialogue types supported by the framework, the architecture of the participating agents, the 
purpose of the proposal, the mechanism, if any, used in the framework for the decision 
making process, and the computational issues. Table 3.1summarizes this comparison. 
 
Different logics are used to specify the dialogue game frameworks presented in this chapter. 
Modal and multi-valued logics are used to formalize and reason about agents’ mental states. 
Nonmonotonic logic is used to formalize arguments that agents use to support their 
communicative acts. Other formal languages are also used to describe some elements such 
as the dialogue frames (Reed, 1998) and the contextualization game (Maudet and Chaib-
draa, 2002). Lebbink et al. use a specific algebraic language to represent inconsistent 
information that is a part of the agent’s cognitive state.    
 
All the dialogue game proposals, with the exception of Maudet et al.’s framework and 
Lebbink et al.s’ dialogue games, are based on the dialogue typology proposed by Walton 
and Krabbe. Reeds’ dialogue frames and the layer model of McBurney and Parsons are 
defined to represent all the types according to this dialogue typology and the combination of 
these different types. Hence, these frameworks are more general than the other frameworks 
defined for specific dialogues. Maudet et al.’s DIAGAL is specified by four basic games: 
Request game, Offer game, Inform game, and Ask game. Although the combination of these 
games can describe different dialogue types, the authors do not specify these types. Lebbink 
et al.’s proposal does not use any philosophical foundation, but focuses on inconsistent 
dialogues without taking into account the goal of the dialogue. 
 
Dastani et al. and McBurney and Parsons do not make assumptions concerning the internal 
architecture of agents. Consequently, it is not clear how these frameworks can be 
implemented and how agents establish the link between their mental states and their 
locutions during a dialogue. Reed does not specify a specific architecture, but only supposes 
that agents have epistemic issues, whose referent could equally be modeled by a BDI 
architecture or a propositional logic. On the other hand, Maudet and his colleagues propose 
an architecture in which each agent has a private agenda containing its commitments. Using 
this agenda, agents can follow the action effects on each move, i.e. check the creation, 
cancellation, fulfillment … of commitments. In addition, agents can use a shared action 
board representing the actions which were played during the dialogue. This board is 
represented as a history of the performed actions. In Lebbink et al.’s framework, agents 
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have a cognitive state consisting of a set of mental constructs: beliefs, desires and 
ignorance. These constructs can be private or manifested (communicated explicitly). 
Dignum and his colleagues propose an architecture in which agents have beliefs, intentions 
and goals. In addition, agents can reason about these states and about other agents. 
 
 

 Specification 

language 

Dialogue 

types 

Agents’ 

architecture

Purpose Decision 

making 

process 

Computation

Reed Private formal 
language + 

Nonmonotonic 
logic 

Dialogue 
types of 

Walton and 
Krabbe  

Abstract 
architecture 

Modeling and 
analyzing 
dialogues 

Partially 
supported 

No 
computation 

Dastani et 

al. 

Modal logic Negotiation 
+ 

Information 
seeking 

Unspecified Constructing 
flexible 

negotiation 
protocols 

Unsupported No 
computation 

McBurney 

and 

Parsons 

Modal logic Dialogue 
types of 

Walton and 
Krabbe 

Unspecified Representing 
combination 
of dialogues 
+ generating 

dialogues 

Supported An operational 
semantics 

Maudet et 

al. 

Private formal 
language 

Request + 
Offer + 

Information 
+ Ask 

Each agent 
has an 
agenda 

containing its 
commitments

Analyzing, 
modeling and 

verifying 
automated 

conversations

Unsupported Implementation 
of a simulator 

Lebbink et 

al. 

Algebraic 
language + 

Multi-valued 
logic 

Dialogues 
with 

inconsistent 
and biased 
information

Agents have 
a cognitive 

state 

Analyzing 
inconsistent 
dialogues 

Unsupported No 
computation 

Dignum et 

al. 

Modal logic 
(KDn45) 

Persuasion 
+ 

Information 
seeking + 

Negotiation

Agents have 
mental sates

Constructing 
agent 

dialogues for 
team 

formation 

Partially 
supported 

No 
computation 

 

Table 3.1 Comparison of some dialogue game frameworks 

 
Reed’s dialogue frames do not specify the rules that govern the performance of 
communicative acts but only an abstract form of these acts. Consequently, the formalism is 
descriptive and not generative. The purpose of Reed’s work is to analyze conversation, but 
cannot be used to help agents to take part in these conversations. Although the dialogue 
games proposed by Maudet et al. and by Lebbink et al. specify dialogue rules and update 
rules, these two formalisms do not specify how agents can generate dialogues. The reason is 
that they do not specify the decision making process enabling agents to decide, at a given 
moment, about the next communicative act to be performed. Dastani et al. propose a 

Table 3.1. Comparison of some dialogue game frameworks 
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methodology to construct protocols by specifying some combination rules. However, 
because this methodology does not provide any decision making process, it does not specify 
how agents can use these protocols in an autonomy way. On the other hand, McBurney and 
Parsons’s model and Dignum et al.s’ dialogue games are defined for generating dialogues. 
The layer model is equipped with an argumentation theory that provides a decision making 
process and agents can reason about their locutions using dialogue layer rules. In the team 
formation dialogues, agents can also reason about their locutions. However, this reasoning 
mechanism is not clearly specified.  
 
With the exception of the proposals of MacBurney and Parsons, and Maudet and his 
colleagues, there is no computational analysis in the other proposals. However, McBurney 
and Parsons propose only an operational semantics in order to achieve the objective of 
automating dialogues; they do not provide any implementation or complexity analysis. 
Operational semantics indicates how the states of a system change as a result of execution 
of the commands in a programming language. In dialogue games, the commands are the 
moves, and the states are the dialogue states which can be described by the different 
commitments. On the other hand, Maudet et al. provide a dialogue game simulator, but the 
computational complexity of the implemented dialogue games is not studied. 
 
As a conclusion, the dialogue game frameworks discussed in this chapter have two main 
limitations. The first limitation is related to the link between private mental states, public or 
manifested states and the decision making process. This link is extremely important to 
generate dialogues and enable agents to participate flexibly in conversations. The second 
limitation is related to the computational issues. For example, complexity, termination and 
correctness of dialogue game algorithms should be analyzed when developing these 
algorithms. In addition, verifying whether agents respect or not these dialogue games 
protocols is another relevant issue to be addressed. 
 



 

 

Chapter 4 

A Taxonomy of the Proposed Approaches 

In this chapter, we present our taxonomy of the proposed approaches in the domain of 

dialogue modeling and agent communication. We distinguish three main approaches: the 

mental approach, the social approach and the argumentative approach. The mental 

approach is based on the agents’ private mental states like beliefs, desires, and intentions. 

The social approach highlights the importance of the public and social aspect of agent 

conversations. The argumentative approach uses the dialectical models discussed by the 

philosophers of argumentation.   
 
 
 

4.1 Introduction 
 
Communication between autonomous agents is widely recognized as a challenging research 
area in artificial intelligence and more particularly in the multi-agent systems community. 
Agent communication is at the intersection of several disciplines: philosophy of language, 
social psychology, artificial intelligence, logics, mathematics, etc. In a multi-agent system, 
agents may communicate in order to negotiate, to solve conflicts of interest, to cooperate, or 
simply to exchange information. All these communication requirements cannot be fulfilled 
by simply exchanging messages. Agents must be able to take part in coherent conversations 
which result from the performance of coordinated speech acts (Searle, 1969).  
 
Over the years, important contributions have been made in modeling communication 
between software agents. Three main approaches have been proposed and applied to agent 
interactions and to agent communication languages (ACLs): the mental approach, the social 
approach, and the argumentative approach. Besides these approaches, some researchers 
proposed combined methods, called intentional-conventional approaches (Maudet, 2001). 
All these approaches originate from the research on the formalization of rational agents 
initiated by the pioneering work of Moore (1980) and Morgenstern (1986, 1987) in which 
knowledge and actions are considered.  
 
In this chapter, we present and discuss these approaches on which our pragmatic approach 
presented in Chapter 5 is based. In Section 4.2, we present the mental approach. We 
summarize the model proposed by Cohen, Allen and Perrault, the rational interaction theory 
and other work. In Section 4.3, we present the social commitment approach. We discuss 
Singh et al.’s work, Colombetti et al.’s work and Flores and Kremer’s work. In Section 4.4, 
we discuss the argumentative approach. We present the dialectical models and the use of 
argumentation for dialogue modeling. In Section 4.5, we briefly present some intentional-
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conventional approaches. In Section 4.6, we conclude the chapter by comparing the 
different approaches.  
  

4.2 The Mental Approach 
 
In the mental approach, so-called agent’s mental structures (e.g. beliefs, desires and 
intentions: BDI) are used to model conversations and to define a formal semantics of speech 
acts. The objective of the BDI approach is to describe agents’ rational behavior.   

 
Beliefs are simply an agent’s information at a given moment of time, i.e. what this agent 
believes to be true regarding the state of the world or other agents’ knowledge. Desires 
represent the states of the world wished by an agent, without other consideration: it is 
completely possible to have unrealizable or contradictory desires. The process by which an 
agent selects, among these desires, those which could be pursued is deliberation. In order to 
select these desires, an agent can evaluate the feasibility of each desire. Other criteria like 
preferences between desires can also be considered (Hulstijn, 2000b). To define the concept 
of intention, many philosophical works have been put forward. For example, Bratman 
(1987) distinguishes doing something intentionally and intending to do something. Searle 
(1983) speaks about the intentions directed towards the future and the intentions in action. 
These two concepts are dependent since the intentions directed towards the future are 
generally related to the performance of intentional actions. The link between the concepts of 
goal and intention was discussed by many researchers. Some authors like Grosz and Kraus 
(1996) distinguish the notion of intending that (a proposition is performed), close to the 
notion of goal, and the notion of intending to (perform an action). The difference between 
these two concepts is that the first one does not necessarily involve an action performed by 
the agent itself. 

 
In this section we summarize two main proposals in this approach: the plan-based models of 
Cohen, Perrault and Allen and the rational interaction theory of Cohen and Levesque. 
 
4.2.1 Plan-based Models 

 
Plan-based models of dialogue can be claimed to originate from three classic papers: Cohen 
and Perrault (1979), Perrault and Allen (1980), and Allen and Perrault (1980). These models 
admit the hypothesis that agents participating in a conversation have rational behaviors 
leading them to build and to execute plans in order to achieve some goals. The production 
of an utterance by a speaker is related to the performance of a communication sub-goal. The 
communicative actions are registered in the plans formulated by the conversational agents at 
the same level as the physical actions. 
 
The notion of plan 

 
Planning is the construction of a plan, from a model of the world, while respecting certain 
criteria. A plan is an organized set of actions whose performance enables agents to achieve 
a goal. A plan allows agents to anticipate a succession of actions in order to achieve this 
goal, i.e. a certain final state of the world. To introduce this notion, we consider the 
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following example in which an agent A asks another agent B a question, to which the latter 
then responds. The presentation is taken from (Allen and Perrault, 1980): 
 
A has a goal to acquire certain information. This causes him to create a plan that involves 
asking B a question. B will hopefully possess the sought information and answer the 
question. A then executes the plan, and thereby asks B the question. B receives the question 
and attempts to infer A’s plan. In the plan, there might be goals that A cannot achieve 
without assistance. B can accept some of these goals as his own goals and create a plan to 
achieve them. B then executes its plan and thereby responds to A’s question. 
 
Plan inference is the process through which an agent A attempts to infer another agent B’s 

plan, based on observed actions performed by B. Usually, this process starts with an 
incomplete plan, containing only a single observed action or an expected goal. 
 
These two activities are modeled using the agents’ cognitive components. To establish or 
recognize a plan, knowledge about the state of the world is needed in order to be able to 
modify this world and to reach the final state corresponding to the fixed goal. Agents also 
need to have knowledge about the means of achieving this goal. The participants also have 
beliefs about the world and knowledge and beliefs on the other participants. They finally 
have intentions to do an action and intentions to be in a certain situation.  
 
Mental attitudes are omnipresent in plan-based models. The formalization of such attitudes 
is inspired by Hintikka’s work (Hintikka, 1963). Allen and Perrault developed a modal logic 
in which the concepts of beliefs and knowledge are represented by the modal operators BEL 
and KNOW. This epistemic logic allows an agent to reason about what it knows and to deal 
with information that can be contradictory with its knowledge. There is no logical relation 
between what an agent A believes about another agent B’s beliefs and agent A’s own beliefs. 
For example, it is possible that agent A believes that a proposition p is true and believes that 
the agent B does not believe that p is true. 
 
This epistemic logic is formalized as follows:  
The formula BEL(A, p) is read: "agent A believes that the proposition p is true". In modal 
logic and according to the semantics of possible worlds, this means that: if there is a world 
M in which the proposition BEL(A, p) is true, p is true in all the accessible worlds from the 
world M by agent A using a belief accessibility relation. Worlds can be considered as a 
discrete sequence of events stretching infinitely into future (Cohen and Levesque, 1990). 
They can also be viewed as Kripke structures for a CTL-like logic (Rao and Georgeff, 
1995) (Wooldridge, 2000). Intuitively, accessible worlds using a belief accessibility relation 
are the worlds that the agent believes possible. The formula KNOW(A, p) is true if              
BEL(A, p) is true and if p is indeed true. The authors assumed that the BEL operator satisfies 
the following axioms: 
 

• BEL(A, p) ⇒ BEL(A, BEL (A, p)): transitivity  

• BEL(A, p) ⇒ ¬(BEL(A,¬ p): coherence  

• BEL(A, p) ∧ BEL(A, q) ⇒ (BEL(A, p ∧ q): conjunction  

• BEL(A, p) ∨ BEL(A, p) ⇒ BEL(A, p ∨ q): disjunction  
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• BEL(A, p) ∧ BEL(A, p → q) ⇒ BEL(A, q): rationality  
 
To formalize speech acts as actions, the authors use the concept of action schema. An action 
schema is a rule described by a name, a set of parameters, and some formulae which are its 
pre-conditions, effects, and body. Preconditions are conditions that must be true if the 
action's execution is to succeed. Effects are conditions that become true after the action is 
executed. The body is a set of partially ordered goal states that must be achieved after 
performing the action. An action is intentional when its author wants to perform it. A 
speech act is an intentional action. The pre-conditions of such an action contain the formula 
WANT(A, Action). Figure 4.1 explains these notions for the INFORM speech act. The 
definition of INFORM is based on Grice's idea (Grice, 1957) that the speaker informs the 
hearer of something merely by causing the hearer to believe that the speaker wants him to 
know something. This is like an operation in planning. 
 
 
 
 
 
 
 
 
 

Figure 4.1. The action schema of INFORM speech act 

 
Allen and Perrault identified three types of inference rules: the ones concerning actions, the 
ones concerning knowledge, and the ones concerning planning by others. Rules concerning 
actions are rules that support plan recognition. Four inference rules concerning actions are 
defined as follows: 
 
Precondition-Action Rule: If P is a precondition of an action ACT, and an agent S believes 
that another agent A wants to achieve P, then we can probably infer that S believes A wants 
ACT to be performed. 
 
Body-Action Rule: If B is part of the body of ACT, and if S believes that A wants B to be 
performed, it is likely that S believes that A may want to perform ACT. 
 
Action-Effect Rule: If E is an effect of an action ACT, and S believes A wants to perform 
ACT, then it is plausible that S believes that A wants the effect of that action. 
 
Want-Action Rule: If S believes that A wants another agent N to want some action ACT to be 
performed, then S may believe that A wants ACT to be performed. 
 
Rules concerning knowledge define relations between goals of acquiring knowledge and 
goals and actions that use that knowledge. Rules concerning planning by others are 
construction rules that can be seen as the inverse of plan inference rules. The plan 
construction rules are: Action-Precondition Rule, Action-Body Rule, Effect-Action Rule, 

INFORM (A, B, p)  
• Pre-conditions:  

o WANT(A, INFORM (A, B, p)  
o KNOW(A, p)  

• Effect: KNOW(B, p)  
• Body: BEL(B,  WANT(A, KNOW(B, p))) 

Figure 4.1. The action schema of INFORM speech act 
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Know Rule, Nested-Planning Rule, and Recognizing Nested-Planning Rule. These rules 
resemblance to previously mentioned rules. 
 
Several researchers explored the idea of using plans to model agent interactions and 
suggested different types of plans: domain plans and discourse plans (Litman and Allen, 
1990), individual plans (Pollack, 1990), and shared plans (Grosz and Sidner, 1990). 
However, the fact that interaction is a dynamic activity and is dependent on the action 
context makes it difficult to model it using a planning approach. In particular, the plan 
recognition that is necessary to deduce other agents’ intentions is extremely complex.  
 
4.2.2 Rational Interaction Theory 

 
Cohen and Levesque (1990) proposed an action theory upon which a rational interaction 
theory has been built. This theory is based on a modal logic whose semantics is given in 
terms of possible worlds. Action representation is based on dynamic logic. The 
corresponding language contains the usual connectives of a first-order language, operators 
for the propositional attitudes, as well as action expressions.  These elements are:  
 
(BEL A p), (GOAL A p): p follows from A’s beliefs or goals. 
(BMB A B p): A believes that p is a mutual belief with B. 
(AGT A a): A is the only agent of action a.  

a ≤ b: action a is an initial subsequence of b. Action variables range over sequences of 
primitive actions. 
(HAPPENS a), (DONE a): action a will happen next, action a has just happened. 
a ; b: action sequence. 
a | b nondeterministic choice. 
p? test action. 
a* repetition. 
p? ; a action a occurring when p holds. 
a ; p? action a occurs after which p holds. 
 
From these elements, the following abbreviations can be adopted: 
 

p =def ∃a (HAPPENS a ; p?) 

(LATER p) =def ¬p ∧ p 

p =def ¬ ¬p 

(PRIOR p q) =def ∀c (HAPPENS c ; q?) ⊃ ∃a (a ≤ c) ∧ (HAPPENS a ; p?) 

(KNOW A p) =def p ∧ (BEL A p) 
 
To define the notion of intention, the authors use the notion of Persistent Goal P-GOAL that 
is an internal and individual commitment of agent. Formally: 
 
(P-GOAL A p q) =def 

1- (BEL A ¬p) ∧  

2- (GOAL A (LATER p)) ∧ 

3- [KNOW A (PRIOR [(BEL A p) ∨  (BEL A ¬p) ∨ (BEL A ¬q)] 
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¬[GOAL A (LATER p)])]. 
 
This definition indicates that the agent A believes that p is currently false, chooses that it 
will be true later, and knows that before abandoning this choice, it must either believe it is 
true, believe it never will be true, or believe that q, an escape clause (used to model sub-
goals, reasons, etc.) is false. 
 
In this theory, intention to do an action a is a kind of persistent goal in which an agent 
commits to do an action, in a particular mental sate. Formally: 
 
(INTEND A a q) =def (P-GOAL A [DONE A (BEL A (HAPPENS a))? ; a]q). 
 
A fundamental notion in Cohen and Levesque’s theory is an ATTEMPT. This notion 

discussed by Searle (1969) is used to define the illocutionary acts. An attempt to achieve ψ 

via Φ by performing an action a is defined as follows: 
 

{ATTEMPT A a ψ Φ} =def [(GOAL A (LATER ψ))  

        ∧ (INTEND A a ; Φ? (GOAL A (LATER ψ)))]? ; a 
 

This definition indicates that, before performing a, the agent A chooses that ψ should 

eventually become true, and intends that a should produce Φ relative to that choice. So, ψ 

represents some ultimate goal that may or may not be achieved by the attempt, while Φ 
represents what it takes to make an honest effort. Using this notion, the authors defined the 
semantics of some illocutionary acts. Figure 4.2 illustrates the case of the INFORM act. 
 
 
 
 
 
 
 
 
 

Figure4.2 Definition of INFORM in Vohen and Levesque's theory 

 
The illocutionary act of informing is defined as an attempt by which the speaker (agent A) is 
committed (in the sense of persistent goal) to the addressee’s knowing that A knows p. In 
other words, agent A is committed to the addressee’s knowing in which mental state A is. 
Although A is committed to getting the addressee to believe something about its goals, what 
A hopes to achieve is for the addressee to come to know p. To achieve this goal, it is 
necessary that the addressee B shares with A the mutual belief that B knows that A knows 
that p is true. 
 
The fundamental idea of this approach is that illocutionary acts can only be derived from the 
analysis of the agents’ mental states.  In addition, in Cohen and Levesque’s framework an 

{INFORM A B a p} =def 
{ATTEMPT A a 

(KNOW B p) 
[BMB B A 

(P-GOAL A 

(KNOW B (KNOW A p)))]} 

Figure 4.2. Definition of INFORM in Cohen and Levesque’s theory 
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agent intends to do an action if it has the persistent goal to have done the action. This 
reduction of intentions to do actions for goals is criticized by (Meyer et al., 1999): although 
intentions to do actions should be related to goals, this relation should express that doing the 
action helps in bringing about some goal and not that doing the action in itself is a goal.  
 
According to the rational interaction theory, cooperation and sincerity are the two 
characteristics on which the agents’ rational behavior rests. Cooperation can take the form 
of very strict constraints, like the adoption of goals. An agent is cooperative when it adopts 
the goal of its addressee. Thus, recognizing the speaker’s underlying goals, as precisely as 
possible, is necessary to offer cooperative answers to it. In addition, the semantics of speech 
acts is conditioned by the fact that the speaker is sincere and that the addressee believes that 
the speaker is sincere. For example, in the INFORM act, the speaker is assumed to be 
sincere when it is committed to the addressee’s knowing its mental state. 
 
4.2.3 Other Work 
 
Shapiro, Lespérance and Levesque (1998) proposed a language for specifying and verifying 
communicating multi-agent systems called Cognitive Agent Specification Language 
(CASL). Extended by Shapiro and Lespérance (2001) and Shapiro et al. (2002), CASL 
models agents as entities with mental states (knowledge and goals). It is based on a 
declarative action theory defined in the situation calculus (McCartyh and Hayes, 1969) 
combined to a programming language ConGolog (De Giacomo et al., 2000). CASL models 
Knowledge using a possible worlds account adapted to the situation calculus. A situation 
represents a snapshot of the domain. K(a, s’, s) is used to denote that in situation s, agent a 
thinks that it could be in situation s’. φ [s] means that φ  is true in the situation s. Using K, 

the knowledge of an agent is defined as follows: 
 
Know(a, φ , s) =def ∀ s’ (K(a, s’, s) ⇒  φ [s’]) 

 
An agent a knows a formula ,φ if φ  is true in all K-accessible situation by agent a. 

 
In CASL, three variants of the inform communicative action are supported (Lespérance, 
2002): 
 
inform(a, b, φ ): agent a inform agent b that φ  currently holds. 

informWhether(a, b, φ ): agent a inform agent b about the current truth value of .φ  

informRef(a, b, φ ): agent a inform agent b of who/what φ  is. 

 
The preconditions of these three actions are expressed using Know predicate. For example, 
an agent a can inform an agent b that ,φ  iff a knows that φ  currently holds, and does not 

believe that b currently knows the truth value of .φ  

 
In CASL, goals are modeled using an accessibility relation W over possible situations. The 
goal accessible situations for an agent are the ones where it thinks that all its goals are 
satisfied. W-accessible situations may include situations that the agent thinks are 
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impossible. Intentions are defined using W and K relations so that the intention accessible 
situations are W-accessible situation that are also compatible with what the agent knows, in 
the sense that there is a K-accessible situation in the history of W-accessible situations. 
Thus, unlike goals, agents can only intend things that they believe are possible. 
 
Using the CASL framework, Khan and Lespérence (2004) defined a model of cooperative 

ability, and show how agents use their intentions to determine their next actions. In a single 
agent domain, an agent’s ability to achieve a goal can be defined as its knowledge of a plan 
that is physically and epistimically executable and whose execution achieves the goal. As 
argued by the authors, modeling multi-agent ability is more complex because it requires to 
take into account the agents’ knowledge about other’s knowledge and intentions as well as 
how they select actions, behave rationally, etc. At the communication level, the authors 
extended CASL by providing two intention transfer communication actions: request and 
requestAct, and two cancellation actions: cancelRequest and cancelRequestAct. Finally, 
they defined rational plans and specified a planning framework for cooperating and 
communicating agents. The main idea in this framework is the role of intention and 
rationality in adopting a rational plan and in determining an agent’s actions. 
 
On the basis of the rational interaction theory, a broad range of ACL performatives have 
been defined (Huber et al., 2001) (Huber et al., 2004) (Kumar et al., 2000). However, the 
complexity of the definitions causes sometimes confusion when selecting the correct 
performative in multi-message exchanges. In addition, these definitions have changed to 
match changes in the first version of performatives that have been defined, but not all 
performatives previously defined have been updated with each underlying definition change 
(Huber et al., 2004). 
 
Several approaches have been defined for implementing cognitive concepts (Huhns and 
Singh, 1998). According to one of these approaches, the agent represents its beliefs, 
intentions, and desires in modular data structures and performs explicit manipulations on 
those structures to carry out means-ends reasoning or plan recognition. When the cognitive 
concepts are defined formally, the explicit manipulations can be accomplished through the 
application of a suitable theorem prover. Among the best of the systems using this approach 
is ARTIMIS (Sadek et al., 1997). ARTIMIS is an intentional system designed for human 
interaction and applied in a spoken-dialogue interface for information access. This system is 
based on a logic of beliefs and intentions defined from the Cohen and Levesque framework. 
In ARTIMIS, agents’ communicative acts are modeled as rational actions. The rational unit 
of the system enables agents to reason about knowledge and plans pertaining to their 
communicative acts. 
 
One of the other best-known formalizations in the mental approach is Rao and Georgeff’s  
BDI-logic (Rao and Georgeff, 1991). Dealing with desires and intentions as primitives, the 
authors focus on the process of intention revision. The BDI-architecture is particularly 
interesting because it combines three distinct components: A philosophical foundation, a 
software architecture and a logical formalization (van der Hoek and Wooldridge, 2003). 
Syntactically, BDI logic is essentially branching time logic enhanced with additional modal 
operators: Bel, Des and Intend to capture agents’ beliefs, desires and intentions respectively. 
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The semantics that Rao and Georgeff give to BDI modalities in their logic are based on 
Kripke structures and possible worlds. However, rather than assuming that worlds are 
instantaneous states of the real world, it is assumed that worlds are themselves branching 
temporal structures. While this enables the authors to define some interesting properties, it 
complicates the semantic machinery of the logic.  
 
Although Rao and Georgeff’s BDI-logic shares much in common with Cohen and 
Levesque’s intention logic, there are two main differences between these two logics. The 
first and most obvious distinction is that Rao and Georgeff’s BDI-logic uses explicitly a 
CTL-like branching time logic. The second distinction is that worlds are a discrete sequence 
of events in the formalism proposed by Cohen and Levesque, and are branching temporal 
structures in the formalism proposed by Rao and Georgeff. In term of expressivity, Rao and 
Georgeff’s approach explores the possible interrelationships between beliefs, desires, and 
intentions from the perspective of semantic characterization. The most obvious relationships 
that can exist between agent’s belief, desire, and intention accessibility relations are whether 
one relation is a subset of another. For example, if desire accessibility relation is a subset of 
intention accessibility relation for a given agent, then we would have as an interaction 
axiom the fact that if this agent intends that a proposition is true, then it desires that this 
proposition is true.  
 
Another important formalization is the KARO framework (for Knowledge, Actions, Results 
and Opportunities) proposed by (van Linder et al., 1998). KARO is a formal system that 
may be used to specify, analyze, and reason about the behavior of rational agents. The core 
of KARO is a combination of epistemic and dynamic logic. The framework comes with a 
sound and complete axiomatization. For instance, it is possible to model, using this 
framework, that an agent knows that some action is able to bring about some state of affairs 
since it knows that an action is feasible in the sense that the agent knows of its ability to 
perform the action. 
 
The main difference between the KARO framework and Cohen and Levesque’s approach is 
that the KARO framework employs explicitly dynamic logic, a programming logic with 
explicit reference to actions (programs) within the language. In addition, according to 
Cohen and Levesque’s approach, an agent intends to do an action if it has the persistent goal 
to have done the action, however, in the KARO framework, intentions are represented by 
commitments consisting of actions. Because commitments have a very computational 
flavor, The KARO framework is more computational in nature. On the other hand, the 
difference between Rao and Georgeff’ logic and The KARO formalism is that the first logic 
focuses on the process of intention revision rather than the commitment acquisition which is 
essential to the KARO framework. Another difference is that BDI-logic rests on temporal 
logic rather than dynamic logic as in the case of the KARO formalism. Consequently, 
desires and intentions in BDI-Logic suffer from the problems associated with logical 
omniscience. A detailed description of these problems is discussed in (Meyer et al., 1999). 
 
Several researchers used the approaches of Cohen and Levesque, Rao and Georgeff or 
KARO to define a formal semantics of ACLs (Hindriks et al., 2000), (Labrou, 1997), 
(Labrou and Finin, 1998), (Sadek, 1991), (van Eijk, 2000). For example, according to the 
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semantics proposed by Labrou and Finin (1998), the fact that an agent Ag1 informs another 
agent Ag2 that a proposition p is true is interpreted as “Ag1 believes that p is true and 
believes that Ag2 intends to find whether p is true or not”. However, these semantics have 
been criticized for not being verifiable because it is not possible to verify whether the 
agents’ behaviors match their private mental states (Dignum and Greaves, 2000), (Singh, 
2000). 
 
4.2.4 Discussion 

 
The mental approach has the advantage of being formally defined on the basis of modal 
logic and of a logic of action, which explains its success in the field of the human-machine 
interfaces. It also has the advantage of offering a complete theory which makes it possible 
to cover the three basic elements of the communication: syntax, semantics and pragmatics 
which is captured by the concept of planning. However, the approach based on planning has 
several limitations. The concept of plan can be useful when we consider simple 
conversations that agents can plan in advance. But as soon as the conversations become 
more complicated, this approach becomes inadequate. This is due to the fact that the 
dialogue is a very dynamic activity, whereas plans, although they can be revised when 
circumstances change, are static in nature because all communicative acts are planed in 
advance. In addition, plan revision is a computationally complex task. Moreover, the 
computational complexity of plan recognition algorithms is another limit. The plan 
recognition problem is also non decidable in certain cases (Bylander, 1991). 
 
The semantics defined in this approach rests on a multimodal logic combined with an action 
theory. To use a language based on this semantics, agents must be specified according to a 
BDI approach. This semantics is simple, declarative and unambiguous. However, it remains 
difficult to verify it because agent’s mental states are private. Moreover, this semantics 
supposes that agents are sincere and cooperative. Although it is useful in certain cases, this 
assumption is not valid for all dialogue types, for example negotiation and persuasion. In 
addition, this semantics gives only the meaning of individual performatives and no 
semantics is defined for conversations. Defining pre / post-conditions of speech acts does 
not specify how BDI agents can take part in coherent conversations. 
 

4.3 The Social Commitment-based Approach 
 
An alternative to the mental approach was proposed by Singh (1998) and Colombetti (2000) 
under the name of social approach. In opposition to the mental approach, this approach 
stresses the importance of conventions and the public and social aspects of dialogue. It is 
based on social commitments that are thought of as social and deontic notions. As argued by 
Dignum and her colleagues (Dignum et al., 2003), deontic concepts are important and 
fundamental elements to specify interactions in agent societies. Social commitments are 
commitments towards the other members of a community (Castelfranchi, 1995). They differ 
from the agent’s internal psychological commitments which capture the persistence of 
intentions as specified in the rational interaction theory (Cohen and Levesque, 1990). A 
speaker is committed to a statement when he made this statement or when he agreed upon 
this statement made by another participant. In fact, we do not speak here about the 
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expression of a belief, but rather about a particular relationship between a participant and a 
statement. What is important here is not that an agent agrees or disagrees upon a statement, 
but rather the fact that the agent expresses agreement or disagreement, and acts accordingly. 
A social commitment is therefore a public attitude of a participant relative to a proposition.  
 
4.3.1 Singh et al.’s Work 
 
This notion of social commitment was proposed in order to define a formal semantics that is 
verifiable (Singh, 2000). Thus, based on Habermas’s work (Habermas, 1984), Singh 
proposed a three-level semantics such that each act is associated with three validity claims: 
the objective claim (that the communication is true), the subjective claim (that the 
communication is sincere) and the practical claim (that the speaker is justified in making the 
communication). For instance, by informing agent B that proposition p is true, agent A 
(called debtor) commits towards B (called creditor) that p holds (objective conclusion), that 
it believes that p is true (subjective conclusion), and to the whole agent group that it has a 
reason to believe that p is true (practical conclusion). Singh’s approach is based on the 
mental approach when considering the subjective claim which is embedded within a social 
attitude when considering the practical claim. The practical claim actually leads to a social 
commitment made by the speaker towards the whole agent group. The commitment-based 
semantics has therefore been introduced in order to capture these three levels.  
 
Technically, Singh defined the semantics of social commitments as an operator using 
Computation Tree Logic (CTL) (Emerson, 1990). This semantics is given relative to the 

following model: , , , , , , , ,M S N R A B I C= < < ≈ > . S  is a set of states, S S< ⊆ × is a partial 

order indicating branching time, S S≈ ⊆ × relates states to similar states, 2:N S Φ→ is an 

interpretation which tells us which atomic propositions ( Φ ) are true in a given state. The set 
of paths derived from <  is denoted P . :R S P→ gives the real path originating from a 

state. A  is a set of agents. 2: SB S A× → , 2: PI S A× → , and 2: PC S A A× × → give the 

modal accessibility relations for beliefs, intentions, and commitments respectively. B  
assigns to each agent at each moment the set of moments that the agent believes possible at 
that moment. I  assigns to each agent a set of paths that the agent is interpreted as having 
selected or preferred. C  assigns to each agent a set of paths on which the agent commits 

towards another agent. A commitment is denoted 1 2( , , )Ag AgCom p  where 1Ag  and 2Ag are 

two agents, and p  is a propositional formula. The meaning of a commitment is given by the 

following formula: 
 

,1 2 1 2
( , , ) ( : ( , , ) )t pa tM Com p iff pa pa C t M pAg Ag Ag Ag∀ ∈ ⇒  

 

tM p expresses “ M satisfies p at state t ” and ,pa tM p expresses “ M satisfies p  at state 

t  along path pa ”. 

 
Although it is verifiable at the objective level, this semantics remains unverifiable at the 
subjective level because this level is expressed in terms of mental states. In addition, the 
semantics given for the notion of social commitments does not reflect the deontic or the 
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public aspect but only the fact that the content is true in the accessible states along some 
paths. The algebraic properties of this relation are also not specified.  
 
Using Singh’s approach, Mallya et al. (2004) defined some constraints in order to capture 
some operations on commitments. These operations are: Create (that establishes the 
commitment), Cancel (that cancels the commitment), Release (that releases the debtor from 
a commitment), Assign (that replaces a commitment’s creditor by another), Delegate (that 
replaces the commitment’s debtor by another), and Discharge (that fulfills the 
commitment). An example of the defined constraints is: a commitment cannot be created 
more than once with a given identifier. The authors developed a representation for the 
temporal content capable of capturing realistic contracts. Then, they dealt with the problem 
of solving temporal commitments by showing how the satisfaction or breach of a 
commitment can be detected. 
 
On the basis of the social commitment approach, Yolum and Singh (2002) proposed an 
approach for specifying protocols in which the content of the actions is captured through 
agent’s commitments. In this approach, commitments are formalized using a variant of the 
event calculus (Kowalski, 1986). The authors used the same operations specified in (Mallya 
et al., 2004). Then, they defined reasoning rules to capture the evolution of commitments 
through the agents’ actions. Using these rules in addition to the event calculus axioms and 
an event calculus planner (Shanahan, 2000), agents can reason about their actions. The 
event calculus planner is used to demonstrate how possible transitions can be generated 
between an initial state and a goal state given a protocol specification. As a related work, 
Chopra and Singh (2004) proposed a commitment-based formalism called non-monotonic 

commitment machines for representing multi-agent interaction protocols. This formalism 
uses commitments for representing states and actions. The meaning of a state is given by the 
commitments that hold in this state. The meaning of an action is defined by the way it 
manipulates commitments. This formalism does not directly specify sequences of states and 
transitions. Instead, it specifies rules in nonmonotonic causal logic (Giunchiglia et al., 
2003). These rules model the changes in the state of a protocol as a result of the execution 
of actions. The inference mechanism in this logic computes new states at runtime. The 
nonmonotonic causal logic is used only to reason about actions in the sense that an action 
can be the cause for a formula to be true, for example 1 2( , , )Ag AgCreate p  causes 

1 2( , , )Ag AgCom p  and 1 2( , , )Ag AgDischarge p  causes 1 2( , , ).Ag AgCom p¬  

 
4.3.2 Colombetti et al.’s Work 

 
Colombetti (2000) proposed a commitment-based semantics for an ACL called Albatross 
(Agent Language Based on a TReatment Of a Social Semantics). The definition of this ACL 
is based on an extended first order modal language L. This language contains terms of 
different sorts including: agent, action token, action type, force indicator, and message 

body. Colombetti used this language to define the meaning of speech acts according to 
Searle and Vanderveken’s classification (1985). To express the meaning of directive speech 
acts, he introduced the notion of precommitment. For example, when an agent A  requests 
another agent B  to do something, A  is trying to induce B  to make a commitment. In this 
situation, we speak about a precommitment of .A  An expression of the form ( , , , )C e A B ϕ  
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(respectively ( , , , )PC e A B ϕ ) means that action e  commits (respectively precommits) agent 

A  to ϕ  relative to agent .B  If e  is an action token and α  is an action type, then ( , )Act e α  

means that e  is a token of action type .α  If A  is an agent and e  is an action token, an 

expression of the form ( , )Done e A  means that agent A  has just completed the execution of 

the action token e . This predicate can be overloaded as follows: 

 

( , , ) ( , ) ( , )defDone e A Act e Done e Aα α= ∧  

 
In Albatross, A message is an expression with sub-expressions specifying a sender, a list of 
receivers, a force indicator (in the sense of speech act theory), and a body (i.e., a statement 
of a content language conveying the content of the message). If A  and B  are agents, f  is 

a force indicator, and s  is a message body, the term ( , , , )Send A B f s  denotes the following 

action type: a message is sent with sender A , B  as one of the receivers, force indicator 
,f and body .s  For every message body s  there is a logical statement ϕ  such that 

( )Holds s ϕ↔  is valid, where the intuitive meaning of ( )Holds s  is that s  holds. This 

assumption is considered as meta-theoretic. A term of the form ( , , , )SpeechAct A B f ϕ  

denotes the following action type: a speech act is performed with A  as the speaker, B  as 
one of the addressees, force ,f  and content .ϕ  The speaker of a speech act coincides with 

the agent that performs it. The relationship between messages and speech acts is expressed 
through an inference rule: 
 

( )

( , ( , , , )) ( , ( , , , ))

Holds s

Act e Send A B f s Act e SpeeechAct A B f

ϕ
ϕ

↔
→

 

 
 
Using the language L, Colombetti defined a number of speech acts: declarations, assertives, 
commisives, directives. For example, for an assertive act, the point is to commit its actor to 
the truth of what is asserted, relative to every addressee and for a directive act, the point is 
to have the addressee perform some action. Assertive and directive acts are defined as 
follows: 
 

( , , ) ( , , , )

( , , ( , , )) ( , , , )

Assert A B SpeechAct A B Assert

Done e A Assert A B C e A B

ϕ ϕ
ϕ ϕ

=
→

   

Re ( , , ) ( , ,Re , )

( , ,Re ( , , ( , ))) ( , , , ( , ))

quest A B SpeechAct A B quest

Done e A quest A B Done B PC e B A Done B

ϕ ϕ
α α

=
→

 

 
Fornara and Colombetti (2002) defined an operational specification of Albatros by using 
social commitments. The essential components of this specification are: a commitment class 
that can be instantiated to a set of commitment objects, a fixed set of actions that agents 
may perform and a fixed set of roles that agents play during an interaction. Some basic 
operations on commitments are defined: Make commitment, Make precommitment, Cancel 

commitment, Cancel precommitment, Accept precommitment, Reject precommitment. These 
operations are used to define the meaning of the basic types of communicative acts as 



43 

 

identified by speech act theory. The authors used this specification to define some 
interaction protocols (Fornara and Colombetti, 2003, 2004).  
 
Verdicchio and Colombetti (2003) proposed a logical model of social commitments based 
on CTL+- (CTL* augmented with past operators). The purpose of their framework is to 
define an ACL semantics based upon the concept of social commitments. This framework 
relies on the assumption that agent communication should be analyzed in terms of 
communicative acts, by means of which agents create and manipulate commitments. They 
extended the temporal language of CTL+- in order to represent events and actions. Events 
are treated as a sort of individuals called event tokens. Every event token belongs to at last 
one event type, and takes place (happens) at exactly one time instant. By taking 

( ), ( , )Happens e Type e t  and ( , )Actor e x  as primitives, with e  is an event token, t  an event 

type, and x  an agent, they defined: 

 
( , , ) ( ) ( , ) ( , )defDone e x t Happens e Type e t Actor e x∧ ∧=  

 
This formula expresses the fact that event e  of type t  is brought about by agent .x  

Commitments and precommitments are only defined syntactically by two predicates Comm  

and Prec  without any semantics. ( , , , )Comm e x y u  (respectively ( , , , )Prec e x y u ) means 

that event e  has brought about a commitment (respectively a precommitment) for agent ,x  

relative to agent ,y  to the truth of u . The action types for commitment and precommitment 

manipulation are defined by axioms describing their constitutive effects, that is, by 
describing the state of affairs that necessarily hold if a token of a given action type is 
successfully performed. For example, the following axiom says that: if an agent x  

successfully performs an action of making a commitment with x  as the debtor, y  as the 

creditor, and u  as the content, then on all paths agent x  is committed, relative to ,y  to 

content ,u  until agent x  possibly cancels such a commitment, after which the commitment 

no longer exists. The authors also studied fulfillment and violation of commitments.  
 
Using commitment-based semantics proposed by Colombetti (2000) and by Verdicchio and 
Colombetti (2003), Fornara, Vigano, and Colombetti (2004) proposed to regard an ACL as 
a set of conventions to act on a fragment of institutional reality. Communicative acts are 
regarded as a sort of institutional actions, that is, as actions performed within an institution 
to modify a fragment of social reality (Searle, 1995). According to the authors, defining the 
semantics of an ACL has two sides: one side is the definition of the institutional effects 
brought about by the performance of communicative acts; the other side is the definition of 
the social context in which agents can carry out institutional actions. Institutional actions are 
particular types of actions that agents cannot perform by exploiting causal links. Rather, 
institutional actions are performed on the basis of a shared set of conventions and norms. 
Norms prescribe which institutional actions should or should not be executed among those 
that are authorized. They are important in the sense that they make an agent’s behavior at 
least partially predictable and allow agents to coordinate their actions according to the 
expected behavior of the others. 
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The approach proposed by Colombetti, Fornara, Verdicchio, and Vigano offers an 
operational specification and a logical definition of agent communication. However, this 
approach is only based on the notion of social commitments and it neglected the agents’ 
mental states and their reasoning process. Without this process it is not clear how agents 
manipulate their commitments when conversing.  
 
4.3.3 Flores et al.’s Work 
 

Flores and Kremer (2002) proposed a social model for agent conversations for action based 
on social commitments and their negotiation. They used observable behavior and the 
concept of shared social commitments to ensure the coherence of agent conversations. 
During the conversation, each agent maintains a private record to which shared 
commitments are added and from which they are removed. The authors formally specify 
their model using the Z language. 
 
In addition, they defined a basic protocol for the negotiation of social commitments called 
PFP (Protocol For Proposals). The protocol starts with a proposal from a sender to a 
receiver to concurrently adopt or discharge a social commitment. Either the receiver replies 
with an acceptance, rejection, or counteroffer or the sender issues a withdrawal or 
counteroffer. All utterances except a counteroffer terminate an instance of the protocol. 
Finally, it is expected that when an acceptance is issued, both speaker and addressee will 
simultaneously apply the proposed commitments to their record of shared commitments. 
 
Flores et al. (2004) presented a conversational model where the meaning of messages is 
based on their use as coordinating devices. They distinguished two types of meaning: 
speaker's meaning, which is based on the use of messages for the communication of intent, 
and signal meaning, which is based on the use of messages as coordinating devices 
incrementing the common ground of interacting agents. Following this view, the meaning of 
messages is incrementally defined based on the following levels: a compositional level, 
where the meaning of messages is given according to their constituents; a conversational 

level, where the meaning of messages is given based on their occurrence as part of a 
conversation in which agents concur to advance the state of commitments; a commitment 

state level, where the meaning of messages is given according to the state of the 
commitments these messages manipulate; and a joint activity level, where the meaning of 
messages is given according to their use in joint activities. 
 
4.3.4 Discussion 

 
The social approach is regarded as a change in agent design: from individual representation 
(private representation) to social interaction (public representation). An ACL must be 
conceived taking certain standards into consideration in such a way that agents belonging to 
different environments could interact. These standards are supposed to provide the 
possibility of testing the compliance of these agents with respect to the ACL specification. 
Commitment-based semantics has the advantage of being verifiable because unlike mental 
states, commitments are objective and public. They do not require to be reconstituted using 
inference processes. Compliance testing in this approach is based on the following idea: an 
observer of a MAS can maintain a record of the commitments being created and modified. 
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From these, the observer can determine the compliance of other agents with respect to the 
given protocol. However, this technique does not allow us to check whether the protocol 
satisfies or not the properties that it should satisfy and whether the participating agents 
respect or not the semantics of the communicative acts. Indeed, when agents communicate 
using a semantics, we need to verify that they use the same semantics. In Chapter 8, we 
address this problem in a formal way using a model checking technique. 
 
This approach has also been critiqued in (Khan and Lespérance, 2004) because 
communication cannot be reduced to the public social commitments level. The reason 
agents communicate is that this serves their private goals. Therefore, they must reason about 
these goals and the associated beliefs when communicate. Thus, a mentalistic semantics is 
also essential. For this reason, we think that a combined mental-social-argumentative 
semantics provides a good understanding of the agents’ communicative behavior. 
 
On the other side, specifying protocols using a commitment-based approach does not 
provide a solution to the flexibility problem if agents cannot reason about their 
commitments. Although the event calculus planner and causal logic offer a reasoning 
mechanism to agents, this reasoning remains elementary. The reason is that agents cannot 
decide about the next act to be performed. The decision-making process is not taken into 
account in the protocols suggested in this approach. In Chapters 5 and 6, we show that using 
an argumentative theory in this approach provides such a process. On the other hand, in 
Chapter 9, we show that integrating dialogue games in a hybrid approach based on 
commitments and arguments provides more flexibility for these protocols. 
 
The approach proposed by Colombetti and his colleagues is completely based on the social 
commitments and neglects the agents’ mental aspect. Therefore, this approach captures only 
the observable part of the communication, and does not explain how agents can participate 
in conversations. Finally, although the approach proposed by Singh mentions agents’ 
mental states, it does not specify how agents establish the link between their mental states 
and the different commitments. For example, how agents handle their commitments on the 
basis of their mental states is not specified. In our pragmatic approach (Chapters 5 and 6), 
we show how this link is established using the agents’ reasoning mechanism. 
 

4.4 The Argumentative Approach 
 
Another approach, called the argumentative approach, was proposed by Amgoud and her 
colleagues (Amgoud, 1999), (Amgoud et al., 2000a, 200b, 2002) as an extension to Dung’s 
work (Dung, 1995), and by McBurney and his colleagues (McBurney and Parsons, 2000), 
(McBurney, 2002), (McBurney et al., 2002). This approach is based upon an argumentation 
system that can include a preference relationship between arguments (Amgoud, 1999). 
According to this approach, the agents’ reasoning capabilities are often linked to their 
ability to argue. They are mainly based on the agent’s ability to establish a link between 
different facts, to determine if a fact is acceptable, to decide which arguments support which 
facts, etc. Before studying this approach we introduce some preliminary concepts. 
 



46 

 

4.4.1 Preliminary Concepts 
 
Argumentation theory has been applied in the design of intelligent systems in several ways 
over the last decade. Arguments can be considered as tentative proofs for propositions (Fox 
et al., 1992), (Krause et al., 1995). One may imagine that knowledge in some domain is 
expressed in a logical language, with the axioms of the language corresponding to premises 
in the domain. Theorems in the language correspond to claims in the domain which can be 
derived from the premises by successive applications of some set of inference rules. For 
many real-life domains, the premises will be inconsistent in the sense that contrary 
propositions may be derived from them. In this formulation, arguments for propositions, or 
claims, are the same as proofs in a deductive logic, except that the premises on which these 
proofs rest are not all known to be true. Arguments are thus treated as tentative proofs for 
claims. 
 
Many formalisms of argumentation such as (Pollock, 1991, 1992), (Prakken and Sartor, 
1996), and (Vreeswijk, 1997) regard an argument as a structured chain of rules. An 
argument begins with one or more premises. After this follows the repeated application of 
various rules, which generate new conclusions and therefore enable the application of 
additional rules.  
 
The understanding of an argument as a tentative proof and a chain of rules attends to its 
internal structure, as analogous to a chain of inference steps connecting a set of premises to 
a claim. A second strand of research in artificial intelligence has emphasized the 
relationship between arguments when considered as abstract entities, ignoring their internal 
structures. This approach has enabled argumentation systems to be defined as defeasible 
reasoning systems (Pollock, 1991, 1992), (Simari and Loui, 1992). Arguments are thus 
defeasible, meaning that the argument by itself is not a conclusive reason for the 
conclusions it brings about. In defeasible logic (also called nonmonotonic logic), inferences 
are defeasible, that is, the inferences can be defeated when additional information is 
available.  
 
In this logic, the conclusions are not deductively valid: it is possible that the premises are 
true while the conclusion is not. Whether or not an argument should be accepted depends on 
its possible counterarguments. To decide about the acceptability of arguments, Dung (1995) 
proposed the use of a formal argumentation framework. In this framework, an argument 

framework is a set of arguments (considered as abstract entities) together with a binary 
relationship across this set, called attack. A set of arguments Args is conflict-free if there is 
no arguments Arg1 and Arg2 in Args such that Arg1 attacks Arg2. Any given argument is said 
to be acceptable with respect to a designated subset S of the set of arguments if every 
argument which attacks the given argument is itself attacked by an argument in the 
designated subset. Such a subset S is said to be admissible if it is conflict-free and if every 
argument it contains is acceptable with respect to S. Intuitively, acceptable arguments with 
respect to some set S are those which are defended by the elements of S against all attacks. 
Similarly, an admissible set of arguments is one which defends its own members against all 
attacks. 
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4.4.2 Dialectical Models of Argumentation 

 
The monological models of argumentation, like Toulmin’s model (Toulmin, 1958), focus on 
structural relationships between arguments. On the contrary, formal dialectics proposes 
dialogical structures to model the connectedness of utterances. Dialectical models focus on 
the issue of fallacious arguments, i.e., invalid arguments that appear to be valid. They are 
rule-governed structures of organized conversations in which two parties (in the simplest 
case) speak in turn in an orderly way. These rules are the principles that govern the 
participants’ acts, and consequently the use of dialectical moves. 
 
Hamblin (1970) and MacKenzie (1979) proposed a mathematical model of dialogues. They 
defined some connectors necessary to the formalization of the propositional contents of 
utterances, and a set of locutions for capturing the speech acts performed by participants 
when conversing. The dialectical system proposed by MacKenzie, and called system DC, is 
an extension to the one proposed by Hamblin. MacKenzie’s DC proposed in the course of 
analyzing the fallacy of question-begging provides a set of rules for arguing about the truth 
of a proposition. Each participant, called player, has the goal of convincing the other 
participant, and can assert or retract facts, challenging the other player’s assertions, ask 
whether something is true or not, and demand that inconsistencies be resolved. When a 
player asserts a proposition or an argument for a proposition, this proposition or argument is 
inserted into a public store accessible to both participants. These stores are called 
commitments stores (CS). There are rules which define how the commitment stores are 
updated and whether particular illocutions can be uttered at a particular time. 
 
A MacKenzie’s dialectical system mainly consists of:  
1. A set of moves: they are linguistic acts, for example assertions, questions, etc.  
2. A commitment store: it contains the different propositions and arguments asserted by the 
players. This store, accessible by all the players, makes it possible to keep the trace of the 
various phases of the dialogue.  
3. A set of dialogue rules: they define the allowed and the prohibited moves. These rules 
have the following form "if condition, moves C are prohibited". A dialogue is said to be 
successful when the participants conform to its rules. 
 

The language used in DC contains propositional formulae:  “p”, “¬p” and “p ∨ q”. 
Locutions are constructed from communicative functions that are applied to these 

propositions. For example, the moves: “question(fine)” and “assertion (fine, fine → hot)” 
indicate respectively the question “is it fine?” and the assertion “the weather is fine, and 
when the weather is fine, the weather is hot”.  
 
Table 4.1 illustrates the evolution the CSs of two players A and B during the following 
dialogue: 
 
A1: The doctors cannot make this surgery 

B2: Why? 

A3: Because the patient is too old and that he refuses 

B4: Why does he refuse? 
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A5: Because there is little chance of success. 

 
Turn Player Move CS(A) CS(B) 

1 
2 
3 
4 
5 

A 

B 

A 

B 

A 

Assert(¬d) 

Challenge(¬d) 

Assert(p ∧ ¬a) 

Challenge(¬a) 
Assert(s) 

¬d 

¬d 

¬d, p ∧ ¬a, p ∧ ¬a → ¬d 

¬d, p ∧ ¬a, p ∧ ¬a→ ¬d 

¬d, p ∧ ¬a, s, p ∧ ¬a → ¬d, 

s → p 

¬d 

?¬d 

?¬d, p ∧ ¬a, p ∧ ¬a → ¬d 

?¬d, p, ?¬a, p ∧ ¬a → ¬d 

?¬d, p, ?¬a, s, p ∧ ¬a → ¬d,  

s → p 

 

Table 4.1 The evolution of CSs during a dialogue 

The dialogue starts with A’s assertion (¬d): “the doctors cannot make this surgery”. Thus, A 
commits itself and commits its adversary B to this fact. Thereafter, B challenges this 
assertion (one speaks in this case about a disengagement on the fact and an engagement on 
the challenge). After that, A provides a justification, which commits the two players to this 
assertion and to the fact that this assertion logically implies the challenged fact. The 
dialogue continues in a similar way with B’s challenge of an A’s justification part, which 
involves a new A’s justification. 
 
4.4.3 Modeling Dialogue using Argumentation 

 
Several researchers have attempted to use argumentation techniques for modeling and 
analyzing negotiation dialogues (Sycara, 1990), (Parsons and Jennings, 1996), (Tohmé, 
1997) (Rahwan et al., 2004). Amgoud and her colleagues (2000a, 2000b) extended these 
proposals by investigating the use of argumentation for a wider range of dialogue types. In 
this section we summarize this work. 
 
The approach proposed by Amgoud et al. relies upon MacKenzie’s formal dialectics. The 
dialogue rules of this system are formulated in terms of the arguments that each player can 
construct. Dialogues are assumed to take place between two agents, P and C, where P is 
arguing in favor of some proposition, and C argues “con”. Each player has a knowledge 

base ΣP and ΣC respectively, containing their beliefs. As in DC, each player has another 
knowledge base, accessible to both players, containing commitments made during the 
dialogue. These commitment stores are denoted CS(P) and CS(C) respectively. The union of 
the commitment stores can be viewed as the state of the dialogue at turn t. All the bases 
described above contain propositional formulae and are not closed under deduction. 
 
Both players are equipped with an argumentation system. Each has access to his own 
private knowledge base and to both commitment stores. The two argumentation systems are 
then used to help players to maintain the coherence of their beliefs, and thus to avoid 

asserting things which are defeated by other knowledge from CS(P) ∪ CS(C). In this sense 
the argumentation systems help to ensure that players are rational.  
 
To model dialogue types proposed by Walton and Krabbe (1995) (see Chapter 2, Section 
2.7.2), the authors used seven dialogue moves: assert, accept, question, challenge, request, 
promise and refuse. For each move, they defined rationality rules, dialogue rules, and 

Table 4.1. The evolution of CSs during a dialogue 
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update rules. The rationality rules specify the preconditions for playing the move. The 
update rules specify how commitment stores are modified by the move. The dialogue rules 
specify the moves the other player can make next, and so specify the protocol under which 
the dialogue takes place. Figure 4.3 presents these rules for the assert and challenge moves. 
 
The authors showed that this framework can be used to implement the language for 
persuasive negotiation interactions proposed by Sierra et al. (1998). In (Parsons et al., 
2002), this approach is used to analyze formal agent dialogues using the dialogue typology 
proposed by Walton and Krabbe. The authors defined a set of locutions by which agents can 
trade arguments and a set of protocols by which dialogues can be carried out. In (Parsons et 
al., 2003), this approach is used to examine the outcomes of the dialogues an argumentation 
system permits. As an outcome, the authors used the set of acceptance propositions (i.e. 
what agents come to accept during the course of the dialogue). This argumentation approach 
has the advantage of linking communication and reasoning as well as of being verifiable. 
However, the approach by itself does not allow capturing certain notions such as 
obligations, conventions, roles, etc. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3 Example of rationality, dialogue and update rules 

 
4.4.4 Other Work 

 
On the basis of Amgoud et al.’s work, Sadri et al. (2001) proposed a protocol but with fewer 
locutions called dialogue moves. The legal dialogue moves are request, promise, accept, 
refuse, challenge and justify. The content of the dialogue moves request and promise are 
resources, while the content of the other four dialogue moves are themselves dialogue 
moves. For example, accept(Move) is used to accept a previous dialogue move Move and 
challenge(Move) is used to ask a justification for a previous dialogue move Move. Because 
the intended application is a dialogue over scarce resources, the authors proposed a 
semantic linking utterances to a first-order logic describing resources. In this framework, an 

assert(p) where p is a propositional formula. 
Rationality the player uses its argumentation system to check if there is an

acceptable argument for the fact p. 
Dialogue the other player can respond with: 

 1: accept(p) 

 2: assert(¬p) 
 3: challenge(p) 

Update CSi(P) = CSi-1(P) ∪ {p} and CSi(C) = CSi-1(C) 

 
challenge(p) where p is a propositional formula. 

Rationality ∅  

Dialogue the other player can onle assert (S) where S is an argument supporting  p.
Update CSi(P) = CSi-1(P) and CSi(C) = CSi-1(C) 

Figure 4.3. Example of rationality, dialogue and update rules 
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agent’s knowledge is described as an abductive logic program consisting of if then rules and 
of the resources owned by the agent. The abducibles of this logic program are the possible 
locutions which the agent may utter in response to a message it receives. 
 
The research work on argumentation that we have described concentrates on formal 
dialectics. Another field of argumentation in artificial intelligence focuses on discourses 
which are rhetorically argumentative. This field, called rhetorical argumentation, deals 
with arguments which are both based on the audience’s perception of the world, and with 
evaluative judgments rather than with establishing the truth of a proposition (Grasso, 2002). 
In Aristotle’s rhetorical argumentation, the emphasis is put on the audience rather than on 
the argument itself. In a persuasive dialogue, the rhetorician appeals to the audience’s set of 
beliefs in order to try to persuade this audience, rather than to achieve general acceptability 
(Aristotle, 1926). Using Aristotle’s definition, philosophers Perelman and Olbrechts-Tyteca 
(1969) proposed a new rhetoric theory aiming at identifying discursive techniques. Based 
on an approach that goes from examples to generalization, this theory proposes a collection 
of argument schemas which are successful in practice. This collection is classified in terms 
of the objects of the argumentation and the types of audience’s beliefs that the schema 
exploits. Each schema is described by associations of concepts, either known or new to the 
audience in order to win the audience’s acceptance. A rhetorical schema is meant to express 
when it is admissible to use a given relationship between concepts. Grasso used this theory 
to propose a framework for rhetorical argumentation (Grasso, 2002) and a mental model for 
a rhetorical arguer (Grasso, 2003). The purpose is to build artificial agents able to engage in 
rhetorical argumentation. In this framework, argumentation aims at reaching an evaluation 
of an object or of a state of affairs. This evaluation is a way to pass value from one topic to 
another, in the same way as a deductive argument passes truth from one proposition to 
another. Formally, we say that there exists an evaluation of a concept c, in the set of 
concepts C from a certain perspective p of a set P from which the evaluation is made, if 
there exists a mapping E of the pair (c, p) into a set V of values. Assuming that V is a set 
consisting of two elements: good and bad, we write:  
 

E: C × P →  V = {good, bad} 

 
Grasso defines a rhetorical argument as the act of putting forward the evaluation of a 
concept, on the basis of a relationship existing between this concept and another concept, 
and by means of a rhetorical schema. If we have a concept c and an evaluation of such a 
concept, we can put forward a rhetorical argument in favor or against a second concept c’ iff 
1) a relationship exists between the two concepts c and c’ and 2) a schema can be identified 
that exploits such a relation.    
 
As a related work, Reed, Walton and Prakken (Prakken et al., 2003), (Reed and Walton, 
2003), (Walton and Reed, 2003) proposed a classification and a formalization of 
argumentation schemes. Argumentation schemes are forms of argument (structures of 
inference) representing common types of argumentation. They represent structures of 
arguments used in everyday discourse, as well as in specific contexts such as legal 
argumentation or scientific argumentation. They represent the deductive and inductive 
forms of argument which are classical in logic. But they can also represent forms of 



51 

 

argument that are neither deductive nor inductive, but that fall into a third category, 
sometimes called abductive or presumptive. The authors illustrated how argumentation 
schemes should be fitted into the technique of argument diagramming, using an XML 
system: the Araucaria (Reed and Rowe, 2001). This system provides an interface through 
which the user can mark up a text of discourse to produce an argument diagram. They also 
studied how to model legal reasoning about evidence within general theories of defeasible 
reasoning and argumentation.  
 
4.4.5 Discussion 

 
The advantage of the argumentative approach lies in the link that it establishes between 
communication and reasoning. Like humans, agents must reason to be able to take part in 
intelligent dialogues. In addition, the distinction made between the reasoning level 
(rationality rules) and the commitment level (update rules) is important for the use of an 
ACL because it makes it possible to show in an implicit way the relation between agent 
reasoning (in particular on the basis of its argumentation system) and its participation in 
conversations. However, the commitment level remains elementary since it only captures 
the propositions asserted in a dialogue. Other commitment types, such as commitments to 
do actions and conditional commitments are not taken into account. Moreover, the handling 
of these commitments in a dialogue is only reflected by the addition and the suppression of 
propositions in or from commitment stores. However, attack, defense, justification and 
withdrawal operations that can be applied to these commitments are not supported. In 
addition, to accept or refuse arguments, agents must use not only their argumentation 
systems but also some social considerations such as agents’ trustworthiness. 
 
The dialectical systems on which this approach is based has the advantage of being 
governed by dialectical rules. These systems are normative frameworks of argumentation 
considered as dialectical games that each agent must win. This winning-based vision is 
useful for modeling certain argumentative dialogues like persuasion and negotiation. 
However, it is not adapted for cooperative dialogues like information-seeking or problem 
resolution dialogues. In fact, although the formal dialectics provides a dialogical structure, it 
does not offer a complete dialogue model. The reason is that the evolution and the dynamics 
of dialogues are only captured by their histories presented by the concept of commitment 
stores. These histories do not represent the dialogue state and do not distinguish the 
argumentation phases from the other phases. 
 
In addition to these approaches, certain researchers added to the mental approach some 
social aspects. These combined approaches are called intentional-conventional approaches. 
 

4.5 The Intentional-Conventional Approaches 
 
As outlined by Clark (1974), agent communication is both a cognitive and a social activity. 
The mere individual dispositions of the participants cannot explain this phenomenon in a 
satisfactory manner. This is why an increasing number of researchers often use the terms of 
mixed or reactive / deliberative approaches (Pulman, 1996), (Traum, 1996), (Hulstijn, 
2000a). During the conversation, deliberative processes related to the participants’ 
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intentions and desires can take place, as well as more reactive processes related to the 
conventional aspects of the interactions. The idea is to integrate social attitudes (obligations, 
interpersonal relationships, roles, powers, etc.) into mental approaches.  
 
In this respect, Pulman (1996) introduces a BDIO (Belief-Desire-Intention-Obligation) 
approach. In the same direction, Broersen and his colleagues proposed the BOID approach 
(Broersen et al., 2001). This approach is an abstract agent representation that consists of the 
four components Beliefs, Obligations, Intentions and Desires. The simple-minded BOID is 
a lightweight stimulus response agent, that only exhibits reactive behavior. This simple-
minded BOID is extended (as time and resources allow) with capabilities for deliberation 
which may result in more complex (e.g. pro-active) behavior. The BOID architecture 
contains mechanisms to solve conflicts between the outputs of the four components. This 
approach consists of two phases: the first phase results in an intermediate epistemic state, 
and the second phase results in new intended actions. Moreover, Rousseau, Moulin and 
Lapalme (1996) presented a multi-agent system for simulating conversations involving 
software agents based on a conversation model and communication protocols designed in 
order to take into account phenomena present in human conversations. The conversation is 
thought of as a language game (Wittgenstein, 1958) in which agents negotiate about the 
mental states they transfer to their interlocutors. An agent proposes certain mental states 
(beliefs, intentions, emotions, etc.) and other participants react to these proposals, accepting 
or rejecting the proposed mental objects, asking for further information or justifications, etc. 
Agents position themselves with respect to the transferred mental states. In the same 
direction, Moulin and Bouzouba (Moulin, 1998), (Bouzouba and Moulin, 1999), suggest 
adding mechanisms enabling agents involved in a conversation to manipulate social 
knowledge such as the agents’ social power within the interaction context. They show that 
agents’ social relationships should be taken into account in the interaction framework. Thus, 
they propose an architecture (a conversation manager) that stresses the importance of social 
relationships and allows agents to handle explicit and implicit information conveyed by 
speech acts. 
 

4.6 Comparison 
 
In this chapter, we reviewed a certain number of proposals relevant for the study of the 
general problem of communication between software agents in a MAS. These various 
proposals share the theoretical base provided by speech act theory. Beyond the isolated 
aspect of exchanges, agents can communicate by using traditional protocols like those of 
FIPA or those based on dialogue games. Table 4.2 illustrates a comparison between these 
proposals on the basis of three criteria: formalisms, semantics and pragmatics.   
 
The semantics of the mental approach is unverifiable since it is impossible to check, without 
access to the agent’ programs, the compliance of this agent with respect to the given 
semantics. For example, if an agent A informs another agent B that p is true, one cannot 
check whether or not A believes that p is true. Because it is based on public commitments, 
the semantics of the social approach is verifiable. The semantics of the argumentative 
approach is also verifiable because it uses arguments that are public. For example, if an 
agent A informs another agent B that p is true, one can check whether or not agent A has an 
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argument supporting p by challenging it. These three semantics are declarative because they 
are based on attitudes that are described declaratively rather than by procedures. These 
semantics describe the meaning of the communicative acts rather than how they can be 
used. 
 
 

 Formalisms Semantics Pragmatics 

Mental approach BDI logic (temporal + 
action logic + situation 

calculus) 

Unverifiable, declarative  Planning 

Social approach Commitment logic 
(temporal logic), Causal 

logic, Event calculus 

Verifiable, declarative  Commitment-
based protocols, 

commitment-
based dialogue 

games 
 

Argumentative 
approach 

Defeasible logic Verifiable, declarative Formal dialectics, 
dialogue games 

 

Table 4.2 A comparison of the mental, the social and the argumentative approaches 

 
 
At the pragmatic level, the mental approach is based on the concept of planning, whereas 
the argumentative approach uses the formal dialectics and dialogue games. On the other 
hand, the social approach uses operational descriptions of protocols specified by 
commitments.  
 
It is clear that the pragmatic level must be improved because planning, formal dialectics and 
commitment-based protocols do not allow agents to take part in conversations in a flexible 
way while respecting their autonomy. In order to participate flexibly in complex 
conversations such as negotiations, persuasions and deliberations, agents must be able to 
make decisions and not only to execute pre-defined plans and protocols. In addition, in the 
research work on agent communication there is no conversational model that specifies the 
dynamics and the evolution of conversations and that provides an efficient decision making 
process enabling agents to decide how to act next. On the other hand, the approaches 
discussed in this chapter do not take into account the social relationships that can exist 
between agents, for example how agents’ trustworthiness can be considered as an 
acceptability criterion of arguments. Finally, these approaches do not address the 
correctness and the verification issues of the communication mechanisms. Verifying that a 
given agent communication protocol satisfies some properties that are important in a given 
application context, and verifying that agents respect the semantics when communicating 
are interesting aspects yet to be addressed. In the second part of this dissertation, we 
propose our unified framework for the pragmatics and the semantics in which we address 
these different issues. 
 

Table 4.2. A comparison of the mental, the social and the argumentative approaches 



 

 

Chapter 5
*
 

A Pragmatic Approach based on Social 

Commitments and Arguments 

In this chapter, we propose a formal approach for modeling the pragmatics of agent 

communication. This pragmatics captures the evolution and the dynamics of agent 

conversations. This approach is based on the combination of the social approach and the 

argumentative approach. The link between commitments and arguments that we establish 

in this chapter enables us to capture both the public and the reasoning aspects of agent 

communication pragmatics. On the basis of this approach we also propose a layered 

communication model and a conversational agent architecture. 

 
 
 

5.1 Introduction 
 
Agent communication pragmatics deals with the way that agents use communicative acts 
when conversing. Pragmatics is related to the dynamics of agent interactions and to the 
way of connecting individual acts while building complete conversations. In the domain 
of agent communication, many researchers addressed pragmatics. For example Dastani 
and his colleagues (2000), Fornara and Colombetti (2003, 2004) and Pitt and Mamdani 
(2000) proposed the notion of protocols as a pragmatic mechanism. Pasquier and his 
colleagues (Pasquier and Chaib-draa, 2003), (Pasquier et al., 2003) proposed a cognitive 
coherence theory for this pragmatics. However, these approaches do not specify the 
evolution of conversations and they are specified informally or semi-formally. In 
addition, protocol-based approaches do not indicate how agents select their 
communicative acts. In the cognitive coherence approach, this aspect is addressed using 
the cognitive dissonance theory that enables agents to cognitively react to a statement. 
However, this approach does not allow agents to argue, for example, in order to persuade 
another agent or to negotiate with it.  
 
In this chapter, we propose theoretical foundations for an approach to agent 
communication pragmatics. This approach uses three fundamental elements: social 
commitments, actions, and arguments. As illustrated in Figure 5.1, these elements are

                                                 
* We would like to thank John-Jules Ch. Meyer, Frank Dignum and Henry Prakken from Utrecht   
University, Intelligent Systems Group, and Yves Lespérance from York University for their useful 
comments about the approach presented in this chapter. This approach is published in (Bentahar et al., 
2003, 2004c). 
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separated in three levels. The first level includes social commitments that agents use in 
their conversations. The second level includes actions that agents apply to the 
commitments. The speech acts that agents perform when conversing are defined in terms 
of these actions. The third level is composed of arguments that agents use to support their 
actions applied to the commitments. The evolution of agent conversations is represented 
by the notion of commitment state. Agents use their argumentation systems in order to be 
able to select the appropriate communicative acts to be performed considering the current 
state of the conversation.  
 
 
  
 
 
 
 
 
 
 

Figure 5.1. The elements of our approach 

 
The purpose of this chapter is to introduce our pragmatic approach that we will use in  
Chapter 6 in which we develop our framework called commitment and argument 
network. This framework models the connection between the communicative acts in a 
conversation and the evolution of this conversation. It is also a means that helps agents to 
communicate. We also use this pragmatic approach to propose a new persuasion protocol 
that we develop in Chapter 9. 
 
This chapter is organized as follows. In Section 5.2, we present our social commitment-
based framework. In Section 5.3, we introduce the notion of commitment state. A 
taxonomy of social commitments is given in Section 5.4. In Section 5.5, we establish the 
link between commitments and arguments. In Section 5.6, we present our communication 
model. In Section 5.7, we conclude the chapter by a discussion. 
 

5.2 Social Commitments 
 
A social commitment SC is a public commitment made by an agent (called the debtor), 
and directed towards a set of agents (called creditors) (Castelfranchi, 1995), indicating 
that some fact is true or that some action will be performed. A commitment is an 
obligation in the sense that the debtor must respect and behave in accordance with this 
commitment. A representation of this notion as directed obligations using a deontic logic 
is proposed in (Herrestad, 1995). Commitments are social in the sense that they are 
expressed publicly and governed by some rules. This means that they are observable by 
all the participants. The main idea is that a speaker is committed to a statement when he 
made this statement or when he agreed upon this statement made by another participant 
and acts accordingly. What is important here is not that an agent agrees or disagrees upon 
a statement, but rather the fact that the agent expresses agreement or disagreement. 

 

 Social commitments  

             Actions 

Arguments   

Figure 5.1. The elements of our approach 



56 

 

Consequently, social commitments are different from the agent’s private mental states 
like beliefs, desires and intentions. This notion allows us to represent agent conversations 
as observed by the participants and by an external observant, and not on the basis of the 
internal agents’ states.  
 
In our framework, we distinguish between the social commitment which can be modeled 
as an object, and the social commitment content. This distinction will be discussed latter 

in this section. The commitment content is characterized by a time tϕ, which is generally 
different from the utterance time denoted tu, and from the time associated with the 

commitment and denoted tsc. tϕ is the time described by the utterance, and thus by the 

content ϕ. Time tsc that can be used as an identifier of the commitment refers to the time 
during which the commitment holds. It can correspond to a fixed value or an interval. 

When it is an interval, this time is denoted [t inf
sc , t sup

sc ]. When a temporal bound is 

instantiated, it takes a numerical value that respects the time unit used by agents. For 
example, let us consider the following utterance U sent by agent Ag1 to agent Ag2: U: I 

will give you 5$ at 5PM. We can describe the content by the following predicate: ϕ = 

Give(Ag1, Ag2, 5$). We have: tϕ = 5PM. The commitment time tsc is an interval: tsc = [tu, 
5PM] with tu is the utterance time (Figure 5.2).  
 

 
 
 
 
 
 
Figure 5.2. Times tu, tsc and tϕ 

If the commitment is satisfied or violated we have tsc = [tu, tϕ]. However, if the 
commitment is withdrawn, we have: tsc = [tu, tw], with tw the withdrawal time (Figure 5.3). 
Time tsc indicates the time during which the commitment holds, i.e. the time during which 

the commitment is active. Time tϕ indicates the moment at which the commitment must 
be satisfied. 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3. Time tsc 

We denote a social commitment as follows: 
  

SC(Ag1, A*, tsc, (ϕ, tϕ)) 

 

tu tϕ 

tsc 

Figure 5.2. Times tu, tsc and tϕ

 tsc 

Create Satisfy or violate tsc 

Create Withdraw 

Figure 5.3. Time tsc 
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where Ag1 is the debtor, A* is the set of the creditors (A*=A / {Ag1}, where A is the set of 

participants), tsc is the time associated with the commitment, ϕ its content and tϕ the time 

associated with the content ϕ. A social commitment can be identified by tsc. Logically 
speaking, a commitment is a public propositional attitude. The logical semantics of this 
notion is defined in Chapter 7. The content of a commitment can be a proposition or an 
action. A detailed taxonomy of the social commitments that we use in our approach will 
be discussed latter. To simplify the notation, we suppose throughout this chapter that       
A = {Ag1, Ag2}.  
 
In order to model the dynamics of conversations, we interpret speech acts as actions 
performed on commitments. A speech act is an abstract act that an agent, the speaker, 
performs when producing an utterance U and addressing it to another agent, the 

addressee. According to the Speech Act Theory (Searle, 1969), (Searle and Vanderveken, 
1985), the primary units of meaning in the use of language are not isolated propositions 
but rather speech acts of the type called illocutionary acts. Assertions, questions, orders 
and declarations are examples of these illocutionary acts. For the moment, our 
interpretation of a speech act can be denoted by:  
 

SA(ik, Ag1, Ag2, tu, U) =def Act(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ, tϕ))) 
 
where =def means “is interpreted by definition as”.  
 
The definiendum (SA(ik, Ag1, Ag2, tu, U)) is defined by the definiens                          

(Act(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ, tϕ)))) as an action performed on a social commitment. 
SA is the abbreviation of "Speech Act", ik is the identifier of the speech act, Ag1 is the 
speaker, Ag2 is the addressee, tu is the utterance time, U is the utterance and Act indicates 

the action performed by the debtor on the commitment: Act ∈ {Create, Withdraw, 

Reactivate, Violate, Satisfy}.  
 
These five actions are the actions that the debtor can apply to a commitment and reflect 
only the debtor’s point of view. However, we must also take into account the creditor 
when modeling a conversation which is, by definition, a joint activity. The following 
example illustrates this aspect:  
 
U1: Quebec is the capital of Canada. 

U2: No, the capital of Canada is Ottawa. 

 
The utterance U1 leads the debtor to create a commitment whose content is “Quebec is 
the capital of Canada”. On the other hand, the utterance U2 highlights a creditor’s action 
on this content that is in this case a refusal. We thus propose to model the creditors’ 
actions, which are applied to the commitment contents and not to the commitments 
themselves (Figure 5.4). This separation between the commitment and its content enables 
us to remain compatible with the semantics of commitments, i.e. the fact that only the 
debtor can handle its commitments. The creditor can only handle the content of the 
debtor’s commitment. Hence, we must differentiate between the actions applied to a 
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commitment Act and the actions performed on the content of a commitment Act-content: 

Act-content ∈ {Submit-content, Accept-content, Refuse-content, Challenge-content, 

Change-content, Suspend-content, Justify-content, Defend-content, Attack-content}. We 
denote an action applied to the content of an Agi’s commitment as follows:  
 

Act-content(Agk, tu, SC(Agi, Agj, tsc, (ϕ, tϕ))) 
 

where i, j, k ∈ {1, 2} and i ≠ j. 
 
Agent Agk can thus act on the content of its own commitment (in this case we get k = i) or 
on the content of another agent’s commitment (in this case we get k = j). 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4. Debtors and creditors actions 

Thus, a speech act leads either to an action on a commitment when the speaker is the 
debtor, or to an action on a commitment content when the speaker is the debtor or the 
creditor. When an agent acts on the content of a commitment created by another agent, 
we refer to this as “taking a position on a commitment content”.3 However, it should be 
noted that the same utterance can lead both to take a position on the content of an existing 
commitment and to create a new commitment. Generally, a speech act leads to an action 
on a commitment and/or an action on a commitment content. Formally, in our framework 
a speech act can be defined using BNF notation as follows:  

 

Definition 5.1 SA(ix, Ag1, Ag2, tu, U) =def Act(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ, tϕ))) 

| Act-content(Ag1, tu, SC(Agi, Agj, tsc, (ϕ, tϕ))) 

| Act(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ, tϕ))) &  

Act-content(Ag1, tu, SC(Agi, Agj, tsc, (ϕ, tϕ))) 
 

where i, j ∈ {1, 2} and the meta-symbol “&” indicates “and”. 
 
This definition will be enriched when we establish the link between social commitments 
and arguments (Section 5.5) 
 

                                                 
3 The term “taking position” is inspired by the work done by Rousseau, Moulin and Lapalme (1996) and 
extended by Bouzouba and Moulin (1998) and Bouzouba, Moulin and Kabbaj (2001). In these proposals, 
agents communicate by taking positions on the agents’ private mental states which are exchanged by agents 
while conversing.  

 Commitment

Content
The debtor A creditor 

Act 

Act-content 

Act-content

Figure 5.4. Debtors’ and creditors’ actions 
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Let us take the previous example: 
U1: Quebec is the capital of Canada. 

 
The utterance U1 leads to the creation of a new commitment:  
 
SA(I0, Ag1, Ag2, tu1, U1) =def  

Create(Ag1, tu1, SC(Ag1, Ag2, tsc1, (Capital(Canada, Québec), tϕ1))) 
 
U2: No, the capital of Canada is Ottawa. 

 
The utterance U2 leads at the same time to a positioning on the content of the 
commitment created following the utterance U1 and to the creation of another 
commitment. Formally:  
 
SA(I1, Ag2, Ag1, tu2, U2) =def 

Refuse-content(Ag2, tu2, SC(Ag1, Ag2, tsc1, (Capital(Canada, Quebec), tϕ1))) 

& Create(Ag2, tu2, SC(Ag2, Ag1, tsc2, (Capital(Canada, Ottawa), tϕ2))) 
 

5.3 The Notion of Commitment State 
 
A commitment can evolve and be transformed as a result of the actions that the debtor 
performs on it (creation, withdrawal, reactivation, violation and satisfaction). Its content 
may also be transformed as a consequence of the actions that the debtor and the creditors 
apply to it (change, acceptance, justification, etc.). Therefore, agents act on their own 
commitments and on the contents of both their commitments and other agents’ 
commitments. These actions lead to the transformation of these commitments and 
commitment contents. Hence, the notion of state makes it possible to capture the 
evolution of commitments and their contents. However, we must distinguish between the 
notion of the commitment state (Verdicchio and Colombetti, 2002) and the notion of the 
content state relative to this commitment as we propose here. Indeed, whenever an agent 
acts on its commitment, the commitment state is affected; whereas when an agent acts on 
the content of a commitment, the content state is transformed. Consequently, the notion 
of commitment state alone does not reflect the conversation dynamics since it only 
captures the debtor’s actions on its commitment. The two states (the commitment state 
and the content state of the commitment) reflect this dynamics. This notion is of great 
importance since it allows us to keep a trace of the dialogue evolution in so far as each 
speech act leads to an action performed on a commitment or on its content. Contrary to 
the notion of the commitment store (Hamblin, 1970) which allows us only to track "who 
said what", the notion of state makes it possible to illustrate how participants change the 
dialogue state by performing actions on existing commitments or on their contents. 
 
Here are the states that we propose to use in our model. Once created, a commitment will 
take the active state and its content takes the submitted state. This expresses the fact that 
the content is presented for possible negotiation. A commitment can be in one of four 
states: active, satisfied, withdrawn, and violated (Figure 5.5). A commitment content can 
be in one of nine states: submitted, changed, refused, accepted, challenged, justified, 
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contradicted, suspended, attacked and defended. These states and the operations which 
trigger them depend on the commitment type. We notice that justification, contradiction, 
attack and defense are argumentation-related actions. This means that their semantics is 
defined using the argumentation notions (this aspect will be detailed in Chapter 7).  
 
  

Active
Create

Satisfy

Withdraw

Reactivate

Violate

Fugure 5.5. Commitment state diagram

Satisfied

Withdrawn

Violated

 
Figure 5.5Commitment state diagram 

 

The set of different states of a commitment whose identifier is tsc is denoted sctS  and the 

set of different states of a commitment content whose identifier is tsc is denoted .sct
contentS  

sctS  and sct
contentS  are finite and ordered sets. The ordering relation ≺  between the 

elements of these sets is defined as follows: 
 

Definition 5.2 1 2 1 2, ( ),scsc tt
contents s S S s s∀ ∈ ∈ ≺  iff the commitment (the commitment 

content) whose identifier is tsc was in state 1s before to be in state 2.s  

 
The current state of a commitment (commitment content) whose identifier is tsc is the 

biggest element of the set sctS ( sct
contentS ) according to the ordering relation ≺ . 

 
The following example illustrates this notion of state and its evolution: 
 
U1: The book is not allowed during the test.  

U2: Why?  

U3: Because the answers are given in this book.  

U4: Ok, Thank you.  

 
By utterance U1, agent Ag1 creates a commitment, whose state is “active”. The state of 
the content is “submitted”. Formally:  
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SA(I0, Ag1, Ag2, tu1, U1) =def  

Create(Ag1, tu1, SC(Ag1, Ag2, tsc1, (¬Allow(Book, Test), tϕ1))) 

1sctS  = {active} 

1sct
contentS = {submitted} 

 
By utterance U2, agent Ag2 challenges the content of the commitment identified by tsc1. 
This commitment always remains in the “active” state, but its content takes the state 
“challenged”. Formally:  
 
SA(I1, Ag2, Ag1, tu2, U2) =def  

Challenge-content(Ag2, tu2, SC(Ag1, Ag2, tsc1, (¬Allowed(Book, Test), tϕ1))) 

1sctS  = {active} 

1sct
contentS = {submitted, challenged} where submitted ≺  challenged 

 
By utterance U3, agent Ag1 creates a new commitment. The state of this commitment is 
“active”, and the state of its content is “submitted”. By the same utterance, this agent 
justifies the content of its commitment identified by tsc1. The state of this commitment is 
always “active” and “justified” becomes the current state of its content. Formally:  
 
SA(I2, Ag1, Ag2, tu3, U3) =def  

Create(Ag1, tu3, SC(Ag1, Ag2, tsc2, (Give(Answers, Book), tϕ2))) 

& Justify-content(Ag1, tu3, SC(Ag1, Ag2, tsc1, (¬Allow(Book, Test), tϕ1)))  

1sctS  = {active} 

1sct
contentS = {submitted, challenged, justified} where challenged ≺  justified 

2sctS  = {active} 

2sct
contentS = {submitted} 

 
By utterance U4, agent Ag2 accepts the content of the commitment identified by tsc2. 
Thus, “satisfied” becomes the current state of this commitment and “accepted” becomes 
the state of its content. Consequently, this agent also accepts the content of the 
commitment identified by tsc1. Thus, “satisfied” and “accepted” are the current states 
respectively of this commitment and its content. Formally:  
 
SA(I3, Ag2, Ag1, tu4, U4) =def  

Accept-content(Ag2, tu4, SC(Ag1, Ag2, tsc2, (Give(Answers, Book), tϕ2))) 

& Accept-content(Ag2, tu4, SC(Ag1, Ag2, tsc1, (¬Allow(Book, Test), ϕ1))) 

1sctS  = {active, satisfied} where active ≺  satisfied 

1sct
contentS = {submitted, challenged, justified, accepted} where justified ≺  

accepted 

2sctS  = {active, satisfied} where active ≺  satisfied 

2sct
contentS = {submitted, accepted} where submitted ≺  accepted 
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5.4 Taxonomy of Commitment Types 
 
In the literature (Walton and Krabbe, 1995), (Singh, 1999), (Fornara and Colombetti, 
2002), several commitment types have been proposed. In our approach we distinguish 
absolute commitments, conditional commitments and commitment attempts. 
 
5.4.1 Absolute Commitments 

 
Absolute commitments are commitments whose fulfillment does not depend on any 
particular condition. An absolute commitment is denoted: 
 

ABC(Ag1, Ag2, tabc, (λ, tλ))) 
 
Two types can be distinguished: propositional commitments and action commitments. 

 
A. Propositional Commitments 

 
Propositional commitments are related to the state of the world. They are expressed by 
assertives or by speech acts of declaratory and expressive types. They can be directed 
towards the past, the present, or the future. We denote a propositional commitment as 
follows:  
 
PC(Ag1, Ag2, tpc, (p, tp)) 
where p is the proposition on which Ag1 commits.  
 
Example: 

U: The door is open 

 
SA(I0, Ag1, Ag2, tu, U) =def Create(Ag1, tu, PC(Ag1, Ag2, tpc, (open(door), tp))) 
such that tpc = tp. 
 
Because propositional commitments are particular cases of social commitments, the 
relationship between tu and tpc is similar to the one existing between tu and tsc. 
 
B. Action Commitments 

 
Action commitments (also called commitments to a course of action) are directed towards 
the present or the future and are related to actions that the debtor is committed to perform. 
The fulfillment and the violation of such commitments depend on the performance of the 
underlying action and the specified delay. This type of commitment is typically conveyed 
by promises. We denote an action commitment as follows:  
 

AC(Ag1, Ag2, tac, ((α, p), tα)) 
 

where α is the action to be performed, and by performing α, the proposition p becomes 

true. The relationship between the symbol action α and the proposition p is similar to the 
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relationship existing between α and p in the operator <α>p of dynamic logic. Adding a 
proposition to the notation of an action commitment enables us to define the semantics of 
this commitment using this operator. This aspect will be detailed in Chapter 7.  We notice 

here that p does not need a temporal argument because if α is performed at tα, then p 
becomes true at this moment. 
 

Example:  

U: I will give you 10 dollars in one hour 

 

SA(I0, Ag1, Ag2, tu, U) =def  

Create(Ag1, tu, AC(Ag1, Ag2, [tu, tu+1h], ((α, Give(Ag1, Ag2, 10 dollars)), tα))) 

where α is an action symbol whose performance makes the proposition                          

Give(Ag1, Ag2, 10 dollars)) true, and tα = tu + 1h. 
 
The state diagram of an absolute commitment is similar to that of Figure 5.5. Figure 5.6 
presents the state diagram associated with the content of such a commitment. It contains 
the possible states for the commitment contents and the transitions corresponding to the 
operations, which can be applied to these contents. The dotted transitions in the figure 
correspond to the creditor’s actions and the non-dotted transitions correspond to the 
debtor’s actions. These operations are reflected by the participants’ utterances. Thus, the 
debtor can submit a commitment content, contradict it, justify it, defend it and change it. 
The creditor can accept this content, refuse it, challenge it and attack it.  

Submitted / 

Changed

Challenged Justified

Defended

Attacked

Refused

Accepted
Contradicted

Submit

Change

Contradict

Refuse

Refuse

Refuse

Accept Accept
Accept

Challenge

Attack

Attack

Justify

Attack

Defend

Defend

Figure 5.6. State diagram associated to the content of an absolute commitment

Debtor’s action

Creditor’s action

 
Figure 5.6. State diagram associated to the content of an absolute commitment 
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A commitment towards the present or the future can be interpreted either as a 
propositional commitment or as an action commitment. For example, the utterance 
"tomorrow the door will be open" may be interpreted as a propositional commitment 
made by the speaker on a future state of the world. It can also be interpreted as an action 
commitment if the speaker is responsible for opening the door in question. Therefore, the 
commitment made by the speaker depends on the conversation context. It is in this sense 
that social context is a fundamental issue in communication (Moulin, 1998). In particular, 
this allows us to handle properly indirect speech acts (Bouzouba and Moulin, 1999). 
 
In our framework, there is no explicit relation between propositional commitments and 
action commitments. When the current state of the world does not satisfy a propositional 
commitment, we speak about a violation of this commitment. There is no rule indicating 
that an agent develops an action commitment to make the content of its propositional 
commitment true when this commitment becomes violated. A propositional commitment 
is a commitment about a state of the world that the debtor agent can or cannot realize. In 
contrast, an action commitment is a commitment about an action that the debtor commits 
to perform in the present or in the future. 
 
5.4.2 Conditional Commitments 

 
Absolute commitments do not consider the conditions that may restrain their fulfillment. 
However, in several cases, agents need to make commitments not in absolute terms but 
under given conditions. Another commitment type is therefore required in order to be 
able to capture situations defined by certain conditions. These commitments are said to be 
conditional. The structure of a conditional commitment, which must reflect the 
underlying condition, is different from the structure of a social commitment. We denote a 
conditional commitment as follows:  
 

CC(Ag1, Ag2, tcc, ((p, tp), (λ, tλ))) 
 
This commitment expresses the fact that if p is true at time tp, then Ag1 will be committed 

towards Ag2 to perform λ or so that λ is true at time tλ. The future for a conditional 
commitment depends not only on time but also on the satisfaction of the underlying 
condition. Like for absolute commitments, we can distinguish between conditional 
commitments about propositions denoted: 
 

PCC(Ag1, Ag2, tpcc, ((p, tp), (p’, tp’)))  
 
and conditional commitments about actions denoted: 
 
ACC(Ag1, Ag2, tacc, ((p, tp), ((α, p’), tα))) 
 
The relationship between the action symbol α and the proposition p’ is similar to the one 
existing between this action and this proposition in action commitments. 
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This distinction is implicit since according to the axiom (A1) a conditional commitment 
becomes an absolute commitment when the condition is satisfied. 
 

A1: CC(Ag1, Ag2, tcc, ((p, tp), (λ, tλ))) ∧  (p, tp) ≡  true  

⇒  ABC(Ag1, Ag2, tabc, (λ, tλ)) 

 
where tabc = tcc.  
 
The state diagram associated with a conditional commitment is similar to that of Figure 
5.5. The state diagram associated with the content of such a commitment is identical to 
that of the content of an absolute commitment (Figure 5.6). Indeed, we can consider any 
social commitment as a conditional commitment whose underlying condition is always 
true. Thus, we have the following (syntactical) equivalence:  
 

SC(Ag1, Ag2, tsc, (ϕ, tϕ)) ≡  ∀t CC(Ag1, Ag2, tsc, ((true, t), (ϕ, tϕ))) 
 
Example: 

U: If industrial countries ratify the Kyoto Protocol, it can take effect 

 
SA(I0, Ag1, Ag2, tu, U) =def  

Create(Ag1, tu, PCC(Ag1, Ag2, tcc,  
((ratify(industrial countries, Kyoto Protocol), tp), (can-take-effect(Kyoto Protocol), tp’))) 
 
where tp’ = tp. 
 
5.4.3 Commitment attempts 

 
The commitments described so far directly concern the debtor who commits either that a 
certain fact is true or to perform certain action. For example, these commitments do not 
allow us to explain the fact that an agent asks another one to be committed to perform an 
action (by a speech act of a directive type). To solve this problem, we propose the 
concept of commitment attempt inspired by the notion of pre-commitment proposed in 
(Colombetti, 2000). We consider a commitment attempt as a request made by a debtor to 
push a creditor to be committed. Thus, when an agent Ag1 requests another agent Ag2 to 
do something, we say that the first agent is trying to induce the other agent to make a 
commitment. In this chapter, we denote a commitment attempt as follows: 
 

CT(Ag1, Ag2, tct, (ϕ, tϕ)) 
 

where ϕ is the content of the commitment attempt. This formulation seems more intuitive 
than Colombetti’s one according to which the agent Ag2 is the debtor and the agent Ag1 is 
the creditor. In Chapter 7, we will improve this notation in order to be able to express the 
semantics of this type of commitments using an existential qualifier.  
 
A commitment attempt about a proposition p is denoted: 
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PCT(Ag1, Ag2, tpct, (p, tp)) 
 

A commitment attempt about an action α whose performance makes true a proposition p 

is denoted: 
 

ACT(Ag1, Ag2, tact, ((α, p), tα)) 
 

The relationship between the action symbol α and the proposition p is similar to the one 

existing between α and p in action commitments. 
 
Example: 

U: Could you call me at 4PM? 
 
SA(I0, Ag1, Ag2, tu, U) =def  

Create(Ag1, tu, ACT(Ag1, Ag2, tact, ( (α, call(Ag2, Ag1)), 4PM))) 
 
A commitment attempt is thought of as a type of social commitment because it conveys 
content which is made public once the attempt is performed. However, in our approach, 
there is a true commitment only after the creditor agent reacts in response to the 
commitment attempt by accepting it or by refusing it. We speak here about the “co-

construction” of social commitments by the two interlocutors. This idea is similar to the 
one proposed by Rousseau, Moulin and Lapalme (1996) in which agents co-construct 
speech acts using their private mental states. The debtor and the creditor of a commitment 
attempt can act both on the attempt and on its content. On the one hand, the creditor agent 
reserves the right to accept a commitment attempt, to refuse it or to suspend it (for 
example by asking for a period of time for thought). It can also challenge the content of a 
commitment attempt. On the other hand, the debtor agent can withdraw a commitment 
attempt. It can also change the content of a commitment attempt and justify it. The states 
of a commitment attempt and those of its content can also be described by a state 
diagram. Figure 5.7 illustrates the state diagram associated to the content of a 
commitment attempt. Like a social commitment, a commitment attempt can be absolute 
(ABCT) or conditional (CCT). An absolute commitment attempt is denoted: 
 

ABCT(Ag1, Ag2, tabct, (γ, tγ)) 
 
A conditional commitment attempt is used for example when an agent asks another one 
to do some thing if a certain condition is true. A conditional commitment attempt about a 
proposition is denoted: 
 
CCTP(Ag1, Ag2, tcctp, ((p, tp), (p’, tp’))) 
 
A conditional commitment attempt about an action is denoted: 
 
CCTA(Ag1, Ag2, tccta, ((p, tp), ((α, p’), tα))) 
 
where p is the underlying condition. 



67 

 

 

Submited/

Changed
Accepted

Refused

Suspended

Challenged

Justified

Submit Accept

Refuse

Suspend

Refuse

Accept
Challenge

Justify

Suspend

Refuse

Accept

Figure 5.7. State diagram associated to the content of a commitment attempt
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Figure 5.7. State diagram associated to the content of a commitment attempt 

The refusal and the acceptance of a commitment attempt automatically lead to the 
creation of a new commitment that is in the active state. The two following rules illustrate 

this characteristic when the commitment attempt relates to a proposition or an action γ : 
 

R1: Create(Ag1, tu, ABCT(Ag1, Ag2, tabct, (γ, tγ))) 

& Refuse-content(Ag2, trefuse, ABCT(Ag1, Ag2, tabct, (γ, tγ))) 

⇒ Create(Ag2, trefuse, ABC(Ag2, Ag1, tabc, (¬γ, tγ))) 
 

Syntactically, if λ is an action, ¬λ indicates that this action will not be performed. 
 

R2: Create(Ag1, tu, ABCT(Ag1, Ag2, tabct, (γ, tγ))) 

& Accept-content(Ag2, taccept, CT(Ag1, Ag2, tabct, (γ, tγ))) 

⇒ Create(Ag2, taccept, ABC(Ag2, Ag1, tabc, (γ, tγ))) 
 
When the commitment attempt relates to a condition, the rules R1 and R2 become:  
 

R1’: Create(Ag1, tu, CCT(Ag1, Ag2, tcct, ((p, tp), (γ, tγ)))) 

& Refuse-content(Ag2, trefuse, CCT(Ag1, Ag2, tcct, ((p, tp), (γ, tγ)))) 

⇒ Create(Ag2, trefuse, SC(Ag2, Ag1, tsc, (¬((p, tp), (γ, tγ))))) 
 

R2’: Create(Ag1, tu, CCT(Ag1, Ag2, tcct, ((p, tp), (γ, tγ)))) 

& Accept-content(Ag2, taccept, CCT(Ag1, Ag2, tcct, ((p, tp), (γ, tγ)))) 

⇒ Create(Ag2, taccept, CC(Ag2, Ag1, tcc, ((p, tp), (γ, tγ)))) 
 
According to rule R1’, refusing a commitment attempt which relates to a condition 
consists of refusing its content without committing towards its condition. However, 
according to rule R2’, accepting a commitment attempt consists of accepting it under its 
condition, which leads to a conditional commitment.  



68 

 

5.5 The Link between Argumentation and Commitments 
 
Argumentation is based on the construction of arguments and counter-arguments 
(arguments attacking other arguments), the comparison of these various arguments and 
finally the selection of the arguments that are considered to be acceptable. A defeasible 
argumentation system essentially includes a logical language L, a definition of the 
argument concept, a definition of the attack relation between arguments and finally a 
definition of acceptability. In our model the formal definitions of these notions are 

inspired by (Elvang-Goransson et al., 1993). Here Γ indicates a knowledge base,  stands 

for classical inference and ≡ for logical equivalence. 
 
Definition 5.3 An argument is a pair (H, h) where h is a formula of L and H a sub-set of 

Γ such that: i) H is consistent, ii) H  h and iii) H is minimal, so that no subset of H 

satisfying both i and ii exists. H is called the support of the argument and h its 

conclusion. 

 
Definition 5.4 Let (H1, h1), (H2, h2) be two arguments. 

(H1, h1) attacks (H2, h2) iff H2 ¬h1. In other words, an argument is attacked if and only 

if there exists an argument for the negation of its conclusion. 

  
The concept of acceptability is defined as follows (Dung, 1995):  
 
Definition 5.5 An argument (H, h) is acceptable for a set S of arguments iff for any 

argument (H’, h’): if (H’, h’) attacks (H, h) then (H’, h’) is attacked by S.  
 
Intuitively, an argument is acceptable if it is not attacked, if it defends itself against all its 
attackers, or if it is defended by an acceptable argument.  
 
According to (Dung, 1995), any argumentation system includes two essential elements: 
one element is used to build and generate arguments, the other is used to analyze these 
arguments by determining their acceptability. This view is important for our 
communication model. Indeed, agents must reason about their own mental states in order 
to build arguments in favor of their future commitments, as well as about other agents’ 
commitments in order to be able to take position with regard to the contents of these 
commitments. Surely, an argumentation system is essential to help agents to act on 
commitments and on their contents. However, reasoning about other social attitudes 
should be taken into account in order to explain agents’ decisions. This aspect will be 
discussed in Chapter 9, in which we highlight the importance of agents’ trustworthiness 
to decide, in some cases, about the acceptance of arguments. 
 
The systems proposed in the literature, for example in (Dung, 1995), (Vreeswijk, 1997), 
(Amgoud, 1999) do not discuss how arguments can support communicative actions. We 
will specify this here.  In fact, before committing to some proposition h being true (i.e. 
before creating a commitment whose content is h, the speaker agent must use its 
argumentation system to build an argument (H, h). On the other side, the addressee agent 
must use its own argumentation system to select the answer it will give (i.e. to select the 
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appropriate manipulation of the content of an existing commitment). For example, an 
agent Ag1 accepts the commitment content h proposed by another agent Ag2 if Ag1 is able 
to build an argument which supports this content from its knowledge base which is 

assumed to be consistent. If Ag1 has an argument (H’, ¬h), then it refuses or attacks this 

commitment content. If Ag1 does not have any argument for h, or for ¬h, then it must ask 
for an explanation. In this case, Ag2 must justify the content h.  
 
Thus, an agent should always use its argumentation system before creating a new 
commitment or positioning itself on an existing commitment and on its content. 
Consequently, an argument of an agent Ag1 must support an action of this agent on a 
given commitment and/or on its content. Formally, an agent Agk’s argument supporting 
its action at time tu on a given commitment is denoted:  
 

Arg(Agk, H, Act(Agk, tu, SC(Agi, Agj, tsc, (ϕ, tϕ)))) 
 
An Agk’s argument supporting its action at time tu on a given commitment content is 
denoted:  
 

Arg(Agk, H, Act-content(Agk, tu, SC(Agi, Agj, tsc, (ϕ, tϕ)))) 
 
with H being the support of the argument and the agent identifiers i, j and k verify:  

i, j, k ∈ {1, 2} and i ≠ j.  
 
In the first formula, H is the support of the action Act performed by agent Agk on the 
commitment identified by tsc. In the second formula, H is the support of the action Act-

content performed by agent Agk on the content of this commitment. We notice that this 
support holds at the moment of the action. Thus, according to the nonmonotonicity of 
arguments, it is possible that this support becomes invalid if new information becomes 
available for Agk. In this case, Agk must update its knowledge base by removing the 
invalid argument and adding the new valid argument. 
 
We notice that there is a logical relation between arguments supporting actions and 
arguments supporting propositions. The argument supporting an action is the argument 
supporting the proposition that becomes true when the action is performed. This relation 
is similar to the relation existing between actions and propositions in a dynamic logic 
(Harel, 1984). In this logic, the semantics of an action is defined as follows: 
 

( ' : ( , ')& )'Rp iff w w w pw wαα〈 〉 ∃M M   

 
This means that in a Kripke structure M  (the model) the action α  is satisfied in a world 

w  iff there is an Rα − accessible world 'w  in which the proposition p  becomes true ( Rα  

is called accessibility relation). The idea is that by doing the action α  the proposition p  

becomes true in an accessible world. In our approach an argument H supporting an action 
Act (respectively an action Act-content) performed on a commitment whose content is ϕ  

(respectively on the content ϕ ) is satisfied in a world w  iff there is an ActR − accessible 
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world 'w  in which H supports ϕ  or .ϕ¬  ActR  is the accessibility relation associated with 

the action Act (respectively Act-content). For example, the argument supporting an 
acceptance action of a social commitment content is the argument supporting this content. 
 
In fact, the relation between H and the commitment content ϕ  depends on the values of 

Act and Act-content. Thus, for an absolute or a conditional commitment we have the 
following axiom:  
 

A2:  Act ∈ {Create, Satisfy} ⇒ H  ϕ  

Act = Withdraw ⇒ H: H  ϕ  

Act-content ∈ {Submit-content, Accept-content, Change-content, Justify-content, 

Defend-content} ⇒ H  ϕ  

Act-content ∈ {Refuse-content, Attack-content} ⇒ H  ¬ϕ  

 
For example, the first rule indicates that if Act takes the value “Create” or “Satisfy”, then 
H supports ϕ .  

 
To illustrate this idea, let us take the following example between agents Ag1 and Ag2 that 
we dealt with in Section 5.3: 
 
U1: The book is not allowed during the test.  

U2: Why?  

U3: Because the answers are given in this book.  

U4: Ok, Thank you. 
 
We suppose that the Ag1’s knowledge base contains the arguments (H, φ) and (φ, φ), and 
the Ag2’s knowledge base contains the argument (φ, φ) where H = Give(Answers, Book) 

and ϕ  = ¬Allow(Book, Test). By utterance U3, agent Ag1 presents the support H in order 

to justify the content φ of the commitment identified by tsc1. Formally we have:  
 
Arg(Ag1, Give(Answers, Book),  

Create(Ag1, tu1, SC(Ag1, Ag2, tsc1, (¬Allow(Book, Test), tϕ1)))) 
 
For a commitment attempt we have the following axiom: 
 

A3: Act = Create ⇒ H: H  φ or H  ¬φ 

Act-content = Suspend-content ⇒ H: H  φ or H  ¬φ 

Act-content = Accept-content ⇒ H  ϕ 

Act-content = Refuse-content ⇒ H  ¬ϕ 

Act-content ∈ {Change-content, Justify-content} ⇒ H  ϕ 

 
An agent can create a commitment attempt related to a proposition p, if it does not have 

any argument for p or for ¬p. This reasoning is also valid for a commitment attempt 

related to a condition or an action. In the case of an action α the agent does not have any 
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argument for or against the proposition p that becomes true by performing α. We notice 
here that this aspect cannot be verified because the fact that an agent does not have an 
argument for or against a proposition is related to its internal state. The idea is that an 
agent can create a commitment attempt related to a proposition p even if it has an 
argument for p. In addition, the creation of a commitment attempt related to an action can 
also depend on the context. For example, to create a commitment attempt in the form of 
an order, the debtor must have the social capacity to give orders to the other agent. 
 
When considering the creation of a new commitment, the agent must also have a reason 
supporting it (a kind of goal to be achieved). In our approach, this reason is considered as 
an argument for the action, which is different from the argument that supports the 
content. Let us take the following example:  
 
Example: 

U: The book “Agent Technology” is interesting 

SA(i0, Ag1, Ag2, tu, U) =def  

Create(Ag1, tu, PC(Ag1, Ag2, tpc, (Interesting(book Agent Technology), tp))) 
such that tpc = tp. 
 
To create this commitment, Ag1 must have a reason to do it, as for example in order to 
ask Ag2 to buy the book. This reason can be considered as an argument supporting the 
creation action that is different from the argument supporting the content, corresponding 
for example to “this book is interesting because its editors are well known authors”. It is 
thus significant in this case to distinguish the argument supporting the creation action 
itself and the argument supporting the content. Generally, the arguments supporting the 
creation actions are not expressed in speech acts, but correspond to agents’ private goals. 
We define an argument supporting a creation action as follows: 
 
Definition 5.6 An argument supporting a creation action of a commitment is a pair 

( β ,Create(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ , tϕ)))) such that i) β  is a proposition representing 

an agent Ag1’s goal and ii) ϕ β .   

 
The proposition β  can be any Ag1’s goal. For example, the goal can be just to inform 

another agent that some thing is true. 
 
After the introduction of the argumentation in our approach, we note that a speech act can 
lead to an action not only on a commitment as explained in Section 5.2, but also on an 
argument. An agent can thus accept, refuse, defend or attack an argument. Thus, using 
BNF notation, we have the following definition improving Definition 5.1:  
 
Definition 5.7 SA(Ix, Ag1, Ag2, tu, U) =def  

Act(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ, tϕ))) 
 

| Act-content(Ag1, tu, SC(Agi, Agj, tsc, (ϕ, tϕ))) 
 

| Act(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ, tϕ))) 
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& Act-content(Ag1, tu, SC(Agi, Agj, tsc, (ϕ, tϕ))) 
 

| Act-content(Ag1, tu, Arg(Ag1, H, Act(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ, tϕ))))) 
 

      | Act-content(Ag1, tu, Arg(Agk, H, Act-content(Agk, tu, SC(Agi, Agj, tsc, (ϕ, tϕ))))) 
  

| Act(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ, tϕ))) 

& Act-content(Ag1, tu, Arg(Ag1, H, Act(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ, tϕ))))) 
 

| Act(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ, tϕ))) 

& Act-content(Ag1, tu, Arg(Agk, H, Act-content(Agk, tu, SC(Agi, Agj, tsc, (ϕ, tϕ))))) 
 

where i, j, k, ∈ {1, 2} and i ≠ j. 
 
In Chapter 6 (Section 6.3), we will give a detail example illustrating this definition.  
 

5.6 Communication Model 
 
In the previous sections we proposed a formulation of the pragmatics of agent 
communication using the notion of actions that agents perform on commitments and the 
arguments enabling agents to select the communicative act to be performed. In this 
section, we propose an architecture of a communication model in which this approach 
takes place. In fact, this model combines the three approaches discussed in our taxonomy 
of the prior approaches (see Chapter 4). It is based on a hybrid approach that we call 
MSA (Mental-Social-Argumentative). Indeed, if they are taken individually, these three 
approaches do not allow us to model all the aspects of agent communication. For this 
reason, we suggest to combine them in a unified approach. In addition, conversation is a 
cognitive and social activity, which requires a mechanism making it possible to reason 
about mental states, about what other agents say (public aspects), and about the social 
aspects (conventions, standards, obligations, etc). These three approaches are thus not 
exclusive but rather complementary.  
 
The MSA approach has the advantage of capturing simultaneously the mental aspect that 
characterizes agents participating in a conversation, the social aspect that reflects the 
context in which these agents communicate, and the reasoning aspect which is essential 
to be able to take part in conversations. The combination of commitments and arguments 
seems essential to us because agents must be able to justify the claims to which they are 
committed and to justify their actions on commitments. This justification cannot be made 
if agents do not have the necessary argumentation mechanisms. In addition, the 
combination of commitments and private mental states is necessary because public 
commitments reflect these mental states that contain additional information motivating 
the agent’s communicative acts. Finally, the combination of argumentation and mental 
states is significant because agents have to reason about their mental states before 
committing in a conversation.  
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The communication model is composed of three layers: the conversation layer, the 
commitment/argument layer and the cognitive layer (see Figure 5.8). The abstraction 
levels justify this stratification in layers. The conversation layer is directly observable 
because it is composed of the speech acts that agents perform. These acts are not 
performed in an isolated way, but within a particular conversation. The 
commitment/argument layer is used to correctly manage the social commitments and the 
arguments that are related to the conversation. Finally, the cognitive layer is used to take 
into account the private mental states of agents, the social relations and other elements 
that agents use in order to communicate.  
 
In order to allow conversational agents to suitably use the communication model, this 
model must be compatible with the agent architecture. Thus, we propose an architecture 
of conversational agents, which is composed of three models: the mental model, the 
social model and the reasoning model (Figure 5.8). The mental model includes beliefs, 
desires, goals, etc. The social model captures the social concepts such as conventions, 
roles, etc. Social commitments constitute a significant component of this model. The 
commitments that an agent makes public when performing speech acts are different from 
the private mental states, but these two elements are not independent. Indeed, social 
commitments reflect mental states. Thus, agents must use their reasoning capabilities to 
reason about their mental states before producing or manipulating social commitments. 
The agent’s reasoning capabilities are represented by the reasoning model using an 
argumentation system. The conversational agent model also involves by general 
knowledge, such as the knowledge of the conversation subject. An agent will use this 
knowledge in order to build the common ground that it must share with its partners. The 
notion of common ground introduced by the philosophers of language Clark and 
Haviland (1974) indicates the set of knowledge, beliefs, and presuppositions, which 
agents believe that they share during their conversations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.8. The links between the conversational agent architecture and the communication model 
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5.7 Discussion 
 
In this chapter, we argued that the three approaches discussed in Chapter 4 can be 
successfully combined in one pragmatic approach. This unified approach has the 
advantage of capturing the external public aspect of agent communication and the 
internal private aspect of agents. The main idea of this approach is that agent 
communication is considered as actions that agents perform on social commitments and 
arguments. The dynamics of agent conversation is represented by this notion of actions. 
In addition, the notion of commitment state enables us to reflect the evolution of agent 
conversations. The current state of a conversation is clearly described by the state of the 
different commitments. The use of argumentation allows agents to participate in complete 
conversations because at each moment they can select the next action to be performed. 
This approach can be used to specify protocols that are more flexible than classical 
protocols in the sense that participating agents can make decisions by reasoning about the 
current state of their conversations. Because it captures the private and the public aspects 
of agent communication, this approach can also be used to specify the different dialogue 
types according to the classification proposed by Walton and Krabbe (1995) (see Chapter 
2). Thus, in Chapter 9, we will show how it can be used to specify dialogue games in the 
case of a persuasion dialogue game protocol. We also used this approach to develop a 
computational model for the dialogization and the implicit information in a 
communicational model (Bouzouba et al., 2004). A comparison between our approach 
and other proposals will be made in the next chapter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

Chapter 6
*
 

Commitment and Argument Network 

In this chapter, we propose a formal framework called Commitment and Argument Network 

(CAN) which offers an external representation of conversations between agents. This 

framework is based on our pragmatic approach proposed in the previous chapter. Using 

this formalism allows us: (1) to represent the dynamics of conversations between agents; 

(2) to analyze agent conversations; (3) to help autonomous agents take part in 

conversations. 

 
 
 

6.1 Introduction 
 
As outlined in Chapters 3 and 4, several proposals on agent communication have been 
focused on modeling pragmatic and semantic issues. However, few researchers have 
addressed the issue of representing the dynamics of conversations. The purpose of this 
chapter is to propose a formal framework called Commitment and Argument Network 
(CAN) for representing these dynamics. This framework represents agent actions likely to 
take place in a conversation. As outlined in Chapter 5, these actions are interpreted in terms 
of the creation of and positioning on social commitments and arguments. The proposed 
formalism allows us to model the dynamics of conversations and offers an external 
representation of the conversational activity. An external representation of a conversation is 
a representation of the different communicative acts that can be observed by an external 
observant. This notion of external representation (Clark, 1996) is extremely useful because 
it provides conversational agents with a common understanding of the current state of the 
conversation and its evolution (Rousseau et al., 1996). Based on our formalism, a model is 
made available to agents which they can access simultaneously. This formalism clearly 
illustrates the creation steps of new commitments and the positioning steps on these 
commitments, as well as the argumentation steps. 
 
In the previous chapter, we presented our formulation of commitments and of the relations 
between these commitments and arguments. Indeed, our goal is to develop a pragmatic 
approach based on commitments and arguments. This approach aims at providing software 
agents with a flexible means to interact. Thus, agents can participate in conversations by

                                                 
* We would like to thank John-Jules Ch. Meyer, Frank Dignum from Utrecht University, Intelligent Systems 
Group, Iyad Rahwan from University of Melbourne, and Yves Lespérance from York University for the 
helpful discussions about the formalism presented in this chapter. This formalism is published in (Bentahar et 
al., 2004b, 2004c).  
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manipulating commitments and by producing arguments. It is the agents’ responsibility (and 
not the designers’ role) to choose, in an autonomous way, the actions to be performed by 
using their argumentation systems. In this chapter, we show how a conversation can be 
modeled using the CAN formalism on the basis of this approach. In a conversational 
activity, agents manage commitments and arguments. Our purpose is to represent the 
dynamics of conversations using this formalism. This representation allows us to ensure 
conversational consistency and coherence in terms of the actions performed by agents on 
the commitments and arguments. Indeed, this framework has two objectives: it can be used 
to analyze conversations, as well as provide a means for allowing agents to take part in 
conversations. 
 
The rest of this chapter is structured as follows. In Section 6.2, we present the foundations 
of the CAN formalism. In Section 6.3, we give an example illustrating how an agent 
conversation can be represented and analyzed using this framework. In Section 6.4, we 
demonstrate how our formalism can be used as a means permitting agents to take part in 
conversations. Two additional examples using additional commitment types are then 
presented in Section 6.5. We show, in Section 6.6, that the CAN framework can represent 
any argumentative conversation. Finally in Section 6.7, we compare our pragmatic approach 
and our framework to related work. 
 

6.2 Formal Definition 
 
In this chapter, we simplify the notation of a social commitment by omitting the argument 

related to content time. A social commitment will be denoted: SC(Ag1, Ag2, t, ϕ) instead of 

SC(Ag1, Ag2, tsc, ϕ, tϕ). 
 
A commitment and argument network is a mathematical structure which we define formally 
as follows (the explanation of the different components will be given after):  
 
Definition 6.1 A commitment and argument network is a 12-uple:  

<A, E, SC(Ag1, Ag2, t0, ϕ0), T, Ω, Σ, FEΣ, FEΣΣ, FΩ, FAΣΩ, FAΩΩ, FEΩΣ>  

where: 

• A: a finite and nonempty set of participants.  

In this chapter, we suppose that: A = {Ag1, Ag2}. 

• E: a finite and nonempty set of social commitments.  

These commitments can be absolute commitments (ABC), conditional commitments (CC) or 

commitment attempts (CT) .  

E={SC(Ag1, Ag2, t0, ϕ0), …, SC(Agi, Agj, tn, ϕn)} such that: i, j ∈ {1, 2}. 

• SC(Ag1, Ag2, t0, ϕ0): a distinguished element of E indicating the initial commitment. 

This element allows us to define the subject of a conversation. 

• T: the set of time points. 

T = {t0, …, tn}. 

• Ω: the set of creation and positioning actions.  

Ω = {Create, Withdraw, Reactivate, Satisfy, Violate, Accept-content, Refuse-content, 

Challenge-content, Suspend-content, Change-content}. 
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• Σ: the set of argumentation relations. 

Σ = {Defend-content, Attack-content, Justify-content, Contradict-content}. 

• FEΣ: a partial function relating one commitment to a second commitment using one 

argumentation relation and a time unit. We call this function: commitment-argument-

commitment function. 

FEΣ: E × E  ∑ × T 

• FEΣΣ: a partial function relating one commitment to a pair made up of an argumentation 

relation and a time point using one argumentation relation and another time point. We call 

this function commitment-argument-argument function. 

FEΣΣ: E × ∑ × T  ∑ × T 

• FΩ: a partial function relating an agent (a participant) to a commitment using a set of 

pairs made up of a creation or a positioning action and a time point. We call this function 

agent-commitment function. 

FΩ: A × E  2Ω × T 

• FAΣΩ: a partial function relating an agent to an argumentation relation characterized by 

a time point using a set of pairs made up of a creation or positioning action and a time 

point. We call this function agent-action-argument function. 

FAΣΩ: A × ∑ × T  2Ω - {Change-content} × T 

• FAΩΩ: a partial function relating an agent to a creation or a positioning action 

characterized by a time unit using a set of pairs made up of a positioning action and a time 

unit. We call this function agent-action-action function. 

FAΩΩ: A × Ω × T  2Ω - {Create, Satisfy, Violate, Change-content} × T 

• FEΩΣ: a partial function relating a commitment to a creation or a positioning action 
characterized by a time unit using one argumentation relation. We call this function 

commitment-argument-action function. 

FEΩΣ: E × Ω × T  ∑ × T 
 
Let us now comment upon these sets and functions.  
 

The function FEΣ allows us to define the argumentation relation which can exist between 
two commitment contents, i.e. a defense, an attack, a justification or a contradiction relation. 
For example:  
 

FEΣ(SC(Ag1, Ag2, ti, ϕi), SC(Ag1, Ag2, tj, ϕj)) = (Defend-content, tk) 
 
This means that the content of the commitment identified by ti (called source of the defense 
relation) defends the content of the commitment identified by tj (called target of the defense 
relation). The time unit tk, associated with the defense relation, is the time at which this 
defense has occurred.  

Schematically, the function FEΣ is presented in the following way (Figure 6.1):  
 
 
 
 
Figure 6.1. The function FEΣ 

SCi SCj Defend-content, tk

Figure 6.1. The function FEΣ 
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In all the figures of this chapter, a social commitment identified by ti will be denoted SCi. 
 

The function FEΣΣ allows us to define an argumentation relation on another argumentation 
relation. For example: 
 

FEΣΣ(SC(Ag1, Ag2, ti, ϕi), Defend-content, tk) = (Attack-content, tl) 
 
This relation points out that the content of the commitment identified by ti attacks at time tl 
the content of a defense relation that occurred at time tk. This defense relation is defined 

using the function FEΣ. The content of an argumentation relation is the content of the 
argument used in this relation. 

Schematically, we present the function FEΣΣ  in the following way (Figure 6.2):  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2. The function FEΣΣ  

The function FΩ  allows us to define a set of creation and positioning actions (acceptance, 
refusal, etc.) performed by an agent on a commitment content. For example:  
 

FΩ (Ag1, SC(Ag2, Ag1, ti, ϕi)) = {(Accept-content, tk)} 

 
This reflects the acceptance at moment tk of the content related to the commitment identified 
by ti.  

Schematically, we present the function FΩ as follows (Figure 6.3):  
 
 
 
 
 

 
Figure 6.3. The function FΩ 

 

The function FAΣΩ allows an agent to take position by accepting or refusing an 
argumentation relation. For instance:  
 

FAΣΩ (Ag1, Defend-content, tk) = {(Refuse-content, tl)} 

 

Figure 6.2. The function FEΣΣ 

SCi 

SC?

SC?

Defend-content, tkAttack-content, tl

SCi 
Accept-content, tk 

Figure 6.3. The function FΩ 

Ag1 



79 

 

This means that the agent Ag1 refuses at time tl the defense relation which is defined by the 

function FEΣ. The defense relation has occurred at time tk.  

The function FAΣΩ is presented as follows (Figure 6.4):  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.4. The function FAΣΩ 

The function FAΩΩ allows an agent to position itself relative to a positioning action by 
accepting it, refusing it, challenging it, withdrawing it or reactivating it. The positioning 

action on which an agent can take positions can be defined by the function FΩ or the 

function FAΣΩ. For instance:  
 

FAΩΩ (Ag1, Refuse-content, tk) = {(Challenge-content, tl)} 
 
This example shows the case in which the agent Ag1 challenges at time tl a refusal action 

that occurred at time tk. This refusal action is defined by the function FΩ. 

Schematically, the function FAΩΩ is illustrated as follows (Figure 6.5):  
 
 
 
 
 
 
 
 
 
 
 
Figure 6.5. The function FAΩΩ 

The function FEΩΣ allows us to define an argumentation relation binding a commitment to a 

creation or a positioning action. This action is defined by the function FΩ. For example: 
  

FEΩΣ (SC(Ag1, Ag2, ti, ϕi), Refuse-content, tk) = (Defend-content, tl) 
 
This example highlights the case in which the content of the commitment identified by ti 
defends at time tl the refusal action that occurred at time tk. The refusal action is defined by 

the function FΩ. 

Ag1 
Refuse-content, tl 

Figure 6.4. The function FAΣΩ 

SC?

SC?

Defend-content, tk

Ag1

Ag?SC? 
Refuse-content, tk

Challenge-content, tl 

Figure 6.5. The function FAΩΩ
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The graphical representation of this function is shown as follows (Figure 6.6):  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.6. The function FEΩΣ 

 

6.3 Example 
 
In this section, we show how to represent a dialogue between two agents using the CAN 
framework. We use the conceptual graphs notation (CG) proposed by Sowa (1984) in order 
to describe the propositional contents of commitments. Conceptual graphs are a system of 
logic and a knowledge representation language consisting of concepts and relations between 
these concepts. They are labeled graphs in which concept nodes are connected by relation 
nodes. With their direct mapping to natural language, CG serve as an intermediate language 
for translating computer-oriented formalisms to and from natural languages. A concept is 
represented by a type (ex. PERSON) and a referent (ex. john) and denoted [TYPE: 
Referent] (ex. [PERSON: John]). A conceptual relation links two concepts and is 
represented between brackets. When representing natural language sentences, case-relations 
are normally used. Examples are: AGNT (agent), PTNT (patient), OBJ (object), CHRC 
(characteristic), PTIM (point in time). The advantage of CG over predicate calculus is that 
they can be used to represent the literal meaning of utterances, without ambiguities, and in a 
logically precise form. 
 
Before considering the example, we introduce the following notation: ( , )H hS denoting the 

set of different states of an argument (H, h). ( , )H hS is a finite and ordered set. The ordering 

relation ≺  between the elements of this set is defined as follows: 

 

Definition 6.2 1 2 ( , ) 21
, ,H hs s S ss∀ ∈ ≺  iff the argument (H, h) was in state 1s before to be in 

state 2.s  

 
The current state of an argument (H, h) is the biggest element of the set ( , )H hS according to 

the ordering relation ≺ . 

 
Let us consider the following dialogue D1:  
 
 

Ag?
SC? 

Refuse-content, tk 

SCi

Defend-content, tl

Figure 6.6. The function FEΩΣ 
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SA(I0, Ag1, Ag2, tu0, U0): The disease M is not genetic. 
SA(I1, Ag2, Ag1, tu1, U1): Why? 
SA(I2, Ag1, Ag2, tu2, U2): Because it does not appear at birth. 
SA(I3, Ag2, Ag1, tu3, U3): A disease which does not appear at birth can be genetic as well. 
SA(I4, Ag1, Ag2, tu4, U4): How? 
SA(I5, Ag2, Ag1, tu5, U5): It can be due to a genetic anomaly in the DNA appearing at a 
certain age. 
SA(I6, Ag1, Ag2, tu6, U6): It is true, you are right.  
 
With its speech act identified by I0, agent Ag1 creates, as explained in Chapter 5, a 
propositional commitment, i.e.:  
 
SA(I0, Ag1, Ag2, tu0, U0) =def 

   Create(Ag1, tu0, PC(Ag1, Ag2, t0, p0)) 

0tS  = {active} 

0t
contentS = {submitted} 

 
where PC(Ag1, Ag2, t0, p0) is the initial commitment of the dialogue and p0 is the 
propositional content which can be described by the following CG: 
  

¬[[DISEASE : M]→(CHRC)→[GENETIC]] 
 
In the CAN formalism, this speech act results in the function:  
 

FΩ(Ag1, PC(Ag1, Ag2, t0, p0)) = {(Create, tu0)} 

 
Thereafter, agent Ag2 performs the speech act identified by I1 and takes position on the 
content of PC(Ag1, Ag2, t0, p0) by challenging it. Thus, "challenged" becomes the current 
state of the commitment. Hence, we have:  
 
SA(I1, Ag2, Ag1, tu1, U1) =def  

   Challenge-content(Ag2, tu0, PC(Ag1, Ag2, p0)) 

0tS  = {active} 

0t
contentS = {submitted, challenged} 

 
In the CAN formalism, this speech act results in the function: 
 

FΩ(Ag2, PC(Ag1, Ag2, t0, p0)) = {(Challenge-content, tu1)} 

 
Then, agent Ag1 justifies the propositional content p0 of its commitment by performing the 
speech act identified by I2. Hence, it creates another commitment PC(Ag1, Ag2, t1, p1). Thus, 
"justified" becomes the current state of the commitment identified by t0. We have:  
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SA(I2, Ag1, Ag2, tu2, U2) =def  

   Justify-content(Ag1, tu2, PC(Ag1, Ag2, t0, p0)) 
   & Create(Ag1, tu2, PC(Ag1, Ag2, t1, p1)) 

0tS  = {active} 

0t
contentS = {submitted, challenged, justified} 

1tS  = {active} 

1t
contentS = {submitted} 

 
where p1 is described by the following CG: 
 

¬[[DISEASE : M]←(AGNT)←[APPEAR]→(PTIM)→[BIRTH]] 
 
The Ag1’s knowledge base contains the arguments (p1, p0) and (p1, p1). Thus, in 
argumentation terms, agent Ag1 presents its argument (p1, p0). We have:  
 
Arg(Ag1, p1, Justify-content(Ag1, tu0, PC(Ag1, Ag2, t0, p0)) 
 
This is represented in the CAN formalism by the functions: 
 

FΩ(Ag1, PC(Ag1, Ag2, t1, p1)) = {(Create, tu2)},  

FEΣ( PC(Ag1, Ag2, t1, p1), PC(Ag1, Ag2, t0, p0)) = (Justify-content, tu2) 
 
By the speech act identified by I3, agent Ag2 refuses Ag1’s argument. Then, it creates a new 
commitment PC(Ag2, Ag1, t2, p2). We have:  
 
SA(I3, Ag2, Ag1, tu3, U3 ) =def  

   Refuse-content(Ag2, tu3,  Arg(Ag1, p1, Justify-content(Ag1, tu0, PC(Ag1, Ag2, t0, p0)))) 
   & Create(Ag2, tu3, PC(Ag2, Ag1, t2, p2)) 

 
1 0( , )p pS  = {refused} 

2tS  = {active} 

2t
contentS = {submitted} 

 
where the content p2 is described by the following CG4: 
 

¬[¬[[DISEASE :*x]←(AGNT)←[APPEAR]→(PTIM)→BIRTH]] 

∧ [[*x]→(CHRC)→[GENETIC]]] 
 
This is represented in the CAN formalism by the functions: 
 

                                                 
4 To get this graph, we use the rule:  

p⇒q ≡ ¬(p∧¬q), with  p = ¬("there is a disease that appears at birth") and q = ¬("this disease is genetic"). 
Note that in the formula, *x is a mark of coreference which appears in the referent part of a concept.   
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FAΣΩ(Ag2, Justify-content, tu2) = {(Refuse-content, tu3)},  

FΩ(Ag2, PC(Ag2, Ag1, p2)) = {(Create, tu3)} 

 
Agent Ag1’s speech act, identified by I4, challenges the content of the commitment 
identified by t2. This allows us to change the content for the “challenged” state:  
 
SA(I4, Ag1, Ag2, tu4, U4 ) =def  

   Challenge-content(Ag1, tu4, PC(Ag2, Ag1, t2, p2)) 

2tS  = {active} 

2t
contentS = {submitted, challenged} 

 
In the CAN formalism, this results in the function:  
 

FΩ(Ag1, PC(Ag2, Ag1, t2, p2)) = {(Challenge-content, tu4)} 

 
Then, agent Ag2 justifies the content of its commitment PC(Ag2, Ag1, t2, p2) by performing 
the speech act identified by I5. It then creates another commitment PC(Ag1, Ag2, t3, p3). 
Thus, “Justified” becomes the current state of PC(Ag2, Ag1, t2, p2). We have:  
 
SA(I5, Ag2, Ag1, tu5, U5) =def  

   Justify-content(Ag2, tu5, PC(Ag2, Ag1, t2, p2)) 
   & Create(Ag2, tu5, PC(Ag2, Ag1, t3, p3)) 

2tS  = {active} 

2t
contentS = {(submitted, challenged, justified} 

3tS  = {active} 

3t
contentS = {submitted} 

 
where the content p3 is described by the following CG: 
 
[[ANOMALY-DNA : *x]- 

(AGNT)←[CAUSE]→(PTNT)→[DISEASE : M]] 

[[*x]←(AGNT)←[APPEAR]→(PTIM)→[AGE : @certain]] 
In argumentation terms, agent Ag2 presents its argument (p3, p2). Thus, we have:  
 
Arg(Ag2, p3, Justify-content(Ag2, tu5, PC(Ag2, Ag1, t2, p2)) 
 
In the CAN formalism, this results in the following functions: 
 

FΩ(Ag2, PC(Ag2, Ag1, p3)) = {(Create, tu5)},  

FEΣ( PC(Ag2, Ag1, t3, p3), PC(Ag2, Ag1, t2, p2)) = (Justify-content, tu5) 
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Agent Ag2’s speech act, identified by I6, reflects Ag2’s acceptance of both the content of the 
commitment identified by t3 and the argument defending it. Thus, “Accepted” is the final 
state of this commitment. We have: 
 
SA(I6, Ag1, Ag2, tu6, U6) =def  

   Accept-content(Ag1, tu6, Arg(Ag2, p3, Justify-content(Ag2, tu5, PC(Ag2, Ag1, t2, p2)))) 
   & Accept-content(Ag1, tu6, PC(Ag2, Ag1, t3, p3)) 

3 2( , )p pS  = {accepted} 

3tS  = {active, satisfied} 

3t
contentS = {submitted, accepted} 

 
In the CAN formalism, this is represented by the functions: 
 

FAΣΩ(Ag1, Justify-content, tu5) = {(Accept-content, tu6)}, 

FΩ(Ag1, PC(Ag2, Ag1, t3, p3)) = {(Accept-content, tu6)} 
 
To summarize, the dialogue D1 can be represented by the following CAN:  

<A, E, PC(Ag1, Ag2, t0, p0), T, Ω, Σ, FEΣ, FEΣΣ, FΩ, FAΣΩ, FAΩΩ, FEΩΣ> such that: 
 
A = {Ag1, Ag2} 
E = {PC(Ag1, Ag2, t0, p0), PC(Ag1, Ag2, t1, p1), PC(Ag2, Ag1, t2, p2), PC(Ag2, Ag1, t3, p3)} 
T = {tu0, …, tu6} 

FΩ(Ag1, PC(Ag1, Ag2, t0, p0)) = {(Create, tu0)} 

FΩ(Ag2, PC(Ag1, Ag2, t0, p0)) = {(Challenge-content, tu1)} 

FΩ(Ag1, PC(Ag1, Ag2, t1, p1)) = {(Create, tu2)}  

FEΣ( PC(Ag1, Ag2, t1, p1), PC(Ag1, Ag2, t0, p0)) = (Justify-content, tu2) 

FAΣΩ(Ag2, Justify-content, tu2) = {(Refuse-content, tu3)}  

FΩ(Ag2, PC(Ag2, Ag1, t2, p2)) = {(Create, tu3)} 

FΩ(Ag1, PC(Ag2, Ag1, t2, p2)) = {(Challenge-content, tu4)} 

FΩ(Ag2, PC(Ag2, Ag1, t3, p3)) = {(Create, tu5)}  

FEΣ( PC(Ag2, Ag1, t3, p3), PC(Ag2, Ag1, t2, p2)) = (Justify-content, tu5) 

FAΣΩ(Ag1, Justify-content, tu5) = {(Accept-content, tu6)} 

FΩ(Ag1, PC(Ag2, Ag1, t3, p3)) = {(Accept-content, tu6)} 
 
Figure 6.7 shows the graphical representation of the network. 
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Figure 6.7. The network representing the dialogue D1 

 

6.4 CAN: a Means of Inter-Agent Communication 
 
So far, we have shown how the CAN formalism enables us to illustrate the connectedness of 
speech acts performed by agents in a conversation. In the previous section’s example, we 
started from an existing dialogue, which we examined and modeled it using a CAN. This 
highlights a process that enables us to analyze a conversation using the CAN formalism. 
However, our formalism also provides a means for agents to take part in conversations. 
 
Agents can jointly build the network that represents their conversation as it progresses. This 
allows agents: 
1- To make sure at any time that the conversation is consistent; 
2- To determine which speech act to perform on the basis of the current state of the 
conversation, using an argumentation system and other cognitive elements. 
Consistency is ensured by the relationships existing between various commitments, diverse 
argumentation relations and different actions (creation, acceptance, fulfillment, etc.). A 
speech act is consistent with the rest of the conversation if it leads to the creation of a new 
commitment related to another commitment through an argumentation relation, or if it 
makes it possible to take position on a commitment, on an argumentation relation or on an 
action (i.e. creation, refusal, etc.). Moreover, the agent must know everything about the 
current state of the conversation in order to determine its next speech act. For example, 
when an agent creates a commitment and/or an argumentation relation, the other agent may 
decide to act on what has been created by accepting it, by refusing it, or by challenging it, 
depending on its argumentation system. Similarly, when an agent finds that its commitment, 
argument or action is being challenged, it must create a commitment in order to justify it. 
The network is built as the conversation progresses. This process differs from the one used 
to analyze a conversation. Therefore, agents use a dynamic process in order to build the 
network while taking part in the conversation.  
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Figure 6.7. The network representing the dialogue D1 
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In order to illustrate this way of using the CAN formalism, we revisit the example of 
Section 6.3 and demonstrate how agents build the network piece by piece while performing 
their speech acts. By doing that, agents are able to continue the conversation. The rules for 
building a CAN are the constraints specified in the axioms presented in Chapter 5. These 
axioms specify how agents can perform communicative acts according to there 
argumentation systems. The Ag1’s knowledge base contains the arguments (p1, p0), (p1, p1), 
and (p3, p3). The Ag2’s knowledge base contains the arguments (p3, p2) and (p3, p3). 
 
Let us simulate the conversation of agents Ag1 and Ag2 using the CAN approach. Agent Ag1 
decides to start the conversation about a particular topic p0 that interests it (the underlying 
mechanism related to this choice belongs to the cognitive layer that is not considered here 
(see our agent architecture in Section 5.6 of Chapter 5)). Hence, Ag1 creates a propositional 
commitment whose content is p0 since it has an argument supporting it, i.e.:  
 

FΩ(Ag1, PC(Ag1, Ag2, t0, p0)) = {(Create, tu0)} 
 
This corresponds to the speech act identified by I0:  
SA(I0, Ag1, Ag2, tu0, U0): The disease M is not genetic. 
 
Then, agent Ag2 decides to take position on the content of PC(Ag1, Ag2, t0, p0) by 
challenging it since it does not have any argument in favor or against it. As a matter of fact, 
Ag2 wants to know which Ag1’s argument supports the content of this commitment. 
Therefore, Ag2 performs the action corresponding to the speech act identified by I1:  
 
SA(I1, Ag2, Ag1, tu1, U1): Why? 
 

FΩ(Ag2, PC(Ag1, Ag2, p0)) = {(Challenge-content, tu1)} 

 
We notice here that as for commitment attempts (Chapter 5, Axiom A3), we cannot verify 
wether Ag2 has an argument for or against p0 or not because this aspect is related to its 
private internal state.   
 
Now, Ag1 must defend its proposition: it creates the commitment PC(Ag1, Ag2, t1, p1) whose 
content justifies the content of PC(Ag1, Ag2, t0, p0). In doing so, this agent performs the 
action corresponding to the speech act identified by I2: 
 
SA(I2, Ag1, Ag2, tu2, U2): Because it does not appear at birth. 
  

FΩ(Ag1, PC(Ag1, Ag2, p1)) = {(Create, tu2)}  

FEΣ( PC(Ag1, Ag2, t1, p1), PC(Ag1, Ag2, t0, p0)) = (Justify-content, tu2) 
 
Ag2 has an argument against the justification relation. Consequently, it refuses it by creating 
the commitment PC(Ag2, Ag1, t2, p2). It performs the action corresponding to the speech act 
identified by I3:  
 
SA(I3, Ag2, Ag1, tu3, U3): A disease which does not appear at birth can be genetic as well. 
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FAΣΩ(Ag2, Justify-content, tu2) = {(Refuse-content, tu3)}  

FΩ(Ag2, PC(Ag2, Ag1, t2, p2)) = {(Create, tu3)} 

 
Because agent Ag1 does not have any argument for or against p2, it challenges the content of 
PC(Ag2, Ag1, t2, p2) using its argumentation system. By doing that, it performs the action 
corresponding to the speech act identified by I4:  
 
SA(I4, Ag1, Ag2, tu4, U4): How? 
 

FΩ(Ag1, PC(Ag2, Ag1, t2, p2)) = {(Challenge-content, tu4)} 

 
The content of Ag2’s commitment PC(Ag2, Ag1, t2, p2) being challenged. Therefore, agent 
Ag2 must try to justify it. Because its knowledge base contains the argument (p3, p2), it 
creates the commitment PC(Ag2, Ag1, t3, p3) and performs the actions corresponding to the 
speech act identified by I5:  
 
SA(I5, Ag2, Ag1, tu5, U5): It can be due to a genetic anomaly in the DNA appearing at a 
certain age. 
 

FΩ(Ag2, PC(Ag2, Ag1, t3, p3)) = {(Create, tu5)}  

FEΣ( PC(Ag2, Ag1, t3, p3), PC(Ag2, Ag1, t2, p2)) = (Justify-content, tu5) 
 
Thereafter, because the Ag1’s knowledge base contains an argument for p3, it accepts the 
content of PC(Ag2, Ag1, t3, p3) and the argumentation relation (Justify-content, tu5) using its 
argumentation system. It performs the actions corresponding to the speech act identified by 
I6: 
 
SA(I6, Ag1, Ag2, tu6, U6): It is true, you are right. 
 

FAΣΩ(Ag1, Justify-content, tu5) = {(Accept-content, tu6)} 

FΩ(Ag1, PC(Ag2, Ag1, t3, p3)) = {(Accept-content, tu6)} 
 

6.5 Other Examples 

 
In the following examples, we give the final version of the networks without illustrating the 
steps that led to their construction. Moreover, for simplicity, we do not describe the content 
of commitments.  
 
The example presented in Section 6.3 illustrated the case in which an agent takes position 
on a commitment and on an argumentation relation. The following example of dialogue 
(D2) illustrates the case in which an agent takes position on a creation action.  
 
SA(I0, Ag1, Ag2, tu0, U0): I will travel to the Himalayas. 
SA(I1, Ag2, Ag1, tu1, U1): Why do you tell me that?  
SA(I2, Ag1, Ag2, tu2, U2): It is only to inform you.  
SA(I3, Ag2, Ag1, tu3, U3): Ok, thank you.  
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The network associated with this dialogue is:  

<A, E, AC(Ag1, Ag2, t0, (α, p0)), T, Ω, Σ, FEΣ, FEΣΣ, FΩ, FAΣΩ, FAΩΩ, FEΩΣ> such that: 
A = {Ag1, Ag2} 

E = { AC(Ag1, Ag2, t0, (α, p0)), PC(Ag1, Ag2, t1, p1)} 
T = {tu0, …, tu3} 
 

FΩ(Ag1, AC(Ag1, Ag2, t0, (α, p0)) = {(Create, tu0)} 

FAΩΩ(Ag2, Create, tu0) = {(Challenge-content, tu1)} 

FΩ(Ag1, PC(Ag1, Ag2, t1, p1)) = {(Create, tu2)}  

FEΩΣ( PC(Ag1, Ag2, t1, p1), Create, tu0) = (Justify-content, tu2) 

FΩ(Ag2, PC(Ag1, Ag2, t1, p1)) = {(Accept-content, tu3)} 
  
The graphical representation of this network is illustrated by Figure 6.8.  
 

Agent Ag1 creates an action commitment AC(Ag1, Ag2, t0, (α, p0)) (it is committed to 
traveling to the Himalayas) by performing the speech act identified by I0. Thereafter, agent 
Ag2 challenges the creation action of this commitment by performing the speech act 

identified by I1. In order to justify its creation action of AC(Ag1, Ag2, t0, (α, p0)), Ag1 creates 
a propositional commitment PC(Ag1, Ag2, t1, p1) by performing the speech act identified by 
I2. Finally, Ag2 accepts the content of this commitment by performing the speech act 
identified by I3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.8. The network representing the dialogue D2 

The CAN formalism also allows us to manage commitment attempts. Dialogues D3 and D4 
illustrate respectively the acceptance and the refusal of a commitment attempt.  
 
Dialogue D3: 
 
SA(I0, Ag1, Ag2, tu0, U0): Can you drive me to the airport at 5PM?  
SA(I1, Ag2, Ag1, tu1, U1): Yes, I can.  
SA(I2, Ag2, Ag1, tu2, U2): I will be available at 5PM.  
 

Ag1 AC0

Create, tu0 

Ag2 

PC1

Create, tu2 

Figure 6.8. The network representing the dialogue D2

Justify-content, tu2

Accept-content, tu3 

Challenge-content, tu1 
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The network associated with this dialogue is:  

<A, E, ACT(Ag1, Ag2, t0, (α, p0)), T, Ω, Σ, FEΣ, FEΣΣ, FΩ, FAΣΩ, FAΩΩ, FEΩΣ> such that: 
A = {Ag1, Ag2} 

E = { ACT(Ag1, Ag2, t0, (α, p0)), AC(Ag2, Ag1, t1, (α, p0)), PC(Ag2, Ag1, t2, p1)} 
T = {tu0, tu1, tu2} 
 

FΩ(Ag1, ACT(Ag1, Ag2, t0, (α, p0))) = {(Create, tu0)} 

FΩ(Ag2, ACT(Ag1, Ag2, t0, (α, p0))) = {(Accept-content, tu1)} 

FΩ(Ag2, AC(Ag2, Ag1, t1, (α, p0))) = {(Create, tu1)} 

FΩ(Ag2, PC(Ag2, Ag1, t2, p1)) = {(Create, tu2)} 

FEΣ( PC(Ag2, Ag1, t2, p1), AC(Ag2, Ag1, t1, (α, p0))) = (Justify-content, tu2) 
 
The graphical representation of this network is illustrated by Figure 6.9.  
 
 
 
 
 
 
 
 
 
 
 
Figure 6.9. The network representing the dialogue D3 

 

Agent Ag1 creates a commitment attempt ACT(Ag1, Ag2, t0, (α, p0)) about an action α by 
performing the speech act identified by I0. Agent Ag2 accepts this commitment by 
performing the speech act identified by I1. Therefore, it creates the action commitment    

AC(Ag2, Ag1, t1, (α, p0)) (it commits to drive agent Ag1 to the airport at 5PM). Thereafter, 
Ag2 creates the propositional commitment PC(Ag2, Ag1, t2, p1) that supports the content p0 
by performing the speech act identified by I2. 
 
Dialogue D4: 
 
SA(I0, Ag1, Ag2, tu0, U0): Can you drive me to the airport at 5PM? 
SA(I1, Ag2, Ag1, tu1, U1): No, I cannot. 
SA(I2, Ag1, Ag2, tu2, U2): Why not? 
SA(I3, Ag2, Ag1, tu3, U3): Because I have a meeting at 5PM.  
SA(I4, Ag1, Ag2, tu4, U4): Ok, thank you.  
 
The network associated with this dialogue is:  

<A, E, ACT(Ag1, Ag2, t0, (α, p0)), T, Ω, Σ, FEΣ, FEΣΣ, FΩ, FAΣΩ, FAΩΩ, FEΩΣ>  
such that: 
A = {Ag1, Ag2} 
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Ag2 

AC1

Create, tu1 

Figure 6.9. The network representing the dialogue D3
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E = {ACT(Ag1, Ag2, t0, (α, p0)), PC(Ag2, Ag1, t1, ¬p0), PC(Ag2, Ag1, t2, p1)} 
T = {tu0, …, tu3} 

FΩ(Ag1, ACT(Ag1, Ag2, t0, (α, p0))) = {(Create, tu0)} 

FΩ (Ag2, ACT(Ag1, Ag2, t0, (α, p0))) = {(Refuse-content, tu1)} 

FΩ (Ag2, PC(Ag2, Ag1, t1, ¬p0)) = {(Create, tu1)} 

FΩ (Ag1, PC(Ag2, Ag1, t1, ¬p0)) = {(Challenge-content, tu2)} 

FΩ (Ag2, PC(Ag2, Ag1, t2, p1)) = {(Create, tu3)} 

FEΣ(PC(Ag2, Ag1, t2, p1), PC(Ag2, Ag1, t1, ¬p0)) = (Justify-content, tu3) 
 
The graphical representation of this network is illustrated by Figure 6.10.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.10. The network representing the dialogue D4 

As a result of refusing the commitment attempt ACT(Ag1, Ag2, t0, (α, p0)) by performing the 
speech act identified by I1, agent Ag2 creates the propositional commitment                    

PC(Ag2, Ag1, t1, ¬p0). By performing the speech act identified by I2, agent Ag1 challenges 
the content of this commitment. Therefore, Ag2 creates the propositional commitment 
PC(Ag2, Ag1, t2, p1), by performing the speech act identified by I3, in order to justify 

PC(Ag2, Ag1, t1, ¬p0). 
 

6.6 CAN and Representation of Conversations 
 
So far, we have shown how the CAN formalism allows us to represent conversations by 
illustrating the connectedness of speech acts performed by agents. However, we did not 
show if it can represent any coherent conversation. To do this we have to provide a 
mathematical demonstration. The purpose is to show that the formalism is sufficient to 
handle any argumentative conversation for communication between software agents. An 
argumentative conversation is a conversation that contains argumentation relations in order 
to achieve a goal (for example a persuasion or a negotiation goal). First, we have to define 
what is a conversation and what is a coherent conversation. For us, a conversation is a 
sequence of utterances (i.e. a sequence of speech acts). A coherent conversation is a 
conversation in which there is a positioning relation or an argumentation relation between 
the utterances. For example, if an agent Ag1 performs a speech act whose content is p, and 
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Figure 6.10. The network representing the dialogue D4
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another agent Ag2 performs another speech act in which it accepts, refuses, challenges, 
attacks, etc. p, then, this part of the conversation is considered as coherent. However, if Ag2 
performs a speech act whose content is q without any positioning or argumentation relation 
between p and q, then, the conversation is considered as incoherent.  
 
In this section we show that the CAN formalism covers all the elements describing a 
conversation. We use for this purpose the following formal presentation due to (Günter, 
1984). 
 

Let A be a set of agents (A = {Ag1, …, Agn}), L be a set of well-formed expressions               

(L = {ϕ0,…, ϕm}), P be a set of designatory phrases (P = {p0,…, pk}), and V be a set of 

performatives (V = { v0,…, vl}). A conversation is a finite sequence of 4-tuples, each of 

which consists of: a name Agi ∈ A, a well-formed expression ϕi ∈ L, a performative verb    

vi ∈ V, and a designatory phrase pi ∈ P. The well-formed expressions represent the 
participants’ statements. The term sequence highlights the temporal order in which these 
expressions are used. The names represent the participants in the conversation. The 
performative verb indicates the type of the speech act performed when using the expression. 
The designatory phrase identifies the speech act. Formally:  
 
C is a conversation iff: there are a language ,L  a set A  of participants, a set V of 

performative verbs, a set P of designatory phrases, and  
, 1 , , , ,iii in i n A L V PAg pvϕ∃ ∈ ∀ ≤ ≤ ∃ ∈ ∃ ∈ ∃ ∈ ∃ ∈N and 

111 1(( , , , ),..., ( , , , ),..., ( , , , )).i ni ni i n nC Ag p Ag p Ag pv v vϕ ϕ ϕ=  

 
The CAN formalism allows us to represent these various elements. The language L is used 
to describe the commitment content (for example predicate calculus or conceptual graphs). 

The expressions ϕi are thus represented by the commitment content ϕ. The set of the 
participants is the set A of the CAN formalism. The performative verbs and the designatory 
phrases are captured by the actions that agents perform on commitments and arguments. 
The sequence of the 4-tuples is modeled by the utterance times associated with the different 
actions in the CAN formalism. It is modeled by the set T of time units associated with the 

set of the actions Ω and to the set of the argumentation relations Σ (see Definition 6.1).  
 
According to (Günter, 1984), a conversation can also highlight the goal of the accomplished 
actions. In the CAN formalism, this is illustrated by the fact that it is possible to justify not 
only a commitment content, but also a creation action of a commitment (see Definition 5.5 
of Chapter 5).  
 
Notation  

We denote D  the set of coherent conversations and R  the set of commitment and argument 
networks. We denote a commitment and argument network which is associated with a 
coherent conversation C  by ( )CAN C  with C  is an element of D  and ( )CAN C  an element 

of R . 
 
Proposition 6.3 , ( )C D CAN C R∀ ∈ ∃ ∈ . 
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In other words, for any coherent conversation, there is always a CAN which represents it. 
 
Proof  

We use a proof by contradiction. A conversation C  can be described in the simplest form as 

a sequence of utterances 0,..., ,...i nU U U . Each utterance is associated with a participant Agj.  

 

Let us assume that: C∃  a coherent conversation such that ( )CAN C . In other words, let us 

assume that there is a coherent conversation C  such that no network can represent it. This 

implies the existence of an utterance iU  which one cannot represent in a network. Let 

0 1' ,..., .iC U U −=  Therefore the utterance iU  does not allow us to perform one of the following 

actions:  
1- Creating a new commitment. 
2- Taking position on a commitment of ( ')CAN C .   

3- Taking position on an action of ( ')CAN C .  

4- Taking position on an argumentation relation of ( ')CAN C . 

 
It remains only two possibilities to interpret :iU  

 
1- Taking position on a commitment, an action or an argumentation relation which does not 
belong to ( ')CAN C . In this case the resulting conversation is not coherent because it 

highlights a positioning on an element which was not created. For example, challenging the 
content of a commitment which does not exist (see our definition of coherence above).  
 
2- The utterance iU  cannot result in an element which can be supported by the elements of 

the CAN. This can be due to one of the two following reasons: 
Reason1: The utterance iU  cannot lead to the creation of a commitment, a positioning 

action and / or an argumentation relation. This is false by definition.  
Reason2: The positioning action reflected by iU  cannot be presented by one of the 

functions of the CAN (i.e. the functions: FEΣ, FEΣΣ, FΩ, FAΣΩ, FAΩΩ, FEΩΣ). This is false 
because it is possible to take position by nesting, n times, on a positioning action, or on an 
argumentation relation. The reason is that a positioning action of an unspecified order X is 

always represented by the Cartesian product: Ω × T.  
 
Let us show this last issue by the illustration of Figure 6.11. 
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Figure 6.11. Illustration of nested positioning actions 

 
 

Let Ω be the following set Ω = {Ω0, …,Ωm}. Using the definition of the function FΩ we 
have: 
 

FΩ(Ag1, SC(Ag1, Ag2, t0, ϕ0)) = (Ω0, t1) 
 

Using the definition of the function FAΩΩ we obtain: 
 

FAΩΩ(Ag2, FΩ(Ag1, SC(Ag1, Ag2, t0, ϕ0))) = FAΩΩ(Ag2, Ω0, t1) = (Ω1, t2)  
 
Therefore, we obtain: 
 

FAΩΩ(Ag1, FAΩΩ(Ag2, FΩ(Ag1, SC(Ag1, Ag2, t0, ϕ0)))) = FAΩΩ(Ag1, Ω1, t2) = (Ω2, t3) 
 
. 
. 
. 

FAΩΩ (Ag2, FAΩΩ (Ag1, … FΩ(Ag1, SC(Ag1, Ag2, t0, ϕ0))…)) = FAΩΩ (Ag2, Ωn-2, tn-1)  

= (Ωn-1, tn) 
 
In the same way, one can show that it is always possible to define an argumentation relation 
on any argumentation relation created previously, considering that an argumentation 

relation of any order is represented by the Cartesian product: Σ × T.  
 
Therefore, the starting assumption is false. Thus, we proved that any coherent conversation 
can be represented by a CAN formalism.  

 
 
Proposition 6.4  , ! ( )C D CAN C N∀ ∈ ∃ ∈ . 

In other words, for any coherent conversation, there is one and only one CAN which 
represents it. 
 

Ag1 SC0

FΩ(Ag1, SC(Id0, Ag1, Ag2, ϕ0)) 
Ag2 

FAΩΩ(Ag2, FΩ(Ag1, SC(Id0, Ag1, Ag2, ϕ0))) 

FAΩΩ (Ag1, FAΩΩ (Ag2, FΩ(Ag1, SC(Id0, Ag1, Ag2, ϕ0))) 

.

.

.

FAΩΩ (Ag2, FAΩΩ (Ag1, … FΩ(Ag1, SC(Id0, Ag1, Ag2, ϕ0))…)))

Figure 6.11. Illustration of nested positioning actions 

n
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Proof 

The proof of this proposition is based on the proposition 6.1 and on the fact that any speech 
act can be interpreted in our approach in a unique way as an action performed on a 
commitment or on an argument. Because any action is presented by one and only one 
function, the CAN representing a conversation is unique.  

 
 
In Section 6.2 we presented the structure of the CAN formalism, and we illustrated its 
construction process through the example of Section 6.3. In these two sections, we only 
highlighted the fact that the CAN formalism can be used to represent conversations. 
However, in the proposition 6.1, we showed generally that the CAN formalism is able to 
represent any coherent conversation, in particular by showing the falseness of the reason 
Reason2. The proposition is thus not a "petitio principii" since “nesting property” (see 
Reason2) is not an assumption in our proof. Our proof is rather a proof by construction 
because we showed that we can build a CAN for any coherent conversation.  
 
This theoretical result is of great utility because it offers a formal framework to represent 
different types of conversations, for example, the conversation types proposed by Walton 
and Krabbe (1995).  
 

6.7 Related Work 
 
KQML was the first standard proposed to specify communications between agents (Finin et 
al., 1995). More recently, FIPA (1997, 1999, 2001a) proposed a new standard called FIPA-
ACL. KQML and FIPA-ACL are both based on the mental approach. These two languages 
use protocols like those proposed by Pitt and Mamdani (2000) and the Contract Net (Smith, 
1980) and the NetBill (Cox et al., 1995). These protocols define, in a fixed way, which 
sequences of moves are conventionally expected in a conversation. Protocols are often 
technically modeled as finite state machines that represent sequences of states and 
transitions and are usually too rigid to be used to model conversations between autonomous 
agents. In this context, the CAN formalism can allow the action sequences described by a 
protocol, but in a more flexible way. Contrary to protocols, agents using the CAN system do 
not follow a pre-planned sequence, but they reason in terms of commitments, arguments 
and relations between these two types of elements. In order to select the next 
communicative act to be performed, an agent reasons on the current state of the 
conversation using its argumentation system. This state is represented by the CAN 
framework and by the notion of commitment and argument state. In addition, protocols are 
semi-formally specified. However, the CAN framework is formally specified using a formal 
approach based on action and argumentation theories. These formal foundations allow us to 
prove some interesting properties like propositions 6.1 and 6.2. They also enable us to 
define a formal semantics and a verification method for agent communication using a model 
checking technique. Chapters 7 and 8 detail these two issues.  
 
Several researchers proposed dialogue games in order to offer more flexibility (Dastani et 
al., 2000), (Maudet and Chaib-draa, 2002), (McBurney et al., 2002). The CAN formalism 
can be used to represent these dialogue games and to illustrate how various games can be 
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combined in order to build complete conversation. In Chapter 9, we present a persuasion 
dialogue game protocol specified using our approach. Additionally, the CAN framework 
can be used not only as a specification tool but also as a means that agents can use in order 
to be able to effectively participate in coherent conversations. 
 
Singh and Colombetti propose a commitment-based approach that emphasizes the 
importance of the social aspect of communication (Colombetti, 2000), (Singh, 1998, 2000). 
Singh’s and Colombetti’s work were focused on the definition of a semantics for speech 
acts. When considering the conversational aspect, Singh simply proposed the enhancement 
of the classical protocols (like those used in FIPA) by using commitments in order to ensure 
the compliance of the agents’ behavior with the protocol. A participating agent can maintain 
a record of the commitments being created and modified. From these, the agent can 
determine the compliance of the other agents according to the given protocol. However, this 
approach is still not flexible and it does not indicate how agents can select the 
communicative acts. Colombetti proposed general conversational principles from which the 
structure of well-formed conversations should be derived. However, the way of 
implementing these principles is not specified. The management of commitments is only 
partially addressed in this approach.  
 
On the basis of Singh’s and Colombetti’s proposals, Yolum and Singh (2002) developed a 
technique for specifying protocols in which actions’ content is captured through agents’ 
commitments. They provide operations and reasoning rules to capture the evolution of 
commitments. Using these rules, agents can reason about their actions. Chopra and Singh 
(2004) proposed a commitment-based formalism called non-monotonic commitment 

machines for representing multi-agent interaction protocols. This formalism specifies rules 
using nonmonotonic causal logic. These rules model the changes in the state of a protocol 
as a result of the performance of actions. The nonmonotonic causal logic in this formalism 
is used only to reason about actions in terms of whether an action can be the cause of 
another action. However, how agents can select actions using this reasoning mechanism is 
not addressed. In addition, the relation between this reasoning and private mental states of 
agents is not specified. In a similar way, Fornara and Colombetti (2003) proposed a method 
to define interaction protocols. This method is based on the specification of an interaction 
diagram (ID) specifying which actions can be performed under given conditions. The 
advantage of these approaches is that they are verifiable because they are based on public 
notions. They also allow us to represent the interaction dynamics through the allowed 
operations. Like these proposals, our approach and our CAN formalism are also based on 
commitments. However, our approach uses an argumentation theory which is more general 
that the nonmonotonic causal logic used in (Chopra and Singh, 2004). This is due to the fact 
that in our approach, agents can reason about commitments, commitment contents, and 
positioning actions in order to decide about the next act to be performed. This 
argumentation-based reasoning uses both the agents’ mental states and the current state of 
the conversation. Our approach explicitly specifies how agents handle their commitments 
and how they take positions on other agents’ commitments by using arguments. In addition, 
the operations we use in our pragmatic approach are different from the operations used in 
(Fornara and Colombetti, 2003), (Chopra and Singh, 2004), (Yolum and Singh, 2002). 
Finally, unlike the other formalisms, the CAN formalism can be used both to assist agents 
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to communicate in a coherent way by representing the evolution of the conversation and to 
specify flexible protocols using, for example, the dialogue game approach. 
 
Amgoud and her colleagues (2000a, 2000b, 2001) proposed to model dialogues using an 
argumentative approach and formal dialectics. Using MacKenzie’s dialectical system 
(1979), they defined a certain number of dialogue rules and update rules for the different 
types of locutions supported by their dialogue model. These locutions are: assert, accept, 
question, challenge, request, promise and refuse. Dialogue rules define the protocol, while 
update rules capture the effect of the speech acts on the state of the dialogue. To reflect the 
dialogue dynamics, they use the concept of a commitment store. Each agent has its own 
commitment store accessible by all the other agents. These commitment stores contain only 
the moves which were performed. Therefore, they reflect only the dialogue history. In the 
same way, Parsons et al. (2003), McBurney (2002) and Sadri et al. (2001) proposed 
protocols based on an argumentative approach. These protocols are based on Walton and 
Krabbe’s classification of dialogues and on formal dialectics. In these protocols, agents can 
argue about the truth of propositions. Agents can communicate both propositional 
statements and arguments about these statements. These protocols have the advantage of 
taking into account the capacity of agents to reason as well as their attitudes (confident, 
careful,…). Semantically, these protocols are specified by defining pre- and post-conditions 
for each locution. The main difference between these proposals and our work is that our 
approach formalizes a social aspect of agent interaction (represented by the notion of social 
commitments) and its relation to the agent reasoning using an argumentation theory. Thus, 
our approach is an hybrid one that is based on commitments and arguments. Another 
important difference is that argumentation-based protocols (McBurney, 2002), (McBurney 
et al., 2002), (Parsons et al., 2003) use moves from formal dialectics, whereas our approach 
uses an action theory to specify agents’ speech acts as actions that these agents apply to 
commitments and to arguments. The semantics of these actions is defined in Chapter 7 
using dynamic logic. By using these actions we can capture not only the locutions used in 
these protocols but also the argumentation actions represented in our framework by attack, 
defense, justify and contradict actions. In addition, in our approach, dynamics is reflected 
not only by the connectedness of the commitments resulting from the performed speech 
acts, but also by the concepts of the commitment state, the commitment content state and 
the argument state. The CAN formalism more clearly illustrates this dynamics in terms of 
actions on commitments and arguments. Moreover, unlike the CAN formalism, the notion 
of commitment store does not make it possible to distinguish the argumentation phases from 
the other phases and does not allow us to illustrate the positioning of an agent on an another 
agent’s action.  
 
Reed (1998) introduced the notion of dialogue frame as a model of inter-agent 
communication. He used this notion to present the dialogue types defined by Walton and 
Krabbe (1995): persuasion, negotiation, investigation, deliberation and information seeking. 
These types are represented by a set D  as follows: 
 

{ , , , , , , , , , }D persuade B negotiate C inquire B deliberate P infoseek B= < > < > < > < > < >  

 
where B is a set of agent’s beliefs, C a set of agent’s contracts, and P a set of agent’s plans. 



97 

 

Formally, a dialogue frame is a 4-tuple: 
 

{ }
0 0

0
,...,, , ,

n n

n
y yx xu uF t D τ → →=<< ∆ >∈ ∈ ∆ >  

 

where t is the type of the dialogue frame, ∆  is the set of beliefs, contrasts or plans, τ is the 

topic of the dialogue frame, x0 and y0 are the interlocutors and u
j
xj→yj refers to the jth 

utterance occurring in a dialogue between agents xj and yj such that (xj = yj+1 and yj = xj+1). A 

dialogue frame is of a particular type (<t, ∆ > ∈ D), and focused on a particular topic          

(τ ∈ ∆ ). For instance, a persuasion dialogue will be focused on a particular belief, a 
deliberation on a plan, and so on. Reed’s approach makes it possible to illustrate the 
conversation dynamics only in terms of sequences of utterances. As an external 
representation, the CAN formalism is more complete than the concept of dialogue frame. In 
the CAN formalism, the dynamics is reflected by the actions that agents perform on 
commitments and arguments and by the argumentation relations existing between these 
commitments and arguments. The sequence of utterances is captured in our framework by 
the set T of time units that we associate with the various actions. In addition to being a 
means to analyze conversations, the CAN formalism provides agents with a means that 
enables them to participate in coherent conversations and to select their future moves. Like 
the dialogue frames, our formalism can represent any dialogue type. In Chapter 9, we 
present the example of the persuasion dialogue. 
 



 

 

Chapter 7
*
 

A Logical Model for Commitments and 

Arguments  

In this chapter, we develop a semantics of the pragmatic approach proposed in Chapters 5 

and 6. We propose a logical model based on CTL* (Extended Computation Tree Logic) and 

on Dynamic logic that we call DCTL*CAN.. This logical model addresses three basic 

elements: social commitments, actions that agents apply to these commitments and 

arguments that agents use to support their actions. The advantage of this logical model is to 

gather all these elements and the existing relations between them within the same 

framework. The semantics we develop here makes it possible to reflect the dynamics of 

agent communication. It also allows us to establish the important link between commitments 

as a deontic concept and arguments. On the one hand CTL* enables us to express all the 

temporal aspects related to the handling of commitments and arguments. On the other 

hand, dynamic logic enables us to capture the actions which agents are committed to 

perform. 
 
 
 

7.1 Introduction 
   
In the domain of agent communication, semantics is one of the most important aspects 
particularly in the current context of open and interoperable multi-agent systems (MAS) 
(Chaib-draa and Dignum, 2002), (Dignum and Greaves, 2000). Although much significant 
research work was done in this field, for example (Singh, 2000), (Wooldridge, 2000), 
(Guerin and Pitt, 2001), (Amgoud et al., 2002), (Vericchio and Colombetti, 2003), the 
definition of a clear and global semantics (i.e. dealing with the various aspects of agent 
communication) is an objective yet to be reached. 
  
While pragmatics deals with the way of using communication acts, semantics is interested 
in the meaning of these acts. Pragmatics is related to the dynamics of agent interactions and 
to the way of connecting the isolated acts to build complete conversations. Pragmatics was 
also addressed by many researchers, for example (Dastani et al., 2000), (Pitt and Mamdani,

                                                 
* We would like to thank John-Jules Ch. Meyer, Frank Dignum, Mehdi Dastani, Henry Prakken and Broersen 
Jan from Utrecht University, Intelligent Systems Group, Josée Desharnais from Laval University, Department 
of Computer Science and Software Engineering, and Yves Lespérance from York University for the helpful 
discussions and for their useful comments about the logical model presented in this chapter. An extended 
abstract of this chapter is presented in AAMAS’04 (Bentahar et al., 2004e). Another version is presented in 
(Bentahar et al., 2004f). 
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2000), (Pasquier and Chaib-draa, 2003). However, little previous work tried to address these 
two facets of agent communication in the same framework, considering the difficulty of 
such a task. Even in this work, semantics and pragmatics are dealt with as a unique object of 
research whereas they are different in nature. In this context, we believe that the success of 
applications based on agent communication requires to address these two elements together 
but keeping them distinct. 
 
The objective of this chapter is to develop the semantic part of our unified framework based 
on commitments and arguments for agent communication. Thus, the chapter deals with 
semantic issues in the approach proposed in Chapters 5 and 6 and the link with pragmatic 
ones. The semantics we define here addresses all the aspects that we use in our commitment 
and argument approach. This chapter presents two results: 1. it semantically establishes the 
link between commitments and  arguments; 2. it uses a combination of temporal logic 
(CTL* with some additions) and a dynamic logic to define a complete and unambiguous 
semantics.  
 
The rest of this chapter is organized as follows. In Section 7.2, we recall the taxonomy of 
social commitments we used in our pragmatic approach. In Sections 7.3 and 7.4, we present 
the syntax and the semantics of our logical model. In Section 7.5, we define some 
postulates. A discussion is presented in Section 7.6 and finally we conclude the chapter. 
 

7.2 The Taxonomy of Social Commitments 
 
In the following section, we briefly recall the taxonomy we presented in Chapter 5. We use 
this taxonomy in the logical model presented in this chapter.  
 
A. Absolute Commitments (ABC) 

Absolute commitments are commitments whose fulfillment does not depend on any 
particular condition. Two types can be distinguished: propositional commitments and action 
commitments. 
 
A1. Propositional Commitments (PC) 

Propositional commitments are related to the state of the world. They are generally, but not 
necessarily5, expressed by assertives. They can be directed towards the past, the present, or 
the future.  
 
A2. Action Commitments (AC) 

Action commitments (also called commitments to a course of action) are directed towards 
the present or the future and are related to actions that the debtor is committed to carrying 
out. The fulfillment and the lack of fulfillment of such commitments depend on the 
performance of the underlying action and the specified delay. This type of commitment is 
typically conveyed by promises.  
 
 
 

                                                 
5 Propositional commitments can also be expressed by speech acts of declaratory and expressive types. 
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B. Conditional Commitments (CC) 

Absolute commitments do not consider conditions that may make relative the need for their 
fulfillment. However, in several cases, agents need to make commitments not in absolute 
terms but under given conditions. Another commitment type is therefore required. These 
commitments are said to be conditional. We distinguish between conditional commitments 
about propositions (PCC) and conditional commitments about actions (ACC). A conditional 
commitment about a proposition p’ expresses the fact that if a condition p is true, then the 
creditor will be committed towards the debtor that p’ is true.  
 
C. Commitment Attempts (CT) 

The commitments described so far directly concern the debtor who commits either that a 
certain fact is true or that a certain action will be carried out. For example, these 
commitments do not allow us to explain the fact that an agent asks another one to be 
committed to carrying out an action (by a speech act of a directive type). To solve this 
problem, we propose the concept of commitment attempt. We consider a commitment 
attempt as a request made by a debtor to push a creditor to be committed. Thus, when an 
agent Ag1 requests another agent Ag2 to do something, we say that the first agent is trying to 
induce the other agent to make a commitment. A commitment attempt is thought of as a 
type of social commitment because it conveys content which is made public once the 
attempt is performed. However, in our approach, there is a true commitment only after the 
creditor agent reacts in response to the commitment attempt. We distinguish four types of 
commitment attempts: propositional commitment attempts (PCT), action commitment 
attempts (ACT), conditional commitment attempts about propossitions (CCTP), and 
conditional commitment attempts about actions (CCTA). 
 
Figure 7.1 illustrates the taxonomy explained in this section.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.1. Social commitment taxonomy 

In our framework, there is no explicit relation between propositional commitments and 
action commitments. When the current state of the world does not satisfy a propositional 
commitment, we speak about a violation of this commitment. There is no rule indicating 
that an agent develops an action commitment to make the content of its propositional 
commitment true when this commitment becomes violated. A propositional commitment is 
a commitment about a state of the world that the debtor agent can not realize. In contrast, an 
action commitment is a commitment about an action that the debtor commits to perform in 
the present or in the future. 
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In the two following sections we define the logical model (syntax and semantics) of our 
commitment and argument based-approach (CAN). We call this logical model DCTL*CAN 
because it is based on CTL* and Dynamic Logic.  
 

7.3 Syntax 
 
In this section we specify the syntax of the different elements that we use in our framework. 
These elements are: propositional elements, actions, social commitments, actions applied to 
commitments and argumentation relations. 
 
Our formal language £ (the metalanguage) is based on an extended version of CTL* 
(Emerson and Halpern, 1986), (Hafer and Thomas, 1987) and on dynamic logic (Harel, 
1979). Temporal logic and dynamic logic are two powerful logics developed to specify and 
to prove properties of computational processes (Harel, 1984), (Pnueli, 1986). We use a 
branching time for the future and we suppose that the past is linear (Ben-Ari et al., 1983). 
Each node in the branching time model is represented by a state si and a time point tj (Figure 
7.2). We also suppose that time is discrete. In our model, temporal logic enables us to 
express all the temporal aspects related to the handling of commitments and arguments. On 
one hand, we use the branching time in order to formalize the different choices that agents 
have when they participate in conversations. On the other hand, dynamic logic allows us to 
capture the actions that agents are committed to perform and the actions that agents perform 
on different commitments and commitment contents when they participate in these 
conversations. Indeed, from a philosophical point of view, action and branching time are 
logically related (Belnap, 1991). The actions of agents are not fully determined. Moreover, 
these actions can have many different possible future effects. For this reason, it is preferable 
to work out a logic of action that is compatible with indeterminism. According to 
indeterminism, several moments of time might follow the same moment in the future of the 
world. Any moment of time can belong to several paths (or histories) representing possible 
courses of the world with the same past and present but different historic continuations of 
that moment.     
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.2. The branching time model 

 
 

Let Φp be the set of atomic propositions and Φa be the set of atomic action symbols. The 
set of agents is denoted A and the set of time points is denoted TP. The various types of 

(s0, t0)

(s1, t1) (s2, t1)

(s3, t2) (s4, t2) (s5, t2) (s7, t2) (s6, t2)

Figure 7.2. The branching time model 
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commitments, the agents’ actions on commitments and on their contents and the 
argumentation relations are introduced as modal operators. We distinguish between 
commitment formulae and commitment free formulae. In this chapter, a commitment 

formula, independently of the commitment type, is denoted: SC(Ag1, Ag2, t, ϕ) where t is the 

utterance time (time at which the commitment is created) and ϕ is a commitment free 

formula. A commitment free formula is a well-formed formula that does not have the form 

of a commitment formula. In a commitment formula Ag1 and Ag2 are two agents and ϕ is 
the commitment content. When t is unknown because the commitment is not yet created, we 
drop it from the commitment formula. In this case a commitment is denoted:             

SC(Ag1, Ag2, , ϕ). In this logical model we use the symbol ∧ in the object language and the 

symbol & in the metalanguage for “and”. For “or” we use the symbol ∨ in the object 

language and the symbol | in the metalanguage. For “not” we use the same symbol ¬ in the 
two languages. 
 
The language £ can be defined by the following syntactic rules. 
 
7.3.1 Propositional Elements 

 
Atomic formula 

R1. ∀ψ ∈ Φp, ψ ∈ £.  
 
Conjunction 

R2. p, q ∈ £ ⇒  p ∧ q ∈ £.  
 
Negation 

R3. p ∈ £ ⇒  ¬p ∈ £.  
 
Argumentation 

R4. p, q ∈ £ ⇒  p ∴ q ∈ £.  
 
This means that p is an argument for q. We can read this formula: p, so q. The property of 
nonmonotonicity of arguments does not appear at this level. The reason is that R4 
introduces only argumentation as a logical relation between propositions. As Prakken and 
Vreeswijk argued, argumentation systems are able to incorporate the monotonic notions of 
logical consequence as a special case in their definition of what an argument is (Prakken 
and Vreeswijk, 2000). In our model, we capture the property of nonmonotonicity by the 
argumentation relations (attack, defense, justification, etc.). We deal with this aspect in the 
following sections. 
 
Universal path-quantifier 

R5. p ∈ £ ⇒  Ap ∈ £.  
 
Existential path-quantifier 

R6. p ∈ £ ⇒  Ep ∈ £. 
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Until (in the future) 

R7. p, q ∈ £ ⇒  p U+ q ∈ £.  
Informally, p U+

 q (p until q) means that on a given path from the given moment, there is 
some future moment in which q will eventually hold and p holds at all moments until that 
future moment. 
 
Next moment (in the future) 

R8. p ∈ £ ⇒  X+p ∈ £.  
 
X+

p holds at the current moment, if p holds at the next moment. 
 
Since (in the past) 

R9. p, q ∈ £ ⇒  p U− q ∈ £.  
 

The intuitive interpretation of p U−
 q (p since q) is that on a given path from the given 

moment, there is some past moment in which q eventually held and p holds at all moments 
since that past moment. 
 
Previous moment (in the past) 

R10. p ∈ £ ⇒  X−p ∈ £.  
 

X−
p holds at the current moment, if p held at the previous moment. 

 
7.3.2 Actions 

 
Action performance 

R11. p ∈ £ & α ∈ Φa ⇒ Perform(α)p ∈ £, where p is a commitment free formula.  
 

Perform(α)p is an operator from dynamic logic. It indicates that the achievement of action 

α makes the proposition p true. This operator allows us to represent the fact that by way of 
performing actions, agents bring about facts in the world. They make true propositions 
representing these facts (Chellas, 1992). 
 
7.3.3 Social Commitments 

 
Propositional commitments 

R12. p ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A ⇒ PC(Ag1, Ag2, t, p) ∈ £, where p is a 
commitment free formula.  
 
Action commitments 

R13. α ∈ Φa & p ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A ⇒ AC(Ag1, Ag2, t, (α, p)) ∈ £, where p 
is a commitment free formula.  
 
Conditional commitments about propositions 

R14. p, p’ ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A ⇒ PCC(Ag1, Ag2, t, (p, p’)) ∈ £, where p and 
p’ are commitment free formulae.  
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Conditional commitments about actions 

R15. α ∈ Φa & p, p’ ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A ⇒  

ACC(Ag1, Ag2, t, (p, (α, p’))) ∈ £, where p and p’ are commitment free formulae.  
 
Commitment attempts 

In order to formally introduce the notion of commitment attempt (syntax and semantics) we 
introduce the following definition.  
 
Definition 

some(x, {c1, …, cn}, p(x)) =def  p(c1) ∨… ∨ p(cn) 
where c1, …, cn are constant terms. A constant term can be a number, a name, etc.  
 

We can define the syntax of propositional commitment attempts, action commitment 
attempts, conditional commitment attempts about propositions and conditional commitment 
attempts about actions as follows:  
 
Propositional commitment attempts 

R16. p ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A ⇒   

PCT(Ag1, Ag2, t, some(x, {c1, ..., cn}, p(x))) ∈ £, where p is a commitment free formula.  
 
Action commitment attempts 

R17. α ∈ Φa & p ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A  

⇒ ACT(Ag1, Ag2, t, (α, p)) ∈ £, where p is a commitment free formula.  
 
Conditional commitment attempts about propositions 

R18. p, p’ ∈ £ & {Ag1, Ag2} ⊆ A ⇒   

CCTP(Ag1, Ag2, t, (p, some(x, {c1, ..., cn}, p’(x)))) ∈ £, where p and p’ are commitment 
free formulae.  
 
Conditional commitment attempts about actions 

R19. α ∈ Φa & p, p’ ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A  

⇒ CCTA(Ag1, Ag2, t, (p, (α, p’))) ∈ £, where p and p’ are commitment free formulae.  
 
Agent’s desire about a propositional commitment from the addressee 

R20. p ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A ⇒ Want(Ag1, PC(Ag2, Ag1, t, p)) ∈ £, where p is a 
commitment free formula.  
 
This formula means that agent Ag1 wants that agent Ag2 commits that p is true. 
 
Agent’s desire about an action commitment from the addressee 

R21. α ∈ Φa & p ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A ⇒  

Want(Ag1, AC(Ag2, Ag1, t, (α, p))) ∈ £, where p is a commitment free formula.  
 
Agent’s desire about a propositional conditional commitment from the addressee 

R22. p, p’ ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A ⇒ Want(Ag1, PCC(Ag2, Ag1, t, (p, p’))) ∈ £, 
where p and p’ are commitment free formulae.  
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Agent’s desire about an action conditional commitment from the addressee 

R23. α ∈ Φa & p, p’ ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A ⇒  

Want(Ag1, ACC(Ag2, Ag1, t, (p, (α, p’)))) ∈ £, where p and p’ are commitment free 
formulae.  
 
7.3.4 Action Occurrences applied to Commitments 

 

We use the abbreviation SC(Ag1, Ag2, t, ϕ), where ϕ is a commitment free formula, to 

indicate a social commitment. The syntactical form of the commitment content ϕ depends 
of the commitment type according to the following rules: 
 

If SC is a PC then ϕ has the syntactical form of p. 

If SC is an AC then ϕ has the syntactical form of (α, p). 

If SC is a PCC then ϕ has the syntactical form of (p, p’). 

If SC is an ACC then ϕ has the syntactical form of (p, (α, p’)). 

If SC is a PCT then ϕ has the syntactical form of some(x, {c1,…, cn}, p(x)). 

If SC is an ACT then ϕ has the syntactical form of (α, p). 

If SC is a CCTP then ϕ has the syntactical form of (p, some(x, {c1,…, cn}, p’(x))). 

If SC is a CCTA then ϕ has the syntactical form of (p, (α, p’)). 
 
Creation of a commitment 

R24. SC(Ag1, Ag2, t, ϕ) ∈ £ ⇒ Create(Ag1, SC(Ag1, Ag2, t, ϕ)) ∈ £.  
 
Withdrawal of a commitment 

R25. SC(Ag1, Ag2, t, ϕ) ∈ £ ⇒ Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ)) ∈ £. 
 
Satisfaction (or fulfillment) of a commitment 

R26. SC(Ag1, Ag2, t, ϕ) ∈ £ ⇒ Satisfy(Ag1, SC(Ag1, Ag2, t, ϕ)) ∈ £.  
 
Violation of a commitment 

R27. SC(Ag1, Ag2, t, ϕ) ∈ £ ⇒ Violate(Ag1, SC(Ag1, Ag2, t, ϕ)) ∈ £.  
 
Reactivation of a commitment 

R28. SC(Ag1, Ag2, t, ϕ) ∈ £ ⇒ Reactivate(Ag1, SC(Ag1, Ag2, t, ϕ)) ∈ £. 
  
An active commitment 

R29. SC(Ag1, Ag2, ϕ) ∈ £ ⇒ Active(SC(Ag1, Ag2, ϕ)) ∈ £. 
 
7.3.5 Action Occurrences applied to Commitment Contents 

 
Acceptation of a commitment content 

R30. SC(Ag1, Ag2, t, ϕ) ∈ £ ⇒ Accept-content(Ag2, SC(Ag1, Ag2, t, ϕ)) ∈ £.  
 
Refusal of a commitment content 

R31. SC(Ag1, Ag2, t, ϕ) ∈ £ ⇒ Refuse-content(Ag2, SC(Ag1, Ag2, t, ϕ)) ∈ £. 
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Challenge of a commitment content 

R32. SC(Ag1, Ag2, t, ϕ) ∈ £ ⇒ Challenge-content(Ag2, SC(Ag1, Ag2, t, ϕ)) ∈ £.  
 
7.3.6 Argumentation Relations 

 
In the argument-based approach, nonmonotonic, or defeasible reasoning is formalized by 
using notions like attack, defeat, defense and justification. Indeed, the property of 
nonmonotonicity is captured by the interaction of arguments for and against certain 
conclusions (Prakken and Vreeswijk, 2000). In this section, we introduce five 
argumentation relations in order to capture this property in our logical model.    
 
Attack of a commitment content 

R33 (1). PC(Ag1, Ag2, t, p) ∈ £ & p’ ∈ £ ⇒  

Attack-content(Ag2, PC(Ag1, Ag2, t, p), p’) ∈ £, where p’ is a commitment free 
formula.  

 
We overload this formula as follows: 
 

R33 (2). PC(Ag1, Ag2, t, p) ∈ £ ⇒  Attack-content(Ag2, PC(Ag1, Ag2, t, p)) ∈ £. 
 
Defense of a commitment content against an attacker 

R34 (1). PC(Ag1, Ag2, t, p) ∈ £ & p’ ∈ £ ⇒  

Defend-content(Ag1, PC(Ag1, Ag2, t, p), p’) ∈ £, where p’ is a commitment free 
formula. 

  

R34(2). PC(Ag1, Ag2, t, p) ∈ £ ⇒ Defend-content(Ag1, PC(Ag1, Ag2, t, p)) ∈ £. 
 
Defense of a commitment content against all the attackers (strong defense) 

R35 (1). PC(Ag1, Ag2, t, p) ∈ £ & p’ ∈ £ ⇒  

Defend+-content(Ag1, PC(Ag1, Ag2, t, p), p’) ∈ £, where p’ is a commitment free 
formula. 
 

 R35 (2). PC(Ag1, Ag2, t, p) ∈ £ ⇒ Defend+-content(Ag1, PC(Ag1, Ag2, t, p)) ∈ £. 
 
Justification of a commitment content 

R36 (1). PC(Ag1, Ag2, t, p) ∈ £ & p’ ∈ £ ⇒  

Justify-content(Ag1, PC(Ag1, Ag2, t, p), p’) ∈ £, where p’ is a commitment free 
formula.  

R36 (2). PC(Ag1, Ag2, t, p) ∈ £ ⇒ Justify-content(Ag1, SC(Ag1, Ag2, t, p)) ∈ £.  
 
Contradiction of a commitment content 

R37. PC(Ag1, Ag2, t, p) ∈ £sc ⇒ Contradict-content(Ag1, SC(Ag1, Ag2, t, p)) ∈ £sc.  
 
This relation means that an agent contradicts the content of its commitment. 
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Agent’s desire about the justification of a commitment content from the addressee 

R38. Justify-content(Ag2, PC(Ag2, Ag1, t, p)) ∈ £ ⇒  

Want(Ag1, Justify-content(Ag2, PC(Ag2, Ag1, t, p))) ∈ £.  
 
7.3.7 State and Path Formulae 

 
As in CTL*, we have in our model two types of well-formed formulae : state formulae and 
path formulae (Emerson, 1990). State formulae are formulae which are evaluated (true or 
false) in particular states. Path formulae are formulae which are evaluated along certain 
paths. 
 
R39. Any atomic formula is a state formula. 
 
R40. Any state formula is a path formula. 
 

R41. If p, q are state formulae, then p ∧ q, ¬p are also state formulae. 
 

R42. If p, q are path formulae, then p ∧ q, ¬p are also path formulae. 
 

R43. If p, q are path formulae, then p U+ q, X+p,  p U− q, X−p are also path formulae. 
 

R44. If ϕ is a path formula, then SC(Ag1, Ag2, ϕ) is a state formula. 
 
R45. Actions performed on commitments and on their contents:  

if SC(Ag1, Ag2, ϕ) is a state formula, then  

Act(Ag1, SC(Ag1, Ag2, ϕ)) and Act-content(Ag1, SC(Ag1, Ag2, ϕ)) are path formulae, 
Want(Ag1, SC(Ag2, Ag1, t, p))) and Want(Ag1, Justify-content(Ag2, PC(Ag2, Ag1, t, p))) are 
state formulae. 
 
Abbreviations 

We use in our model the following abbreviations:  
 

A1. p ∨ q (disjunction) is the abbreviation of ¬(¬p ∧ ¬q)  
 

A2. p ⇒ q (classical implication) is the abbreviation of ¬p ∨ q 
 

A3. true is the abbreviation of p ∨¬p 
 

A4. false is the abbreviation of ¬true 
 
A5. F+p (sometimes in the future) is the abbreviation of true U+ p 
 

A6. G+p (globally in the future) is the abbreviation of ¬F+¬p 
 

A7. F+∞ (infinitely often in the future) is the abbreviation of G+F+p 
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A8. G+∞ (almost everywhere in the future) is the abbreviation of F+G+p 
 

A9. p B+ q (p before q in the future) is the abbreviation of ¬((¬p) U+ q) 
 

A10. F−p (sometimes in the past) is the abbreviation of true U− p 
 

A11. G−p (globally in the past) is the abbreviation of ¬F−¬p 
 

A12. F−∞ (infinitely often in the past) is the abbreviation of G−F−p 
 

A13. G−∞ (almost everywhere in the past) is the abbreviation of F−G−p 
 

A14. p B− q (p after q in the past) is the abbreviation of ¬((¬p) U− q) 
 

7.4 Semantics 
 
In this section, we define the formal model in which we evaluate the well-formed formulae 
of our framework. Thereafter, we give the semantics of the different elements that we 
specified syntactically in the previous section.  
 
7.4.1 The Formal Model 

 
Let S be a set of states and R ⊆  S ×  S be a transition relation indicating branching time. A 

path Pa is an infinite sequence of states <s0, s1,…> where: 1, , )( iii Rs s +∀ ∈ ∈  and 

1( ) ( ) 1.i is sT T+ = +  The function T gives us for each state si the corresponding moment t (this 

function will be specified later).   
 
We use the notation si [ Pa to indicate that the state si belongs to the path Pa (i.e. si appears 

in the sequence <s0, s1,…> that describes the path Pa). We denote the set of all paths by σ. 

The set of all paths traversing the state si are denoted: σsi. We suppose that all paths start 
from s0 (T(s0) = 0). 
 
In our vision of branching future, we can have several states at the same moment. Thus, in 
Figure 7.2 we have two different states: s1 and s2 at the same time t1. At moment t2 we have 
the states s3, s4, s5, s6, s7. Along a given path (for example the real path) there is one and 
only one state at one moment. Indeed, in our framework, si does not indicate (necessarily) 
the state at moment i. Therefore, it is necessary to specify the state s and the moment t i.e. a 

pair (s, t) ∈ S × TP.  
 

According to this formalization, we can use the notation: M, si, T(si)  ψ to indicate that ψ 
is satisfied in the model M at state si at moment T(si). To simplify this notation, we will use 

in the rest of this chapter the following abreviation: M, si  ψ. In this notation: M, si  ψ 
there is a "hidden" time.  
 
A formal model for £ is defined as follows:  
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M(S, R, A, TP, Np, Fap, T, Rsc, Rw)  
 
where: 
 
S : a nonempty set of states. 
 
R : R ⊆  S ×  S a transition relation that defines all the transitions of the model. 

 
A : a nonempty set of agents. 
 
TP : a nonempty set of time points. 
 

Np : S →  2
Φp : function relating each state s ∈ S to the set of the atomic propositions that 

are true in this state. 
 

Fap : S × Φa →  2
S : function that gives us the state transitions caused by the achievement 

of an action. For instance, in the Figure 7.3 we have : Fap(si, α) = {sj, sl}. The transitions 
defined by Fap are a sub-set of the transitions defined by R. This function allows us to 
represent what is known in philosophical logic by “moments of time that are related by 
virtue of the actions of the agents”. As Chellas pointed out (1992), to each moment m there 
corresponds the set of alternative moments m’ which are compatible with all the actions that 
an agent Ag performs at moment m. These moments m’ as under the control of, or 
responsive to the actions of, agent Ag at the moment m. 
  
T : S →  TP : function associating to any state si the corresponding time. For instance, in 

Figure 7.2 we have: T(s5) = t2. 
 

Rsc : A × A × S →  ( )σ℘  : function producing the accessibility modal relations for social 

commitments. ( )σ℘  is a powerset of paths. 

 

Rw : A × S →  ( )σ℘  : function producing the accessibility modal relations for agent’ 

desires about the commitments of the addressee.   
 
 
 
 
 
 
 

 
Figure 7.3. State transitions caused by the achievement of the action α 

The function Rsc gives us all the paths along which the commitment created by an agent 
Ag1 towards another agent Ag2 must be satisfied (fulfilled). These paths are conceived as 
merely "possible", and as paths when the content of a commitment should be true. Indeed, 
the outputs of the function Rsc are known only after the creation of the commitments. Thus, 
this depends on the state in which the commitment is created. For example, if we have:      

si 

α

α

sj 

sk 

sl 

Figure 7.3. State transitions caused by the achievement of the action α 
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Pa ∈ Rsc(Ag1, Ag2, si), then this means that at moment T(si) agent Ag1 is committed towards 
agent Ag2 to satisfy a certain commitment along the path Pa. We can see that Rsc depends 
on the current moment T(si). 
 
As operators, the social commitments we introduced in our model and whose semantics will 
be defined on the basis of this relation are modal operators like the operator ( ) (Chellas, 
1980). The reading of p is as follows: an agent Ag1 commits towards an agent Ag2 that p 
is true or an action will be performed making p true.  
 
The function Rw(Ag1, si) gives us the paths along which Ag1 wants that the addressee 
commits or justifies its commitment. This accessibility modal relation will be used to define 
the semantics of the commitment attempts and the challenge of a commitment attempt. 
 
Our logical model of absolute and conditional commitments is a KD modal logic (D: serial). 
This logic allows us to capture interesting intuitions about the manipulation of 
commitments. The rule of necessitation in this model can be expressed as follows: if p is a 
theorem, then SC(Ag1, Ag2, t, p) is also a theorem. A commitment is a theorem iff it is 
satisfied in all states of the model. Semantically speaking, if the commitment-content is a 
theorem, then the commitment is always satisfied. However, expressed in such a way, this 
rule indicates that agents commit about all theorems. In the context of agent communication 
that we address in this thesis, this rule should be expressed as follows: if p is a theorem and 
an agent Ag1 creates at moment t a commitment towards another agent Ag2 about p, then 
SC(Ag1, Ag2, t, p) is a theorem. In addition, the N axiom can be expressed as follows: if an 
agent commits towards another agent about a proposition, then it commits that this 

proposition is true or false (i.e. PC(Ag1, Ag2, (p ∨ ¬p))). 
 
The accessibility modal relation Rsc is serial, i.e.: 
 

∀Ag1, Ag2 ∈ A & ∀si ∈ S ∃Pa ∈ σ : Pa ∈ Rsc(Ag1, Ag2, si)  
 
This property fits with the notion of infinite paths in CTL*. It means that if an agent 
commits towards another agent that a proposition is true or that an action will be performed, 
then this agent does not commit about the negation of this proposition or so that this action 

will not be performed (i.e. p ⇒ ¬ ¬p). An agent cannot commit about some thing and 
its negation.  
 
The accessibility modal relation Rw is serial: 
 

∀Ag1 ∈ A & ∀si ∈ S ∃Pa ∈ σ : Pa ∈ Rw(Ag1, si) 
 
Therefore, the logic of commitment attempts is a KD modal logic.  
 
As in CTL*, we have in our model path formulae and state formulae. We propose to 
evaluate the different types of commitments as state formulae. These formulae can also be 
interpreted on paths in which case one considers satisfaction in the first state of a path. On 
the other hand, we propose to evaluate the actions on commitments and the argumentation 
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relations on paths. These path formulae can be interpreted on states if they are true on all the 

paths traversing a given state. The notation M, si  ψ indicates that the formula ψ is 

evaluated in the state si of the model M. The notation M, Pa, si  ψ indicates that the 

formula ψ is evaluated at the state si along the path Pa where si [ Pa.  
We can now define the semantics of the elements of £ in the model M. 
 
7.4.2 Propositional Elements 

 
Atomic formula 

S1. M, si  ψ iff ψ ∈ Np(si) with ψ ∈ Φp 
 
Conjunction 

S2. M, si  p ∧ q iff  M, si  p & M, si  q 
 
Negation 

S3. M, si  ¬p iff M, si  p 
 
Argumentation 

S4. M, si  p ∴ q iff M, si  p & (∀M’∈M  & ∀sj ∈ SM’ M’, sj  p ⇒ M’, sj  q) 

where M  is the set of models, and SM’ is the set of states of the model M’.  

 
We add the first clause to capture the following aspect: when an agent presents an argument 

p for q (i.e. p ∴ q) for this agent p is true and if p is true then q is true. 
 
Universal path-quantifier 

S5. M, si   Ap iff  (∀Pa Pa ∈ σ si ⇒ M, Pa, si  p) 
 
Existential path-quantifier 

S6. M, si  Ep iff  (∃Pa ∈σsi & M, Pa, si  p) 
 
Propositional path formulae 

S7. M, Pa, si  ψ iff  M, si  ψ  with ψ ∈ Φp 
 

S8. M, Pa, si  p ∧ q iff  M, Pa, si  p & M, Pa, si  q 
 

S9. M, Pa, si  ¬p iff M, Pa, si  p 
 

S10. M, Pa, si  p ∴ q iff  

M, Pa, si  p & (∀M’∈M  & ∀sj ∈ SM’ & ∀Pa’ ∈ σM’ : sj [ Pa’  

M’, Pa’, sj  p ⇒ M’, Pa’, sj  q) 

where M  is the set of models, SM’ is the set of states of the model M’, and σM’ is the set of 

paths of the model M’. 
 
Until (in the future) 

S11. M, Pa, si  p U+ q iff  (∃sj : sj [ Pa & T(si) ≤ T(sj) & M, Pa, sj  q   
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& (∀sk T(si) ≤ T(sk) < T(sj)  & sk [ Pa ⇒ M, Pa, sk  p)) 
 
Next moment (in the future) 

S12. M, Pa, si  X+p iff  M, Pa, sj  p where T(sj) = T(si ) + 1 & sj [ Pa 
 
Since (in the past) 

S13. M, Pa, si  p U− q iff  (∃sj : sj [ Pa & T(sj) ≤ T(si) & M, Pa, sj  q   

& (∀sk T(sj) < T(sk) ≤ T(si) & sk [ Pa ⇒ M, Pa, sk  p)) 
 
Previous  moment (in the past) 

S14. M, Pa, si  X−p iff  M, Pa, sj  p where T(sj) = T(si ) – 1 & sj [ Pa 
 
For more clearness, we give the semantics of some abbreviations that we consider as 
propositions (P15-P25)  
 
Sometimes in the future 

P15. M, Pa, si  F+p iff  ∃sj : sj [ Pa & T(sj) ≥ T(si) & M, Pa, sj  p 
 
Globally in the future 

P16. M, Pa, si  G+p iff  ∀sj sj [ Pa & T(sj) ≥ T(si) ⇒ M, Pa, sj  p 
 
Infinitely often in the future 

P17. M, Pa, si  F+∞p iff  ∀sj sj [ Pa & T(sj) ≥ T(si) ⇒ M, Pa, sj  F+p 
 
In other words 
 

P18. M, Pa, si  F+∞p iff  ∀sj sj [ Pa & T(sj) ≥ T(si) ⇒ ∃sk : (sk [ Pa & T(sk) ≥ T(sj)  
  & M, Pa, sk  p) 

 
Almost everywhere in the future 

P19. M, Pa, si  G+∞p iff ∃sj : sj [ Pa & T(sj) ≥ T(si) & (∀sk sk [ pa & T(sk) ≥ T(sj)  

       ⇒ M, Pa, sk  p) 
 
p before q in the future 

P20. M, Pa, si  p B+ q iff  ∀sj (sj [ Pa & T(sj) ≥ T(si) & M, Pa, sj  q)  

⇒ (∃sk : sk [ Pa & T(si) ≤ T(sk) < T(sj) & M, Pa, sk  p) 
 
Sometimes in the past 

P21. M, Pa, si  F−p iff  ∃sj : sj [ Pa & T(sj) ≤ T(si) & M, Pa, sj  p 
 
Globally in the past 

P22. M, Pa, si  G−p iff  ∀sj sj [ Pa & T(sj) ≤ T(si) ⇒ M, Pa, sj  p 
 
 
Infinitely often in the past 

P23. M, Pa, si  F−∞p iff  ∀sj sj [ Pa & T(sj) ≤ T(si) ⇒ ∃sk : (sk [ Pa & T(sk) ≤ T(sj)  
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  & M, Pa, sk  p) 
 
Almost everywhere in the past 

P24. M, Pa, si  G−∞p iff  ∃sj : sj [ Pa & T(sj) ≤ T(si) & (∀sk sk [ Pa &T(sk) ≤ T(sj)  

       ⇒ M, Pa, sk  p) 
 
p before q in the past 

P25. M, Pa, si  p B− q iff  ∀sj (sj [ Pa &T(sj) ≤  T(si) & M, Pa, sj  q)  

⇒  (∃sk : sk [ Pa &T(sj) < T(sk) ≤ T(sj) & M, Pa, sk  p) 
 
In the following sections we specify our semantics in the form of definitions and properties 
that follow from these definitions. 
 
7.4.3 Actions 

 
In this section we give the semantics of action performance. This semantics is expressed by 

using Perform(α)p operator. 
 
Definition 

 
Action performance 

S26. M, Pa, si  Perform(α)p iff Fap(si, α) ≠ ∅ & ∀sj sj ∈ Fap(si, α) & sj [ Pa  

⇒ M, Pa, sj  p 
 

The fact that Fap(si, α) ≠ ∅ means that Perform(α)p is actual and not conditional. 
 

S27. M, si  Perform(α)p iff ∀Pa Pa ∈ σsi ⇒ M, Pa, si  Perform(α)p 
 
7.4.4 Social Commitments 

 
In this section we define the semantics of different types of social commitments according 
to the taxonomy that we specified in Section 7.2. 
 
Definitions 

 
Social commitment as a path formula 

S28. M, Pa, si  SC(Ag1, Ag2, t, ϕ) iff M, si  SC(Ag1, Ag2, t, ϕ) 
 
Propositional commitments 

S29. M, si  PC(Ag1, Ag2, t, p) iff ∀Pa Pa ∈ Rsc(Ag1, Ag2, si) ⇒  

∃sj [ Pa : T(sj) = T(si) & M, Pa, sj  p 
 
We notice here that we evaluate p along an accessible path Pa at a state sj that can be 
different from the current state si. This allows us to model agents’ uncertainty about this 
current state. This means that we do not assume that agents know the current state. 
However, we assume that these agents know which time is associated to each state.   
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This formula gives us the semantics of propositional commitments in terms of accessible 
paths. The commitment is satisfied in a model at a state si iff its content is satisfied in the 
model along all accessible paths. This formula gives us the meaning of a social 
commitment, but states nothing about the fact that the agent must commit that some thing is 
true. Consequently, the omniscience problem in the sense that the agent commits that all the 
theorems are true is not present in our logic. On the other hand, to capture the idea that the 
agent commits that some proposition is true, we use dynamic logic. 
 
Action commitments 

S30. AC(Ag1, Ag2, t, (α, p)) =def PC(Ag1, Ag2, t, Perform(α)p) 
 
The formula S29 indicates that the commitment of agent Ag1 towards agent Ag2 about a 
proposition p is satisfied in the model iff along all accessible paths Pa p is true. The formula 

S30 indicates that agent Ag1 is committed towards agent Ag2 to do α and that along all 

accessible paths Pa performing α makes p true. According to formulae S29 and S30, the 
semantics we give to the commitments requires their fulfillment. Thus, if it is created, a 
commitment must be held. This satisfaction-based semantics reflects the idea of “prior 
possible choices of agents” that Belnap and Perloff used in their logic of agency (Belnap 
and Perloff, 1992). In this logic, agents make choices in time. In our model, these choices 
are represented by the commitments created by these agents. The notion of acting or 
choosing at a moment m is thought of in Belnap and Perloff’s logic as constraining the 
course of events to lie within some particular subset of the possible histories available at 
that moment. This subset of the possible histories is represented by the set of paths along 
which the commitment must be satisfied. However, it is always possible to violate or 
withdraw such a commitment. For this reason, these two operations (violation and 
withdrawal) are explicitly included in our framework. Thus, it is possible to have wrong 
commitments because the accessibility relation Rsc gives us the paths along which the 
commitment created by an agent Ag1 towards another agent Ag2 must be satisfied.  
 
Conditional commitments about propositions 

S31. M, si  PCC(Ag1, Ag2, t, (p, p’)) iff (∃Pa ∈ σsi & ∃sj [ Pa : T(sj) ≥ T(si) & M, sj  p)  

⇒ M, sj  PC(Ag1, Ag2, t, p’) 
 
This formula indicates that agent Ag1 commits that p is true only if the condition p is true 
(or is satisfied).  
 
Conditional commitment about actions 

S32. ACC(Ag1, Ag2, t, (p, (α, p’))) =def PCC(Ag1, Ag2, t, (p, Perform(α)p’)) 
 
Agent’s desire about a propositional commitment from the addressee 

S33. M, si  Want(Ag1, PC(Ag2, Ag1, , p)) iff ∀Pa Pa ∈ Rw(Ag1, si) ⇒  

∃sj [ Pa : T(sj) = T(si) & M, Pa, sj  PC(Ag2, Ag1, , p))  
 
Ag1’s desire about a propositional commitment of Ag2 whose content is p is satisfied in the 
model iff along all accessible paths via Rw, Ag2 commits towards Ag1 that p. In the same 
way we can define the semantics of an agent’s desire about the other commitment types. 
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Propositional commitment attempts 

S34. M, si  PCT(Ag1, Ag2, t, some(x, {c1, ..., cn}, p(x))) iff  

M, si  PC(Ag1, Ag2, t, Want(Ag1, PC(Ag2, Ag1, , p(c1)) ∨ … ∨ PC(Ag2, Ag1, p(cn)))) 
 
The Ag1’s propositional commitment attempt towards Ag2 is satisfied in the model iff Ag1 
commits that it wants that Ag2 commits at a certain moment that one of the propositions 
p(ci) is true. This notion of commitment attempt captures open and yes/no questions.  
 
Action commitment attempts 

S35. M, si  ACT(Ag1, Ag2, t, (α, p)) iff  

M, si  PC(Ag1, Ag2, t, Want(Ag1, AC(Ag2, Ag1, , (α, p))))  
 
The Ag1’s action commitment attempt towards Ag2 is satisfied in the model iff Ag1 commits 
that it wants that Ag2 commits to perform the action. In the same way we can define the 
semantics of conditional commitment attempts about propositions and about actions. 
 
7.4.5 Actions applied to Commitments 

 
In this section we specify the semantics of different actions that agents can apply on their 
commitments. These actions are: creation, withdrawal, satisfaction, violation and 
reactivation. We also specify the relation between satisfaction and violation and we discuss 
the link between commitment states and these different actions. 
 
Definitions 

 
Create a social commitment 

S36. M, Pa, si  Create(Ag1, SC(Ag1, Ag2, t, ϕ)) iff  

∃α ∈ Φa & M, Pa, si  Perform(α)SC(Ag1, Ag2, t, ϕ) & t = T(si) 
 
This formula indicates that the creation of a commitment is satisfied in the model M along a 

path Pa iff there is an action α whose performance makes true the commitment (i.e. the 

commitment holds after the performance of the action α) and if the creation moment is 
equal to the time associated to the current state. This formula highlights the fact that the 

creation of a commitment is an action in itself. Indeed, the action α corresponds to the 
agent’s utterance which creates the commitment. 
 
Withdraw a social commitment 

S37. M, Pa, si  Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ)) iff  

∃α ∈ Φa & 

M, Pa, si  F−Create(SC(Ag1, Ag2, t, ϕ) 

∧ (¬F− Satisfy(Ag1, PC(Ag1, Ag2, t, ϕ)))  

∧ (¬F− Violate(Ag1, PC(Ag1, Ag2, t, ϕ))) 

∧ Perform(α)¬ SC(Ag1, Ag2, t, ϕ))  
 

This formula indicates that an agent withdraws its commitment for ϕ iff the following 
conditions are satisfied:  



116 

 

1- The agent has already created this commitment in the past. 
2- The commitment is not yet satidfied or violated in the past 

3- The agent performs an action α so that this commitment does not hold at the current 
moment.  
 
In addition, we add the following meaning postulate which is a constraint that agents must 
respect when communicating. 
 
Meaning postulate 

M38. AG+(Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ)) ⇒ 

X− 

(¬Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ))  

U−  

Create(Ag1, SC(Ag1, Ag2, t, ϕ)) ∨ Reactivate(Ag1, SC(Ag1, Ag2, t, ϕ)))) 
 
According to this constraint, if an agent withdraws its commitment, this means that before 
the current moment this commitment is not withdrawn since its creation or last reactivation. 
 
On the other hand, commitments are persistent until their withdrawal. Formally, we have 
the following meaning postulate: 
 
Meaning postulate 

M39. AG+( SC(Ag1, Ag2, t, ϕ) ∧ ¬Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ)) ⇒  

X+ SC(Ag1, Ag2, t, ϕ)) 
 
Satisfy a propositional commitment 

S40. M, Pa, si  Satisfy(Ag1, PC(Ag1, Ag2, t, p)) iff  

∃Pa’ ∈σ & ∃sj T(sj) ≤ T(si) & M, Pa’, sj  CreatePC(Ag1, Ag2, t, p))  

& Pa ∈ Rsc(Ag1, Ag2, sj) 
 
A propositional commitment is satisfied along a path Pa at a state si iff it was already 
created, and the path Pa is accessible via the relation Rsc. This means that, the path Pa 
corresponds to the satisfaction path of the commitment which is true at the state sj. Along 
this accessible path the commitment content is true. 
 
In addition, we add the following meaning postulate indicating that globally in all paths, if a 
commitment is withdrawn and not reactivated in the future, globally it can not be satisfied 
or violated.  
 

Meaning postulate 

M41. AG+
(Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ)) ∧ ¬F+Reactivate(Ag1, SC(Ag1, Ag2, t, ϕ)) 

⇒ G+(¬Satisfy(Ag1, SC(Ag1, Ag2, t, ϕ)) ∧ ¬Violate(Ag1, SC(Ag1, Ag2, t, ϕ)))) 
Satisfy an action commitment 

S42. Satisfy(Ag1, AC(Ag1, Ag2, t, (α, p))) =def  Satisfy(Ag1, PC(Ag1, Ag2, t, Perform(α)p)) 
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Satisfy a conditional commitment about a proposition 

S43. M, Pa, si  Satisfy(Ag1, PCC(Ag1, Ag2, t, (p, p’))) iff  

 M, Pa, si  F−p ∧ Satisfy(Ag1, PC(Ag1, Ag2, t, p)).  
 
A conditional commitment is satisfied in the model M along the path Pa iff the underlying 
condition p is satisfied in the past and that the debtor satisfies in (M, Pa, si) the resulting 
commitment PC(Ag1, Ag2, t, p). In the same way we define the semantics of a conditional 
commitment about an action. 
 
Satisfy a conditional commitment about an action 

S44. Satisfy(Ag1, ACC(Ag1, Ag2, t, (p, (α, p’)))) =def  

Satisfy(Ag1, PCC(Ag1, Ag2, t, (p, Perfoprm(α)p’))). 
 
Satisfy a propositional commitment attempt 

S45. M, Pa, si  Satisfy(Ag2, PCT(Ag1, Ag2, t, some(x, {c1,..., cn}, p(x)))) iff  
 M, Pa, si  Satisfy(Ag2, PC(Ag2, Ag1, , p(c1)))  

∨ … ∨ Satisfy(Ag2, PC(Ag2, Ag1, , p(cn))) 
 
A propositional commitment attempt is satisfied by the creditor iff this agent satisfies the 
resulting propositional commitment. In the same way we define the semantics of the 
satisfaction of the other commitment attempt types. 
 
Satisfy an action commitment attempt 

S46. M, Pa, si  Satisfy(Ag2, ACT(Ag1, Ag2, t, (α, p))) iff 

 M, Pa, si  Satisfy(Ag2, AC(Ag2, Ag1, , (α, p))) 
 

Satisfy a conditional commitment attempt about a proposition 

S47. M, Pa, si  Satisfy(Ag2, CCTP(Ag1, Ag2, t, (p, some(x, {c1, ..., cn}, p’(x))))) iff  

 M, Pa, si  F−p ∧ Satisfy(Ag2, PCT(Ag1, Ag2, , some(x, {c1,..., cn}, p’(x)))) 
 
Satisfy a conditional commitment attempt about an action 

S48. M, Pa, si  Satisfy(Ag2, CCTA(Ag1, Ag2, t, (p, (α, p’)))) iff 

 M, Pa, si  F−p ∧ Satisfy(Ag2, ACT(Ag1, Ag2, , (α, p’))) 
 
In the same way, the violation of the different types of commitments can be formulated. We 
give here just the definition of the violation of a propositional commitment 
 

Violate a propositional commitment 

S49. M, Pa, si  Violate(Ag1, PC(Ag1, Ag2, t, p)) iff 

∃sj T(sj) ≤ T(si) & M, sj  PC(Ag1, Ag2, t, p))  

& Pa ∉ Rsc(Ag1, Ag2, sj) 
 
A propositional commitment is violated along a path Pa at a state si iff it already exists, and 
the path Pa does not correspond to the satisfaction path of the commitment which is true at 
the state sj. Along this path the commitment content is false. 
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We have also the following proposition: 
 
Proposition 

P50. M, Pa, si  Violate(Ag1, SC(Ag1, Ag2, t, ϕ)) iff 

∃sj T(sj) ≤ T(si) & M, sj  SC(Ag1, Ag2, t, ϕ))  

& M, Pa, si  ¬Satisfy(Ag1, SC(Ag1, Ag2, t, ϕ)) 
 
The proof is a consequence of the definitions. 
 
Reactivate a social commitment 

S51. M, Pa, si  Reactivate(Ag1, SC(Ag1, Ag2, t, ϕ)) iff 

∃α ∈ Φa &  

M, Pa, si  X−F−Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ))  

∧ (¬F− Satisfy(Ag1, PC(Ag1, Ag2, t, p)))  

∧ (¬F− Violate(Ag1, PC(Ag1, Ag2, t, p))) 

∧ Perform(α)SC(Ag1, Ag2, t, ϕ)                         
 
A commitment is reactivated iff:  
1- It was previously withdrawn.  
2- The commitment is not yet satidfied or violated in the past 
3- The agent performs an action making the commitment true at the current moment.  
 
Like for withdrawl, we add the following meaning postulate which is a constrant that agents 
must respect when communicating. 
 
Meaning postulate 

C52. AG+(Reactivate(Ag1, SC(Ag1, Ag2, t, ϕ)) ⇒ 

X− 

(¬Reactivate(Ag1, SC(Ag1, Ag2, t, ϕ))  

U−  

Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ)))) 
 
According to this constraint, if an agent reactivates its commitment, this means that before 
the current moment this commitment is not reactivated since its last withdrawal. 
 
Commitment states 

The semantics of the actions that agents apply to commitment contents is related to the 
notion of commitment states (see Chapter 5). Thus, the semantics of these actions must be 
defined in terms of the semantics of these commitment states. Since a commitment state 
only holds as a result of the debtor’s action, the semantics of a commitment state is 
determined by the operation that leads to this state. For example, the operation "withdraw" 
leads to the state "withdrawn". The semantics of the actions applied on the commitment 
contents requires a combination of all possible commitment states. An agent cannot act on a 
commitment content whose state is withdrawn. Thus, to simplify the notation, we suppose 
that a commitment is either active, or not active (withdrawn).  
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After introducing the different actions that the debtor can apply to its commitment, we can 
define the semantics of an active commitment as follows: 
 

S53. M, Pa, si  Active(SC(Ag1, Ag2, t, ϕ)) iff 

 M, Pa, si  ¬Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ)))  

 U−  

(Create(Ag1, SC(Ag1, Ag2, t, ϕ)) ∨ Reactivate(Ag1, SC(Ag1, Ag2, t, ϕ))) 
 
This property indicates that a commitment is active iff the two following conditions are 
satisfied (see Figure 7.4):  
1- This commitment was already created or reactivated.  
2- Until the current moment, the commitment was not withdrawn.  
Therefore, once the commitment is withdrawn, it becomes inactive. 
  
 
 
 
 
 
 

 
 

Figure 7.4. Social commitment activation 

 

The formula S53 explains a persistence property of social commitments. A social 
commitment is persistent while it is active. This means that, it is persistent in all the states 
following the state in which it was created until its withdrawal, violation or satisfaction. The 
active state is satisfied in the model in the state in which the commitment is created and in 
all the states until its withdrawal, satisfaction or violation. In addition, we have the 
following properties: 
 
Properties 

P54. AG+
(Active(PC(Ag1, Ag2, t, p)) ∧ Active(PC(Ag1, Ag2, t’, q) ⇔ 

Active(PC(Ag1, Ag2, , p ∧ q)) 
 
 

P55. AG+
(Active(PC(Ag1, Ag2, t, p)) ∨ Active(PC(Ag1, Ag2, t, q) ⇔ 

Active(PC(Ag1, Ag2, , p ∨ q)) 
 

The proof of ⇐ is straightforward. The proof of ⇒ is a consequence of the semantics of 
Active. 
 
 
 
 
 

Active ¬Active (Withdrawn) Active

Create Withdraw Reactivate

Figure 7.4. Social commitment activation 
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7.4.6 Actions applied to Commitment Contents 

 
In this section we define the semantics of different actions that agents can perform on their 
commitment contents or on the commitment contents of other agents. These actions are: 
acceptation, refusal, and challenge. 
 
Definitions 

 
Accept a commitment content 

S56. M, Pa, si  Accept-content(Ag2, SC(Ag1, Ag2, t, ϕ)) iff : 

M, Pa, si  Active(SC(Ag1, Ag2, t, ϕ)) ∧ Create(Ag2, SC(Ag2, Ag1, T(si), ϕ)) 
 

This formula indicates that the acceptance of the commitment content ϕ by agent Ag2 is 
satisfied in the model M along a path Pa iff:  
1- The commitment is active on this path because we cannot act on a commitment content 
if the commitment is not active. 

2- Agent Ag2 creates a commitment whose content is ϕ. Therefore, Ag2 becomes 

committed towards the content ϕ. 
 
Refuse a commitment content 

S57. M, Pa, si  Refuse-content(Ag2, SC(Ag1, Ag2, t, ϕ)) iff : 

M, Pa, si Active(SC(Ag1, Ag2, t, ϕ)) & Create(Ag2, SC(Ag2, Ag1, T(si), ¬ϕ)) 
 

The refusal of the commitment content ϕ by an agent Ag2 is satisfied in the model M along a 
path Pa iff:  
1- The commitment is active on this path.  

2- Agent Ag2 creates a commitment whose content is ¬ϕ. Therefore, Ag2 becomes 

committed towards the content ¬ϕ. 
Refusal is thus the dual notion of acceptance. 
 
Challenge a commitment content 

S58. M, Pa, si  Challenge-content(Ag2, SC(Ag1, Ag2, t, ϕ)) iff  

∃α ∈ Φa & 

M, Pa, si  Active(SC(Ag1, Ag2, t, ϕ))  

∧ Perform(α)Want(Ag2, Justify-content(Ag1, SC(Ag1, Ag2, t, ϕ))) 
 

This formula indicates that the challenge of the commitment content ϕ by an agent Ag2 is 
satisfied in the model M along a path Pa iff:  
1- The challenged commitment is active on this path. 
2- Agent Ag2 performs an action so that it wants that agent Ag1 justifies its commitment 

content ϕ.  
 
This formula highlights the fact that the challenge of a commitment content is an action in 

itself. As for the creation operation, the action α corresponds to the production of the 
utterance that challenges the commitment content. 
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7.4.7 Argumentation Relations 

 
In this section we define the semantics of the argumentation relations that we introduced in 
Section 7.3.6. These argumentation relations are: justification, attack, defend, defend+ and 
contradiction. We also formulate an interesting property that enables us to reflect the 
nonmonotonic nature of arguments. 
 
Definition of basic notions 

 
Justify the content of a social commitment 

S59 (1). M, Pa, si  Justify-content(Ag1, PC(Ag1, Ag2, t, p), p’) iff 

M, Pa, si  Active(PC(Ag1, Ag2, t, p)) & Create(Ag1, PC(Ag1, Ag2, T(si), p’ ∴ p)) 
 

This formula indicates that the justification of the commitment content ϕ by an agent Ag1 is 
satisfied in the model M on a path Pa iff:  
1- This commitment is active on this path.  
2- This agent creates on this path a commitment whose content is p’ that supports the 
conclusion p. 
 
In other words, a social commitment of an agent to another one to make a content p true is 
justified (by means of p') iff the social commitment exists (has been created) and moreover 
a social commitment is created to establish an argument (p’, p), where p' is committed to be 

true because accordingly to the definition of the connector (∴), p’ is true for Ag1. The fact 
that this operator is included in the commitment indicates that the agent is committed that p’ 
is true and then p is true, i.e. p is true because p’ is true. We define the semantics of the 
overloaded formula of Justify-content as follows: 
 
S59 (2). M, Pa, si  Justify-content(Ag1, PC(Ag1, Ag2, t, p)) iff 

∃p’ ∈ £ :  
M, Pa, si  Justify-content(Ag1, PC(Ag1, Ag2, t, p), p’) 

 
We notice here that the purpose of this chapter is to give a semantics of the different actions 
that agents can perform when conversing. Thus, how do agents choose an argument among 
others and how do we ensure that the argumentation process terminates are questions that 
are addressed in Chapters 5 and 8.  
 
The justification operation is the basis of other argumentation operations. As shown by the 
following definitions (formulae S54, S55, S56), this is due to the fact that all the other 
operations are defined using this operation.  
 
Contradict the content of a social commitment 

S60. M, Pa, si  Contradict-content(Ag1, PC(Ag1, Ag2, t, p)) iff 

∃p’ ∈ £ :  

M, Pa, si  Active(PC(Ag1, Ag2, t, p)) ∧ Create(Ag1, PC(Ag1, Ag2, T(si), p’ ∴ ¬p)) 
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This formula indicates that an agent contradicts its previous commitment whose content is p 

if it creates another commitment whose content is a logical conclusion of ¬p, whereas its 
commitment for p is still active.  
 
Definition of derived notions 

 
Attack the content of a social commitment 

S61 (1). M, Pa, si  Attack-content(Ag2, PC(Ag1, Ag2, t, p), p’) iff 
M, Pa, si  Active(PC(Ag1, Ag2, t, p))  

∧ Justify-content(Ag2, PC(Ag2, Ag1, T(si), ¬p), p’) 
 
This formula indicates that the attack of the commitment content p by an agent Ag2 is 
satisfied in the model M along a path Pa iff:  
1. This commitment is active on this path. 

2. This agent justifies along this path its commitment whose content is ¬p.  
 
S61 (2). M, Pa, si  Attack-content(Ag2, PC(Ag1, Ag2, t, p)) iff 

∃p’ ∈ £ :  
M, Pa, si  Attack-content(Ag2, PC(Ag1, Ag2, t, p), p’) 

 
Defend the content of a social commitment 

S62 (1). M, Pa, si  Defend-content(Ag1, PC(Ag1, Ag2, t, p), p’) iff 

∃p’’ ∈ £ :  
M, Pa, si  Active(PC(Ag1, Ag2, t, p))  

∧ X−F−Attack-content(Ag2, PC(Ag1, Ag2, t, p), p’’))  

∧ Attack-content(Ag1, SC(Ag2, Ag1, , p’’), p’)) 
 
This formula indicates that the defense of the commitment content p by an agent Ag1 is 
satisfied in the model M along a path Pa iff:  
1. This commitment is active on this path. 
2. This agent attacks the attacker of the content of its commitment.  
 
S62 (2). M, Pa, si  Defend-content(Ag1, PC(Ag1, Ag2, t, p)) iff 

∃p’ ∈ £ : 
M, Pa, si  Defend-content(Ag1, PC(Ag1, Ag2, t, p), p’) 
 
Defend strongly the content of a social commitment 

S63. M, Pa, si  Defend+-content(Ag1, PC(Ag1, Ag2, t, p)) iff 
M, Pa, si  Active(PC(Ag1, Ag2, t, p))  

& (∀p’’ ∈  £ 

M, Pa, si  X−F−Attack-content(Ag2, PC(Ag1, Ag2, t, p), p’’)  

⇒ Attack-content(Ag1, PC(Ag2, Ag1, , p’’))) 
 

This formula indicates that the strong defense of the commitment content ϕ by an agent Ag1 
is satisfied in the model M in along a path Pa iff:  
1. This commitment is active on this path. 
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2. This agent attacks all the attackers of the content of its commitment.  
 
Agent’s desire about the justification of a commitment content from the addressee 

S64. M, si  Want(Ag1, Justify-content(Ag2, PC(Ag2, Ag1, t, p))) iff  

∀Pa Pa ∈ Rw(Ag1, si) ⇒  

∃sj [ Pa : T(sj) = T(si) & M, Pa, sj  F+Justify-content(Ag2, PC(Ag2, Ag1, t, p)))   
 
Ag1’s desire about the justification of a commitment of Ag2 is satisfied in the model iff 
along all accessible paths via Rw, Ag2 justifies in the future this commitment.  
 
Property of nonmonotonicity 

According to the property of nonmonotonicity, adding arguments can lead to the defeat of 
existing arguments. An argument is defeated if it is attacked successfully by a 
counterargument. In other words, an argument becomes invalid when it is attacked and it 
cannot be defended. In our model, that results in the following meaning postulate: in all 
paths of the model M, if Ag2 attacks the content p of Ag1’s commitment and if Ag1 cannot 
defend this content or attack the content of Ag2’s commitment, then Ag1’s commitment 
becomes unsatisfied in the model M. Formally, we have the following meaning postulate: 
 
Meaning postulate 

M65 (1). AG+
(Attack-content(Ag2, PC(Ag1, Ag2, t, p), p’)  

∧ G+
(¬Defend-content(Ag1, SC(Ag1, Ag2, t, p)) 

∧ ¬Attack-content(Ag1, SC(Ag2, Ag1, , p’))) 

⇒ ¬PC(Ag1, Ag2, t, p)) 
 
In defeasible reasoning, an argument is valid until a counterargument attacks it. This 
property can be formally specified in our model by the following meaning postulate: 
 
Meaning postulate 

M65 (2). AG+
(Create(Ag1, PC(Ag1, Ag2, t, p ∴ p’)) ⇒  

X+
(G+(PC(Ag1, Ag2, t, p ∴ p’))  

∨ (PC(Ag1, Ag2, t, p ∴ p’)  

U+ Attack-content(Ag2, PC(Ag1, Ag2, t, p ∴ p’))))) 
 
This property indicates that in all paths of the model if a commitment whose content is an 
argument is created, then in the next state this commitment is either globally valid or it is 
valid until a counterargument attacks it. This property can be formulated using the week 

until operator U+w of CTL* as follows: 
 

M65 (3). AG+
 (Create(Ag1, PC(Ag1, Ag2, t, p ∴ p’)) ⇒ 

X+
(SC(Ag1, Ag2, t, p ∴ p’)  

U+w Attack-content(Ag2, SC(Ag1, Ag2, t, p ∴ p’)))) 
 
In this section we defined the semantics of argumentation relations about propositional 
commitments. The argumention relation about the other types of commitments are related to 
the underlying propositional commitments. For example, the justification of a conditional 
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commitment about a proposition is defined as the justification of the associated 
propositional commitment. Formally: 
 
Justify-content(Ag1, PCC(Ag1, Ag2, t, (p, p’))) =def  

Justify-content(Ag1, PC(Ag1, Ag2, t, , p’)) 
 
7.4.8 Link between Commitments and Argumentation 

 

Until now we gave the syntax and semantics of all the elements of our formalism. We can 
now formally establish the link between commitments and argumentation. This link is 
shown by the two following formulae. 
 
Creation conditions 

S66. AG+
(Create(Ag1, PC(Ag1, Ag2, t, p)) ⇒  

G+¬Contradict-content(Ag1, PC(Ag1, Ag2, t, p)) 

∧ F+(Challenge-content(Ag2, PC(Ag1, Ag2, p)) 

⇒ AX+F+ Justify-content(Ag1, PC(Ag1, Ag2, t, p))) 

∧ F+(Attack-content(Ag2, PC(Ag1, Ag2, t, p)) 

⇒ AX+F+ Defend-content(Ag1, PC(Ag1, Ag2, t, p)))) 
 
This formula is a rationality postulate that we impose in the model. It provides the 
conditions generated by the creation of a commitment on all paths. The agent must be in a 
position to check these conditions before creating commitments. Indeed, if an agent creates 
a commitment, then it should not contradict itself during the conversation. It must also be 
able to justify its commitment if it is challenged and to defend it if it is attacked. By 
establishing the link between commitments and arguments, this formula reflects the deontic 
aspect of commitments. These conditions are also valid for withdrawal, acceptance and 
refusal because their semantics is expressed in terms of the creation operation.  
 
Because this formula holds on all paths of the model, it seems to be strong. However, this 
formula is defined as a constraint that software conversational agents must respect. When an 
agent participates in a conversation using some protocol, it must respect this constraint. If 
not, we conclude that this agent does not respect the semantics. Therefore, it is easy to 
verify whether agents respect or not the semantics by verifying if they respect the different 
constraints. The protocol they use must also respect these constraints. In Chapter 8, we 
propose a model checking technique addressing this issue. Computationally speaking, 
agents’ programs must include these constraints as rules, and the protocol can be 
implemented as a set of rules representing these constraints. In Chapter 9, we propose such 
an implementation using a set of dialogue games. 
 
We notice that it is possible to relax this constraint by changing the model. The idea is to 
change the model when an agent creates a commitment (and in a general way when an agent 
performs an action). In this case, this constraint will hold on all paths of the new model and 
not of the original model. This means that, it is possible to capture, for example, the case in 
which an agent contradicts itself. However, our objective is not to model the different 
possibilities but to specify the constraints to be respected by agents. In other words, we are 
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only interested in models respecting these constraints. In addition, changing the whole 
model increases the complexity of the model checking (see for example (Rao and Georgeff, 
1993)). 
 
On the other hand, an agent challenges a commitment content if it has no argument for or 
against this content. Therefore, an agent challenges a commitment content if it cannot 
accept or refuse such a commitment content. Formally: 
 
Challenge conditions 

S67. AG+((Active(PC(Ag1, Ag2, t, p))  

∧ ¬Accept-content(Ag2, PC(Ag1, Ag2, t, p)) 

∧ ¬Refuse-content(Ag2, PC(Ag1, Ag2, t, p))) 

⇒ Challenge-content(Ag2, PC(Ag1, Ag2, p))) 
 

7.5 Postulates 
 
In this section we give some additional propositions (P) of our logical model. Proofs of 
these propositions are based on the semantics we defined in the previous section. 
 

P1. AG+(Create(Ag1, SC(Ag1, Ag2, t, ϕ)) ⇒  

¬X−F−(Active(SC(Ag1, Ag2, t, ϕ)))  

∧ (Active(SC(Ag1, Ag2, t, ϕ))  
U+ 

Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ)))) 
 
This formula states that if an agent creates a commitment then:  
1. The commitment was never active in the past (thus it does not exist). 
2. The commitment will hold until the moment of its withdrawal.  
In other words, a commitment becomes active after its creation, and it remains active until 
its withdrawal. 
 
Proof 

If an agent creates a commitment which is already active, then according to S53 this 
commitment has already been created or reactivated. If the commitment is reactivated, then 
according to S51 and S37 it has already been created. However, this is not possible 
according to the semantics of the creation action (S36).  
 
In addition, according to S53, a commitment is active iff it has already been created or 
reactivated and not yet withdrawn. Consequently, one can check if a commitment is active 
at a given moment on a path Pa by checking if it was already created in the past and if since 
its creation, it has been not withdrawn. Thus, the creation of a commitment implies that it is 
active until withdrawal. 

 
 

P2. AG+(¬Active(SC(Ag1, Ag2, t, ϕ)) ⇒ 

 ¬X+Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ))) 
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Formula P2 indicates that if a commitment is not active, then it can not be withdrawn.  
 
Proof 

This formula is a consequence of formula S53 and the semantics of U−. Let us suppose that 
the commitment is inactive at a given moment. Consequently, either this commitment was 
not created or reactivated in the past, or, since its creation or reactivation, the commitment 
was already withdrawn. In these two cases, the commitment cannot be withdrawn. 

 
 

P3. AG+(Satisfy(Ag1, SC(Ag1, Ag2, t, ϕ)) ⇒ 

G+(Satisfy(Ag1, SC(Ag1, Ag2, t, ϕ))  

∧ ¬Violate(Ag1, SC(Ag1, Ag2, t, ϕ)) 

∧ ¬Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ)))) 
 
This formula states that if a commitment is satisfied, then it remains always satisfied and it 
cannot be violated or withdrawn. 
 
Proof 

According to the semantics of satisfaction (S40), Satisfy formula is satisfied in the model 
along a path Pa at any state of this path. Consequently, if it is satisfied, it remains always 
satisfied. Because the path Pa is a satisfaction path in the sens of the accessibility relation 
Rsc, the commitment cannot be violated along this path. In addition, according to S53, if an 
agent satisfies a commitment, then this commitment becomes inactive. Therefore, the 
commitment cannot be withdrawn 

 
 
In the same way we can prove the following proposition: 
  

P4. AG+(Violate(Ag1, SC(Ag1, Ag2, t, ϕ)) ⇒ 

G+(Violate(Ag1, SC(Ag1, Ag2, t, ϕ)) 

∧ ¬Satisfy(Ag1, SC(Ag1, Ag2, t, ϕ)) 

∧ ¬Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ)))) 
 

P5. AG+(Create(Ag1, SC(Ag1, Ag2, t, ϕ) ∨ Reactivate(Ag1, SC(Ag1, Ag2, t, ϕ))) ⇒  

X+F+ Violate(Ag1, SC(Ag1, Ag2, t, ϕ)) 

∨ X+F+ Satisfy(Ag1, SC(Ag1, Ag2, t, ϕ)) 

∨ X+F+ Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ))) 
 
This formula indicates that if an agent creates or reactivates a commitment, then it must 
violate it, satisfy it, or still withdraw it. These operations can take place in the future of the 
moment following the creation of the commitment. The proof of this proposition follows 
from the semantics of theses operations. 
 

P6. AG+(Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ)) ⇒  

G+ ¬SC(Ag1, Ag2, t, ϕ)  

∨ 
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(¬SC(Ag1, Ag2, ϕ) U+ Reactivate(Ag1, SC(Ag1, Ag2, ϕ))) 
 
This proposition states that a commitment remains withdrawn until an eventual reactivation. 
Thus, the only authorized operation after the withdrawal of a commitment is its reactivation. 
The proof of this proposition follows from the semantics of Withdraw and Reactivate and 
from the meaning postulates M39.  
 
We have also the following meaning postulates: 
 

M6. AG+¬(Active(SC(Ag1, Ag2, t, ϕ)) ∧ Active(SC(Ag1, Ag2, t’, ¬ϕ))) 
 
This postulate states that it is not possible to have on a given path two active commitments 

of the same debtor whose contents are respectively ϕ and ¬ϕ. 
 

M7. AG+ (Active(SC(Ag1, Ag2, t, ϕ) & Accept-content(Ag1, SC(Ag2, Ag1, t’, ¬ϕ)) ⇒ 

Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ))) 
 
This formula indicates that if: 

1. The agent Ag1 already is committed that ϕ,  
2. The commitment still holds,  

3. This agent accepts the commitment of its interlocutor for ¬ϕ,  

then this implies that the agent withdraws its commitment for ϕ. If Ag1 does not withdraw 
this commitment, we would have two active commitments on a given path whose contents 

are ϕ and ¬ϕ. However, this is not possible according to M6.  
 
 

7.6 Discussion 
 
7.6.1 Meaning of Speech Acts 

 
The meaning of some important speech acts, especially the ones commonly used in multi-
agent interactions, can be expressed using our framework. According to illocutionary logic 
(Searle and Vanderveken, 1985), the five illocutionary points of language use are: the 
assertive point, the commissive point, the directive point, the declaratory point and the 

expressive point. The assertive point consists in representing how things are in the world. 
The commissive point consists in committing the speaker to doing something. The directive 

point consists in trying to get the hearer to do something. The declaratory point consists in 
doing something by way of representing oneself as doing it. The expressive point consists in 
expressing attitudes. 
 
Assertive acts can be represented by propositional commitments and by conditional 
commitments about propositions. For example, the performance of an Inform act can be 
defined as the creation of a propositional commitment. The inform act Inform(Ag1, Ag2, t, p) 
indicates that the speaker Ag1 wants to inform the addressee Ag2 that p is true. Formally, we 
can write: 
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Inform(Ag1, Ag2, t, p) =def Create(Ag1, PC(Ag1, Ag2, t, p)) 
 
The operations applied on the content of these commitments can be considered as assertive 
or directive acts. For example, the Assert act Assert(Ag1, Ag2, t, p) means that the speaker 
Ag1 is committed relatively to the addressee Ag2 that p is true. In our framework, this acts 
can be defined by the acceptance of a commitment content in the context where this 
commitment exists. Formally: 
 
Assert(Ag2, Ag1, t, p) =def Accept-content(Ag2, PC(Ag1, Ag2, , p))  
 
The assertive act about an argument can be defined by a justification relation: 
 

Assert((Ag2, Ag1, t, p∴p’)) =def Justify-content(Ag1, PC(Ag1, Ag2, , p), p’)  
 
Commissive acts can be reflected by the action commitments and the conditional 
commitments about actions. The point of the commissive acts is to commit the debtor, 

relative to the creditor, to the performance of an action α with or without a certain 

condition. The performance of the action α makes a proposition p true. For example, a 

promise act Promise(Ag1, Ag2, t, α, p) means that agent Ag1 is committed towards agent Ag2 

to do α without condition. This act can be defined either by the creation of an action 
commitment or by the acceptance of the content of a commitment attempt: 
 

Promise(Ag1, Ag2, t, α, p) =def Create(Ag1, AC(Ag1, Ag2, t, (α, p)) 

 ∨ Accept-content(Ag1, ACT(Ag2, Ag1, , (α, p))) 
 

Directive acts can be represented by commitment attempts and by challenges of 
commitment contents. The operations applied to the content of commitment attempts can be 
considered as assertive, commissive or directive acts. Request is an example of a directive 
act that can be defined in our framework as follows: 
 

Request(Ag1, Ag2, t, α, p) =def Create(Ag1, ACT(Ag1, Ag2, t, (α, p))) 
 

The request act Request(Ag1, Ag2, t, α) indicates the fact that agent Ag1 asks agent Ag2 to do 

α. If Ag2 accepts the request, then it promises Ag1 to do α (see the previous definition of the 
promise act).  
 
A declaratory act brings about a state of affairs that makes its content true (Colombetti, 
2000). An example of declaration is “the auction is open” that is used to open an auction. In 
our framework, a delaratory act can be captured by the immediate satisfaction of a 
propositional commitent. Formally: 
 
Declare(Ag1, Ag2, t, p) =def  

Create(Ag1, PC(Ag1, Ag2, t, p)) ∧ Satisfy(Ag1, PC(Ag1, Ag2, t, p)) 
 
Expressive acts can also be captured using propositional social commitments. 
 



129 

 

In this section we showed that our formalism handles in a unified framework both 
pragmatic and semantic issues of agent conversation. In addition, the framework can 
capture many different types of illocutionary acts according to speech acts theory. Since the 
framework makes it possible to capture all these aspects, it can be used as a powerful means 
to specify, model and implement flexible and highly expressive protocols for agent 
communication. 
 
7.6.2 A Model-Theoretic Semantics for Defeasible Argumentation 

 
According to several researchers in defeasible argumentation, using a model-theoretic 
semantics is not adapted to defining the meaning of the central notions of defeasible 
argumentation like attack, rebuttal, defense, etc. The purpose of this section is to show that 
such a model theory can be successfully used to capture the semantics of these notions. 
 
 According to Pollock (1991), Vreeswijk (1997), and Prakken and Vreeswijk (2000), the 
meaning of defeasible notions should not be found in a correspondence with reality by using 
a model theory, but in their role in dialectical inquiry. The reason is that these notions are 
not ‘propositional’, and consequently, their meaning is not naturally captured in terms of 
correspondence between a proposition and the world. We agree with the fact that the 
defeasible notions are not propositional, because in our framework they are actions applied 
to social commitments. Thus, these defeasible concepts (considered in this chapter as 
argumentation relations), can be captured in a model theory by using a dynamic logic within 
a global framework of temporal logic. Using these two logics enables us to represent the 
relation between arguments by taking into account the temporal and the dynamic 
characteristics of the argumentative interactions between agents. Our theoretical model 
semantics does not establish a correspondence between defeasible notions (as propositions) 
and the world, but defines the meaning of operations that agents can apply on their social 
commitments and the meaning of argumentative supports of these operations. This 
semantics allows us to capture the conditions on handling commitments and arguments (see 
S66 and S67). The branching temporal nature of our logical model makes it possible to 
capture the fact that an agent in a given state at a given moment has several strategies. 
Agents use their argumentation systems to choose a strategy among others. 
 
On the other hand, the nonmonotonicity property of arguments can be captured in a model 
theory of branching temporal logic. The idea is that an argument is valid only in a given 
state, at a given moment for a given agent. An argument is not valid (not satisfied in the 
Kripke model) when it is attacked and cannot be defended. This idea can be formulated as a 
property in our logical model by using the path quantifiers A and E (see M65 (1), S65 (2)). 
In addition, an advantage of using a model theory of temporal and dynamic logics to define 
the semantics is that we can then use model-checking techniques (Clarke et al., 1986). 
These techniques enable us to verify some interesting properties of the formalism. In this 
context, we can use our approach to specify interaction protocols illustrating how agents 
interact by acting on commitments and on arguments. The automatic tools of model 
checking (called model checkers) make it possible to provide simulations and traces of 
execution of such protocols in order to verify properties that these protocols must satisfy 
(Clarke et al., 2000), (Wooldridge et al., 2002). These techniques are not offered for a logic 
based on dialectical systems. 
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In the context of agent interactions, using only an argumentative-based semantics is not 
sufficient to capture the nonmonotonic reasoning of agents. The reason is that in their 
conversations, agents do not use only an acceptance theory based on arguments and on 
attack and defense relations. Agents must also take into account social relations such as 
trustworthiness.  
 
Finally, we think that a model theoretical semantics and a dialectical-based semantics are 
not contradictory but rather complementary in the context of agent communication. A 
model theoretical semantics using temporal and dynamic logics has the advantage of 
capturing actions and temporal issues of communicative acts. Dialectical-based semantics 
have the advantage of representing the interaction between arguments that agents use in 
their conversations.  
 
7.6.3 Related Work 

  
Semantical considerations for agent interaction have recently begun to find a significant 
audience in the MAS community. We can distinguish four kinds of semantics for agent 
interactions: 
 
1- Mentalistic semantics: This subjective semantics is based on so-called agent’s mental 
states (e.g. beliefs, desires and intentions). The best-known formalisms describing it are: 
Cohen and Levesque’s intention logic (1990), Rao and Georgeff’s BDI framework (1995), 
and the KARO framework proposed by van Linder et al. (1998). KQML (Finin et al., 1995) 
and FIPA-ACL (FIPA, 1997, 1999, 2001a) use this type of semantics to define a pre/post 
conditions semantic of communication acts. For example, the semantics of a KQML 
message is given by the following three ingredients: 1) a precondition on the mental states 
of the sender and the receiver before the communication of the message, 2) a postcondition 
that should hold after the communication and 3) a completion condition that indicates when 
the perlocutionary effect has been fulfilled. The advantage of this semantics is its 
compatibility with the formalisms used for reasoning about rational agents. Hence, the same 
formalism can be used to specify the agents’ mental states and the communication acts they 
perform. However, the verification of such a semantics is not possible if we cannot access to 
the agents’ programs. In this situation we cannot verify whether the agents’ behavior 
matches their private mental states. In this context, van Eijk and his colleagues (2003) 
proposed a verification method for agent communication using a framework called Agent 
Communication Programming Language (ACPL) (van Eijk et al., 2001). ACPL is designed 
to program systems of agents that communicate by exchanging information. The authors 
consider the operational semantics of this language which describes the agents’ behavior in 
terms of their computations. From this semantics, they identified a notion of observable 
behavior that captures those aspects of computations that are visible to an external observer, 
and they introduced an assertion language to express specifications of this behavior. To 
check if agents act in accordance with the behavior specification, the authors developed a 
verification calculus based on a compositional proof system. 
 
Another limitation of KQML is the pre/post condition semantics. This semantics offers no 
dynamic or operational description of agent interactions. Because our approach is based on 
public and argumentative concepts, the compliance verification can be made without having 
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access to the agents’ programs. The satisfaction and the violation of agents’ commitments 
make it possible to determine if the agent respects our semantics. In addition, the agents’ 
ability to argue and to justify their commitments facilitates this verification. Moreover, our 
semantics treats more explicitly the dynamic aspect of agent communication. This aspect is 
modeled not only by the agents’ actions on commitments and on their contents and by the 
argumentation relations, but also by the evolution of commitment states and commitment 
content states.  
 
2- Social semantics: This objective semantics was proposed by Singh as an alternative to the 
mentalistic one (Singh, 2000). It is based on social commitments and it stresses the 
importance of conventions and the public aspects of agent interactions. Singh used CTL to 
propose a formal language and a formal model in which the notion of commitment is 
described by using an accessibility relation. Verdicchio and Colombetti proposed a logical 
model of social commitments by extending CTL* (Verdicchio and Colombetti, 2003). They 
introduced a number of predicates in order to represent events and actions. They specified 
some axioms to model agents that create commitments, create precommitments, and accept 
precommitments. They also studied the fulfillment and violation of commitments. Mallya et 
al. (2004) used the temporal commitment structure specified by Fornara and Colombetti 
(2002) to define some constraints in order to capture some operations on commitments. 
They dealt with temporal commitments by studying their satisfactions and breaches. Our 
logical model belongs to this class of semantics, but it differs from these proposals in the 
following respects:  
 
a) In our approach the commitment semantics is defined as an accessibility relation that 
takes into account the satisfaction of the commitment. The commitment semantics is 
defined in terms of the paths along which the commitment must be satisfied. This way is 
more intuitive than the semantics defined by Singh. 
 
b) We differentiate commitments as static structures evaluated in states from the operations 
applied to commitments as dynamic structures evaluated on paths. This enables us to 
describe more naturally the evolution of the communication as a system of states / 
transitions which reflects the interaction dynamics. Thus, our logical model allows us to 
describe the dynamics of agent interactions in terms of the actions that agents apply to 
commitments, commitment contents and to arguments. These actions are captured by the 
perform operator used in dynamic logic and that we introduce in our model. 
 
c) In our model, the strength of commitments as a basic principle of agent communication 
does not result only from the fact that they are observable, but also from the fact that they 
are supported by arguments. The social commitment notion we formalize is not only a 
public notion but also a deontic one. The deontic aspect is captured by the fact that 
commitments are thought of as obligations. The agent is obliged to respect its commitments 
(i.e to satisfy them), to behave in accordance with these commitments and to justify them. 
The idea is to impose this constraint in the model we are interested in. The agent is also 
obliged not to contradict its commitment contents during the conversation. The creation 
operation and the argumentation relations capture this deontic aspect. Formulae S66 and 
S67 which supplement our semantics show how our approach makes it possible to capture 
this aspect. Indeed, the link we establish between commitments and arguments enables us to 
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formally express the following idea: by committing towards other agents that a certain 
formula is true, the agent is compelled not to contradict itself during the conversation. It 
must also be able to explain, argue, justify and defend itself if another participant 
contradicts it. 
 
d) In our semantics, we capture not only propositional commitments, but the various 
othertypes of commitments. This enables us to have a greater expressivity and to capture 
many different types of speech acts. In addition, all the elements constituting our 
commitment and argument approach are expressed using the same logical framework. The 
different types of commitments, the different operations on them, and the different 
argumentation relations are semantically specified in a clear and unambiguous way. 
 
3- Argumentation-based semantics: This type of semantics is defined in (Amgoud et al., 
2002), (Parsons et al., 2002), (Parsons et al., 2003) to capture the meaning of certain 
communication acts. It is based upon an argumentation system in which the agents’ 
reasoning capabilities are often linked to their ability to argue. These reasoning capabilities 
are mainly based on the agent’s ability to establish a link between different facts, to 
determine if a fact is acceptable, to decide which arguments support which facts, etc. The 
authors proposed a two-layered semantics. The first layer captures the reasoning level of 
agents. Agents must check some preconditions in order to use a communication act. These 
preconditions are described in terms of arguments. For example, before using an assertion 
act that p, an agent checks whether it has an argument in favor of p. The second layer relies 
upon the formal dialectics introduced by Mackenzie (1970). Dialectical models are rule-
governed structures of organized conversations in which two parties (in the simplest case) 
speak in turn in an orderly way. These models associate to each agent a commitment store 
(CS), which holds the information given by the interlocutors during the dialogue. This layer 
describes the rules which define how the CS is updated. For example, after an assertion act 
that p is true, the CS of the speaker is updated by adding p to it. This semantics has the 
advantages of being simple and of taking into account the argumentation aspect of agent 
communication. In addition to the fact that this semantics does not take into account the 
temporal and dynamic aspects of communicative acts in its formalization, it is different 
from our approach on several points. The fact that it uses a logic without theoretical model 
makes a formal verification impossible. On the other hand, the semantics is described in 
terms of pre/post conditions and it does not capture the meaning of the different 
communication acts. The commitment notion used in this semantics is different from the 
one we use in our semantics. In Amgoud et al’s approach, this concept captures only the 
propositions stated by the agents. Contrary to our approach, the satisfaction, violation, 
cancellation and reactivation notions do not appear. Moreover, in terms of argumentation, 
only the argue operation is captured. The attack and defense operations are not addressed in 
this semantics. Finally, the dynamic aspect of agent communication is reduced to the sole 
update operations of the CS. These operations reflect only the history without clearly 
reflecting the current state of the communication. On the other hand, in our approach this 
state is well captured by the states of different commitments and arguments handled in the 
conversation. 
 
4- Protocol based semantics: Developed by Pitt and Mamdani (2000), this type of semantics 
is based on the notion of protocol. The communication between two (or more) agents is 
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viewed as a conversation. The meaning of communication acts is specified by describing an 
input-output relationship. The meaning of a speech act (as input) is defined to be the 
intention to perform another speech act (as output). This meaning then matches the set of 
the possible following answers. This semantics has the advantage of taking into account the 
context and the conversation state. However, technically, protocols are used as a practical 
tool and not as a means to define semantics. For example, by using only protocols, we 
cannot define the meaning of some notions like satisfaction, violation, contradiction, 
justification, etc. Protocols must be specified in accordance with a given semantics in such a 
way that a compliance verification is possible. In our approach we can define protocols by 
using our semantics and verify whether some properties (that we have to specify yet) are 
satisfied. For instance, such a property can be stated as follows: “It is not possible to 
withdraw a commitment that is previously satisfied”. Because our semantics is expressed in 
a temporal logic, we can use protocols specifying that an action cannot take place before 
another. For example, a commitment cannot be cancelled before its creation. A protocol can 
also specify that when a commitment is created by an agent Ag1, several paths are possible 
for its interlocutor Ag2 (acceptance, refusal, challenge). However, the choice of the path 
cannot be made without returning to the semantics. For example, acceptance indicates that 
the agent is also committed towards the accepted content. Thus, agent Ag2 must be able to 
justify this content and to satisfy the commitment.  
 
Finally, we notice that although our accessibility relation Rsc is a dynamic function, we do 
not need to change the Kripke model M to capture this dynamics. This way of modeling is 
different from that used for example in KARO framework (Meyer et al., 1999). In KARO, 
the whole Kripke model must be changed as illustrated by the following formula:  
 

M, s  <doi(α)>ϕ iff ∃M’, s’ (M’, s’ ∈ r(i, α)(M, s) & M’, s’  ϕ) 
 

Where <doi(α)>ϕ represents the fact that agent i has the opportunity to do the action α and 

that doing α leads to ϕ, and r is a function defined from another function r0 as follows: 
 

r0: A × At → (S  ∪ {∅}) → (S  ∪ {∅}) 
 

where A is a set of agents, At is a set of atomic actions and S a set of states. r0(i, α)(s) yields 

the (possibly empty) state transition in s caused by the event doi(α). A successful 
performance of an atomic action always results in a state transition to another state in the 
model. r is defined as follows: 
 

r(i, α)(M, s) = M, r0(i, α)(s) 
 

r(i, α)(M, s) yields the model change and the state transition caused by the event doi(α). In 
our model that fits in naturally with the use of CTL* the whole dynamics is represented in 
one unique model. Thus, we do not need to define a function like r0. Indeed, we can capture 
all the actions that agents apply to commitments and to their contents without changing the 
model, but simply by changing the states of the model. This solution increases the number 
of states in the model. However, it enables us to reduce the complexity of the underlying 
decision procedure, and it gives rise to more efficient model-checking. 
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7.7 Conclusion  
 
In this chapter, we developed a logic and formal semantics for our pragmatic approach 
based on commitments and arguments to model agents’ interactions. We proposed a logical 
model based on a combination of CTL* and dynamic logic. The model captures the 
different commitment types, the different actions that agents apply to these commitments 
and the various argumentation relations. In addition, the model captures the link between 
commitments and arguments that enables us to express the deontic aspect of commitments. 
Our semantic framework can also be used to express the meaning of some important speech 
acts, especially the ones commonly used in multi-agent interactions. Finally, we argued that 
our model-theoretic semantics can be successfully used to capture the semantics of 
defeasible arguments. 



 

 

Chapter 8
*
 

A Tableau Method for Verifying Dialogue 

Game Protocols (a Model Checking 

Approach) 

In this chapter, we address the problem of verifying dialogue game protocols using a 

tableau-based model checking technique. These protocols are specified using the DCTL*CAN 

logic that we developed in Chapter 7. Unlike the model checking algorithms proposed in the 

literature, the algorithm that we propose in this chapter allows us  not only to verify if the 

dialogue game protocol (the model) satisfies a given property expressed in DCTL*CAN, but 

also if this protocol respects the tableau rules of the communicative acts. This algorithm is 

an on-the-fly efficient algorithm. 

 
 

8.1 Introduction 
 
As outlined in Chapter 3, dialogue games provide an interesting way of specifying agent 
communication protocols (see for example (Dastani et al., 2000), (McBurney and Parsons, 
2002), (Maudet and Chaib-draa, 2002), (Bentahar et al., 2004a, 2004d)). These games aim 
at offering more flexibility by combining different small games to construct complete and 
more complex protocols. Dialogue games can be thought of as interaction games in which 
each agent plays a move in turn by performing utterances according to a pre-defined set of 
rules.  
 
From another point of view, formal verification methods became usable by industry quite 
recently and there is a growing demand for professionals able to apply them (Huth and 
Ryan, 2000). We can think of formal verification techniques as being composed of three 
parts: 
• A framework for modeling systems, typically a description language. 
• A specification language for describing the properties to be verified. 
• A verification method to establish whether the description of a system satisfies the 
specification or not. 

                                                 
* We would like to thank John-Jules Ch. Meyer from Utrecht University, Intelligent Systems Group, Girish 
Bhat from Cosine Communication Inc., Rance Cleaveland from State University of New York at Stony Brook, 
and Yves Lespérance from York University for their interesting comments and extremely helpful discussions 
about the matter presented in this chapter.  
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The two main approaches to verify system properties are proof-based approaches and 
model-based approaches. In the proof-based approaches, the system description is a set of 

logical formulae Γ and the specification is another formula φ. The verification method 

consists of trying to find a proof that Γ φ. This typically requires guidance and expertise 
from the user in order to identify suitable lemmas and auxiliary assertions. In the model-
based approaches, the system is represented by a finite model M using an appropriate logic. 

The specification is again represented by a formula φ and the verification method consists of 

computing whether the model M satisfies φ or not. This is usually done automatically. 
 
Model-based techniques rely on models describing the system’s possible behaviors in a 
mathematical precise and unambiguous manner (Queille and Sifakis, 1981), (Lichtenstein 
and Pneuli, 1985), (Clarke et al., 1986). The system models are accompanied by algorithms 
that systematically explore all the states of the system model. This provides the basis for a 
whole range of verification techniques ranging from an exhaustive exploration (model 
checking) to experiments with a restrictive set of scenarios in the model (simulation), or in 
reality (testing).  
 
Recently, the verification of MAS has become an attractive field of research. Several 
proposals have been put forward for model checking MAS. Some of these proposals use 
existing model checkers (for example SPIN and JPF2) by translating some agent 
specification languages (for example MABLE and AgentSpeak) to the languages used by 
these model checkers (Wooldridge et al., 2002), (Bordini et al., 2003a, 2003b). Other 
proposals adapt some model checking techniques (for example bounded and unbounded 
model checking) and propose new algorithms for verifying temporal and epistemic 
properties of MAS (Penczek and Lomuscio, 2003), (Kacprzak and Penczek, 2004a, 2004b), 
(Raimondi and Lomuscio, 2004).  
  
In the domain of agent communication, only some research work tried to address the 
verification of agent communication protocols. Endriss and his colleagues (2003) dealt with 
the problem of checking and possibly enforcing conformance to agent communication 
protocols. Huget and Wooldridge (2004) addressed the problem of checking that agents 
correctly implement the semantics of an agent communication language. Walton (2004) 
applied model checking techniques in order to verify the correctness of a communication 
protocol. Baldoni and his colleagues (2004) tackle some aspects of the conformance 
verification, i.e. the verification that a given protocol implementation conforms to its 
abstract specification. Giordano and her colleagues (2004) addressed the problem of 
specifying and verifying systems of communicating agents in a Dynamic Linear Time 
Temporal Logic (DLTL).  
 
Except the work done by (Giordano et al., 2004), all the other work on model checking of 
MAS are based only on temporal and epistemic logics. In this chapter, we propose a model 
checking-based verification of dialogue game protocols using a temporal and dynamic 
logic. These protocols are specified as transition systems using our DCTL*CAN logic 
(Dynamic and CTL* logic for Commitment and Argument Network) that we developed in 
Chapter 7. In contrast to (Giordano et al., 2004), the dynamic aspect of our logic is 
represented by action formulae and not by strengthening the until operator by indexing it 
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with the regular programs of dynamic logic. Our protocols are specified as actions that 
agents apply to social commitments (SC) and to SC contents. In addition, the model 
checking procedure that we propose allows us to verify not only that the dialogue game 
protocol (the theoretical model) satisfies a given property, but also that the tableau 
semantics of the communicative acts is respected. The idea is to integrate this semantics in 
the specification of the protocol, and then to propose a parsing method to verify that the 
protocol specification respects the semantic definition. Consequently, if agents respect these 
protocols, then they also respect the semantics of the communicative acts. We have here a 
mechanism for checking the agents’ compliance with the semantics without taking into 
account the agents’ specifications created by the developers. Indeed, we have only one 
procedure to verify: 1) the correctness of the protocols relative to the properties that the 
protocols should satisfy; and 2) the conformance of agents to the semantics of the 
communicative acts. However, the tableau semantics (the tableau rules) we use in this 
chapter describe only the structure of the commitment formulae and not the semantics as 
defined in Chapter 7. The purpose of this technique is to verify the temporal properties of 
the protocol and to ensure that the structures of the commitments are the same in both the 
protocol and the specification. The advantage of verifying the structures of the 
commitments is to ensure that all agents participating in a communication share the same 
description of the communicative acts. In addition this technique based on the tableau 
method can be generalized to also verify the semantic definitions proposed in Chapter 7. 
This work goes beyond the objectives of this thesis and will be a priority subject of our 
future research. 
 
To our knowledge, until now there is no work that addressed the verification problem of 
dialogue game protocols. Indeed, the contributions of this chapter are: 
 
1- A formulation of dialogue game protocols using transition systems. This formulation 
enables us to represent not only the allowed communicative acts but also the underlying 
tableau semantics. 
2- An automata and tableau-based technique to check if a protocol satisfies the 
specifications and the structure. These two verifications are done at the same time. 
 
The rest of this chapter is organized as follows. Section 8.2 introduces the model checking 
problem and a class of algorithms based on the tableau method to which our procedure 
belongs. Section 8.3 presents a tableau semantics of our DCTL*CAN logic. Section 8.4 
defines the transition systems that we use to model dialogue game protocols and the 
underlying semantics. The problem of verifying these protocols is addressed in Section 8.5. 
In this section, we present the Alternating Büchi Tableau Automata, the translation 
procedure of temporal and action formulae to this automata, and the model checking 
algorithm. Proofs of different properties are also presented in this section. Section 8.6 
presents related work and Section 8.7 concludes the chapter. 
 
 
 
 
 



138 

 

8.2 Model-Checking Overview 
 
8.2.1 Automata-Theoretic Approach 

 
The model-checking problem for a branching temporal logic is as follows: Given a Kripke 

structure K and a branching temporal formula ψ, determine if K  ψ. The state space of a 
transition system can be thought of as a Kripke structure. For linear temporal logics, a close 
and fruitful connection with the theory of automata on infinite words has been developed 
(Vardi and Wolper, 1986), (Courcoubetis et al., 1992). The basic idea is to associate with 
each linear temporal logic formula a finite automaton on infinite words that accepts exactly 
all the computations that satisfy the formula. For these logics, each Kripke structure may 
correspond to infinitely many computations. Model checking is thus reduced to check 
inclusion between the set of computations allowed by the Kripke structure and the language 
of an automaton describing the formula (Vardi and Wolper, 1986). For branching temporal 
logics, each Kripke structure corresponds to a single non-deterministic computation. On that 
account, model checking is reduced to check the membership of this computation to the 
language of the automaton describing the formula (Wolper, 1989). For these logics, the 
automata-theoretic counterpart is automata on infinite trees. By reducing the satisfiability to 
the non-emptiness problem for these automata6, optimal decision procedures have been 
obtained for various branching temporal logics (Emerson and Lei, 1986), (Vardi and 
Wolper, 1986), (Emerson and Sistla, 1984), (Courcoubetis et al., 1992).  
 
Bernholtz, Vardi, and Wolper (1994) argued that alternating tree automata are the key to a 
comprehensive and satisfactory automata-theoretic framework for branching temporal 
logics. Alternating tree automata on infinite trees generalize the standard notion of non-
deterministic tree automata by allowing several successor states to go down along the same 
branch of the tree (Muller and Schupp, 1987). Tree automata generalize sequential automata 
in the following way: on a given binary tree, the automaton starts its computation at the root 
in an initial state and then simultaneously works down the paths of the tree level by level. 
The transition relation specifies the two states that are the two sons of a node. The tree 
automaton accepts the tree if there is a run built up in this fashion which is successful. A run 
is successful if all its paths are successful in a sense given by an acceptance condition for 
sequential automata. 
 
It is known that while the translation from branching temporal logic formulae to non-
deterministic tree automata is exponential, the translation to alternating tree automata is 
linear (Muller et al., 1988). This explains the efficiency of model checking for these logics. 
Thus, alternating tree automata provide a unifying and optimal framework for both 
satisfiability and model-checking problems for branching temporal logics. 
 

                                                 
6 The non-emptiness problem for automata is to decide, given an automaton A, whether its language L(A) is 

non-empty. The language L(A) is the set of words accepted by A. 
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The model checking approach that we use for our logic is based on an alternative view of 
model checking proposed by Bhat and Cleaveland (1996, 2001). This view relies on 
translating formulae into intermediate structures, Alternating Büchi Tableau Automata 
(ABTA). Unlike the other model checking techniques, this technique allows us to verify not 
only temporal formulae, but also action formulae. Because our logic is based on an action 
theory, this technique is more suitable. This approach is a tableau-based model checking. 
The following section introduces this approach. 
 
8.2.2 Tableau-based Algorithms for Model-Checking 

 
Tableau-based algorithms are based on the use of assertions and proof rules. Assertions are 

typically of the form s M φ and mean that state s in model M satisfies the formula φ. Using 
a set of proof rules we aim to prove the truth or falsity of assertions. But unlike traditional 
proof systems which are bottom-up approaches, tableau-based algorithms work in a top-

down or goal-oriented fashion. Proof rules are used in order to prove a certain formula by 
inferring when a state in a Kripke structure satisfies such a formula. According to this 
approach, we start from a goal, and we apply a proof rule and determine the sub-goals to be 
proven. The proof rules are designed so that the goal is true if all the sub-goals are true. The 
advantage of this method is that the state space is explored in a need-driven fashion. The 
algorithm searches only the part of the state space that needs to be explored to prove or 
disprove a certain formula. The state space is constructed while the algorithm runs. This 
kind of algorithms, also referred to on-the-fly or local algorithms, have been found to be 
useful in practice since in many cases only a small part of the state space needs to be 
explored to prove a formula (Cleaveland, 1990), (Stirling and Walker, 1991), (Bhat and 
Cleaveland, 2001). 
 
The tableau-based algorithms proposed in (Cleaveland, 1990), (Stirling and Walker, 1991) 
have exponential time and space complexity. The exponential penalty incurred by these 
algorithms is mainly due to the fact that these algorithms work by constructing proof trees. 
Like (Bhat, 1998), the algorithm that we use for our DCTL*CAN logic avoids this 
exponential penalty by using graphs instead of trees to represent proofs. 
 
The tableau decision algorithm that we use provides a systematic search for a model which 
satisfies a particular formula of our logic. It is a graph construction algorithm. Nodes of the 
graph are sets of DCTL*CAN formulae and tableau rule names. Tableau rules are inference 
rules designed so that the formula is true if all the sub-formulae are true. The main 
difference between proof rules and tableau rules is that proof rules work on assertions, while 
tableau rules work on logical formulae. The difference between assertions and logical 
formulae is that logical formulae are written without taking into account the states of the 
model. The interpretation of vertex labeling is that for the vertex to be satisfied, it must be 
possible to satisfy all the formulae in the set together. Each edge in the graph represents a 
satisfaction step of the formula contained in the starting vertex. These steps correspond to 
the application of a set of tableau rules. These rules express how the satisfaction of a 
particular formula (the goal) can be obtained by the satisfaction of its constituent formulae 
(sub-goals). 
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8.3 Tableau rules for DCTL*CAN 
 
The semantics we use here is a tableau semantics (Cleaveland, 1990) that we can consider 
as a simplification of the semantics that we defined in Chapter 7. This semantics is specified 
in terms of the decomposition of formulae to sub-formulae using a set of tableau rules. 
These rules are given in Figures 8.1, 8.2, 8.3 and 8.4. For simplification reasons, we use in 
this chapter a simplified version of DCTL*CAN that is sufficient for the specification of 
dialogue game protocols. For example we consider only propositional and action 
commitments, and we do not consider formulae of commitment states and formulae of 
contradiction of commitment contents. In addition, to simplify the Challenge-content 
formula, we introduce a syntactical operator ?. Syntactically, ?ψ  means that, a given agent 

does not know whether ψ  is true or not. 
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Figure 8.1. Tableau rules for propositional and universal formulas  

Figure 8.1. Tableau rules for propositional and universal formulas 

The tableau semantics enables us to define top-down proof systems. The idea is: given a 
formula, we apply a tableau rule and determine the sub-formulae to be proven. Tableau 
rules are inference rules used in order to prove a formula by proving all the sub-formulae. 
The labels of these rules are the labels of states in the automata constructed from a given 

formula. For example, rule R1 of Figure 8.1 labeled by "∧" indicates that ψ1 and ψ2 are the 

two sub-formulae of ψ1 ∧ ψ2. This means that, in order to prove that a state labeled by "∧" 

satisfies the formula ψ1 ∧ ψ2, we have to prove that the two children of this state satisfy ψ1 

and ψ2 respectively. This idea will be detailed in Section 8.5.1 when we will define the 
alternating Büchi tableau automata. According to rule R2, in order to prove that a state 

labeled by "∨" satisfies the formula ψ1 ∨ ψ2, we have to prove that one of the two children 

of this state satisfies ψ1 or ψ2. Rule R3 labeled by "∨" indicates that ψ is the sub-formula to 

be proved in order to prove that a state satisfies E(ψ). According to rule R4 (resp. R5), the 

formula ¬ψ (resp. ?ψ) is satisfied in a state labeled by "¬" (resp. ?), if this state has a 

successor representing ψ. Rule R6 is defined in the usual way where Φ is a set of path 
formulae. 
 

The label "<αφ>" (rule R7 of Figure 8.2) is the label associated with the action α whose 

performance makes the proposition φ true (see Chapter 7). According to this rule, in order to 

prove that a state labeled by "<αφ>" satisfies Perform(α)φ, we have to prove that an 

accessible state via a transition labeled by Perform(α) satisfies φ. Rule R8 is defined using 
the same idea. The label "<C>" (rule R9) is the label associated with the creation action of a 
social commitment SC. According to this rule, in order to prove that a state satisfies 

Create(Ag1, SC(Ag1, Ag2, t, φ)), we have to prove that an accessible state via a transition 
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labeled by the creation action satisfies the sub-formula SC(Ag1, Ag2, t, φ). The rules R10 to 
R21 are defined in the same way. 
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Figure 8.4. Tableau rules for state formulas  

Figure8.4. Tableau rules for state formulas 

 
 

Rule R22 of Figure 8.3 indicates that E(φ) is the sub-formula of the formula                   

E(PC(Ag1, Ag2, t, φ)). Thus, in order to prove that a state satisfies E(PC(Ag1, Ag2, t, φ)), we 

have to prove that the accessible state via a transition labeled by "[PCAg1]" satisfies E(φ). In 
the same way, we define the rule R23.  
 
Finally, the rules R24 to R32 of Figure 8.4 are defined in the usual way. For example, 

according to rule R29, in order to prove that a state satisfies E(X+ϕ), we have to prove that 

the next state via the transition labeled by "X+" satisfies the sub-formula E(ϕ). 
 

8.4 Dialogue Game Protocols as Transition Systems 
 
8.4.1 Specification 

 
In this section we define the theoretical model of our model checking procedure. This model 
specifies the dialogue game protocols. These protocols are specified as a set of rules 
describing the entry condition, the dynamics and the exit condition of the protocol 
(Bentahar et al., 2004a) (this aspect will be detailed in Chapter 9). These rules can be 
specified in our logic as action formulae (actions on SC, actions on SC contents and 
argumentation relations). We define these protocols as transition systems. The purpose of 
these transition systems is to describe not only the sequence of the allowed actions (classical 
transition systems), but also the semantics of these actions and the semantics of the different 
elements used in our commitment and argument-based approach. The states of these 
transition systems are sub-transition systems (called semantic transition systems) describing 
the semantics of the actions labeling the entry transitions. Defining transition systems in 
such a way allows us to verify:  
1- The correctness of the protocol (if the model of the protocol satisfies the properties that 
the protocol should specify). 
2- The compliance to the semantics of the communicative actions (if the specification of the 
protocol respects the semantics). 
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In this chapter, we propose a model checking procedure in order to verify both (1) and (2) at 
the same time.  
 
The definition of the transition system of dialogue game protocols is given by the following 
definitions: 
 
Definition 8.1 A semantic transition system T’ describing the semantics of an action 

formula is a 6-tuple <S’, Lab’, F, Ls’, R, →, s’0> where: 
S’ is a set of states, 

Lab’ : S’ → 2Φp is the labeling state function, where Φp is the set of atomic propositions, 

F is a sub-set of the set of formulae from DCTL*CAN (F does not include the action formulae 

i.e. Create, Satisfy, Accept-content, etc.), 

Ls’ : S’ → F is a function associating to each state a formula from DCTL*CAN, 

R ∈ {∧, ∨, ¬, ?, <≡>, X+, X-, PCAg, ACAg} is the set of tableau rule labels (without the rules 

for action formulae), 

→ ⊆ S’ × R × S’ is the transition relation, 

s’0 is the start state. 
 
Intuitively, states s’ contain the sub-formulae of the action formulae, and the transitions are 
labeled by operators associated with the formula of the starting state. Semantic transition 
systems enable us to describe the semantics of formulae by sub-formulae connected by 
logical operators. Thus, there is a transition between states s’i and s’j iff L’(s’j) is a sub-
formula or an semantically equivalent formula of L’(s’i). Following traditional usage we 

write s →r s’ instead of <s, r, s’> ∈ → where s, s’ ∈ S’ and r ∈ R. 
 
Definition 8.2 A transition system T for a dialogue game protocol is a 6-tuple                    

<S, Lab, ℘, L, Act, →, s0> where: 
S is a set of states,  

Lab : S → 2Φp is the labeling state function, where Φp is the set of atomic propositions, 

℘ is a set of semantic transition systems with ε ∈ ℘ is the empty semantic transition 

system, 

L : S → ℘ is the function associating to a state s ∈ S a semantic transition system T’ ∈ ℘ 

describing the semantics of the action labeling the entry transition, 

Act ∈ {Create, Withdraw, Satisfy, Accept-content, Refuse-content, Challenge-content, 
Justify-content, Defend-content, Attack-content} is the set of actions, 

→ ⊆ S × Act × S is the transition relation, 

s0 is the start state with L(s0) = ε (i.e. there is no semantic transition system in s0). 
 
The transitions are labeled by the actions applied to SC and to SC contents and the 

argumentation actions. We write s → s’ instead of <s, •, s’> ∈ → where s, s’ ∈ S and                

• ∈ Act. Figure 8.5 illustrates a part of a transition system for a dialogue game protocol. 
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<≡> X
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a1

Figure 8.5. A part of a transition system for a dialogue game protocol

a1: Create(Ag1, PC(Ag1, Ag2, t0, φ)) 

a2: Challenge-content(Ag2, PC(Ag1, Ag2, t1, φ)) 

a3: Justif-content(Ag1, PC(Ag1, Ag2, t2, φ), φ’) 

 s1.0: PC(Ag1, Ag2, t0, φ)) 

s1.1: φ 

 s2.0: PC(Ag2, Ag1, t1, ?φ)) 

s2.1: ?φ 

s2.2: φ 

s3.0: PC(Ag1, Ag2, t2, φ’ ∴ φ)) 

s3.1: φ' ∴ φ 

s3.2: φ' ∧ X+(¬φ’  ∨ φ) 

s3.3: φ' 

s3.4: ¬φ’ ∨ φ 

 
Figure 8.5. A part of a transition system for a dialogue game protocol 

 
8.4.2 Logical Properties 

 
The properties to be verified in the dialogue game protocols specified by DCTL*CAN are 
action and temporal properties. For example, we can verify if a model of dialogue game 
protocol satisfies the following property:  
 

AG+
(Challenge-content(Ag2, PC(Ag1, Ag2, t, φ)) ⇒  

F+
Justify-content(Ag1, PC(Ag1, Ag2, t, φ))) 

 
This property indicates that if an agent Ag2 challenges the content of an Ag1’s propositional 
commitment (PC), then Ag1 will justify this content.  
 
Another property capturing the deontic notion of SC is given by the following formula:   
 

AG+
(Attack-content(Ag2, PC(Ag1, Ag2, t, φ), φ’)) ⇒  

   (F+
Defend-content(Ag1, PC(Ag1, Ag2, t, φ))  

∨ F+
Attack-content(Ag1, PC(Ag2, Ag1, t’, φ’))) 

∨ F+
Accept-content(Ag1, PC(Ag2, Ag1, t’, φ’))) 

 
Thus, we can verify if a model of a dialogue game protocol satisfies the fact that if an agent 
Ag2 attacks the content of an agent Ag1’s propositional commitment PC, then Ag1 will 
defend its propositional commitment content, attack the Ag2’s argument or accept it. 
 

8.5 Verification of Dialogue Game Protocols 
  

In this section, we use a combination of an automata-theoretic approach and a tableau-based 
approach to model-checking for our commitment and argument logic. 
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8.5.1 Alternating Büchi Tableau Automata for DCTL*CAN 

 
As a kind of Büchi automata, ABTAs (Bhat, 1998), (Bhat and Cleaveland, 2001) are used in 
order to prove properties of infinite behavior. These automata can be used as an 
intermediate representation for system properties. Let £ be the set of atomic propositions 

and let ℜ be a set of tableau rule labels defined as follows:  

ℜ = {∧, ∨, ¬, ?} ∪ ℜAct ∪ ℜ¬Act ∪ ℜSC ∪ ℜSet where ℜAct,  ℜSC and ℜSet are defined as 
follows: 

ℜAct = {<αϕ>, <αSC>, <C>, <W>, < S
Ag
PC >, < S

Ag
AC >, <V

Ag
PC >, <V

Ag
AC >, <Rea>, <Ch>, <Acc>, 

<Ref>, <Jus>, <Att>, <Def>}. 

ℜSC = {[PCAg], [ACAg]}. 

ℜSet = {<≡>, X+, X−}. 
The associated tableau rules are given in Figures 8.1, 8.2, 8.3 and 8.4.  
 
Formally, we define ABTAs for our DCTL*CAN logic as follows: 
 

Definition 8.3 An ABTA for DCTL*CAN is a 5-tuple <Q, l, →, q0, F >, where:  

Q is a finite set of states,  

l: Q → £  ∪ ℜ is the state labeling,  

→ ⊆ Q × Q is the transition relation,  

q0 is the start state, 

F ⊆ 2Q is the acceptance condition. 
 
ABTAs allow us to encode “top-down proofs” for temporal formulae. Indeed, an ABTA 
encodes a proof schema in order to prove, in a goal-directed manner, that a transition system 
satisfies a temporal formula. Let us consider the following example. We would like to prove 

that a state s in a transition system satisfies a temporal formula of the form F1 ∧ F2, where 
F1 and F2 are two formulae. Regardless of the structure of the system, there would be two 
sub-goals if we want to prove this in a top-down, goal-directed manner. The first would be 
to prove that s satisfies F1, and the second would be to prove that s satisfies F2. Intuitively, 

an ABTA for F1 ∧ F2 would encode this "proof structure" using states for the formulae F1 

∧ F2, F1, and F2. A transition from F1 ∧ F2 to each of F1 and F2 should be added to the 

ABTA and the labeling of the state for F1 ∧ F2 being "∧" which is the label of a certain 
rule. Indeed, in an ABTA, we can consider that: 1) states correspond to "formulae", 2) the 
labeling of a state is the "logical operator" used to construct the formula, and 3) the 
transition relation represents a "sub-goal" relationship. 
 
In order to decide about the satisfaction of formulae, we use the notion of the accepting runs 
of an ABTA on a transition system. These runs are not considered to be finite, but rather 
infinite, while cycling infinitely many times through acceptance states. In order to define 
this notion of the ABTA’s run, we need to introduce three types of nodes: positive, negative 
and neutral (neither positive nor negative). Intuitively, nodes classified positive are nodes 

that correspond to a formula without negation (for example Create(Ag1, PC(Ag1, Ag2, t, φ))), 
and negative nodes are nodes that correspond to a formula with negation (for example 

¬Justify-content(Ag1, PC(Ag1, Ag2, t, φ))). Neutral nodes are used in order to verify the 
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semantics of an action formula (act ∈ Act ) written in the formula to be verified under the 

form ¬act. From the syntax point of view, ¬act means that the action act is not performed. 
For example, if in the formula to be verified appears the sub-formula:  

"¬Justify-content(Ag1, PC(Ag1, Ag2, t, φ), φ’)",  
we use in the ABTA neutral nodes in order to verify the semantics of: 

"Justify-content(Ag1, PC(Ag1, Ag2, t, φ), φ’)".  
The reason is that in transition systems, and consequently in the sub-transition systems, we 
have only action formulae without negation, whereas in the formula to be verified, we can 
have action formulae with negation. We note that we can not use here negative nodes 
because we do not interested in the formula in itself (i.e. in the example                          

"¬Justify-content(Ag1, PC(Ag1, Ag2, t, φ), φ’)") but in the semantics of the underlying action 

(i.e. "Justify-content(Ag1, PC(Ag1, Ag2, t, φ), φ’)"). In other words, we are not interested in 
the semantics of the negation action, but in the semantics of the action itself. Section 8.5.5 
presents an example (Example 2) illustrating this case. We note here that in order to verify 

that an action formula ¬act is satisfied, we have to verify that from a given state there is no 
transition in the transition system labeled by act. Definition 8.4 gives the definition of this 
notion of run. In this definition, elements of the set S of states are denoted si or ti. The 
explanation of the different closes is given after the definition and a detailed example of this 
notion of run is given in Figure 8.11 at the end of this chapter. 
 

Definition 8.4 A run of an ABTA B = <Q, l, →, qo, F> on a transition system                          

T = <S, Lab, ℘, L, Act, →, s0> is a graph in which the nodes are classified as positive, 

negative or neutral and are labeled by elements of  Q × S as follows: 
 
1. The root of the graph is a positive node and is labeled by <q0, s0> . 

2. If ϕ is a positive node with label <q, si> such that l(q) = ¬ and q → q’, then ϕ has one 

negative successor labeled <q’, si> and vice versa. 

• Otherwise, for a positive node ϕ labeled by <q, si>: 

3. If l(q) ∈ £ then ϕ is a leaf. 

4. If l(q) ∈ {∧, <≡>} and {q’ | q → q’} = {q1, …, qm}, then ϕ has positive successors 

ϕ1, …, ϕm with ϕj labeled by <qj, si> (1 ≤ j ≤ m). 

5. If l(q) = ∨ then ϕ has one positive successor ϕ’ labeled by <q’, si> for some            

q’ ∈ {q’ | q → q’ }. 

6. If l(q) = X+ and q → q’ and {s’| si →• s’} = {t1, …, tm} where • ∈ Act,  then ϕ has 

positive successors ϕ1, …, ϕm with ϕj labeled by <q’, tj> (1 ≤ j ≤ m). 

7. If l(q) = X− and q → q’ and {s’| s’ →• si} = {t1, …, tm} where • ∈ Act,  then ϕ has 

positive successors ϕ1, …, ϕm with ϕj labeled by <q’, tj> (1 ≤ j ≤ m). 

8. If l(q) = <•> where • ∈ Act and q → q’, and si →• si+1 then ϕ has one positive 

successor ϕ’ labeled by <q’, si+1,0> where si+1,0 is the initial state of the semantic 

transition system of si+1. 

9. If l(q) = <•> where • ∈ ¬Act and q → q’, and si →¬• si+1 then ϕ has one neutral 

successor ϕ’ labeled by <q’, si+1,0> where si+1,0 is the initial state of the semantic 

transition system of si+1. 

10. If l(q) = <•> where • ∈ ¬Act and q → q’, and si →•’ si+1 where • ≠ •’ and •’ ∈ Act, 

then ϕ has one positive successor ϕ’ labeled by <q’, si+1>. 
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• Otherwise, for a negative node ϕ labeled by <q, si>: 

11. If l(q) ∈ £ then ϕ is a leaf. 

12. If l(q) ∈ {∨, <≡>} and {q’ | q → q’} = {q1, …, qm}, then ϕ has negative successors 

ϕ1, …, ϕm with ϕj labeled by <qj, si> (1 ≤ j ≤ m). 

13. If l(q) = ∧ then ϕ has one negative successor ϕ’ labeled by <q’, si> for some           

q’ ∈ {q’ | q → q’ }. 

14. If l(q) = X+
 and q → q’ and {s’| si →• s’} = {t1, …, tm} where • ∈ Act,  then ϕ has 

negative successors ϕ1, …, ϕm with ϕj labeled by <q’, tj> (1 ≤ j ≤ m). 

15. If l(q) = X− and q → q’ and {s’| s’ →• si} = {t1, …, tm} where • ∈ Act,  then ϕ has 

negative successors ϕ1, …, ϕm with ϕj labeled by <q’, tj> (1 ≤ j ≤ m). 

16. If l(q) = <•> where • ∈ Act and q → q’, and si →• si+1 then ϕ has one negative 

successor ϕ’ labeled by <q’, si+1,0> where si+1,0 is the initial state of the semantic 

transition system of si+1. 

17. If l(q) = <•> where • ∈ ¬Act and q → q’, and si →¬• si+1 then ϕ has one neutral 

successor ϕ’ labeled by <q’, si+1,0> where si+1,0 is the initial state of the semantic 

transition system of si+1. 

18. If l(q) = <•> where • ∈ ¬Act and q → q’, and si →•’ si+1 where • ≠ •’ and •’ ∈ Act, 

then ϕ has one negative successor ϕ’ labeled by <q’, si+1>. 

• Otherwise, for a neutral node ϕ labeled by <q, si,j>: 

19. If l(q) = <≡> and {q’ | q → q’} = {q1, q2} such that q1 is a leaf, and si,j has a 

successor si,j+1, then ϕ has one positive leaf successor ϕ’ labeled by <q1, si,j> and 

one neutral successor ϕ’’ labeled by <q2, si, j+1>. 

20. If l(q) = <≡> and {q’ | q → q’} = {q1, q2} such that q1 is a leaf, and si,j has no 

successor, then ϕ has one positive leaf successor labeled by <q1, si,j>. 

• Otherwise, for a positive (negative) node ϕ labeled by <q, si,j>: 

21. If l(q) = <≡> and {q’ | q → q’} = {q1, q2} such that q1 is a leaf, and si,j has a 

successor si,j+1, then ϕ has one positive leaf successorϕ’ labeled by <q1, si,j> and one 

positive (negative) successor ϕ’’ labeled by <q2, si, j+1>. 

22. If l(q) = <≡> and {q’ | q → q’} = {q1, q2} such that q1 is a leaf, and si,j has no 

successor, then ϕ has one positive leaf successorϕ’ labeled by <q1, si,j> and one 

positive (negative) successor ϕ’’ labeled by <q2, si>. 

• Otherwise, for a positive (negative, neutral) node ϕ labeled by <q, si,j>: 

23. If l(q) ∈ {∧, ∨, ?, X+, X−, [SCAg]} where SC ∈ {PC, AC} and {q’ | q → q’} = {q1}, 

and si,j →r si,j+1 such that r = l(q), then ϕ has one positive (negative, neutral) 

successor ϕ’ labeled by <q1, si,j+1>. 
 
The notion of run of an ABTA on a transition system is a non-synchronized product graph 
of the ABTA and the transition system. This run uses the label of nodes in the ABTA (l(q)), 

the transitions in the ABTA (q → q’), and the transitions in the transition system (si → sj). 
The product is not synchronized in the sense that it is possible to use transitions in the 
ABTA while staying in the same state in the transition system (this is the case for example 
of the closes 2, 4, and 5).  
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The second close in the definition says that if we have a positive node ϕ in the product 

graph such that the corresponding state in the ABTA is labelled with ¬ and we have a 

transition q → q’ in this ABTA, then ϕ has one negative successor labelled with <q’, si>. In 
this case we use a transition from the ABTA and we stay in the same state of the transition 
system. In the case of a positive node and if the current state of the ABTA is labelled with 

∧, all the transitions of this current state of the ABTA are used (close 4). However, if the 

current state of the ABTA is labelled with ∨, only one arbitrary transition from the ABTA is 

used (close 5). The intuitive idea is that in the case of ∧, all the sub-formulae must be true in 

order to decide about the formula of the current node of the ABTA, and in the case of ∨ 
only one sub-formula must be true.   
 
The cases in which a transition of the transition system is used are:  
1. The current node of the ABTA is labelled with X+ (which means a next state in the 

transition system) or X− (which means a previous state in the transition system). This is the 
case of the closes 6, 7, 14, and 15. In this case we use all the transitions from the current 
state si to next or previous states of the transition system.  
2. The current state of the ABTA and a transition from the current state of the transition 
system are labelled with the same action. This is the case of the closes 8 and 16. In this case, 
the current transition of the ABTA and the transition from the current state si of the 
transition system to a state si+1, 0 of the associated semantic transition system are used. The 
idea is to start the parsing of the formula coded in the semantic transition system.  
3. The current state of the ABTA and a transition from the current state of the transition 

system are labelled with the same action which is preceded by ¬ in the ABTA. This is the 
case of the closes 9 and 17. In this case, the current transition of the ABTA and the 
transition from the current state si of the transition system to a state si+1, 0 of the associated 
semantic transition system are used. The successor node is classified neutral. This allows us 
to verify the structure of the formula coded in the transition system. 
4. The current state of the ABTA and a transition from the current state of the transition 
system are labelled with different actions where the state of the ABTA is labelled with a 
negative formula. This is the case of the closes 10 and 18. In this case, the formula is 
satisfied, but its structure cannot be verified. Consequently, the current transition of the 
ABTA and the transition from the current state si of the transition system to a next state si+1 
are used. This means that, we do not visit the associated semantic transition system. 
 
Finally, the closes 19, 20, 21, 22, and 23 deal with the case of verifying the structure of the 
commitment formulae in the sub-transition systems. In these closes, transitions                      

si, j → si, j + 1 are used. We note here that when si,j has no successor, the formula contained in 
this state is an atomic formula or a boolean formula whose all the sub-formulae are atomic 

(for example p ∧ q where p and q are atomic). 
 
We also need to define the notion of success of a run for the correctness of the model 
checking. To define this notion, we first introduce the following terminology: 
 
In an ABTA, every infinite path has a suffix that contains either positive or negative nodes, 
but not both. Such a path is referred to as positive in the former case and negative in the 
latter. 



149 

 

 

Let p p∈ Φ  and let si be a state in a transition system T. Then Ti ps  iff ( )ip Lab s∈ and 

Ti ps ¬  iff ( ).ip Lab s∉  

Let si, j be a state in a semantic transition system of a transition system T. Then , Ti j ps  

iff ,'( )i jp Lab s∈ and , Ti j ps ¬  iff ,'( ).i jp Lab s∉  

 

Definition 8.5 Let r be a run of ABTA B = <Q, l, →, q0, F> on a transition system               

T = <S, Lab, ℘, L, Act, →, s0>. The run r is successful iff every leaf and every infinite path 

in r is successful. A successful leaf is defined as follows: 

1- A positive leaf labeled by <q, si> is successful iff si T l(q) or l(q) = <•> where • ∈ Act 

and there is no sj such that si →• sj.  
2- A positive leaf labeled by <q, si, j> is successful iff si, j T l(q)  

3- A negative leaf labeled by <q, si> is successful iff si T ¬l(q) or l(q) = <•> where • ∈ Act 

and there is no sj such that si →• sj. 

4- A negative leaf labeled by <q, si, j> is successful iff si, j T ¬l(q) 
5- All neutral leaves are not successful. 

A successful infinite path is defined as follows: 

1- A positive path is successful iff ∀f ∈ F, ∃q ∈ f such that q occurs infinitely often in the 

path. This condition is called the Büchi condition. 

2- A negative path is successful iff ∃f ∈ F, ∀q ∈ f, q does not occur infinitely often in the 

path. This condition is called the co-Büchi condition. 
 

We note here that a positive or negative leaf labeled by <q, s> such that l(q) = <•> where        

• ∈ Act and there is no s’ such that s →• s’ is considered a successful leaf because we can 

not consider it unsuccessful. The reason is that it is possible to find a transition labeled by • 
and starting from another state s’’ in the transition system. This is the case of the leaf 
labeled by (<Ch>, s0) in the Example 2, Section 8.5.5 (see Figure 8.11, Section 8.5.6).  If we 
consider such a leaf unsuccessful, then even if we find a successful infinite path, the run 
will be considered unsuccessful. However this is false. 
 
An ABTA B accepts a transition system T iff there exists a successful run of B on T.   
 
8.5.2 Translating DCTL*CAN into ABTA  

 

The procedure for translating a DCTL*CAN formula p = Eφ to an ABTA B uses goal-
directed rules in order to build a tableau from this formula. Indeed, these proof rules are 
conducted in a top-down fashion in order to determine whether states satisfy properties or 
not. The tableau is constructed by exhaustively applying the rules contained in Figures 8.1, 
8.2, 8.3 and 8.4 to p. Then, B can be extracted from this tableau as follows. First, we 
generate the states and the transitions. Intuitively, states will correspond to state formulae, 
with the start state being p. To generate new states from an existing state for a formula p’, 
we determine which rule is applicable to p’, starting with R1, by comparing the form of p’ 
to the formula appearing in the “goal position” of each rule. Let rule(q) denote the rule 
applied at node q. The labeling function l of states is defined as follows. If q does not have 
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any successor, then l(q) ∈ £. Otherwise, the successors of q are given by rule(q). The label 
of the rule becomes the label of the state q, and the sub-goals of the rule are then added as 
states related to q by transitions. 
  
A tableau for a DCTL*CAN formula p is a maximal proof tree having p as its root and 
constructed using R1-R32. If  p’ results from the application of a rule to p, then we say that 
p’ is a child of p in the tableau. The height of a tableau is defined as the length of the 
longest sequence <p0, p1, …>, where pi+1 is the child of pi (Cleaveland, 1990). Finally, in 
order to compute the successful run of the generating ABTA, we should compute the 
acceptance states F. For this purpose we use the following definition. 
 
Definition 8.6 Let q be a state in an ABTA B and Q the set of all states. Suppose                  

φ = φ1 U
+ φ2 ∈ q7. We define the set Fφ as follows:  

Fφ = {q’∈ Q | (φ ∉ q’ and X+φ ∉ q’) or φ2 ∈ q’}.  
The acceptance set F is defined as follows:  

F = {Fφ |  φ = φ1 U
+ φ2 and ∃q ∈ B, φ ∈ q}. 

 

According to this definition, a state that contains the formula φ or the formula X+φ is not an 
acceptance state. The reason is that according to Definition 8.4, there is a transition from a 

state containing φ to a state containing X+φ and vice versa. Therefore, according to 
Definition 8.5, there is a successful run in the ABTA B. However, we can not decide about 
the satisfaction of a formula using this run. The reason is that in an infinite cycle including a 

state containing φ and a state containing X+φ, we can not be sure that a state containing φ2 is 

reachable. However, according to the semantics of U+, the satisfaction of φ needs that a state 

containing φ2 is reachable while passing by states containing φ1. 
 
8.5.3 Termination 

 
In this section we prove the termination of the translation procedure. Since 
this procedure is based on tableau rules, we need to prove the finiteness 
of the tableau. The methodology that we follow is inspired by (Cleaveland, 1990), (Adi et 
al., 2003).   
 

If σ2 is a DCTL*CAN formula resulting from the application of a rule to a DCTL*CAN 

formula σ1, then we say that σ2 is a child of σ1 in the tableau and σ1 is the parent of σ2. The 
height of a tableau (Cleaveland, 1990) is defined as the length of the longest sequence    

<σ0, σ1, …>, where σi is the parent of σi+1. To prove the finiteness of a tableau, we will 
establish that each formula has a maximum height tableau. 
 

Intuitively, to show the finiteness of the tableau, we will define a strict ordering relation ≺ 

between DCTL*CAN formulae and then show that: 

1- if σ1 is the parent of σ2 , then σ1 ≺ σ2. 

                                                 
7 Here we consider the until formula because is the formula that allows paths to be infinite. 
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2- the strict ordering relation ≺ has no infinite ascending chains. 

The ordering relation ≺ should reflect the fact that applying tableau rules results in shorter 

formulae or recursive formulae. The idea is to prove that the number of nodes of the ABTA 
is finite. Therefore, the definition of this ordering is based either on the fact that formulae 
are recursive or on the length of formulae. We notice that in the case of recursive formulae, 
we obtain cycles which are infinite paths on a finite number of nodes. The length of a 
formula is defined inductively as follows: 
 

Definition 8.7 The length of a formula ψ denoted by |ψ| is the number of variables and 

operators in ψ i.e. 
 

|ψ| = 1 if ψ is an atomic formula 

|¬ψ| = 1 + |ψ| 

|ψ1 ∧ ψ2| = 1+ |ψ1| + |ψ2| 

|ψ1 ∨ ψ2| = 1+ |ψ1| + |ψ2| 

|?ψ| = 1 + |ψ| 

|ψ1 ∴ψ2| = 1+ |ψ1| + |X+(¬ψ1 ∨ ψ2)| 

|Xψ| = 1 + |ψ| where X ∈ {X+, X−} 

|ψ1 U ψ2| = 1+ |ψ1| + |ψ2| where (U, X) ∈ {(U+, X+), (U−, X−)} 

|PC(Ag1, Ag2, t, ψ)| = 1 + |ψ| 

|AC(Ag1, Ag2, t, (α)ψ)| = 1 + |ψ| 

|Perform(α)ψ| = 1 + |ψ| 

|Perform(α)SC(Ag1, Ag2, t, ψ)| = 1 + |SC(Ag1, Ag2, t, ψ)| 

|Create(Ag1, SC(Ag1, Ag2, t, ψ))| = 1 + |SC(Ag1, Ag2, t, ψ)| 

|Withdraw(Ag1, SC(Ag1, Ag2, t, ψ))| = 1 + |¬SC(Ag1, Ag2, t, ψ)| 

|Satisfy(Ag1, PC(Ag1, Ag2, t, ψ))| = 1 + |ψ| 

|Satisfy(Ag1, AC(Ag1, Ag2, t, (α, ψ)))| = 1 + |Perform(α)ψ| 

|Violate(Ag1, PC(Ag1, Ag2, t, ψ))| = 1 + |¬ψ| 

|Violate(Ag1, AC(Ag1, Ag2, t, (α, ψ)))| = 1 + |¬Perform(α)ψ| 

|Reactivate(Ag1, SC(Ag1, Ag2, t, ψ))| = 1 + |SC(Ag1, Ag2, t, ψ)| 

|Challenge-content(Ag2, PC(Ag1, Ag2, t, ψ))| = 1 + |PC(Ag2, Ag1, t’, ?ψ)| 

|Accept-content(Ag2, SC(Ag1, Ag2, t, ψ))| = 1 + |SC(Ag2, Ag1, t’, ψ)| 

|Refuse-content(Ag2, SC(Ag1, Ag2, t, ψ))| = 1 + |SC(Ag2, Ag1, t’, ¬ψ)| 

|Justify-content(Ag1, PC(Ag1, Ag2, t, ψ), ψ’)| = 1 + |PC(Ag1, Ag2, t’, ψ’ ∴ ψ)| 

|Attack-content(Ag2, PC(Ag1, Ag2, t, ψ), ψ’)| = 1 + |PC(Ag2, Ag1, t’, ψ’ ∴ ¬ψ)| 

|Defend-content(Ag1, PC(Ag1, Ag2, t, ψ), ψ’)| = 1 + |PC(Ag1, Ag2, t’, ψ’ ∴ ψ)| 
 

The ordering relation ≺ is defined as follows: 

 

Definition 8.8 Let σ1 = E(ψ1) and σ2 = E(ψ2) be two DCTL*CAN formulae. Then, σ1 ≺ σ2 

holds if  

1- σ1 σ2 



152 

 

2- σ1 σ2 and |ψ1| > |ψ2|. 

where σ1 σ2 iff Xψ1 appears in ψ2 

 
The first close is used when we have a recursive formula (this means that an until formula). 
 

≺ is irreflexive, asymmetric and transitive. The proof is straightforward from the definition 

since > and are strict ordering relations. 

 

In what follows, the notation σ1 →R σ2 means that σ1 is the parent of σ2 using a tableau rule 
R. Now, let us prove the following lemma. 
 

Lemma 8.9 Let σ1 = E(ψ1) and σ2 = E(ψ2) be two DCTL*CAN  formulae. Then:  

σ1 →R σ2 ⇒ σ1 ≺ σ2. 

 
Proof 

The proof is based on the analysis of the different cases of our tableau rules. Most cases are 
straightforward. Here we only consider rules R7, R9, R30, and R32. 
 
R = R7: 

 σ1 →R σ2 

 ⇒ σ1 = E(Φ, Perform(α)ψ), σ2 = E(Φ, ψ) 

⇒ σ1 ≺ σ2   (from the definition of ≺ (Definition 8.8) and the fact that 

|Perform(α)ψ| = 1 + |ψ| > |ψ|) 
R = R9: 

 σ1 →R σ2 

 ⇒ σ1 = E(Φ, Create(Ag1, SC(Ag1, Ag2, t, ψ), σ2 = E(Φ, SC(Ag1, Ag2, t, ψ)) 

⇒ σ1 ≺ σ2   (from the definition of ≺ and the fact that 

|Create(SC(Ag1, Ag2, t, ψ)| = 1 + |SC(Ag1, Ag2, t, ψ)|  

> |SC(Ag1, Ag2, t, ψ)|) 
 
R = R30: 

 σ1 →R σ2 

 ⇒ σ1 = E(Φ, ψ1 ∴ψ2), σ2 = E(Φ, ψ1, X
+(¬ψ1 ∨ ψ2)) 

⇒ σ1 ≺ σ2   (from the definition of≺ and the fact that  

|ψ1 ∴ψ2| = 1+ |ψ1| + |X+(¬ψ1 ∨ ψ2)| 
 
R = R32: 

 σ1 →R σ2 

 ⇒ σ1 = E(Φ, ψ1 U
+ψ2), σ2 = E(Φ, ψ2) or E(Φ, ψ1, X

+(ψ1 U
+ ψ2)) 

⇒ σ1 ≺ σ2   (from the definition of ≺ and the fact that σ1 σ2 
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To show that the ordering relation has no infinite ascending chains, we use the notion of 

Fischer-Ladner closure of a formula ψ (CL(ψ)) (Emerson et al., 1993). The idea underlying 

the definition of this notion is to prove that if a tableau has a root ψ, then all formulae ψ’ of 

this tableau have a formula in CL(ψ) (i.e. ψ’ ∈ CL(ψ)). Furthermore, if we prove that CL(ψ) 
is a finite set, then we conclude that each formula appearing in a given tableau belongs to a 

finite set. This result will be very helpful to prove that the ordering relation ≺ has no infinite 

ascending chains. 
 

Definition 8.10 Let ψ be a DCTL*CAN formula. The Fischer-Ladner closure of ψ, CL(ψ) is 

the smallest set such that the following hold: 

If ψ is an atomic formula then {ψ} ⊆ CL(ψ)   

If ψ = ¬ψ1 then CL(ψ1) ⊆ CL(ψ) and {¬ψ1} ⊆ CL(ψ) 

If ψ = ψ1 ∧ ψ2 then CL(ψ1) ⊆ CL(ψ) and CL(ψ2) ⊆ CL(ψ) and {ψ1 ∧ ψ2} ⊆ CL(ψ) 

If ψ = ψ1 ∨ ψ2 then CL(ψ1) ⊆ CL(ψ) and CL(ψ2) ⊆ CL(ψ) and {ψ1 ∨ ψ2} ⊆ CL(ψ) 

If ψ = ?ψ1 then CL(ψ1) ⊆ CL(ψ) and {?ψ1} ⊆ CL(ψ) 

If ψ = ψ1 ∴ψ2 then  

CL(ψ1) ⊆ CL(ψ) and CL(X+(¬ψ1 ∨ ψ2)) ⊆ CL(ψ) and {ψ1 ∴ψ2} ⊆ CL(ψ) 

If ψ = Xψ1 then CL(ψ1) ⊆ CL(ψ) and {Xψ1} ⊆ CL(ψ) where X ∈ {X+, X−} 

If ψ = ψ1 Uψ2 then  

CL(ψ1) ⊆ CL(ψ) and CL(ψ2) ⊆ CL(ψ) and CL(X(ψ1 U ψ2)) ⊆ CL(ψ)  

and {ψ1 Uψ2} ⊆ CL(ψ) where (U, X) ∈ {(U+, X+), (U−, X−)} 

If ψ = SC(Ag1, Ag2, t, ψ1) then CL(ψ1) ⊆ CL(ψ) and {SC(Ag1, Ag2, t, ψ1)} ⊆ CL(ψ) 

If ψ = AC(Ag1, Ag2, t, (α, ψ1)) then  

CL(ψ1) ⊆ CL(ψ) and {AC(Ag1, Ag2, t, (α, ψ1))} ⊆ CL(ψ) 

If ψ = Perform(α)ψ1 then CL(ψ1) ⊆ CL(ψ) and {Perform(α)ψ1} ⊆ CL(ψ) 

If ψ = Perform(α)SC(Ag1, Ag2, t, ψ1) then 

CL(SC(Ag1, Ag2, t, ψ1)) ⊆ CL(ψ) and {Perform(α)SC(Ag1, Ag2, t, ψ1)} ⊆ CL(ψ) 

If ψ = Create(Ag1, SC(Ag1, Ag2, t, ψ1)) then 

CL(SC(Ag1, Ag2, t, ψ1)) ⊆ CL(ψ) and {Create(Ag1, SC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ) 

If ψ = Withdraw(Ag1, SC(Ag1, Ag2, t, ψ1)) then 

CL(¬SC(Ag1, Ag2, t, ψ1)) ⊆ CL(ψ) and {Withdraw(Ag1, SC(Ag1, Ag2, t, ψ1))}⊆ CL(ψ) 

If ψ = Satisfy(Ag1, PC(Ag1, Ag2, t, ψ1)) then 

CL(ψ1) ⊆ CL(ψ) and {Satisfy(Ag1, PC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ) 

If ψ = Satisfy(Ag1, AC(Ag1, Ag2, t, (α, ψ1))) then 

CL(Perform(α)ψ1) ⊆ CL(ψ) and {Satisfy(Ag1, AC(Ag1, Ag2, t, (α, ψ1)))} ⊆ CL(ψ) 

If ψ = Violate(Ag1, PC(Ag1, Ag2, t, ψ1)) then 

CL(¬ψ1) ⊆ CL(ψ) and {Violate(Ag1, PC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ) 

If ψ = Violate(Ag1, AC(Ag1, Ag2, t, (α, ψ1))) then 

CL(¬Perform(α)ψ1) ⊆ CL(ψ) and {Violate(Ag1, AC(Ag1, Ag2, t, (α, ψ1)))} ⊆ CL(ψ) 

If ψ = Reactivate(Ag1, SC(Ag1, Ag2, t, ψ1)) then 

CL(SC(Ag1, Ag2, t, ψ1)) ⊆ CL(ψ) and {Reactivate(Ag1, SC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ) 

If ψ = Challenge-content(Ag1, PC(Ag1, Ag2, t, ψ1)) then 

CL(PC(Ag1, Ag2, t’, ?ψ1)) ⊆ CL(ψ)  
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and {Challenge-content(Ag1, PC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ) 

If ψ = Accept-content(Ag1, SC(Ag1, Ag2, t, ψ1)) then 

CL(SC(Ag1, Ag2, t’, ψ1)) ⊆ CL(ψ)  

and {Accept-content(Ag1, SC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ) 

If ψ = Refuse-content(Ag1, SC(Ag1, Ag2, t, ψ1)) then 

CL(SC(Ag1, Ag2, t’, ¬ψ1)) ⊆ CL(ψ)  

and {Refuse-content(Ag1, SC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ) 

If ψ = Justify-content(Ag1, PC(Ag1, Ag2, t, ψ1), ψ2) then 

CL(PC(Ag1, Ag2, t’, ψ2 ∴ ψ1)) ⊆ CL(ψ)  

and {Justify-content(Ag1, PC(Ag1, Ag2, t, ψ1), ψ2)} ⊆ CL(ψ) 

If ψ = Attack-content(Ag2, PC(Ag1, Ag2, t, ψ1), ψ2) then 

CL(PC(Ag2, Ag1, t’, ψ2 ∴ ¬ψ1)) ⊆ CL(ψ)  

and {Attack-content(Ag2, PC(Ag1, Ag2, t, ψ1), ψ2)} ⊆ CL(ψ) 

If ψ = Defend-content(Ag1, PC(Ag1, Ag2, t, ψ1), ψ2) then 

CL(PC(Ag1, Ag2, t’, ψ2 ∴ ψ1)) ⊆ CL(ψ)  

and {Defend-content(Ag1, PC(Ag1, Ag2, t, ψ1), ψ2)} ⊆ CL(ψ) 
 

Lemma 8.11 Let ψ be a formula, then CL(ψ) is finite and bounded in size by 2|ψ|. 
 
Proof 

The proof is based on the induction of the structure of ψ. Most cases are straightforward. 
Here we only consider the four following cases: 
 

1- ψ = Xψ1, where X ∈ {X+, X−}. 
We have: 

CL(Xψ1) = {Xψ1} ∪ CL(ψ1) 
Therefore: 

|CL(Xψ1)| = 1 + |CL(ψ1)| 
Then, by using the induction hypothesis, we conclude that: 

|CL(Xψ1)| ≤ 1 + 2|ψ1| ≤ 2(1 + |ψ1|) 
Then, by using Definition 8.7 we obtain: 

|CL(Xψ1)| ≤ 2|Xψ1| 
 

2- ψ = ψ1 U ψ2, where U ∈ {U+, U−}. 
 
We have:  

CL(ψ1 U ψ2) = {ψ1 U ψ2} ∪ CL(ψ1) ∪ CL(ψ2) ∪ CL(X(ψ1 U ψ2)) 

= {ψ1 U ψ2} ∪ CL(ψ1) ∪ CL(ψ2) ∪ {X(ψ1 U ψ2)} 
Therefore:   

|CL(ψ1 U ψ2)| = 2+ |CL(ψ1)| + |CL(ψ2)|  
Then, by using the induction hypothesis and the previous case, we conclude that: 

|CL(ψ1 U ψ2)| ≤ 2 + 2|ψ1| + 2|ψ2| + |X(ψ1 U ψ2)| 
Then, by using Definition 8.7 we obtain: 

|CL(ψ1 U ψ2)| ≤ 2|ψ1 U ψ2| 
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3- ψ = SC(Ag1, Ag2, t, ψ1) 
 
We have:  

CL(SC(Ag1, Ag2, t, ψ1)) = {SC(Ag1, Ag2, t, ψ1)} ∪ CL(ψ1) 
Therefore:   

|CL(SC(Ag1, Ag2, t, ψ1))| = 1+ |CL(ψ1)|  
Then, by using the induction hypothesis, we conclude that: 

|CL(SC(Ag1, Ag2, t, ψ1))| ≤ 1 + 2|ψ1| 
Then, by using Definition 8.7 we obtain: 

|CL(SC(Ag1, Ag2, t, ψ1))| ≤ 2|SC(Ag1, Ag2, t, ψ1)| 
  

4- ψ = Create(Ag1, SC(Ag1, Ag2, t, ψ1)) 
 
We have:  

CL(Create(Ag1, SC(Ag1, Ag2, t, ψ1))) = {Create(SC(Ag1, Ag2, t, ψ1))}  

∪ CL(SC(Ag1, Ag2, t, ψ1)) 
Therefore:   

|CL(Create(Ag1, SC(Ag1, Ag2, t, ψ1)))| = 1+ 2|CL(SC(Ag1, Ag2, t, ψ1))|  
Then, by using the previous case, we conclude that: 

|CL(Create(Ag1, SC(Ag1, Ag2, t, ψ1))| ≤ 1 + 2|SC(Ag1, Ag2, t, ψ1)| 
Then, by using Definition 8.7 we obtain: 

|CL(Create(Ag1, SC(Ag1, Ag2, t, ψ1)))| ≤ 2|Create(Ag1, SC(Ag1, Ag2, t, ψ1))| 
 

 
The next lemma establishes the link between tableau rules and Fischer-Ladner closure of 
formulae. 
 

Lemma 8.12 Let σ1 = E(Φ, ψ1) and σ2 = E(Φ, ψ2) be two DCTL*CAN formulae. Then: 

σ1 →R σ2 ⇒ CL(ψ2) ⊆ CL(ψ1). 
 
Proof 

The proof is based on the case analysis of the rule R. Most cases are straightforward. Here 
we consider the rules R7, R9, R30, and R32. 
 
R = R7: 

 σ1 →R σ2 

 ⇒ ψ1 = Perform(α)ψ2   

⇒ (Definition of CL(Perform(α)ψ)) 

CL(ψ2) ⊆ CL(ψ1) 
 
R = R9: 

 σ1 →R σ2 

 ⇒ ψ1 = Create(ψ2) 

⇒ (Definition of CL(Create(ψ2)) 

CL(ψ2) ⊆ CL(ψ1) 
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R = R30: 

 σ1 →R σ2 

 ⇒ E(Φ, ψ1) = E(Φ, ψ ∴ψ’), E(Φ, ψ2) = E(Φ, ψ, X+(¬ψ ∨ ψ’)) 

⇒ CL(ψ1) = {ψ ∴ψ’} ∪ CL(ψ) ∪ CL(X+(¬ψ ∨ ψ’)) 

⇒ CL(ψ2) ⊆ CL(ψ1) 
 
R = R32: 

 σ1 →R σ2 

 ⇒ E(ψ1) = E(ψ U+ψ’), E(ψ2)  = E(ψ’) or E(ψ, X+(ψ U+ ψ’)) 

⇒ CL(ψ1) ={ψ U+ ψ’} ∪ CL(ψ) ∪ CL(ψ’) ∪ CL(X+(ψ U+ ψ’))  

⇒ CL(ψ2) ⊆ CL(ψ1) 
 

 

Intuitively, σi ≺ σj holds if σi is an ancestor of σj in some tableau, i.e. if there are rules Ri, 

..., Rj such that: σi →Ri σi+1... →Rj σj 

 

Lemma 8.13 The ordering relation ≺ has no infinite ascending chains. 

 
Proof 

Suppose that there exists an infinite chain: σ1 ≺ σ2 ≺ ... 

From Lemma 8.12, it follows that CL(ψi) ⊆ CL(ψi-1) ⊆ ... CL(ψ1) 

Since CL(ψ1) is finite (from Lemma 8.11), it follows that: 

∃j, ∀k ≥ j, CL(ψk) = CL(ψj) with σj ≺ σj+1 ≺ ... σk ≺ ... 

However, this is contradictory (from Lemma 8.12).  
 

 
Now, we can easily prove the finiteness theorem as shown below. 
 

Theorem 8.14 For any DCTL*CAN formula σ1, there is a maximum height tableau has σ1 as 

a root. 

 
Proof 

Suppose that there exists a tableau with root σ1 having an infinite path: 

σ1 →Ri σ2 →Rj σ3... 

where Ri, Rj, ... ∈ {R1, ..., R32}. Then, from Lemma 8.9 and from the fact that the ordering 

relation ≺ is transitive (since < is transitive), it follows that there exists an infinite chain: 

σ1  ≺ σ2 ≺ ... 

However this is contradictory from Lemma 8.13.   
 

 
 
8.5.4 Soundness and Completeness 
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Soundness and completeness of our method are stated by the following theorem.  
 

Theorem 8.15 Let ψ be a DCTL*CAN formula and Bψ the ABTA obtained by the translation 

procedure described above, and let Τ = <S, ℘, L, Act, →, s0> be a transition system that 

represents a dialogue game protocol. Then s0 T ψ   iff T is accepted by Bψ.  

 
Proof 

This theorem is a consequence of Proposition 8.16 and Lemmas 8.19, 8.20 and 8.21.  
 
Proposition 8.16 Let r a run of an ABTA B on a transition system T. In all infinite paths of 

r, the semantics of the action formulae appearing in these paths is verified. 
 
Proof 

The proof follows from Definitions 8.4 and 8.5. Indeed, the only case in which the 
semantics of an action formula is not respected is the case of a positive leaf <q, si,j> such 

that si,j T  ¬l(q). Because infinite paths do not encounter any leaf, the semantics of these 

formulae is verified in these paths.  
 

 
Now, we introduce the following definitions: 
 

Definition 8.17 Let ϕi a node in the run r of Bψ labeled by <q, s> and let σ = <ϕ0, …> be 

an infinite path in the run r. Let q0, q1,… be the corresponding sequence of Bψ states. σ is 

said to be successful iff for every formula φ ≡ φ1 U+ φ2 ∈ qi there exists j ≥ i such that          

φ2 ∈ qj. 
 

Definition 8.18 Let σT = <s0, s1,…> be a path in T, such that <si, sj> ∈ σT  iff                      

<(ql, si), (qm, sj)> ∈ σ or <(ql, si), (qm, sj,0)> ∈ σ for some l and m.  In addition, let                  

σT’ = <si,0, si,1,…> be a path in a semantic transition system T’ of T. If                          

<(ql, si), (qm, sj,0)> ∈ σ then <sj,j’, sj,j’+1> ∈ σT’  iff <(ql, sj,j’), (qm, sj.j’+1)> ∈ σ. 
 
We note that if we have a run r in which a leaf <q, si,j> is unsuccessful, then we conclude 
that the semantics is not respected and consequently the property to be verified is not 
satisfied. However, if r contains an unsuccessful leaf <q, si>, we conclude only that the 
property is not satisfied (there is no need to verify the semantics). 
 

Lemma 8.19 Let ψ be a DCTL*CAN state formula and Τ = <S, ℘, L, Act, →, s0> be a 

transition system such that s0 .T ψ  Also let Bψ the corresponding ABTA. Then T is 

accepted by Bψ.  
 
Proof 

To prove that T is accepted by Bψ, we have to prove that there exists a run r of Bψ on T such 
that all leaves and all infinite paths in the run are successful. 
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Let us assume that s0 T  ψ. First, let us suppose that there exists a leaf <q, s> in r such that 

s  ¬l(q). Since the application of tableau rules does not change the satisfaction of 

formulae, it follows from the definition of r that s0 T  ¬ψ which contradicts our 

assumption. 
 
Now, we will prove that all infinite paths are successful. The proof proceeds by 

contradiction. ψ is a state formula that we can write under the form EΦ, where Φ is a set of 

path formulae. Let us assume that there exists an unsuccessful infinite path σ in r and prove 

that σT T  ¬Φ. The fact that σ  is infinite implies that R32 occurs at infinitely many 

position in σ  and that φ1 U+ φ2 ⊆ Φ. Since σ is unsuccessful, there is a formula                     

φ1 U
+ φ2 ∈ qi such that for all j ≥ i we have φ2 ∉ qj. When this formula appears in the ABTA 

at the position qi, we have l(qi) = ∨. Thus, according to the definition of r and the form of 

R32, the current node ϕ1 of r labeled by <qi, s> has one successor ϕ2 labeled by <qi+1, s> 

with φ1 U+ φ2 ∈ qi and {φ1, X+(φ1 U+ φ2)} ⊆ qi+1. Therefore, l(qi+1) = ∧, and ϕ2 has a 

successor ϕ3 labeled by <qi+2, s> with X+(φ1 U+ φ2) ∈ qi+2. Using R29 and the fact that 

l(qi+2) = X+, the successor ϕ4 of ϕ3 is labeled by <qi+3, s’>  with φ1 U
+ φ2 ∈ qi+3 and  s → s’. 

This process will be repeated infinitely since the path is unsuccessful. It follows that there is 

no s in T such that s T  φ2. Thus, according to the semantics of φ1 U
+ φ2, there is no s in T 

such that  s T  φ1 U
+ φ2. Therefore, σT T  ¬Φ.  

 
 

Lemma 8.20 Let ψ be a DCTL*CAN state formula and Bψ the corresponding ABTA, and let 

Τ = <S, ℘, L, Act, →, s0> be a transition system such that T is accepted by Bψ. Then          

s0 .T ψ  

 
Proof 

The proof proceeds by contradiction. We assume that s0 T  ¬ψ and we prove that r 

contains a failed path such that one of the following holds: either σ  (a path in the run r of 

Bψ on T) is finite and the leaf is unsuccessful or σ is infinite and unsuccessful. Since            

s0 T  ¬ψ there is a path ΠT in T such that ΠT T  ¬φ for φ ∈ Φ or there is a path ΠT’ in a 

semantic transition system T’ of T such that ΠT’ T  ¬φ for φ ∈ Φ. The idea is to show that r 

contains a failed path σ such that:  

1. σT  is a prefix of ΠT or σT’ is a prefix of ΠT’ and  

2. if σT  = <sϕ0, …, sϕi>, then for all φ ∈ ϕi, we have ΠT (sϕi) T  ¬φ  or there is a sub-state 

s’ϕi of sϕi such that ΠT’ (s’ϕi) T  ¬φ where σT (σT’) is a path in T (in T’) constructed from σ 

as explained in Definition 8.18 and sϕi is the state that correspond to the node ϕi.  
 

We proceed by an inductive construction of σ. For |σ| = 1, we have σ = <ϕ0> and σT = <s0>. 

Thus, σT is a prefix of ΠT and ΠT (0) T  ¬φ since ΠT (0) = ΠT. First, we suppose that σ is 

finite. Using the construction process of a run, we can construct such a path from               

ΠT = <s0, …, sn> and eventually from ΠT’ = <sn,0, …, sn,n’> such that                         

σ = <(s0, q0) …, (sn, qm)> or σ = <(s0, q0) …, (sn,n’, qm)>. Since l(qm) is a sub formula of φ 

obtained by using some tableau rules, and ΠT T  ¬φ or ΠT’ T  ¬φ, it follows that              
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sn T  ¬l(qm) or sn,n’ T  ¬l(qm). Therefore, σ is a failed path. Now, we assume that we have 

constructed σ so that |σ| = i+1, for some i ≥ 0, and we prove that σ could be extended to be 

of length i+2. Since σ is infinite, there is a tableau rule R that appear at position i in σ. The 

goal position of this rule has the form EΦ. The proof is thus proceeds by an analysis of R. 
 

• R = R6. In this case we have φ ∈ ϕi with ϕi is a positive (negative) node. ϕi has one 

negative (positive) node ϕj with ¬φ ∈ ϕj.  σ can be extended by adding ϕj.  

• R = R7. Here we have φ = Perform(α)φ1 for some φ1 and some action α. The node ϕi 

has one successor ϕj labeled by <q’, s0ϕj> such that φ1 ∈ ϕj, sϕi →α sϕj and s0ϕj is the 

first sub-state of sϕj. According to the semantics of the perform operator and since 

ΠT' (sϕi) T  ¬φ it follows that ΠT’ (s0ϕj) T  ¬φ1. Thus, we can choose σ(i+1) = ϕj. It 

is clear that σT’ is a prefix of ΠT’. 

• R = R8. This case is similar to the last case (R = R7) by substituting φ1 by                       

SC( Ag1, Ag2, t, ϕ).  

• R = R9. In this case we have φ = Create(Ag1, SC(Ag1, Ag2, t, ϕ)). The current node ϕi 

has one successor ϕj labeled by <q’, s0ϕj> such that SC(Ag1, Ag2, t, ϕ) ∈ ϕj,                

sϕi →C sϕj and s0ϕj is the first sub-state of sϕj. It follows from the semantics of the 

create operator and from the fact that ΠT(sϕi) T  ¬φ that                          

ΠT(s0ϕj) T  ¬SC(Ag1, Ag2, ϕ). Thus, it is possible to extend σ such that 1 and 2 are 

always verified.  

• R = R10. This case is similar to the last one by substituting the semantics of the 
Create operator by the semantics of the Withdraw operator. 

• R = R11. Here we have φ = Satisfy(Ag1, PC(Ag1, Ag2, t, ϕ)). The current node ϕi has 

one successor ϕj labeled by <q’, s0ϕj> such that ϕ ∈ ϕj, sϕi →Spc 
sϕj and s0ϕj is the first 

sub-state of sϕj. It follows from the semantics of the Satisfy operator and from the 

fact that ΠT(sϕi) T  ¬φ that ΠT’(s0ϕj) T  ¬ϕ. In other words, this means that if an 

agent does not satisfy a propositional commitment, then the content of this 

commitment is false. Thus, it is possible to extend σ such that 1 and 2 are always 
verified. 

• R = R12. This case is similar to the previous case. If an agent does not satisfy an 

action commitment about α, then Perform(α)p is not satisfied in the path ΠT’(s0ϕj). 

• R = R13. Here we have φ = Violate(Ag1, PC(Ag1, Ag2, t, ϕ)). The current node ϕi has 

one successor ϕj labeled by <q’, s0ϕj> such that ¬ϕ ∈ ϕj, sϕi →Vpc 
sϕj and s0ϕj is the 

first sub-state of sϕj. It follows from the semantics of the Violate operator and from 

the fact that ΠT(sϕi) T  ¬φ that ΠT’(s0ϕj) T  ¬(¬ϕ). In other words, this means that 

if an agent does not violate a propositional commitment, then the content of this 

commitment is true. Thus, it is possible to extend σ such that 1 and 2 are always 
verified. 

• R = R14. This case is similar to the case of R13. 

• R = R15. In this case we have φ = Reactivate(Ag1, SC(Ag1, Ag2, t, ϕ)). The current 

node ϕi has one successor ϕj labeled by <q’, s0ϕj> such that                          

SC(Ag1, Ag2, t, ϕ) ∈ ϕj, sϕi →R 
sϕj and s0ϕj is the first sub-state of sϕj. It follows from 

the semantics of the Reactivate operator and from the fact that ΠT(sϕi) T  ¬φ that 
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ΠT’(s0ϕj) T  ¬(SC(Ag1, Ag2, t, ϕ)). In other words, this means that if an agent does 

not reactivate a SC in a model, then this commitment is not satisfied in this model. 

Thus, it is possible to extend σ such that 1 and 2 are always verified. 

• R = R16. This rule deals with the challenge action. Thus we have                          

PC(Ag2, Ag1, t, ?ϕ) ∈ ϕj with ϕj is the only successor of ϕi. Since the fact that an 

agent does not challenge a SC implies that this agent does not commit about ?ϕ, it 

follows that ΠT’(s0ϕj) T  ¬(PC(Ag2, Ag1, t, ?ϕ)). Therefore, we can choose              

σ(i+1) = ϕj. 

• R = Rx 17≤x≤18. In this case we can choose σ(i+1) = ϕj with ϕj  is the successor of ϕi 

in r and SC(Ag2, Ag1, ϕ’) ∈ ϕj (ϕ’∈ {ϕ, ¬ϕ}). In this case we have                     

ΠT’(s0ϕj) T  ¬(SC(Ag2, Ag1, t, ϕ’)). The informal explanation is as follows: if an 

agent does not accept (respectively refuse) the content ϕ of a SC, this agent does not 

commit about ϕ (respectively ¬ϕ). 

• R = Rx 19≤x≤21. These cases are similar. We deal with only the justification one. For 

this action we have φ = Justify-content(Ag1, PC(Ag1, Ag2, t, ϕ), ϕ’). The current node 

ϕi has one successor ϕj labeled by <q’, s0ϕj> such that PC(Ag1, Ag2, t, ϕ’∴ϕ) ∈ ϕj, 

sϕi →Jus 
sϕj and s0ϕj is the first sub-state of sϕj. It follows from the semantics of the 

Justify-content operator and from the fact that ΠT (sϕi) T  ¬φ that                          

ΠT’ (s0ϕj) T  ¬(PC(Ag1, Ag2, t, ϕ’∴ϕ)). In other words, this means that if an agent 

does not justify a SC in a model, then this agent does not commit about ϕ’∴ϕ. Thus, 

it is possible to extend σ by ϕj such that 1 and 2 are always verified. 

• R = Rx 22≤x≤23. These two cases are straightforward using the semantics of PC and 
AC. 

• R = R24. this case is similar to the case of R25.  

• R = R25. In this case we have φ = φ1 ∧ φ2 for some φ ∈ ϕi. Therefore, ϕi has two 

successors in r ϕj and ϕk with φ1 ∈ ϕj and φ2 ∈ ϕk. Since ΠT (sϕi) T  ¬φ it follows 

that  ΠT(sϕj) T  ¬φ1 or ΠT(sϕj) T  ¬φ2. Thus, σ can be extended by ϕj or by ϕk. It is 

clear that 1 and 2 are maintained.  

• R = R26. In this case we have φ = φ1 ∨ φ2 for some φ ∈ ϕi. Therefore, ϕi has one 

successor ϕj or ϕk with φ1 ∈ ϕj and φ2 ∈ ϕk. Since ΠT(sϕi) T  ¬φ it follows that      

ΠT (sϕj) T  ¬φ1 and ΠT (sϕj) T  ¬φ2. Thus, we can extend σ by adding ϕj or ϕk. 

Constraints 1 and 2 are maintained. 

• R = R27. In this case we have φ = ?φ1 for some φ ∈ ϕi. Therefore, ϕi has one 

successor ϕj with φ1 ∈ ϕj. Since ΠT’(sϕi) T  ¬φ it follows that ΠT’(sϕj) T  ¬φ1. 

Thus, we can extend σ by adding ϕj. Constraints 1 and 2 are maintained. 

• R = R28. Here we have φ = {X−φ1, …, X−φn) for some φ1, …,φn.  ϕi labeled by        

(q, sϕi) has one successor ϕj in r labeled by <q’, sϕj> such that q→q’ and sϕj→sϕi 

(notice that X− is a past operator). Since ΠT(sϕi) T  ¬X−φk  for 1 ≤ k ≤ n, it follows 

that  ΠT(sϕj) T  φk. Thus, σ (i+1) =  ϕj. 

• R = R29. This rule is applied when φ = {X+φ1, …, X+φn) for some φ1, …,φn.  ϕi 

labeled by (q, sϕi) has one successor ϕj in r labeled by <q’, sϕj> such that sϕi→sϕj. 

Since ΠT(sϕi) T  ¬X+φk  for 1 ≤ k ≤ n, it follows that  ΠT(sϕj) T  ¬φk. Thus,            

σ (i+1) =  ϕj. 
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• R = R30. Here there is a φ ∈ ϕi such that φ = φ1 ∴φ2 for some φ ∈ ϕi. Therefore, ϕi 

has one successor ϕj with φ1 ∧ X+(¬φ1 ∨ φ2) ∈ ϕj. Since ΠT’(s’ϕi) T  ¬φ it follows 

from the semantics of ∴ that ΠT’(s’ϕj) T  ¬(φ1 ∧ X+(¬φ1 ∨ φ2)). We choose            

σ (i+1) =  ϕj. It is clear that σT’ is a prefix of ΠT’.  

• R = R31. In this case we have φ = φ1 U− φ2. The node ϕi has one successor in            

r: ϕj (φ2 ∈ ϕj) or ϕk ({φ1, X
−φ} ∈ ϕk). According to the semantics of U− and since 

ΠT(sϕi) T  ¬φ it follows that either ΠT(sϕj) T  ¬(φ1 ∨ φ2) or ΠT(sϕk) T  φ1 ∧¬φ2 but 

ΠT(sϕk) T  ¬X−φ. In the two cases, σ can be extended such that 1 and 2 are 

maintained. 

• R = R32. This rule is used when φ = φ1 U
+ φ2. The node ϕi has one successor in         

r: ϕj (φ2 ∈ ϕj) or ϕk ({φ1, X
+φ} ∈ ϕk). According to the semantics of U+ and since   

ΠT (sϕi)╞T ¬φ it follows that either ΠT(sϕj) T  ¬(φ1 ∨ φ2) or ΠT(sϕk) T  φ1 ∧¬φ2 but 

ΠT (sϕk) T  ¬X+φ. In the two cases, σ can be extended such that 1 and 2 are 

maintained. 
 

The last point in the proof of this lemma is to show that the path σ is unsuccessful. Let i ≥ 0 

be such that φ1 U
+ φ2 ∈ σ(i) for some φ1 and φ2. According to Definition 8.17, we must 

show that is no j ≥ i such that φ2 ∈ σ(j). 

φ1 U
+ φ2 ∈ ϕi    ϕi =σ(i) 

⇒ (The constraint 2 is verified by the way σ is constructed) 

   ΠT (sϕi) T  ¬(φ1 U
+ φ2)  

⇒ ΠT (sϕi) T  ¬φ1 ∧ ¬φ2   or   ΠT (sϕi) T  φ1 ∧ ¬φ2 ∧ ¬X+(φ1 U
+ φ2)  

⇒ ∀i ≥ j ΠT (sϕj) T  ¬φ2 

⇒ φ2 ∈ ϕj. 
 

 
Now, we prove the third element of the correctness theorem that deals with the acceptance 
condition. 
 

Lemma 8.21 An infinite path σ in a run r of Bψ is successful iff it satisfies the generalized 

Büchi condition. 

 
Proof 

The proof follows from the definition of Fφ1 U+ φ2. 

1) “⇒” Assume that σ is successful. Suppose that φ1 U+ φ2 ∈ pi. Since the path is 

successful, there exists a pj, j ≥ i such that φ2 ∈ pj. Hence, for any i we can find a j ≥ i such 

that pj ∈ Fφ1 U+ φ2. It follows that ϕj is an accepting state that occurs infinitely often. 

2) “⇐” Assume that σ satisfies the generalized Büchi condition. Suppose that φ1 U
+ φ2 ∈ pi 

for some i. Since the path satisfies the Büchi condition, there exists a j ≥ i such that                   

pj ∈ Fφ1 U+ φ2. Two cases can be distinguished: 

a. if φ2 ∈ pj, then σ is successful. 

b. if φ2 ∉ pj, then according to the semantics of U+ and the rule R32, there exists a i ≤ k ≤ j 

such that φ2 ∈ pk. Therefore,  σ is successful.  
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8.5.5 Examples 

 
In this section we illustrate the construction of an ABTA for two formulae. The first 
formula is a propositional one. The second formula is an action one. 
a. Example 1 
 

Let us consider the following propositional formula: ).( pFGE ++  The tableau of this 

formula is illustrated by Figure 8.6. The first rule we can apply is R32 labeled by "∨" for the 
until formula (G+ is an abbreviation defined from U+). The second rule is also R32 for F+

p 
(F+ is also an abbreviation defined from U+). Thereafter rules R24 and R29 can be applied, 
etc. 
 
The ABTA obtained from this tableau is illustrated in Figure 8.7. In this ABTA, states (1), 

(3), (5) and (6) are the acceptance states according to Definition 8.6. The formula φ we 

consider is the following: φ = True U+ p ≡ F+
p. Notice that φ and X+φ do not appear in these 

states. State (5) is the acceptance state in the finite case. On the other hand, φ appears in 

states (2) and (7), and X+φ appears in state (4). Therefore, these states are not in Fφ. The 

path Π = (1, (2, 4, 7)*) is not a valid proof of E(G+F+
p). However, a path that visits 

infinitely often the states (1), (3) and (6) is a valid (infinite) proof. The reason is that in such 
a path there is always a chance to meet the proposition p (state (3)). Therefore, this path 

satisfies the Büchi condition. The Büchi condition is not satisfied in the path Π since there 
is no chance to visit infinitely often a state containing p. 
 
 

)(: pFGE ++∨  (1) 

 

),(: pFGXpFE ++++∨  (2) 

 

),(: pFGXpE +++<≡>  (3)            ),(: pFGXpFXEX
++++++  (4) 

 

p  (5) )(: pFGXEX
++++  (6) ),(: pFGpFE +++∨  (7) 

 

 )( pFGE ++    ),( pFGXpFE ++++  

 
Figure 8.6. The tableau for E(G+F+p)  

Figure 8.6. The tableau for E(G+F+p) 
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(1)

(2)

(4)(3)

(5)(6) (7)

∨

<≡> X
+

X
+

p

∨

∨

Figure 8.7. The ABTA of the formula E(G+F+p)
 

Figure 8.7. The ABTA of the formula E(G+F+p) 

 
b. Example 2 
 

In this section we consider the following action formula from DCTL*CAN:  
 

AG+
(Challenge-content(Ag2, PC(Ag1, Ag2, t, φ)) ⇒  

    F+
Justify-content(Ag1, PC(Ag1, Ag2, t, φ), φ’)).  

 
In order to simplify this formula, we use Ch for Challenge-content and Jus for Justify-

content. The tableau of this formula is illustrated by Figure 8.8. The associated ABTA of 
this formula is given by Figure 8.9. This formula is equivalent to the formula: 
 

AG+
(¬Ch(Ag2, PC(Ag1, Ag2, t, φ)) ∨ F+

Jus(Ag1, PC(Ag1, Ag2, t, φ), φ’)).  
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2 1 2 1 1 2: ( ( , ( , , , )) ( , ( , , , ), '))A Ch PC t Jus PC tAg Ag Ag Ag Ag AgG Fφ φ φ+ +¬ ¬ ∨  (1) 
 

2 1 2 1 1 2: ( ( , ( , , , )) ( ( , ( , , , ), ')))E Ch PC t Jus PC tAg Ag Ag Ag Ag AgGF φ φ φ++∨ ∧ ¬  (2) 

 

2 1 2

1 1 2

: ( ( , ( , , , ))

( ( , ( , , , ), ')))

Ch E Ch PC tAg Ag Ag

Jus PC tAg Ag AgG

φ

φ φ+

< > ∧

¬
 (3)        2 1 2

1 1 2

: ( ( ( , ( , , , ))

( ( , ( , , , ), '))))

E Ch PC tAg Ag AgX X F

Jus PC tAg Ag AgG

φ

φ φ

+ + +

+

< > ∧

¬
(4) 

 

2 2 1

1 1 2

[ ] : ( ( , , ,? )

( ( , ( , , , ), ')))

Ag E PC tAg AgPC

Jus PC tAg Ag AgG

φ

φ φ+

∧

¬
 (5)            

2 1 2

1 1 2

( ( , ( , , , ))

( ( , ( , , , ), ')))

E Ch PC tAg Ag AgF

Jus PC tAg Ag AgG

φ

φ φ

+

+

∧

¬
(2) 

 

1 1 2? : ((? ) ( ( , ( , , , ), ')))E Jus PC tAg Ag AgGφ φ φ+∧ ¬  (6) 
 

1 1 2: ( ( ( , ( , , , ), ')))E Jus PC tAg Ag AgGφ φ φ+<≡> ∧ ¬ (7) 
 

φ (8)  1 1 2: ( ( ( , ( , , , ), ')))E Jus PC tAg Ag AgG φ φ+∨ ¬ (9)                                  
 

1 1 2 1 1 2: ( ( , ( , , , ), '), ( ( , ( , , , ), ')))Jus E Jus PC t Jus PC tAg Ag Ag Ag Ag AgGXφ φ φ φ++< ¬ > ¬ ¬  (10)  
 

1 1 2 1 1 2[ ] : ( ( , , , ' ), ( ( , ( , , , ), ')))Ag E PC t Jus PC tAg Ag Ag Ag AgPC GXφ φ φ φ++∴ ¬  (11) 
  

1 1 2: ( ' , ( ( , ( , , , ), ')))E Jus PC tAg Ag AgGXφ φ φ φ++∧ ∴ ¬  (12) 
  

1 1 2: ( ', ( ' ), ( ( , ( , , , ), ')))E Jus PC tAg Ag AgGX Xφ φ φ φ φ++ +<≡> ¬ ∨ ¬  (13)  
 

'φ  (14)    
1 1 2: ( ( ' ), ( ( , ( , , , ), ')))E Jus PC tAg Ag AgGX X Xφ φ φ φ++ + +¬ ∨ ¬  (15) 

   

                  1 1 2: (( ' ), ( ( , ( , , , ), ')))E Jus PC tAg Ag AgGXφ φ φ φ++<≡> ¬ ∨ ¬  (16)                         

 

                  φφ∨¬ ' (17)  1 1 2: ( ( ( , ( , , , ), ')))E Jus PC tAg Ag AgGX X φ φ++ + ¬  (18) 

 

                                       1 1 2( ( ( , ( , , , ), ')))E Jus PC tAg Ag AgG φ φ+ ¬ (9) 

   

  
Figure 8.8. The tableau for 

AG+(Ch(Ag2, PC(Ag1, Ag2, t, φ)) ⇒ F+Jus(Ag1, PC(Ag1, Ag2, t, φ), φ’))  
Figure 8.8. The tableau for 

AG+(Ch(Ag2, PC(Ag1, Ag2, t, φ)) ⇒ F+Jus(Ag1, PC(Ag1, Ag2, t, φ), φ’)) 
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)1(

)9(

)2(

)4(

)7(

)6(

)13(

)15(

)10(

)11(

<≡>

>¬< Jus

][ 1PC Ag

∨

¬

>< Ch X
+

][ 2PC Ag

?

<≡>

X
+

<≡>

∨

∧

X
+

)3(

)5(

)12(

)16(

)18(

Figure 8.9.  The ABTA for The formula 
AG

+
(Ch(Ag2, PC(Ag1, Ag2, t,  ))     F

+
Jus(Ag1, PC(Ag1, Ag2,   ), ))⇒φ φ

)8(

)14(

)17(

φ

'φ

'φ φ¬ ∨

'φ

 
Figure 8.9. The ABTA for the formula  

AG+(Ch(Ag2, PC(Ag1, Ag2, t, φ)) ⇒ F+Jus(Ag1, PC(Ag1, Ag2, t, φ), φ’)) 

 

The first rule we can apply is R6 labeled by "¬". We obtain then the formula (2) of Figure 

8.8. From this formula we obtain the formula φ that we consider in order to compute the 
acceptance states:  
 

Φ = F+(Ch(Ag2, PC(Ag1, Ag2, t, φ)) ∧ G+(¬Jus(Ag1, PC(Ag1, Ag2, t, φ), φ’))). 
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In the ABTA of Figure 8.9 state (1) and states from (3) to (18) are the acceptance states 
according to Definition 8.6. States (2) and (4) are not acceptance states. Because only the 

first state is labeled by¬, all finite and infinite paths are negative paths. Consequently, the 

only infinite path that is a valid proof of the formula Φ is (1, (2, 4)*). In this path there is no 
acceptance state that occurs infinitely often. Therefore, this path satisfies the Büchi 
condition. The path visiting the state (3) and infinitely often the state (9) does not satisfy the 
formula because there is a challenge action (state (3)), and globally no justification action of 
the content of the challenged propositional commitment (state (9)).  
 
8.5.6 Model Checking Algorithm 
 

Our model checking algorithm for verifying that a dialogue game protocol satisfies a given 
property and checks that it respects the semantics of the underlying communicative acts is 
based on the procedure proposed by (Bhat and Cleaveland, 1996). Like the algorithm 
proposed by (Courcoubetis et al., 1992), our algorithm explores the product graph of an 
ABTA for DCLT*CAN and a transition system for a dialogue game. This algorithm is on-
the-fly (or local) algorithm that consists of checking if a transition system is accepted by an 
ABTA. This ABTA model checking is reduced to the emptiness of the Büchi automata 
(Vardi and Wolper, 1986). 
 

Let T = <S, Lab, ℘, L, Act, →, s0>  be a transition system for a dialogue game and let             

B = <Q, l, →, q0, F> be an ABTA for DCTL*CAN. The procedure consists of building the 

ABTA product B⊗ of T and B while checking if there is a successful run in B⊗. The 

existence of such a run means that the language of B⊗ is non-empty. The automaton B⊗ is 

defined as follows: B⊗ = <Q × S,  →B⊗, q0B⊗, FB⊗>. There is a transition between two nodes 
<q, s> and <q’, s’> iff there is a transition between these two nodes in some run of B on T. 

Intuitively, B⊗ simulates all the runs of the ABTA. The set of accepting states FB⊗ is 

defined as follows:  q0B⊗ ∈ FB⊗ iff q ∈ F. 
 
Unlike the algorithms proposed in (Courcoubetis et al., 1992) and (Bhat and Cleaveland, 
1996), our algorithm uses only one depth-first search (DFS) instead of two. This is due to 
the fact that our algorithm explores directly the product graph using the sign of the nodes 
(positive, negative or neutral). In addition, unlike the algorithm proposed in (Bhat and 
Cleaveland, 1996), our algorithm does not distinguish between recursive and non-recursive 
nodes. Therefore, we do not take into account the strongly-connected components in the 
ABTA, but we use a marking algorithm that works on the product graph. 
 
The pseudo-code of this algorithm is given in Figure 8.10. The idea is to construct the 
product graph while exploring it. However, in order to make it easy to understand, we omit 
the instructions relative to the addition of nodes in the product graph. The construction 
procedure is directly obtained from Definition 8.4. The algorithm uses the label of nodes in 
the ABTA, and the transitions in the product graph obtained from the transition system and 
the ABTA as explained in Definition 8.4. 
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DFS(v = (q, s)): boolean { 
if v marked visited { 

if (sign(v) =  "+" and not accepting(v)) or (sign(v) = "-" and accepting(v))  
return false 

} // end of if v marked visited 
else { 

mark v visited 
switch(l(q)) { 

case (p ∈ Φp):  
switch(sign(v)) { 

case("+"): if s is a sub-state and l(q) ∉L’(s) return false 

case("-"): if s is a sub-state and ¬l(q)) ∉L’(s) return false   
case("neutral"): return false 

} // end of switch(sign(v)) 

case(∧): 
if s is a leaf return false 
else 

switch(sign(v)) { 

case(neutral): for all v’’ ∈ {v’ / v →B⊗ v’} if not DFS(v’’) return false 

case("+"): for all v’’ ∈ {v’ / v →B⊗ v’} if not DFS(v’’) return false 

case("-"): for all v’’ ∈ {v’ / v →B⊗ v’} if DFS(v’’) return true 
 return false 

} // end of switch(sign (v)) 

case(∨): 
if s is a leaf return false 
else 

switch(sign(v)) { 

case(neutral): for all v’’ ∈ {v’ / v →B⊗ v’} if DFS(v’’) return true 
return false 

case("+"): for all v’’ ∈ {v’ / v →B⊗ v’} if DFS(v’’) return true 
  return false 

case("-"): for all v’’ ∈ {v’ / v →B⊗ v’} if not DFS(v’’) return false 
} // end of switch(sign (v)) 

case(<•>): 
if s is a leaf return true 

else for the v’’ ∈ {v’ / v →B⊗ v’} if not DFS(v’’) return false 

case(X+, PCAg, ACAg, <≡>, ?): 
if s is a leaf return false 

else for the v’’ ∈ {v’ / v →B⊗ v’} if not DFS(v’’) return false 
} // end of switch(l(q)) 

} // end of else 
return true } 

 

Figure 8.10. Exploring product graph algorithm 

Figure 8. 10. Exploring product graph algorithm 
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In order to decide if the ABTA contains an infinite successful run, all the explored nodes are 
marked "visited". Thus, when the algorithm explores a visited node, it returns false if the 
infinite path is not successful. If the node is not already visited, the algorithm tests if it is a 
leaf. In this case, it returns false if the node is a non-successful leaf. If the explored node is 
not a leaf, the algorithm calls recursively the function DFS in order to explore the 

successors of this node. If this node is labeled by "∧", and signed neutrally or positively, 
then DFS returns false if one of the successors is false. However, if the node is signed 
negatively, DFS returns false if all the successors are false. A dual treatment is applied 

when the node is labeled by "∨". We note that if the DFS does not explore a false node (i.e. 
it does not return false), then it returns true. 
 
Theorem 8.22 (correctness) Let B an ABTA and T a transition system. DFS(q0, s0) returns 

true if and only if T is accepted by B. 

 
Proof 

This theorem follows from Theorem 8.15 and Definition 8.5. Indeed, DFS returns true if 
and only if all the leaves are successful, and all the infinite paths are successful. The reason 
is that DFS returns true if and only if it does not find any unsuccessful leaf and any 
unsuccessful infinite path. 

 
 

Figure 8.11 illustrates the automaton B⊗ resulting from the product of the transition system 
of Figure 8.5 (TS[8.5]) and the ABTA of Figure 8.9 (ABTA[8.9]). In order to check if the 
language of this automaton is empty, we check if there is a successful run. The idea is to 

verify if B⊗ contains an infinite path visiting the state (3) and infinitely often the state (9) of 
ABTA[8.9]. If such a path exists, then we conclude that the formula is not satisfied by 

TS[8.5]. Indeed, the only infinite path of B⊗ is successful because it does not touch any 
accepted state and all leaves are also successful. For instance, the leaf labeled by (<Ch>,s0) 

is successful since there is no state si such that s0 →Ch si. The leaf labeled by ( 'φ φ¬ ∨ , s3,4) is 

successful because it is a positive leaf and s3,4 'φ φ¬ ∨ . Therefore, TS[8.5] is accepted by 

ABTA[8.9]. Consequently, TS[8.5] satisfies the formula and respects the semantics of 
challenge and justification actions. 
 
We conclude this section by discussing the worst-case time complexity of our model 
checking technique. 
 

Lemma 8.23 Let ψ be a DCTL*CAN formula, ant let Bψ = <Q, l, →, q0, F > be the ABTA 

obtained by the translation procedure. Then |Bψ| < 2|ψ|. 
 
Proof 

From the transition procedure, each formula ψ’ in the tableau is a sub-formula of  ψ. The 

formula ψ is decomposed into a set of sub-formulae using the tableau rules. The nodes in 
the ABTA are labeled by the operators from the sub-formulae and there is a transition from 

a node ϕ to a node ϕ’ if the formula corresponding to ϕ’ is a sub-formula of the one 
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corresponding to ϕ. Since for every sub-formula ψ’ of ψ we have ψ’ ⊆ CL(ψ) and               

|CL(ψ)| < |ψ| (from Lemma 8.11), it follows that |Bψ| < 2|ψ|.  
 

 
The complexity of the transition procedure is thus exponential in the size of the formula 

(Ο(2|ψ|)). However, if ψ is a DCTLCAN formula, |Bψ| is bounded by |ψ|. The complexity is 
then linear in the size of the formula. This result follows from the fact that in DCTLCAN we 
have only state formulae. 
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Figure 8.11. The ABTA product of the TS of Figure 8.5 and the ABTA of Figure 8.9
 

Figure 8.11. The ABTA product of the TS of Figure 8.5 and the ABTA of Figure 8.9 
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Lemma 8.24 Let T = <S, Lab, ℘, L, Act, →, s0> be a transition system for a dialogue 

game, and let Bψ = <Q, l, →, q0, F > be an ABTA for ψ. The time complexity of the model 

checking algorithm is bounded by |T| × |Bψ| where |T| = |S| + |℘|+ |→| and |℘| is the number 

of sub-states in all semantic transition systems of T. 
 
Proof 

The algorithm is based on a product graph of the ABTA Bψ and the transition system T. The 

size of this product is bounded by |T| × |Bψ|. Like the algorithms proposed in (Courcoubetis 
et al., 1992) and (Bhat and Cleaveland, 2001), our algorithm marks nodes and determines if 
an accepting state is reachable from itself. This algorithm visits each state once and there 

are |S| × |Q| recursive calls to a depth-first search algorithm. We note also that the ABTA we 
use is an and-restricted one. In an and-restricted ABTA only one of the children of a node 

labeled by ∧ can have his truth values determined by recursive calls to search algorithm 
(Bhat and Cleaveland, 2001). The run time of the algorithm is thus proportional to the size 

of the product graph, i.e.  Ο(|T| × |Bψ|).  
 

 
The worst-case time complexity of our model-checking technique is therefore linear in the 
size of the model and exponential in the size of the formula to be checked. 
 

8.6 Related Work 
 
The verification problem has recently begun to find a significant audience in the MAS 
community. Rao and Georgeff (1993) defined three variants of propositional BDI (beliefs, 
desires and intention) logics for MAS and they proposed basic model checking algorithms 
for these logics. These algorithms are an adaptation of the algorithms for CTL and CTL*. 
van der Hoek and Wooldridge (2002) proposed some techniques for model checking 
temporal epistemic properties of MAS using an epistemic logic (logic of knowledge). They 

proposed a technique in order to reduce the model checking of this logic to the model 
checking of linear temporal logic (LTL). Benerecetti and Cimatti (2002) proposed a general 
approach for model-checking MAS based on CTL together with modalities for BDI 
attitudes. Wooldridge and his colleagues (2002) presented the MABLE language for the 
specification and the verification of MAS. Agents specified in this language have data 
structures corresponding to BDI. MABLE is automatically translated into Promela, the 
language of SPIN model checker of LTL (Holzman, 1997). Bordini et al. (2003a) addressed 
the verification problem of MAS specified using AgentSpeak (Rao, 1996). They used a 
finite state version of this language and they showed how programs written in it can be 
automatically transformed into Promela. In order to specify the properties to be verified, the 
authors used a simplified form of BDI Logic. These specifications are then translated to 
LTL formulae. Propositional attitudes are modeled as Promela data structures. Bordini et al. 
(2003b) proposed another alternative for model checking AgentSpeak by translating this 
language to Java in order to apply JPF2, a Java model checker (Visser et al., 2000). Penczek 
and Lomuscio (2003) proposed a framework for verifying temporal and epistemic properties 
of MAS. They proposed a bounded model checking algorithm for branching time logic for 
knowledge (CTLK). The basic idea of bounded model checking is to search for a 
counterexample in executions whose length is bounded by some integer k. If no bug is 
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found then one increases k until either a bug is found, the problem becomes intractable, or 
some pre-known upper bound is reached (this bound is called the Completeness Threshold 

of the design. In a similar way, Raimondi and Lomuscio (2004) implemented an algorithm 
to verify epistemic CTL properties of MAS via ordered binary decision diagrams (Clarke et 
al., 1999). Kacprzak and her colleagues (2004b) also investigated the problem of verifying 
epistemic properties using CTLK by means of an unbounded model checking algorithm 
based on the technique proposed by McMillan (2002). Kacprzak and Penczek (2004a) 
addressed the problem of verification of game-like structures by means of unbounded model 
checking using alternating-time temporal logic (Alur et al., 1997). There are many 
differences between all these proposals and the work presented in this chapter that we can 
summarize as follows: 
1- These proposals are based on BDI and epistemic logics that stress the agents’ private 
mental states, whereas our work uses a logic highlighting the public states reflecting the 
agents’ interactions expressed in terms of social commitments and argumentation relations.  
  
2- Our model checking algorithm allows us to verify not only the system’s temporal 
properties but also the action properties specified using dynamic logic. 
 
3- The technique that we use is based on the tableau method and is different from the 
techniques used for LTL, CTL and CTL*.  
  
Complementarily, the verification of agent communication protocols has been addressed by 
some research work. Endriss and his colleagues (2003) dealt with the problem of checking 
and possibly enforcing conformance to agent communication protocols. They proposed 
abductive logic-based agents and some means of determining whether or not these agents 
behave in conformance to the defined protocols. Baldoni et al. (2004) addressed the 
problem of verifying that a given protocol implementation conforms to its specification. 
They studied a special case in which protocols are implemented using a logical language 
and specified using AUML. These approaches are different from our proposal in the sense 
that they are not based on model checking techniques and they do not address the problem 
of verifying whether or not a protocol satisfies a given property.  
 
In (Huget and Wooldridge, 2004), the problem of checking that agents correctly implement 
the semantics of an agent communication language is addressed. Huget and Wooldridge 
used a variation of the MABLE programming language to define a pre/post conditions 
semantics of ACL performatives and showed that the compliance to ACL semantics can be 
reduced to a conventional model checking problem. Walton (2004) applied model checking 
techniques in order to verify the correctness of protocol communication. The author defined 
a protocol language and used the SPIN model checker to verify LTL properties of this 
language. The model checking technique used by these two proposals are based on LTL 
whereas our technique is based on CTL* and dynamic logic. In addition, our approach is 
based on a new algorithm and not on the translation of the specification language to existing 
model checker language. 
 
Recently, Giordano et al. (2004) addressed the problem of specifying and verifying agent 
interaction protocols using a Dynamic Linear Time Temporal Logic (DLTL) (Henriksen 
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and Thiagarajan, 1999). These protocols are specified using temporal constraints 
representing permissions and SC. The authors addressed three kinds of verification 
problems: 1) the compliance of an execution history of a protocol to its specification, 2) the 
satisfaction of a property in the protocol, 3) the compliance of agents to the protocol. They 
showed that these problems can be solved by model checking in DLTL. This model 
checking technique uses a tableau-based algorithm for obtaining a Büchi automaton from a 
formula in DLTL (Giordano and Martelli, 2004). Although this work is close to our 
proposal, the model and the automata associated to the checked formulae used in the two 
techniques are different. Indeed, there are four main differences between these two 
approaches:  
 
1- The protocols (the models) we dealt with are dialogue game protocols described as a 
combination of dialogue games (Bentahar et al, 2004a, 2004d) (see Chapter 9) and specified 
using actions that agents apply on SC. However, the protocols used in (Giordano et al., 
2004) are abstract protocols specified in terms of the effects of communicative actions, 
some precondition laws, and some causal law. 
 
2- The model checking technique proposed in (Giordano and Martelli, 2004) uses classical 
Büchi automaton that is constructed using a tableau-like procedure. This procedure is based 
on propositional rules and exploits two axioms defining the semantics of the indexing until 
operator. Our technique is different because it is based on ABTA and not on traditional 
Büchi automaton. In addition, the construction of this automaton uses proof rules that define 
the tableau semantics of the different formulae and not propositional rules. 
 
3- Our approach is based not only on SC like (Giordano et al., 2004), but also on an 
argumentation theory. Consequently, our protocols are more suitable for autonomous 
agents. The reason is that agents can make decisions using their argumentation systems. 
 
4- The dynamic part in our logic is reflected by an action theory, i.e. by the actions that 
agents perform. In our logic we deal with action formulae, whereas in DLTL, the dynamic 
part is represented by regular programs and by indexing the until operator with these 
programs. 
 

8.7 Conclusion 
 
In this chapter, we have addressed the verification problem of dialogue game protocols. We 
proposed a new model checking technique allowing us to verify both the correctness of the 
protocols and the agents’ compliance to the semantics of the communicative acts. This 
technique uses a combination of an automata-based and a tableau-based algorithm to verify 
temporal and action specification. The formal properties to be verified are expressed in 
DCTL*CAN logic and translated to ABTA using tableau rules. Our model checking 
algorithm that works on a product graph is an efficient on-the-fly procedure. 
 
The semantics that we used in this chapter is a simplified version of the semantics defined 
in Chapter 7. This simplified semantics does not express the satisfaction of formulae in a 
given theoretical model, but expresses the decomposition of these formulae to sub-
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formulae. Consequently, what we can verify is the fact that a given protocol satisfies or not 
a given property and the fact that agents use the same decomposition of formulae. For 
example, in terms of the semantics of a social commitment, we can only verify if for the 
debtor there is a state in which the commitment content is true. This supposes that the 
content is a state formula, and not a path formula as defined in Chapter 7. Improving this 
simplified version of semantics is in our future work. 



 

 

Chapter 9
*
 

Application: Specifying and Implementing 

a Persuasion Dialogue Game Protocol 

In this chapter, we present an application of our pragmatic approach. We propose a new 

persuasion dialogue game protocol for agent communication specified using this approach. 

We show how this protocol is modeled by the CAN framework. Our dialogue game protocol 

is specified by indicating its entry conditions, its dynamics and its exit conditions. In order 

to solve the problem of the acceptance of arguments, the protocol integrates the concept of 

agents’ trustworthiness in its specification. The chapter proposes a set of algorithms for the 

implementation of the persuasion protocol and discusses their termination, complexity and 

correctness. The chapter addresses also the implementation issues of our protocol using 

logic programming and an agent-oriented platform. 
 
 
 

9.1 Introduction 
 
Research in agent communication protocols has received much attention during the last 
years. Protocols are means of achieving meaningful interactions. In multi-agent systems 
(MAS), agents use protocols to guide their interactions with each other. Protocols describe 
the allowed communicative acts that agents can perform when conversing. These protocols 
specify the rules governing a dialogue between agents in MAS. 
 
Protocols for multi-agent interaction need to be flexible because of the open and dynamic 
nature of MAS. Traditionally, these protocols are specified as finite state machines or Petri 
nets without taking into account the agents’ autonomy. Therefore, these protocols are not 
flexible enough to be used in open MAS (Maudet and Chaib-draa, 2002). To solve this 
problem, several researchers proposed protocols using dialogue games (Dastani et al., 2000) 
(Dignum et al., 2001) (Maudet and Chaib-draa, 2002) (McBurney and Parsons, 2002) (see 
Chapter 3 for more details). Dialogue games are interactions between players, in which each 
player moves by performing utterances according to a pre-defined set of roles (McBurney 
and Parsons, 2002). The flexibility is achieved by combining different games to construct 
complete and more complex protocols. 

                                                 
* We would like to thank John-Jules Ch. Meyer from Utrecht University, Intelligent Systems Group, Claude 
Bélisle from Laval University, Department of Mathematics and Statistics and Iyad Rahwan from the 
University of Melbourne for their interesting comments about the matter presented in this chapter. The 
computational model introduced in this chapter is published in (Bentahar et al., 2004a, 2004d). 
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In this chapter, we propose a persuasion protocol specified using a set of dialogue games. 
We formalize these dialogue games as a set of conversation policies. Conversation policies 
are declarative specifications that govern communication between autonomous agents 
(Greaves et al., 2000). Indeed, protocols specified using, for example, finite state machines 
are not flexible in the sense that agents must respect the whole protocol from the beginning 
to the end without reasoning about them. Thus, we propose to specify these protocols by 
small conversation policies that can be logically put together using a combination of 
dialogue games. 
 
On the other hand, the protocols described in the literature are often specified by pre/post 
conditions. These protocols often neglect the decision-making process that allows agents to 
accept or to refuse an utterance. The protocols based on formal dialectics (Elvang-
Goransson et al., 1993), (Prakken, 2001), (Amgoud et al., 2000a, 2000b) use the 
argumentation as a way of expressing decision-making. However, the sole use of 
argumentation does not make it possible to solve a decision-making problem well. We think 
that other social elements such as agents’ trustworthiness must also be taken into account. 
 
The contribution of this chapter is the proposition of a new approach for specifying 
protocols for agent communication. A new persuasion dialogue game protocol is specified 
and implemented following this approach. This protocol is modeled using our pragmatic 
approach based on commitments and arguments. It is flexible in the sense that it is specified 
by small conversation policies that can be combined and in the sense that agents can reason 
about this protocol using their argumentation systems and the trustworthiness notion. The 
algorithms implementing this protocol are specified using the CAN framework. This 
protocol is characterized by the fact that it integrates the agents’ trustworthiness as a 
component of the decision-making process. Indeed, this chapter presents three main results:  
1- A new formal language for specifying a persuasion dialogue game protocol as a 
combination of conversation policies.  
2- A termination proof of the protocol based on the tableau method described in Chapter 8.  
3- An implementation of the specification using an agent-oriented and logic programming 
framework. 
 
The rest of this chapter is organized as follows. In Section 9.2, we address the specification 
of our persuasion protocol. We present the protocol form, the specification of each dialogue 
game and the protocol dynamics. We also present the different algorithms implementing 
these dialogue games, develop a termination proof, and discuss the correctness and 
complexity analysis. In Section 9.3, we highlight the importance of agents’ trustworthiness 
and present our model of this trustworthiness. In Section 9.4, we describe some issues in the 
implementation of the trustworthiness model and dialogue games. In Sections 9.5, 9.6, and 
9.7, we compare our protocol to related work, we discuss the flexibility of this protocol, and 
we conclude. 
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9.2 Specification of Dialogue Games  
 
9.2.1 Philosophical Foundations  

 
According to the classification proposed by Walton and Krabbe (1995), each type of 
dialogue has an initial situation and the goal of the dialogue is to change this situation in a 
particular way. Figure 9.1 illustrates the initial situation as well as the goal of the persuasion 
dialogue. 
 
In the same context, Vanderveken (2001) proposed a logic of discourse in which there are 
only four possible discursive goals that speakers can attempt to achieve by conversing. 
These goals are: descriptive, deliberative, declaratory and expressive goals. Persuasion 
dialogue is a sub-type of the dialogue types having a descriptive goal. In his typology, 
Vanderveken argued that each dialogue type with a discursive goal has a mode of 
achievement of the discursive goal and preparatory conditions. The mode of achievement 
imposes a certain sequence of speech acts. For a persuasion dialogue, a certain sequence of 
defense utterances, questions and answers is needed for the successful implementation of 
such a dialogue. Preparatory conditions determine a structured set of presuppositions related 
to the discursive goal. The persuasion dialogue has the preparatory conditions that there is a 
conflict between the agents’ points of view and that each agent has the capacity to defend its 
point of view. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.1. Goal and initial situation of the persuasion dialogue 

 
In addition, in the domain of artificial intelligence and law, many computational and logical 
models of argument and debate, and of reasoning with conflicting information have been 
proposed (Prakken, 1997), (Prakken and Sartor, 1998), (Bench-Capon et al., 2003). Prakken 
and Sartor (1998) introduced a dialectical proof theory for an argumentation framework. A 
proof of a formula takes the form of a dialogue tree, in which each branch of the tree is a 
dialogue and the root of the tree is an argument for the formula. The idea is that every move 
in a dialogue consists of an argument based on the input theory, where each stated argument 
attacks the last move of the opponent in a way that meets the player’s burden of proof. 
 
Our persuasion protocol is defined by specifying its entry conditions, its exit conditions, and 
its dynamics. Entry conditions correspond to the initial situation of the dialogue and to the 

 

No 

Is there a conflict ? 
(The initial situation) 

Yes No 

Yes 

Is resolving the conflict do we aim at? 
(The goal of the dialogue) 

Persuasion 

Figure 9.1. Goal and initial situation of the persuasion dialogue 
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preparatory conditions. Exit conditions correspond to the final situation that makes it 
possible to determine if the dialogue goal is achieved or not. The dynamics specifies the 
different types of actions that can be performed by agents so that each agent can achieve its 
goal. The dynamics correspond to the mode of achievement of the discursive goal. It also 
corresponds to the dialectical proof theory where the root is the persuasion subject. The 
dynamics is specified by a set of initiative / reactive dialogue games. An initiative game 
involves creating a new commitment. A reactive game consists in taking position on an 
existing commitment (acceptance, refusal, challenge, defense, etc.). 
 
9.2.2 CAN and the Persuasion Protocol 

 
A Entry Conditions 

 
As illustrated by Figure 9.1, the entry condition of the persuasion protocol is a conflict of 
point of view. This is translated in the CAN formalism by the creation of a commitment 
SC(Idx, Ag1, Ag2, p) by an agent Ag1 and the refusal of this commitment by an agent Ag2. 
Formally, the initial situation is reflected as follows: 
 

FΩ(Ag1, SC(Ag1, Ag2, tx, p)) = {(Create, ti)} 

FΩ(Ag2 SC(Ag1, Ag2, tx, p)) = {(Refuse-content, ti+1)} 

FΩ(Ag2, SC(Ag2, Ag1, tx+1, ¬p)) = {(Create, ti+1)} 
 
B Dynamics  

 
Generally, the persuasion dialogue takes the form of a sequence of attacks and defenses 
where each agent tries to defend its point of view or attack the point of view of its partner. 
This dialogue can also contain questions and answers (dialogue game of information 
seeking). In the CAN formalism, this results in the creation of commitments that defend or 
attack the initial commitment and other commitments and argumentation relations. The 
dialogue games of information seeking can be represented by challenge actions and 
argumentation relations. Formally, the dialogue dynamics can be expressed by a 
combination of the following functions: 
 

FΩ(Ag1, SC(Ag1, Ag2, ty, q)) = {(Create, tj)}  

FEΣ(SC(Ag1, Ag2, ty, q), SC(Ag1, Ag2, tx, p)) = (Defend-content, tj) 

FΩ(Ag2, SC(Ag2, Ag1, tz, r)) = {(Create, tk)} 

FEΣ(SC(Ag2, Ag1, tz, r), SC(Ag1, Ag2, tx, p)) = (Attack-content, tk) 
 

where p, q, r are propositional formulae.  
 
Information seeking can be, for example, represented by: 
 

FΩ(Ag2, SC(Ag1, Ag2, ty, q)) = {(Challenge-content, tl)} 

FΩ(Ag1, SC(Ag1, Ag2, tz, r)) = {(Create, tl+1)} 

FEΣ(SC(Ag1, Ag2, tz, r), SC(Ag1, Ag2, ty, q)) = (Justify-content, tl+1) 
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C Exit Conditions  
 
The persuasion dialogue terminates either if the conflict is resolved, or with a situation in 
which each agent does not accept the argument of the other. In this case the protocol 
terminates with an unresolved conflict. The conflict is resolved when one of the two agents 
adopts the point of view of its partner. In the CAN formalism, this results in the acceptance 

of the initial commitment SC(Ag1, Ag2, tx, p) (respectively SC(Ag2, Ag1, tx+1, ¬p)) by Ag2 
(respectively Ag1). This implies the cancellation of all commitments attacked                          

SC(Ag1, Ag2, tx, p) (respectively SC(Ag2, Ag1, tx+1, ¬p)). Formally, if Ag2 accepts        
SC(Idx, Ag1, Ag2, p), the final situation is described as follows: 
 

(Accept-content, tm) ∈ FΩ(Ag2, SC(Ag1, Ag2, tx, p)) ∧ 

(∀ty, q, tl: FEΣ(SC(Ag2, Ag1, ty, q), SC(Ag1, Ag2, tx, p)) = (Attack-content, tl)  ⇒ 

(Withdraw, tm) ∈ FΩ(Ag2, SC(Ag2, Ag1, ty, q))) 
 
Agents must also update their knowledge bases by removing the attacked and non-defended 
arguments and adding the new accepted arguments. When the two agents mutually refuse 
the argument of the other, the protocol stops because the conflict cannot be resolved. 
 
9.2.3 Protocol Form  

 
Our persuasion protocol is specified as a set of initiative / reactive dialogue games that are  
specified as a combination of conversation policies. In accordance with our pragmatic 
approach (see Chapters 5 and 6), the game moves are considered as actions that agents 
apply to commitments, to their contents and to arguments. A conversation policy is 
specified as follows: 
 
 
 
This specification indicates that if an agent Ag1 performs the action Action_Ag1, and that the 
condition Cond is satisfied, then the interlocutor Ag2 will perform the action Action_Ag2 
afterwords. The condition Cond is expressed in terms of the possibility of generating an 
argument from the agent’s argumentation system and in terms of the interlocutor’s 
trustworthiness.  
 
Before introducing some formal notation we use in our specification, we notice that we 
distinguish between arguments that an agent has (private arguments) and arguments that this 
agent uses in the conversation (public arguments). We introduce the following sets:  
 

Support(Ag, p) = {p’/ p’ ∴p} 

Create_Support(Ag1, SC(Ag1, Ag2, t, p)) = {SC(Ag1, Ag2, tx, px) / px ∴p} 
 
Support(Ag, p) is the set of Ags’ private arguments supporting p. 
Create_Support(Ag1, SC(Ag1, Ag2, t, p)) is the set of commitments created by agent Ag1 to 
support the content of  SC(Ag1, Ag2, t, p). This set is closed under the support relation i.e.:  
 

Action_Ag1 Action_Ag2
Cond 
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(SC(Ag1, Ag2, t2, p2) ∈ Create_Support(Ag1, SC(Ag1, Ag2, t1, p1))  

∧ SC(Ag1, Ag2, t1, p1) ∈ Create_Support(Ag1, SC(Ag1, Ag2, t0, p0)))  

⇒ SC(Ag1, Ag2, t2, p2) ∈ Create_Support(Ag1, SC(Ag1, Ag2, t0, p0)) 
 
We use the notation: p ⌂ Arg_Sys(Ag1) to denote the fact that a propositional formula p can 
be generated from the argumentation system of Ag1 denoted Arg_Sys(Ag1). The formula                

¬(p ⌂ Arg_Sys(Ag1)) indicates the fact that p cannot be generated from Ag1’s argumentation 
system. A propositional formula p can be generated from an agent’s argumentation system, 
if this agent can find an argument that supports p. To simplify the formalism, we use the 
notation Act’(Agx, SC(Agi, Agj, t0, p)) to indicate the action that agent Agx performs on the 

commitment SC(Agi, Agj, t0, p) or on its content (Act’∈{Create, Withdraw, Accept-content, 
Challenge-content, Refuse-content}). For the actions related to the argumentation relations, 
we write Act-Arg(Agx, [SC(Agn, Agm, t1, q)], SC(Agi, Agj, t0, p)). This notation indicates that 
Agx defends (resp. attacks or justifies) the content of SC(Agi, Agj, t0, p) by the content of 

SC(Agn, Agm, t1, q) (Act-Arg∈{Defend-content, Attack-content, Justify-content}). The 
commitment that is written between square brackets [ ] is the support of the argument. In a 
general way, we use the notation Act’(Agx, S) to indicate the action that Agx performs on the 
set of commitments S or on the contents of these commitments, and the notation                 
Act-Arg(Agx, [S], SC(Agi, Agj, t0, p)) to indicate the argumentation-related action that Agx 
performs on the content of SC(Agi, Agj, t0, p) using the contents of S as support. We also 
introduce the notation Act-Arg(Agx, [S], S’) to indicate that Agx performs an argumentation-
related action on the contents of a set of commitments S’ using the contents of S as supports. 
 
We distinguish two types of dialogue games: entry game and chaining games. The entry 
game allows the two agents to open the persuasion dialogue. It corresponds to the entry 
conditions. The chaining games make it possible to continue the conversation. The protocol 
terminates when the exit conditions are satisfied (Figure 9.2). 
 
 
 
 
 
 
Figure 9.2. The general form of the protocol 

9.2.4 Dialogue Games  

 
A   Entry Game 

 
The entry game that describes the entry conditions in our persuasion protocol about a 
propositional formula p is described by the entry conversation policies as follows 
(Specification 1): 
 
 
 
 

 
 

Chaining games 
Entry game Exit conditions (Termination) 

Figure 9.2. The general form of the protocol

 Refuse-content(Ag2, SC(Ag1, Ag2, tx, p))        Persuasion Dialogue 

Create(Ag1, SC(Ag1, Ag2, tx, p)) 

a1 

b1

c1

Accept-content(Ag2, SC(Ag1, Ag2, tx, p))         Termination

Challenge-content(Ag2, SC(Ag1, Ag2, tx, p))        Information- 

seeking Dialogue
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where a1, b1 and c1 are three conditions specified as follows: 
a1 = p ⌂ Arg_Sys(Ag2) 

b1 = ¬(p ⌂ Arg_Sys(Ag2)) ∧ ¬(¬p ⌂ Arg_Sys(Ag2)) 

c1 = ¬p ⌂ Arg_Sys(Ag2) 
 
If Ag2 has an argument for p then it accepts p (the content of SC(Ag1, Ag2, tx, p)) and the 
conversation terminates as soon as it begins (Condition a1). If Ag2 has neither an argument 

for p nor for ¬p, then it challenges p and the two agents open an information-seeking 
dialogue (condition b1). The persuasion dialogue starts when Ag2 refuses p because it has an 
argument against p (condition c1). 
 
B Defense Game 

 
Once the two agents opened a persuasion dialogue, the initiator must defend its point of 
view. Thus, it must play a defense game. Our protocol is specified in such a way that the 
persuasion dynamics starts by playing a defense game. We have (Specification 2): 
 
 
 
 
 
 
 
 
where: 

{ }1 2, , ,( ) / 0,...,i i
pS SC Ag Ag i nt= = , pi are commitment-free formulae. 

SSi i ==∪3
1 , i jS S = ∅∩ , jiji ≠= &3,...,1,   

 
By definition, Defend-content(Ag1, [S], SC(Ag1, Ag2, tx, p)) means that Ag1 creates S in order 
to defend the content of SC(Ag1, Ag2, tx, p). Formally: 
 
Defend-content(Ag1, [S], SC(Ag1, Ag2, tx, p)) =def (Create(Ag1, S)  

    ∧ S = Create_Support(Ag1, SC(Ag1, Ag2, tx, p))) 
 
We consider this definition as an assertional description of the Defend action.  
 
This specification indicates that according to the three conditions (a2, b2 and c2), Ag2 can 
accept a subset S1 of S, challenge a subset S2 and attack a third subset S3. Sets S1, S2, and S3 
are mutually disjoint because Ag2 cannot, for example, both accept and challenge the same 
commitment content. Accept, Challenge and Attack a set of commitment contents are 
defined as follows by the following formulae:  
 

Accept-content(Ag2, S1) =def (∀i, SC(Ag1, Ag2, ti, pi) ∈ S1  

⇒ Accept-content(Ag2, SC(Ag1, Ag2, ti, pi))) 

Challenge-content(Ag2, S2) =def (∀i, SC(Ag1, Ag2, ti, pi) ∈ S2  

⇒ Challenge-content(Ag2, SC(Ag1, Ag2, ti, pi))) 

Defend-content(Ag1, [S], SC(Ag1, Ag2, tx, p)) 

Attack-content(Ag2, [S’], S3)

a2

b2

c2

Accept-content(Ag2, S1)

Challenge-content(Ag2, S2)Entry game 
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Attack-content(Ag2, [S’], S3) =def ∀i, SC(Ag1, Ag2, ti, pi) ∈ S3 ⇒ ∃S’j ⊆ S’:  
            Attack-content(Ag2, [S’j], SC(Ag1, Ag2, ti, pi)) 

 
where: ∪m

j 0= S’j = S’.  

This indication means that any element of S’ is used to attack one or more elements of S3. 
 
The conditions a2, b2 and c2 are specified as follows: 
 

a2 = ∀i, SC(Ag1, Ag2, ti, pi) ∈ S1 ⇒ pi ⌂ Arg_Sys(Ag2) 

b2 = ∀i, SC(Ag1, Ag2, ti, pi) ∈ S2 ⇒ (¬(pi ⌂ Arg_Sys(Ag2)) ∧ ¬(¬pi ⌂ Arg_Sys(Ag2))) 

c2 = ∀i, SC(Ag1, Ag2, ti, pi) ∈ S3 ⇒ ∃S’j ⊆ S’, Content(S’j) = Support(Ag2, ¬pi) 
where Content(S’j) indicates the set of contents of the commitments S’j. 
 
C Challenge Game 

 
The challenge game is specified as follows (Specification 3): 
 
 
 
 
where the condition a3 is specified as follows: 
 
a3 = (Content(S) = Support(Ag2, p)) 
 
In this game, the condition a3 is always true. The reason is that in accordance with the 
commitment semantics, an agent must always be able to defend the commitment it created 
(see Chapter 7). 
 
D Justification Game 

 
For this game we distinguish two cases: 

Case1. SC(Ag1, Ag2, tx, p) ∉ S 

In this case, Ag1 justifies the content of its commitment SC(Ag1, Ag2, tx, p) by creating a set 
of commitments S. As for the Defend action, Ag2 can accept, challenge and/or attack a 
subset of S. The specification of this case is given by the following conversation policies 
(Specification 4): 
 
 
 
 
 
where: 
 

{ }1 2( , , ) / 0,...,,i i
S SC i npAg Ag t= = , pi are propositional formulae. 

Challenge-content(Ag1, SC(Ag2, Ag1, tx, p))                 Justify-content(Ag2, [S], SC(Ag2, Ag1, tx, p)) 
a3 

Justify-content(Ag1, [S], SC(Ag1, Ag2, tx, p)) 

Attack-content(Ag2, [S’], S3) 

a4

b4

c4

Accept-content(Ag2, S1) 

Challenge-content(Ag2, S2)      
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a4 = a2, b4 = b2, c4 = c2 

Case2. {SC(Ag1, Ag2, tx, p)} = S 

In this case, the justification game has the following specification (Specification 5): 
 
 
 
 
 
 
 
 
where: 

a4’ = Ag1 ∈ Trust(Ag2, D) 

b4’ = Ag1 ∉ Trust(Ag2, D) 
Trust(Ag, D) is the set of the trustworthy agents for Ag relative to a domain D. Here we 
assume that p is in the domain D. This aspect will be discussed later. 
 
Ag1 justifies the content of its commitment SC(Ag1, Ag2, tx, p) by itself (i.e. by p). This 
means that p is part of Ag1’s knowledge. Only two moves are possible for Ag2: 1) accept the 
content of SC(Idx, Ag1, Ag2, p) if Ag1 is a trustworthy agent for Ag2 (a’4), 2) if not, refuse 
this content (b’4). Ag2 cannot attack this content because it does not have an argument 
against p. The reason is that Ag1 plays a justification game because Ag2 played a challenge 
game. 
Like the definition of the Defend action, we define the Justify action as follows: 
 
 Justify-content(Ag1, [S], SC(Ag1, Ag2, tx, p)) =def (Create(Ag1, S)  

∧ S = Create_Support(Ag1, SC(Ag1, Ag2, tx, p))) 
 
This means that Ag1 creates the set S of commitments to support the commitment                 
SC(Ag1, Ag2, tx, p). 
 
E Attack Game 

 
The attack game is specified by the following conversation policies (Specification 6): 
 
 
 
 
 
 
 
where: 
 

{ }1 2, , ,( ) / 0,...,i i
pS SC Ag Ag i nt= = , pi are propositional formulae. 

Justify-content(Ag1, [S], SC(Ag1, Ag2, tx, p)) 

Refuse-content(Ag2, SC(Ag1, Ag2, tx, p))

a’4

b’4

Accept-content(Ag2, SC(Ag1, Ag2, tx, p))       

Attack-content(Ag2, [S’], S4) 

Attack-content(Ag1, [S], SC(Ag2, Ag1, tx, p)) 

a5 

b5 

c5 

d5 

Refuse-content(Ag2, S1) 

Accept-content(Ag2, S2) 

Challenge-content(Ag2, S3) 
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Formally, the Attack action is defined as follows: 
 

Attack-content(Ag1, [S], SC(Ag2, Ag1, tx, p)) =def ∃ ty, (Create(Ag1, SC(Ag1, Ag2, ty, ¬p))  

∧ Create(Ag1, S)  

∧ S = Create_Support(Ag1, SC(Ag1, Ag2, ty, ¬p))) 
 
This means that by attacking SC(Ag2, Ag1, ty, p), Ag1 creates the commitment                          

SC(Ag1, Ag2, ty, ¬p) and the set S to support this commitment. 
 
The conditions a5, b5, c5 and d5 are specified as follows: 
 

a5 =∃i, tz: SC(Ag2, Ag1, ti, pi) ∈ Create_Support(Ag2, SC(Ag2, Ag1, tz, ¬q))  
where S1 = {SC(Ag1, Ag2, tz’, q)} 

b5 = ∀i, SC(Ag1, Ag2, ti, pi) ∈ S2 ⇒ pi ⌂ Arg_Sys(Ag2) 

c5 = ∀i, SC(Ag1, Ag2, ti, pi) ∈ S3 ⇒ (¬(pi ⌂ Arg_Sys(Ag2)) ∧¬(¬pi ⌂ Arg_Sys(Ag2))) 

d5 = ∀i, SC(Ag1, Ag2, ti, pi) ∈ S4 ⇒ ∃S’j ⊆ S’: Content(S’j) = Support(Ag2, ¬pi)  

∧ ∃ tz, k: SC(Ag2, Ag1, tk, pk) ∈ Create_Support(Ag2, SC(Ag2, Ag1, tz, ¬pi)) 

 
Ag2 refuses Ag1’s argument if Ag2 already attacked this argument. In other words, Ag2 
refuses Ag1’s argument if Ag2 cannot attack this argument since it already attacked it, and it 
cannot accept it or challenge it since it has an argument against this argument. We have only 
one element in S1 because we consider a refusal move as an exit condition. The acceptance 
and the challenge actions of this game are the same as the acceptance and the challenge 
actions of the defense game. Finally, Ag2 attacks Ag1’s argument if Ag2 has an argument 
against Ag1’s argument, and if Ag2 did not attack Ag1’s argument before. In d5, the universal 
quantifier means that Ag2 attacks all Ag1’s arguments for which it has an against-argument. 
The reason is that Ag2 must act on all commitments created by Ag1. The temporal aspect 

(the past) of a5 and d5 is implicitly integrated in Create_Support(Ag2, SC(Ag2, Ag1, tz, ¬q)) 

and Create_Support(Ag2, SC(Ag2, Ag1, ti, ¬pi)). 
 
F Termination Game 

 
The protocol terminates either by a final acceptance or by a refusal. There is a final 
acceptance when Ag2 accepts the content of the initial commitment SC(Ag1, Ag2, tx, p) or 

when Ag1 accepts the content of SC(Idy, Ag2, Ag1, ¬p). Ag2 accepts the content of        
SC(Ag1, Ag2, tx, p) iff it accepts all the supports of SC(Ag2, Ag1, tx, p). Formally: 
 

Accept-content(Ag2, SC(Ag1, Ag2, tx, p)) ⇔  

(∀i, SC(Ag1, Ag2, ti, pi) ∈ Create_Support(Ag1, SC(Ag1, Ag2, tx, p))  

⇒ Accept-content(Ag2, SC(Ag1, Ag2, ti, pi))) 
 
The acceptance of the supports of SC(Ag1, Ag2, tx, p) by Ag2 does not mean that they are 
accepted directly after their creation by Ag1, but it can be accepted after a number of 
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challenge, justification and attack games. When Ag2 accepts definitively, then it withdraws 
all commitments whose content was attacked by Ag1. Formally: 
 

Accept-content(Ag2, SC(Ag1, Ag2, tx, p)) ⇒  

(∀i, ∀S, Attack-content(Ag1, [S], SC(Ag2, Ag1, ti, pi))  

⇒ Withdraw(Ag2, SC(Ag2, Ag1, ti, pi))) 
 
On the other hand, Ag2 refuses the content of SC(Ag1, Ag2, tx, p) iff it refuses one of the 
supports of SC(Idx, Ag1, Ag2, p). Formally: 
 

Refuse-content(Ag2, SC(Ag1, Ag2, tx, p)) ⇔  

(∃i: SC(Ag1, Ag2, ti, pi) ∈ Create_Support(Ag1, SC(Ag1, Ag2, tx, p))  

∧ Refuse-content(Ag2, SC(Ag1, Ag2, ti, pi))) 
 
9.2.5 Protocol Dynamics 

 
The persuasion dynamics is described by the chaining of a finite set of dialogue games: 
acceptance move, refusal move, defense, challenge, attack and justification games. These 
games can be combined in a sequential and parallel way (Figure 9.3). 
 
After Ag1’s defense game at moment t1, Ag2 can, at moment t2, accept a part of the 
arguments presented by Ag1, challenge another part, and/or attack a third part. These games 
are played in parallel. At moment t3, Ag1 answers the challenge game by playing a 
justification game and answers the attack game by playing an acceptance move, a challenge 
game, another attack game, and/or a final refusal move. The persuasion dynamics continues 
until the exit conditions become satisfied (final acceptance or a refusal). From our 
specifications, it follows that our protocol plays the role of the dialectical proof theory of 
the argumentation system. 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.3. The persuasion dialogue dynamics 

Indeed, our persuasion protocol can be described by BNF grammar. To do this, we first 
introduce the following definitions: 
 
Let G1, G2, and G3 three dialogue games. 

G1 //≥1 G2 = G1 | G2 | G1 // G2 

Defense game 

Attack game

Justification game 

t1 t2 t3 t4

Acceptance

Challenge game
Acceptance 
Challenge game 

Attack game      

Refusal          Termination

Figure 9.3. The persuasion dialogue dynamics

Entry game 

t0 
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G1 //opt G2 = ε | G1 //≥1 G2 

//(G1, G2, G3) = (G1 //≥1 G2) //opt G3 

| (G1 //opt G2) //≥1 G3 
 

where: ε is the empty dialogue game, and “//” is the parallelization symbol. G1 // G2 means 
that an agent can play the two games in parallel. 
 
The persuasion protocol can be defined as follows: 
 
Persuasion protocol = Entry game ; Defense game ; Dialogue games 

Dialogue games = //(Acceptance move ; Ch ; Att) 
Ch = Challenge game ; Justification game ; (Dialogue games | Refusal) 
Att = Attack game ; (Dialogue games | Refusal) 
 
where “;” is the sequencing symbol. 
 
Example 

 
In this section we present a simple example dialogue that illustrates some notions presented 
in this chapter. 
 
 
 
 
 
 
 
 
 
 
 
 
This example was also studied in (Amgoud and Maudet, 2002) in a context of strategical 
considerations for argumentative agents. The letters on the left of the utterances are the 
propositional formulae that represent the propositional contents. Agent Ag1’s KB contains: 

([q, r], p), ([s, t], q) and ([u], u). Agent Ag2’s KB contains: ([¬t], ¬p), ([u, v], ¬t), ([u], u) 
and ([v], v). The combination of the dialogue games that allows us to describe the 
persuasion dialogue dynamics is as follows: 
 
 
 
 
 
 
 
 

Entry Game  

SC(Ag1, Ag2, t0, p) 

SC(Ag2, Ag1, t1, ¬p) 

Defense Game 

([SC(Ag1, Ag2, t2, q), SC(Ag1, Ag2, t3, r)], 

SC(Ag1, Ag2, t0, p)) 

Acceptance Move

 SC(Ag1, Ag2, t3, r)

Challenge Game 

 SC(Ag1, Ag2, t2, q)

a2

b2 a3

Ag1: Newspapers can publish information I (p). 
Ag2: I don’t agree with you. 
Ag1: They can publish information I because it is not private (q), and any public information 
can be published (r). 
Ag2: Why is information I public? 
Ag1: Because it concerns a Minister (s), and information concerning a Minister is public (t). 
Ag2: Information concerning a Minister is not necessarily public, because  information I is 
about the health of Minister (u), and information about the health remains private (v). 
Ag1: I accept your argument.  
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Ag1 creates SC(Ag1, Ag2, t0, p) to achieve the goal of persuading Ag2 that p is true. Ag1 can 
create this commitment because it has an argument for p. Ag2 refuses SC(Ag1, Ag2, t0, p) 
because it has an argument against p. Thus, the entry game is played and the persuasion 
dialogue is opened. Ag1 defends SC(Ag1, Ag2, t0, p) by creating SC(Ag1, Ag2, t2, q) and 
SC(Ag1, Ag2, t3, r). Ag2 accepts SC(Ag1, Ag2, t3, r) because it has an argument for r and 
challenges SC(Ag1, Ag2, t2, q) because it has no argument for q or against q. Ag1 plays a 
justification game to justify SC(Ag1, Ag2, t2, q) by creating SC(Ag1, Ag2, t4, s) and       
SC(Ag1, Ag2, t5, t). Ag2 accepts the content of SC(Ag1, Ag2, t4, s) and attacks the content of 
SC(Ag1, Ag2, t5, t) by creating SC(Ag2, Ag1, t6, u) and SC(Ag2, Ag1, t7, v). Finally, Ag1 plays 
acceptance moves because it has an argument for u and it does not have arguments against v 
and the dialogue terminates. Indeed, before accepting v, Ag1 challenges it and Ag2 defends it 
by itself (i.e. ([SC(Ag2, Ag1, t7, v), SC(Ag2, Ag1, t7, v)])). Then, Ag1 accepts this argument 
because it considers Ag2 trustworthy (see Figure 9.9 Section 9.4). Ag1 updates its KB by 
removing the attacked argument and including the new argument. Figure 9.12 (Section 9.4) 
illustrates the screen shot of this example generated by our prototype. In this figure 
commitments are described only by their contents and the identifiers of the two agents are 
the two first arguments of the exchanged communicative actions. The contents are specified 
using a predicate language that the two agents share (the ontology). 
 
9.2.6 Algorithms  
 

The general algorithm representing our persuasion dialogue game protocol is given by 
Algorithm 9.1. Part A of Algorithm 9.1 specifies the entry conditions. Part B indicates the 
exit conditions. The persuasion dynamics (i.e. the sequence of utterances) is given by the 
function Dynamics. The specification of this function is given by Algorithms 9.2, 9.3, 9.4, 
9.5 and 9.6. To simplify these algorithms, we suppose that the support of an argument is 
composed only by one commitment. In these algorithms SAg1 indicates the set of arguments 
of agent Ag1 (i.e. its knowledge base). S’Ag1 indicates the set of arguments that Ag1 used in 
the current dialogue. The set S’Ag1 allows us to avoid the use of same arguments several 
times. These algorithms specify the different dialogue games of our protocol as if then rules. 
 
 
 
 
 
 

Justification Game  
([SC(Ag1, Ag2, t4, s), 
SC(Ag1, Ag2, t5, t)],  
SC(Ag1, Ag2, t2, q)) 

Acceptance move 

 SC(Ag1, Ag2, t4, s)

Attack Game 

 ([SC(Ag2, Ag1, t6, u), 
SC(Ag2, Ag1, t7, v)], 
SC(Ag1, Ag2, t5, t)) 

Acceptance moves 
SC(Ag2, Ag1, t6, u), SC(Ag2, Ag1, t7, v) 

+ Final acceptance move 

SC(Ag2, Ag1, t1, ¬p) 

a4 

c4 
b5
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Algorithm 9.2 deals with the acceptance (Termination game) and the refusal (Entry game) 
cases. The acceptance of SC(Idx, Ag1, Ag2, p) makes it possible to solve the conflict and to 
stop the algorithm. In the refusal case, if Ag1 finds an argument (r, q) not yet used for its 
commitment SC(Idy, Ag1, Ag2, q), then this agent creates a new commitment SC(Idz, Ag1, 
Ag2, r) to defend SC(Idy, Ag1, Ag2, q). Ag1 updates the set S’Ag1 by adding the argument (r, 
q). Ag1 informs Ag2 about its action using the Send primitive. The Send primitive has the 
form Send(Destination, Action). If Ag1 does not have arguments to defend its commitment, 
then the conflict cannot be solved because each agent refuses the arguments of the other and 
the algorithm stops. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{ If FΩ(Ag1, SC(Idx, Ag1, Ag2, p)) = {(Create, ti)} 

And FΩ(Ag2, SC(Idx, Ag1, Ag2, p)) = {(Refuse-content, ti+1)} 
Then  
 { Conflict := 1;  

   Dynamics;  
  If Conflict  = 0 Then 

    “ The conflict is resolved “ 
Else “ The conflict is not resolved “ 

  }  

} 

Part A 

Part B

Algorithm 9.1 

If (Accept-content, tj) ∈ FΩ(Ag2, SC(Ag1, Ag2, tx, p)) Then { 
Conflict := 0;  
Return Conflict; 

 } 

If FΩ(Ag2, SC(Ag1, Ag2, ty, q)) = {(Refuse-content, tj)} Then { 

If ∃(r, q) ∈ SAg1 / S’Ag1 Then {  

FΩ(Ag1, SC(Ag1, Ag2, tz, r)) := {(Create, tj+1);  

FEΣ(SC(Ag1, Ag2, tz, r), SC(Ag1, Ag2, ty, q)) := (Defend-content, tj+1) ; 

S’Ag1 := S’Ag1 ∪ {(r, q)}; 
Send(Ag2, Defend(SC(Ag1, Ag2, tz, r), SC(Ag1, Ag2, ty, q))); 

 } 
Else {  

Conflict : = -1;  
Return Conflict; 

}  

 } 

Algorithm 9.2 
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Algorithm 9.3 deals with the Challenge game. Ag1 justifies its commitment if it finds an 
argument not yet used. As for the refusal case, Ag1 updates S’Ag1 and informs Ag2 about its 
action. If Ag1 does not find such an argument, then it indicates to Ag2 that the content of the 
challenged commitment is knowledge that Ag1 believes true by justifying it by itself. The 
formal definition of the justification relation is the same as the defense relation. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 
 
Algorithm 9.4 deals with the case of Ag1 reaction if Ag2 justifies the content of its 
commitment by itself (case 2 of Justification game). Trustworthy(Ag2, q) is a boolean 
function that enables Ag1 to determine if Ag2 is trustworthy or not. If according to Ag1, Ag2 
is trustworthy, then Ag1 accepts Ag2’s commitment. If not, Ag1 refuses Ag2’s commitment. 
In the next section (Section 9.3) we propose a probabilistic model of trustworthiness to 
determine the value of Trustworthy(Ag2, q) function. 

 
 

 
 
 
 
 
 
 
 
 
 
Algorithm 9.5 deals with the case where Ag2 attacks the support of Ag1’s argument (Attack 
game). Ag1 attacks Ag2’s argument if Ag1 has an against-argument not already used. If not 
Ag1 refuses this argument.  If Ag1 cannot attack or refuse Ag2’s argument, then Ag1 accepts 

If FΩ(Ag2, SC(Ag1, Ag2, ty, q)) = {(Challenge-content, tj)} Then { 

If ∃(r, q) ∈ SAg1 / S’Ag1 Then {  

FΩ(Ag1, SC(Ag1, Ag2, tz, r)) : = {(Create, tj+1)}; 

FEΣ(SC(Ag1, Ag2, tz, r), SC(Ag1, Ag2, ty, q)) := (Justify-content, tj+1); 

S’Ag1 = S’Ag1 ∪ {(r, q)}; 
Send(Ag2, Justify(SC(Ag1, Ag2, tz, r), SC(Ag1, Ag2, ty, q))); 

} 

Else {  

FEΣ(SC(Ag1, Ag2, ty, q), SC(Ag1, Ag2, ty, q)) := (Justify-content, tj+1); 
Send(Ag2, Justify(SC(Ag1, Ag2, ty, q), SC(Ag1, Ag2, ty, q))); 

} 

} 

 

Algorithm 9.3

If FEΣ(SC(Ag2, Ag1, ty, q), SC(Ag2, Ag1, ty, q)) = (Justify-content, tj) Then {  

If Trustworthy(Ag2, q)  

Then FΩ(Ag1, SC(Ag2, Ag1, ty, q)) := {(Accept-content, tj+1)} 

Else FΩ(Ag1, SC(Ag2, Ag1, ty, q)) := {(Refuse-content, tj+1)} 
Send(Ag2, Refuse(Ag1, SC(Ag2, Ag1, ty, q)));  

 } 

Algorithm 9.4
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Ag2’s argument if Ag1 has an argument. If not Ag1 challenges Ag2’s argument if Ag1 has no 
arguments nor against-arguments.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Algorithm 9.6 deals with the case in which the reactive game of Ag2 is a defense of its 
argument (Defense game) or a justification of its commitment (case 1 of Justification 
game). Thus, Ag1 can attack the support of the Ag2’s argument or its conclusion according 
to Ag1’s arguments. As in Algorithm 9.5, Ag1 accepts or challenges the support of Ag2’s 
argument in the opposite case. 
 
9.2.7 Termination Proof 

 
In this section we discuss the termination of our protocol (i.e. the termination of Algorithm 
9.1). Informally, to prove the termination of Algorithm 9.1, it is enough to prove that the 
protocol dynamics always converges to a final acceptance or a final refusal. 
 
According to the Algorithms 9.2, 9.3, 9.4, 9.5 and 9.6, the protocol chaining can have one 
of the following possibilities: 
 
1- Agent Ag2 accepts all the supports of the initial commitment SC(Ag1, Ag2, tx, p). 

Therefore, we have: (Accept-content, ti) ∈ FΩ(Ag2, SC(Ag1, Ag2, tx,  p)). 
 
2- Agent Ag2 refuses one of the supports of SC(Idx, Ag1, Ag2, p), and Ag1 does not find an 

argument to defend this support. Thus, we have: FΩ(Ag2, SC(Idx, Ag1, Ag2, p)) = {…, 
(Refuse-content, ti)}. 

If FEΣ(SC(Ag2, Ag1, ty, q), SC(Ag1, Ag2, tz, r)) = (Attack-content, tj) Then { 

If  ∃(s, ¬q) ∈ SAg1  / S’Ag1 Then {  

FΩ(Ag1, SC(Ag1, Ag2, tz’, s)) := {(Create, tj+1)}; 

FEΣ (SC(Ag1, Ag2, tz’, s), SC(Ag2, Ag1, ty, q)) := (Attack-content, tj+1); 

S’Ag1 := S’Ag1 ∪ {( s, ¬q)}; 
Send(Ag2, Attack(SC(Ag1, Ag2, tz’, s), SC(Ag2, Ag1, ty, q)));  

} 
Else 

 If  ∃(s, ¬q) ∈ S’Ag1 then 

FΩ(Ag1, SC(Ag2, Ag1, ty, q)) = {(Refuse-content, tj)} 
Else {  

If (s, q) ∈ SAg1  / S’Ag1 Then  

FΩ(Ag1, SC(Ag2, Ag1, ty, q)) := {(Accept-content, tj+1)} 

Else FΩ(Ag1, SC(Ag2, Ag1, ty, q)) := {(Challenge-content, tj+1)};  
Send(Ag2, Challenge(Ag1, SC(Idy, Ag2, Ag1, q))); 

}   

 } 

Algorithm 9.5
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3- The two agents attack each other about a part of the last arguments.  
 
4- Agent Ag2 challenges a part of the arguments presented by Ag1. 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Possibilities 1 and 2 converge to a final acceptance and a final refusal. Possibility 3 
converges to a situation where an agent finds an argument (H, h) to attack the support of the 

interlocutor’s argument, but this argument was already used ((H, h) ∈ S’Ag). The reason is 
that the agents’ knowledge bases are finite. In this case, this agent refuses the interlocutor’s 
argument (Algorithm 9.2). Thus, possibility 3 converges to a final refusal. For the same 
reason, possibility 4 converges to the situation in which Ag1 justifies a support by itself. In 
this situation, Ag2 can play only an acceptance move if Ag1 is trustworthy or a refusal move 
if not (Algorithm 9.4). Thus, possibility 4 converges to a final acceptance or a final refusal. 
 
Formally, the termination of our dialogue game protocol is stated by the following theorem.  
 
Theorem 9.1 The protocol dynamics always terminates. 
 
 

If FEΣ(SC(Ag2, Ag1, ty, q), SC(Ag2, Ag1, tz, r)) = (Defend-content, tj) or  

 FEΣ(SC(Ag2, Ag1, ty, q), SC(Ag2, Ag1, tz, r)) = (Justify-content, tj) Then { 

If ∃(s, ¬q) ∈ SAg1  / S’Ag1 Then { 

FΩ(Ag1, SC(Ag1, Ag2, tz’, s)) := {(Create, tj+1)}; 

FEΣ(SC(Ag1, Ag2, tz’, s), SC(Ag2, Ag1, ty, q)) := (Attack-content, tj+1); 

S’Ag1 := S’Ag1 ∪ {(s, ¬q)}; 
Send(Ag2, Atack(SC(Ag1, Ag2, tz’, s), SC(Ag2, Ag1, ty, q))); 

} 
Else  

If ∃(s, ¬r) ∈ SAg1 / S’Ag1 Then {  

FΩ(Ag1, SC(Ag1, Ag2, tz’, s)) := {(Create, tj+1)}; 

FEΣ(SC(Ag1, Ag2, tz’, s), SC(Ag2, Ag1, tz, r)) := (Attack-content, tj+1); 

S’Ag1 := S’Ag1 ∪ {(s, ¬r)}; 
Send(Ag2, Attack(SC(Ag1, Ag2, tz’, s), SC(Ag2, Ag1, tz, r)));  

} 
Else { 

If ∃(s, q) ∈ SAg1  / S’Ag1 Then  

FΩ(Ag1, SC(Ag2, Ag1, ty, q)) := {(Accept, tj+1)}; 

Else FΩ(Ag1, SC(Ag2, Ag1, ty, q)) := {(Challenge, tj+1)}; 
Send(Ag2, Challenge(Ag1, SC(Ag2, Ag1, ty, q))); 

}  

 } 

Algorithm 9.6
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Proof 

To prove this theorem, we use a tableau method (Cleaveland, 1990). The idea is to 
formalize our specifications (Section 9.2.4) as tableau rules and then to prove the finiteness 
of the tableau. Tableau rules are written in such a way that premises appear above 
conclusions. Using a tableau method means that the specifications are conducted in a top-
down fashion. For example, specification 2 (defense game) can be expressed by the 
following rules: 
 

1:R 1

12

( ,[ ], ( ))

( , )

Ag

Ag S

Defend S SC p  

Accept
 

 

2 :R 1

12

( ,[ ], ( ))

( , )

Ag

Ag S

Defend S SC p  

Challenge
 

 

3:R 1

12

( ,[ ], ( ))

( ,[ ], )

Ag

Ag S

Defend S SC p  

Attack S'
 

 

We denote the formulae of our specifications by σ, and we define Eσ  the set of σ. We 

define an ordering ≺ on Eσ  and we prove that ≺ has no infinite ascending chains. 

Intuitively, this relation is to hold between σ1 and σ2 if it is possible that σ1 is an ancestor of 

σ2 in some tableau. Before defining this ordering, we introduce some notations:               

Act*(Ag, [S], S’) with Act* ∈ {Act’, Act-Arg} is a formula. We notice that formulae in 

which there is no support [S], can be written as follows: Act*(Ag, [∅ ], S’). σ[S] →R σ[S’] 

indicates that the tableau rule R has the formula σ[S] as premise and the formula σ[S’] as 

conclusion, with σ[S] = Act*(Ag, [S], S’). The size |S| is the number of commitments in S. 
 

Definition 9.2 Let σ[Si] be a formula and Eσ  the set of σ[Si]. The ordering ≺ on Eσ  is 

defined as follows. We have σ[S0] ≺ σ[S1] if: 

|S1| < |S0| or 

For all rules Ri such that σ[S0] →R0 σ[S1] →R1 σ[S2]… →Rn σ[Sn] we have |Sn| = 0. 
 
Intuitively, in order to prove that a tableau system is finite, we need to prove the following: 

1- if σ[S0] →R σ[S1] then σ[S0] ≺ σ[S1]. 

2- ≺  has no infinite ascending chains (i.e. the inverse of ≺ is well-founded). 

 
Property 1 reflects the fact that applying tableau rules results in shorter formulae, and 
property 2 means that this process has a limit. The proof of 1 proceeds by a case analysis on 
R. Most cases are straightforward. We consider here the case of R3. For this rule we have 

two cases. If |S1| < |S0|, then σ[S0] ≺ σ[S1]. If |S1|  ≥ |S0|, we can apply the rules 

corresponding to the Attack game specification. The three first rules are straightforward 
since S2 = ∅ . For the last rule, we have the same situation that R3. Suppose that there is no 

path in the tableau σ[S0] →R0 σ [S1] →R1 σ[S2]…  →Rn σ[Sn] such that |Sn| = 0. This means 
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that i) the number of arguments that agents have is infinite or that ii) one or several 
arguments are used several times. However, situation i is not possible because the agents’ 
knowledge bases SAg are finite sets, and situation ii is not allowed in our protocol because 
agents cannot use arguments already used (i.e. arguments already in in S’Ag). We note here 
that the agents’ knowledge bases are updated after each conversation by removing the 
attacked arguments that cannot be defended and adding the new accepted arguments.    

Because the definition of ≺ is based on the size of formulae and since |S0| ∈ N (< ∞) and < 

is well-founded in , it follows that there is no infinite ascending chains of the form                 

σ[S0] ≺ σ[S1]… 

 
 
We notice that what we proved here is the termination of the protocol run and not the 
termination of the dialogue. For this reason, this proof uses the protocol specification in 
terms of the dialogue rules. It is clear that the termination of the protocol run results in the 
termination of the dialogue.  
 
9.2.8 Correctness and Complexity 

 
Correctness. We can formalize the correctness problem of our algorithms as follows: 
Algorithm 9.1 is correct iff the protocol description based on this algorithm satisfies the 
protocol specification (i.e. what the protocol must do). The specification can be formalized 
as a set of claims or properties that must be predefined. The idea is to describe the protocol 
as a transition system T for a dialogue game protocol as defined in Chapter 8 (Definition 

8.2), and to express the specification as logical formulae ψ using our DCTL*CAN logic (see 
Chapter 7). This formalization enables us to deal with the correctness problem as a model-
checking problem, i.e. whether T ψ  or not. For this purpose we can use our model 

checking technique that we proposed in Chapter 8.  
 
Because our persuasion dialogue game protocol is specified using our pragmatic approach 
(Chapters 5 and 6), and dialogue game specifications are described as if then rules, it is easy 
to translate this protocol to a transition system T for a dialogue game. Transitions are 
labeled by the different actions that we use in our specifications of dialogue games (i.e. 
Action_Agi). The syntax of these actions can be easily translated to the syntax of 
DCTL*CAN. For example the action: 
 

Defend-content(Ag1, [S], SC(Idx, Ag1, Ag2, p))  
 
can be translated to:  
 
Defend-content(Ag1, SC(Idx, Ag1, Ag2, p), p’)  
 
where: 

{ }21, ,,( ) / 0,...,i i
pAg AgS SC i nid= = and 0 1' ... np p pp = ∧ ∧  . 

 



193 

 

Each dialogue game can be described by a fragment of the transition system T as follows:  
each conversation policy of the form :  
 
 
 

can be described by two states s1 and s2 and a transition  s1 →Action_Ag2
 s2. Action_Ag1 is the 

label of a transition whose s1 is the target state. We notice that the condition Cond is 
omitted. This does not affect the correctness of the protocol, because the conditions are used 
by agents as a reasoning mechanism about the protocol and do not belong to the protocol 
itself. Using this procedure, we can describe our persuasion protocol by a transition system 
for dialogue game protocol with 11 states and 16 transitions. The initial state s0 is the source 
state of one transition labeled by the creation action. This transition system has two final 
states correspond respectively to the acceptance and the refusal states.  Finally, the 
properties to be verified are derived from the specifications. The properties described in 
Chapter 8 (Section 8.4.2) are examples of the properties that our protocol must satisfied. 
 
Complexity. The purpose of Algorithm 9.1 is to resolve the initial conflict or to decide after 
a finite number of moves that the conflict can not be resolved. Every move is based on the 
state of SAg and S’Ag because agents must seek arguments or counter-arguments in SAg and 
S’Ag. If we do not take into account the trustworthiness part of the algorithm, and since     

|SAg| < |S’Ag|, the time complexity of Algorithm 9.1 is: Ο(max(|SAg1|, |SAg2|)). The complexity 
of the trustworthiness part will be discussed in Section 9.3.3. 
 

9.3 Trustworthiness Model 
 
9.3.1 Formulation 

 
Several models of trustworthiness have been developed in the context of MAS (Sabater and 
Sierra, 2002), (Yu and Singh, 2002), (Ramchurn et al., 2003). However, their formulations 
do not take into account the elements we use in our approach (accepted and refused 
arguments, satisfied and violated commitments). For this reason, we propose a model that is 
more appropriate for our protocol. This model has the advantage of being simple and 
rigorous.  
 
In our model, an agent’s trustworthiness is a probability function defined as follows:  
 

[ ],: 0 1TRUST A A D× →×  

 
This function associates to each agent a probability measure representing its trustworthiness 
in the domain D according to another agent. Let X be a random variable representing an 
agent’s trustworthiness. To evaluate the trustworthiness of an agent Agb, an agent Aga uses 
the records of its interactions with Agb. Equation 9.1 indicates how to calculate this 
trustworthiness as a probability measure (number of successful outcomes / total number of 
possible outcomes). 
 

Action_Ag1 Action_Ag2
Cond 
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Nb_arg(Agb)Aga is the number of Agbs’ arguments that are accepted by Aga. 
Nb_SC(Agb)Aga is the number of satisfied commitments whose Agb is the debtor and Aga is 
the creditor.  
T_Nb_arg(Agb)Aga is the total number of Agbs’ arguments towards Aga.  

T_Nb_SC(Agb)Aga is the total number of commitments whose Agb is the debtor and Aga is 
the creditor. 
 
All these commitments and arguments are related to the domain D. The basic idea is that the 
trust degree of an agent can be induced according to how much information acquired from it 
has been accepted as belief in the past. Because all the factors of Equation 9.1 are related to 
the past, this information number is finite. 
 
TRUST(Agb)Aga is the trustworthiness of Agb according to Aga’s point of view. This 
trustworthiness is a dynamic value that changes according to the interactions taking place 
between Aga and Agb. This supposes that Aga knows Agb. If not, or if the number of 
interactions is not sufficient to determine this trustworthiness, the consultation of other 
agents becomes necessary.  
 
As proposed in (Abdul-Rahman and Hailes, 2000) (Yu and Singh, 2002), each agent has 
two kinds of beliefs when evaluating the trustworthiness of another agent: local beliefs and 
total beliefs. Local beliefs are based on the direct interactions between agents. Total beliefs 
are based on the combination of the different testimonies of other agents called witnesses. In 
our model, local beliefs are given by Equation 9.1. Total beliefs require studying how 
different probability measures offered by witnesses can be combined. We deal with this 
aspect in the following section. 
 
9.3.2 Estimating Agent’s Trustworthiness 
 

Let us suppose that an agent Aga wants to evaluate the trustworthiness of an agent Agb with 
which it never (or not enough) interacted before. This agent must consult agents that it 
knows to be trustworthy (confidence agents). A trustworthiness threshold w must be fixed. 
Thus, Agb will be considered trustworthy by Aga iff TRUST(Agb)Aga is higher or equal to w. 
Aga attributes a trustworthiness measure to each confidence agent Agi. When it is consulted 
by Aga, each confidence agent Agi provides a trustworthiness value for Agb if Agi knows 
Agb. Confidence agents use their local beliefs to calculate this value (Equation 9.1). Thus, 
the problem consists in evaluating Agb’s trustworthiness using the trustworthiness values 
transmitted by confidence agents. Figure 9.4 illustrates this problem. 
 
 
 
 
 

arg

arg

b bAga Aga

b Aga

b bAga Aga

Ag Ag
Ag

Ag Ag

Nb_ ( )   Nb_SC( )  
TRUST( )

T_Nb_ ( )   T_Nb_SC( )

+
=

+
 (9.1) 
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Figure 9.4. Problem of measuring Agb’s trustworthiness by Aga 

 
We notice that this problem cannot be formulated as a problem of conditional probability. 
Consequently, it is not possible to use Bayes’ theorem or total probability theorem. The 
reason is that events in our problem are not mutually exclusive, whereas this condition is 
necessary for these two theorems. Probability values offered by confidence agents are not 
mutually exclusive since they are provided simultaneously.  
 
To solve this problem we must study the distribution of the random variable X representing 
the trustworthiness of Agb. Since X takes only two values: 0 (the agent is not trustworthy) or 
1 (the agent is trustworthy), variable X follows a Bernoulli distribution ß(1, p). According to 
this distribution, we have:  
 
 

( )E X p=   (9.2) 

 
 
where E(X) is the expectation of the random variable X and p is the probability that the 
agent is trustworthy. Thus, p is the probability that we seek. Therefore, it is enough to 

calculate the expectation E(X) to find TRUST(Agb)Aga. However, this expectation is a 
theoretical mean that we must estimate. To this end, we can use the Central Limit Theorem 
(CLT) and the law of large numbers. The CLT states that whenever a random sample of 

size n (X1,…Xn) is taken from any distribution with mean µ, then the sample mean             

(X1 + … +Xn)/n will be approximately normally distributed with mean µ. As an application 
of this theorem, the arithmetic mean (average) (X1+…+ Xn)/n approaches a normal 

distribution of mean µ, the expectation and standard deviation nσ .Generally, and 

according to the law of large numbers, the expectation can be estimated by the weighted 
arithmetic mean. 
 
Our random variable X is the weighted average of n independent random variables Xi that 
correspond to Agb’s trustworthiness according to the point of view of confidence agents Agi. 
These random variables follow the same distribution: the Bernoulli distribution. They are 
also independent because the probability that Agb is trustworthy according to an agent Agt is 

 
 
 
 
 
 
 

              
Aga 

Agb

Ag3 Ag2Ag1 

Trust(Ag1) 
Trust(Ag2)
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Trust(Ag3)

Trust(Agb)
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Figure 9.4. Problem of measuring Agb’s trustworthiness by Aga 
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independent of the probability that this agent (Agb) is trustworthy according to another agent 
Agr. Consequently, the random variable X follows a normal distribution whose average is 
the weighted average of the expectations of the independent random variables Xi. The 
estimation of expectation E(X) can be given by Equation 9.3. 
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The value 0M  represents an estimation of  TRUST(Agb)Aga. 

 
Equation 9.3 does not take into account the number of interactions between confidence 
agents and Agb. This number is an important factor because it makes it possible to favor 
information coming from agents knowing more Agb. Equation 9.4 gives us an estimation of 
TRUST(Agb)Aga if we take into account this factor and we suppose that all confidence agents 
have the same trustworthiness. 
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where N(Agi)Agb indicates the number of interactions between a confidence agent Agi and 
Agb. This number can be identified by the total number of Agb’s commitments and 
arguments. 
 
The combination of Equations 9.3 and 9.4 gives us a good estimation of TRUST(Agb)Aga 
(Equation 9.5) that takes into account the three most important factors: (1) the 
trustworthiness of confidence agents according to the point of view of Aga (2) the Agb’s 
trustworthiness according to the point of view of confidence agents (3) the number of 
interactions between confidence agents and Agb. This number is an important factor because 
it makes it possible to favor information coming from agents knowing more Agb. 
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This Equation shows how trust can be obtained by merging the trustworthiness values 
transmitted by some mediators. This merging method takes into account the proportional 
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relevance of each trustworthiness value, rather than treating them equally. The function 
Trustworthy(Ag2) of Algorithm 9.4 can be specified as follows: 
 
If M > w Then Return true Else return false. 
 
According to Equation 9.5, we have: 
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          M w⇒ <  
 
Consequently, the well-known lottery paradox of Kyburg can never happen. If all 
trustworthiness values transmitted by the mediators are below the threshold w, then Aga will 
not trust Agb.   
 
To calculate M, we need the trustworthiness of other agents. A practical solution consists in 
building a trust graph like the TrustNet proposed by Yu and Singh (2002). 
 
9.3.3 Trust Graph 

 
In previous section (Section 9.3.2) ) we offered a solution to the trustworthiness 
combination problem to evaluate the trustworthiness of a new agent (Agb). To simplify the 
problem we supposed that each consulted agent (a confidence agent) offers a 
trustworthiness value of Agb if it knows it. If a confidence agent does not offer any 
trustworthiness value, it will not be taken into account at the moment of the evaluation of 
Agb’s trustworthiness by Aga. However, as outlined in (Yu and singh, 2002), a confidence 
agent can, if it does not know Agb, offer to Aga a set of agents which eventually know Agb. 
In this case, Aga will consult the proposed agents. These agents also have a trustworthiness 
value according to the point of view of the agent that proposed them. For this reason, Aga 
applies Equation 9.5 to assess the trustworthiness values of these agents. These new values 
will be used to evaluate the Agb’s trustworthiness. We can build a trust graph in order to 
deal with this situation. Such a graph is defined as follows: 
 
Definition 9.8 A trust graph is a directed and weighted graph. The nodes are agents and an 

edge (Agi, Agj) means that agent Agi knows agent Agj. The weight of the edge (Agi, Agj) is a 

pair (x, y) where x is the Agj’s trustworthiness according to the point of view of Agi and y is 

the interaction number between Agi and Agj. The weight of a node is the agent’s 

trustworthiness according to the point of view of the source agent. 
 
According to this definition, in order to determine the trustworthiness of the target agent 
Agb, it is necessary to find the weight of the node representing this agent in the graph. The 
graph is constructed while Aga receives answers from the consulted agents. The evaluation 
process of the nodes starts when all the graph is built. This means that this process only 
starts when Aga has received all the answers from the consulted agents. The process 
terminates when the node representing Agb is evaluated. The graph construction and the 
node evaluation algorithms are given respectively by Algorithms 9.7 and 9.8. 
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Construct-Graph(Aga, Agb, Limit_Nbr_Visited_Agents, Limit_Nbr_Witnesses) 

{ 

Graph := ∅ 
Nbr_Witnesses := 0 
Nbr_Visited_Agents := 0  
Nbr_Additional_Agents :=  

Max(0, Limit_Nbr_Visited_Agents – Size(Confidence(Aga))) 
Potential_Witnesses := Confidence(Aga) 
Add Node(Agb) to Graph 

 

While (Potential_Witnesses ≠ ∅) and  
(Nbr_Witnesses < Limit_Nbr_Witnesses) and 
(Nbr_Visited_Agents < Limit_Nbr_Visited_Agents) { 

 
n := Limit_Nbr_Visited_Agents - Nbr_Visited_Agents 
m := Limit_Nbr_Witnesses - Nbr_Witnesses 

 

For (i =1, i ≤ min(n, m), i++) { 
Ag1 := Potential_Witnesses(i)    

If Node(Ag1) ∉ Graph Then Add Node(Ag1) to Graph 

If Ag1 ∈ Confidence(Aga) Then Weight(Node(Ag1)) := Trust(Ag1)Aga 
Send(Ag1, Investigation(Agb)) 
Nbr_Visited_Agents := Nbr_Visited_Agents +1 }  

 

For (i =1, i ≤ min(n, m), i++) { 
Ag1 := Potential_Witnesses(1)    
Str := Receive(Ag1) 
Potential_Witnesses := Potential_Witnesses / {Ag1} 

While (Str.Agents ≠ ∅) and (Nbr_Additional_Agents > 0) { 
If Str.Agents = {Agb} Then { 

Nbr_Witnesses := Nbr_Witnesses + 1 
Add Arc(Ag1, Agb) 
Weight1(Arc(Ag1, Agb)) := Str.TRUST(Agb)Ag1 
Weight2(Arc(Ag1, Agb)) := Str.n(Agb)Ag1 

Str.Agents := ∅ } 
Else { 

Nbr_Additional_Agents := Nbr_Additional_Agents – 1 
Ag2 := Str.Agents(1) 
Str.Agents := Str.Agents / {Ag2} 

If Node(Ag2) ∉ Graph then Add Ag2 to Graph 
Weight1(Arc(Ag1, Ag2)) := Str.TRUST(Ag2)Ag1 
Weight2(Arc(Ag1, Ag2)) := Str.n(Ag2)Ag1 

Potential_Witnesses := Potential_Witnesses ∪ {Ag2} } } } } 
} 

Algorithm 9.7 
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Algorithm 9.7: The construction of the trust graph is described as follows: 
 
1- Agent Aga sends a request about the Agb’s trustworthiness to all the confidence agents 
Agi. The nodes representing these agents (denoted Node(Agi)) are added to the graph. Since 
the trustworthiness values of these agents are known, the weights of these nodes (denoted 
Weight(Node(Agi))) can be evaluated. These weights are represented by TRUST(Agi)Aga (i.e 
by Agi’s trustworthiness according to the point of view of Aga). 
 
2- Aga uses the primitive Send(Agi, Investigation(Agb)) in order to ask Agi to offer a 
trustworthiness value for Agb. The Agis’ answers are recovered when they are offered in a 
variable denoted Str by Str = Receive(Agi). Str.Agents represents the set of agents referred 
by Agi. Str.TRUST(Agj)Agi is the trustworthiness value of an agent Agj (belonging to the set 
Str.Agents) from the point of view of the agent which referred it (i,e, Agi). 
 
3- When a consulted agent answers by indicating a set of agents, these agents will also be 
consulted. They can be regarded as potential witnesses. These witnesses are added to a set 
called: Potonial_Witnesses. When a potential witness is consulted, it is removed from the 
set. 
 
4- To ensure that the evaluation process terminates, two limits are used: the maximum 
number of agents to be consulted (Limit_Nbr_Visited_Agents) and the maximum number of 
witnesses who must offer an answer (Limit_Nbr_Witnesses). The variable 
Nbr_Additional_Agents is used to be sure that the first limit is respected when Aga starts to 
receive the answers of the consulted agents. 
 
Algorithm 9.8: The evaluation of a graph node is based on the trustworthiness combination 
formula (Equation 9.5). The weight of each node that represents the trustworthiness value of 
the agent represented by the node is evaluated on the basis of the weights of the adjacent 
nodes. For example, let Arc(Agx, Agy) an arc in the graph, before evaluating Agy it is 
necessary to evaluate Agx. Consequently, the evaluation algorithm is a recursive one. The 

Evaluate-Node(Agy) { 

∀Arc(Agx, Agy) 
If Node(Agx) is note evaluated Then 

Evaluate-Node(Agx) 
 

m1 := 0, m2 := 0 

∀Arc(Agx, Agy) { 
m1 = m1 + Weight(Node(Agx)) * Weight(Arc(Agx, Agy)) 
m2 = m2 + Weight(Node(Agx)) 

} 

Weight(Node(Agy)) = m1 / m2 

} 

Algorithm 9.8
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algorithm terminates because the nodes of the set Confidence(Aga) are already evaluated by 
Algorithm 9.7. Since the evaluation is done recursively, the call of this algorithm in the 
main program has as parameter the agent Agb. 
 
Complexity. Our trustworthiness model is based on the construction of a trust graph and on 
a recursive call to the function Evaluate-Node(Agy) to assess the weight of all the nodes. 
Since each node is visited exactly once, there are n recursive calls, where n is the number of 
nodes in the graph. To assess the weight of a node we need the weights of its neighboring 

nodes and the weights of the input edges. Thus, the algorithm takes a time in Ο(n) for the 

recursive calls and a time in Ο(a) to assess the agents’ trustworthiness where a is the 

number of edges. The run time of the trustworthiness algorithm is therefore in Ο(max(a, n)) 
i.e. linear in the size of the graph.  
 
In total, Algorithm 9.1 of our persuasion dialogue game protocol takes a time in:  

Ο(max(|SAg1|, |SAg2|) + max(a, n)) = Ο(max(|SAg1|, |SAg2|, a, n)). 
 

9.4 Implementation 
 
In this section we describe the implementation of our persuasion dialogue game protocol 
(the different dialogue games and the trustworthiness model) using the JackTM platform 
(The Agent Oriented Software Group, 2004). We chose this language for three main 
reasons: 
 
1- It is an agent-oriented language offering a framework for multi-agent system 
development. This framework can support different agent models. 
2- It is built on top of and fully integrated with the Java programming language. It includes 
all components of Java and it offers specific extensions to implement agents’ behaviors. 
3- It supports logical variables and cursors. A cursor is a representation of the results of a 
query. It is an enumerator which provides query result enumeration by means of re-binding 
the logical variables used in the query. These features are particularly helpful when 
querying the state of an agent’s beliefs. Their semantics is mid-way between logic 
programming languages with the addition of type checking Java style and embedded SQL. 
 
9.4.1 General Architecture 

 
Our system consists of two types of agents: conversational agents and trust model agents. 
These agents are implemented as JackTM agents, i.e. they inherit from the basic class JackTM

 

Agent. Conversational agents are agents that take part in the persuasion protocol. Trust 
model agents are agents that can inform an agent about the trustworthiness of another agent 
(Figure 9.5). 
 
According to the specification of the Justification game (Section 9.2.4 (D)), an agent Ag2 
can play an acceptance or a refusal move according to whether it considers that its 
interlocutor Ag1 is trustworthy or not. If Ag1 is unknown for Ag2, Ag2 can ask agents that it 
considers trustworthy for it to offer a trustworthiness assessment of Ag1. From the received 
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answers, Ag2 builds a trust graph and assesses the Ag1’s trustworthiness as explained in 
Section 9.3.3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.5. The general architecture of the system 

To take part in our persuasion protocol, agents must have knowledge and argumentation 
systems. Agents’ knowledge are implemented using JackTM data structures called beliefsets. 
The argumentation systems are implemented as Java modules using a logical programming 
paradigm. These modules use agents’ beliefsets to build arguments for or against certain 
propositional formulae. The actions that agents perform on commitments or on their 
contents are programmed as events. When an agent receives such an event, it seeks a plan to 
handle it. These plans are the algorithms 9.2, 9.3, 9.4, 9.5, and 9.6 presented in this chapter. 
 
The trustworthiness model is implemented using the same principle (events + plans). The 
requests sent by an agent about the trustworthiness of another agent are events and the 
evaluations of agents’ trustworthiness are programmed in plans. The trust graph is 
implemented as a Java data structure (oriented graph).  
 
As Java classes, conversational agents and trust model agents have private data called Belief 

Data. For example, the different commitments and arguments that are created and 
manipulated are given by a data structure called CAN implemented using tables and the 
different actions expected by an agent in the context of a particular game are given by a data 
structure (table) called data_expected_actions. The different agents’ trustworthiness values 
that an agent has are recorded in a data structure (table) called data_trust. These data and 
their types are given in Figures 9.6 and 9.7. 
 
 
 

Jack Agent Type: Conversational_Agent Jack Agent Type: Trust_Model_Agent 

Ag1 Ag2 Trust_AgnTrust_Ag1 … 

                    Persuasion protocol 

                        Interactions for determining Ag1’s trustworthiness 

Figure 9.5. The general architecture of the system
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Figure 9.6. Belief Data used in our prototype 

9.4.2 Implementation of the Trustworthiness Model 

 
The trustworthiness model is implemented by agents of type: trust model agent. Each agent 
of this type has a knowledge base implemented using JackTM

 beliefsets. This knowledge 
base called table_trust has the following structure: Agent_name, Agent_trust, and 
Interaction_number. Thus, each agent has information on other agents about their 
trustworthiness and the number of times that it interacted with them. The visited agents 
during the evaluation process and the agents added in the trust graph are recorded in two 
JackTM

 beliefsets called: table_visited_agents and table_graph_trust. The two limits used in 
Algorithm 9.7 (Limit_Nbr_Visited_Agents and Limit_Nbr_Witnesses) and the 
trustworthiness threshold w are passed as parameters to the JackTM constructor of the 
original agent Aga that seeks to know if its interlocutor Agb is trustworthy or not. This 
original agent is a conversational agent.  
  
 
 

Figure 9.6. Belief Data used in our prototype 
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Figure 9.7. Beliefsets used in our prototype 

The main steps of the evaluation process of Agb’s trustworthiness are implemented as 
follows: 
 
1- By respecting the two limits and the threshold w , Aga consults its knowledge base 
data_trust of type table_trust and sends a request to its confidence agents Agi (i = 1,.., n) 
about Agb’s trustworthiness. The JackTM primitive Send makes it possible to send the 
request as a JackTM message that we call Ask_Trust of MessageEvent type. Aga sends this 
request starting by confidence agents whose trustworthiness value is highest. 
 
2- In order to answer to the Aga’s request, each agent Agi executes a JackTM plan instance 
that we call Plan_ev_Ask_Trust. Thus, each agent Agi  consults its knowledge base and 
offers to Aga an Agb’s trustworthiness value if Agb is known by Agi. If not, Agi proposes a 
set of confidence agents from its point of view, with their trustworthiness values and the 
number of times that it interacted with them. In the first case, Agi sends to Aga a JackTM 
message that we call Trust_Value. In the second case, Agi sends a message that we call 
Confidence_Agent. These two messages are of type MessageEvent. 

Figure 9.7. Beliefsets used in our prototype 
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3- When Aga receives the Trust_Value message, it executes a plan: Plan_ev_Trust_Value. 
According to this plan,  Aga adds to a graph structure called graph_data_trust two 
information: 1) the  agent Agi and its trustworthiness value as graph node, 2) The 
trustworthiness value that Agi offers for Agb and the number of times that Agi interacted with 
Agb as arc relating the node Agi and the node Agb. This first part of the trust graph is 
recorded until the end of the evaluation process of Agb’s trustworthiness. When Aga receives 
the Confidence_Agent message, it executes another plan:  Plan_ev_Confidence_Agent. 
According to this plan, Aga adds to another graph structure: graph_data_trust_sub_level 
three information for each Agi agent: 1) the agent Agi and its trustworthiness value as a sub-
graph node, 2) the nodes Agj representing the agents proposed by Agi, 3) For each agent Agj, 
the trustworthiness value that Agi assigns to Agj and the number of times that Agi interacted 
with Agj as arc between Agi and Agj. This information that constitutes a sub-graph of the 
trust graph will be used to evaluate Agj’s trustworthiness values using Equation 9.5. These 
values are recorded in a new structure: new_data_trust. Thus, the structure 
graph_data_trust_sub_level releases the memory once Agj’s trustworthiness values are 
evaluated. This technique allows us to decrease the space complexity of our algorithm. 
 
4- Steps 1, 2 and 3 are applied again by substituting data_trust by new_data_trust, until all 
the consulted agents offer a trustworthiness value for Agb or until one of the two limits 
(Limit_Nbr_Visited_Agents or Limit_Nbr_Witnesses) is reached. 
 
5- Evaluate the Agb’s trustworthiness value using the information recorded in the structure 
graph_data_trust by applying Equation 9.5.  
 
The different events and plans implementing our trustworthiness model and the 
conversational agent constructor are illustrated by Figure 9.8. Figure 9.9 illustrates an 
example generated by our prototype of the process allowing an agent Ag1 to assess the 
trustworthiness of another agent Ag2 in a domain related to the example given in Section 
9.4.3. In this example, Ag2 is considered trustworthy by Ag1 because its trustworthiness 
value (0.79) is higher than the threshold (0.7).  
 
9.4.3 Implementation of the Dialogue Games 

 
In our system, agents’ knowledge bases contain propositional formulae and arguments. 
These knowledge bases are implemented as JackTM

 beliefsets. Beliefsets are used to 
maintain an agent’s beliefs about the world. These beliefs are represented in a first order 
logic and tuple-based relational model. The logical consistency of the beliefs contained in a 
beliefset is automatically maintained. The advantage of using beliefsets over normal Java 
data structures is that beliefsets have been specifically designed to work within the agent-
oriented paradigm.  
 
Our knowledge bases (KBs) contain two types of information: arguments and beliefs. 
Arguments have the form ([Support], Conclusion), where Support is a set of propositional 
formulae and Conclusion is a propositional formula. Beliefs have the form ([Belief], Belief) 
i.e. Support and Conclusion are identical. The meaning of the propositional formulae (i.e. 
the ontology) is recorded in a beliefset called table_ontology whose access is shared 
between the two agents. This beliefset has two fields: Proposition and Meaning. 
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 Figure 9.8. Events, plans and the conversational agent constructor implementing the 

trustworthiness model 

To open a dialogue game, an agent uses its argumentation system. The argumentation 
system allows this agent to seek in its knowledge base an argument for a given conclusion 
or for its negation (“against argument”). For example, before creating a commitment 
SC(Id0, Ag1, Ag2, p), agent Ag1 must find an argument for p. This enables us to respect the 
commitment semantics by making sure that agents can always defend the content of their 
commitments. The argumentation system of an agent is implemented using logical 

statements, logical members and cursors. Logical statements follow Open World semantics 
that models real world  knowledge. It allows for three truth states: true, false and unknown. 
Logical members bring elements of logic programming to JackTM. They follow the semantic 
behavior of variables from logic programming languages such as prolog. That is, they are 
not place-holders for assigned values like normal Java variables. Rather, they represent a 
specific, but possibly unknown, value. Conclusions and supports of arguments are logical 
members, and statements using these conclusions and supports are logical statements. 
Cursors allow agents to seek an argument for supporting a given conclusion, using the 
query method of a knowledge base. 
 

Figure 9.8. Events, plans and the conversational agent constructor implementing the trustworthiness 
model 
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Figure 9.9. The screen shot of a trustworthiness evaluation process 

Agent communication is done by sending and receiving messages. These messages are 

events that extend the basic JackTM
 event: MessageEvent class. MessageEvents represent 

events that are used to communicate with other agents. Whenever an agent needs to send a 
message to another agent, this information is packaged and sent as a MessageEvent. A 
MessageEvent can be sent using the primitive: Send(Destination, Message). In our protocol, 
Message represents the action that an agent applies to a commitment or to its content, for 
example: Create(Ag1, SC(Id0, Ag1, Ag2, p)), etc. 
 
Our dialogue games are implemented as a set of events (MessageEvents) and plans. A plan 
describes a sequence of actions that an agent can perform when an event occurs. Whenever 
an event is posted and an agent chooses a task to handle it, the first thing the agent does is to 
try to find a plan to handle the event. Plans are reasoning methods describing what an agent 
should do when a given event occurs.  
 
Each dialogue game corresponds to an event and a plan. These games are not implemented 
within the agents’ program, but as event classes and plan classes that are external to agents. 
Thus, each conversational agent can instantiate these classes. An agent Ag1 starts a dialogue 

Figure 9.9. The screen shot of a trustworthiness evaluation process 
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game by generating an event and by sending it to its interlocutor Ag2. Ag2 executes the plan 
corresponding to the received event and answers by generating another event and by 
sending it to Ag1. Consequently, the two agents can communicate by using the same 
protocol since they can instantiate the same classes representing the events and the plans. 
For example, the event Event_Attack_Commitment and the plan 
Plan_ev_Attack_commitment implement the defense game. The architecture of our 
conversational agents is illustrated in Figure 9.10.The different events and plans 
implementing our dialogue games are given in Figure 9.11. Figure 9.12 illustrates the screen 
shot of the example presented in Section 9.2.5. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.10. The architecture of the conversational agents 

To start the entry game, an agent (initiator) chooses a goal that it tries to achieve. This goal 
is to persuade its interlocutor that a given propositional formula is true. For this reason, we 
use a particular event: BDI Event (Belief-Desire-Intention). BDI events model goal-directed 
behavior in agents, rather than plan-directed behavior. What is important is the desired 
outcome, not the method chosen to achieve it. This type of events allows an agent to pursue 
long term goals. 
 

 

Ag1 (Jack Agent) Ag2 (Jack Agent) 

Knowledge 
base (Jack 
Beliefset)

Knowledge 
base (Jack 
Beliefset)

Jack Event → Jack Plan

Jack Event → Jack Plan
… 

Jack Event → Jack Plan

Dialogue games

Argumentation system 
(Java + Logical programming)

Argumentation system 
(Java + Logical programming) 

Figure 9.10. The architecture of the conversational agents 

Ontology  (Jack 

Beliefset) 
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Figure 9.11. Events and plans implementing the dialogue games 

 
 

9.5 Related Work 
 
In this section, we compare our protocol with some proposals that have been put forward in 
two domains: dialogue modeling and commitment based protocols.  
 
1- Dialogue modeling. In (Amgoud et al., 2000a, 2000b) and (Parsons et al., 2003) 
Amgoud, Parsons and their colleagues studied argumentation-based dialogues. They 
proposed a set of atomic protocols which can be combined. These protocols are described as 
a set of dialogue moves using Walton and Krabbe’s classification and formal dialectics. In 
these protocols, agents can argue about the truth of propositions. Agents can communicate 
both propositional statements and arguments about these statements. These protocols have 
the advantage of taking into account the capacity of agents to reason as well as their 
attitudes (confident, careful, etc.). In addition, Prakken (2001) proposed a framework for 
protocols for dynamic disputes, i.e., disputes in which the available information can change 
during the conversation. This framework is based on a logic of defeasible argumentation 
and is formulated for dialectical proof theories. Soundness and completeness of these 

Figure 9.11. Events and plans implementing the dialogue games 
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protocols have also been studied. In the same direction, Brewka (2001) developed a formal 
model for argumentation processes that combines nonmonotonic logic with protocols for 
dispute. Brewka pays more attention to the speech act aspects of disputes and he formalizes 
dispositional protocols in situation calculus. Such a logical formalization of protocols 
allows him to define protocols in which the legality of a move can be disputed. 
Semantically, Amgoud, Parsons, Prakken and Brewkas’ approaches use a defeasible logic. 
Therefore, it is difficult, if not impossible, to formally verify the proposed protocols. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.12. The example screen shot 

There are many differences between our protocol and the protocols proposed in the domain 
of dialogue modeling:  
 
1. Our protocol uses not only an argumentative approach, but also a public one. The effects 
of utterances are formalized not in terms of agents’ private attitudes (beliefs, intentions, 

Figure 9.12. The example screen shot 
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etc.), but in terms of social commitments. In opposition of private mental attitudes, social 
commitments can be verified.  
 
2. Our protocol is based on a combination of dialogue games instead of simple dialogue 
moves. Using our dialogue game specifications enables us to specify the entry and the exit 
conditions more clearly. In addition, computationally speaking, dialogue games provide a 
good balance between large protocols that are very rigid and atomic protocols that are very 
detailed.  
 
3. From a theoretical point of view, Amgoud, Parsons, Prakken and Brewkas’ protocols use 
moves from formal dialectics, whereas our protocol uses actions that agents apply on 
commitments. These actions capture the speech acts that agents perform when conversing. 
The advantage of using these actions is that they enable us to better represent the persuasion 
dynamics considering that their semantics is defined in an unambiguous way in a temporal 
and dynamic logic (see Chapter 7). Specifying protocols in this logic allows us to formally 
verify these protocols using model checking techniques (see Chapter 8).  
 
4. Amgoud, Parsons and Prakkens’ protocols use only assertion, acceptance, refusal and 
challenge moves, whereas our protocol uses not only creation, acceptance, refusal and 
challenge actions, but also justify, attack and defense actions in an explicit way. These 
argumentation relations allow us to directly illustrate the concept of dispute in this type of 
protocols.  
 
5. Amgoud, Parsons, Prakken and Brewka use an acceptance criterion directly related to the 
argumentation system, whereas we use an acceptance criteria for conversational agents 
(supports of arguments and trustworthiness). This makes it possible to decrease the 
computational complexity of the protocol for agent communication. The reason is that in the 
approach proposed by Amgoud, Parsons, Prakken and Brewka, to decide about the 
acceptance of each argument, we need to find a least fixpoint of a given function. This task 
is computationally complex. In addition, in the literature there is no implementation of 
argumentative-based protocols. 
 
2- Commitment-based protocols. Yolum and Singh (2002) developed an approach for 
specifying protocols in which actions’ content is captured through agents’ commitments. 
They provide operations and reasoning rules to capture the evolution of commitments. In a 
similar way, Fornara and Colombetti (2003) proposed a method to define interaction 
protocols. This method is based on the specification of an interaction diagram (ID) 
specifying which actions can be performed under given conditions. These approaches allow 
them to represent the interaction dynamics through the allowed operations. Our protocol is 
comparable to these protocols because it is also based on commitments. However, it is 
different in the following respects. The choice of the various operations is explicitly dealt 
with in our protocol by using argumentation and trustworthiness. In commitment-based 
protocols, there is no indication about the combination of different protocols. However, this 
notion is essential in our protocol using dialogue games. Unlike commitment-based 
protocols, our protocol plays the role of the dialectical proof theory of an argumentation 
system. This enables us to represent different dialogue types as studied in the philosophy of 
language. Finally, we provide a termination proof of our protocol and a complexity analysis 
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of our implementation whereas these properties are not yet studied in classical commitment-
based protocols. 
 

9.6 Discussion 
 
The protocol that we proposed in this chapter is more flexible than the traditional protocols 
of agent communication for the following reasons: 
 
1- Our protocol is not specified in a static way, but results from the combination of different 
dialogue games. How these dialogue games can be combined is not fixed in advance, but 
depends on the evolution of the communication. Consequently, the protocol automaton is 
non-deterministic. 
 
2- Agents can reason about the protocol using their argumentation systems and the 
trustworthiness model. The agents’ choices depend on the current state of the dialogue in 
terms of the states of the different commitments and arguments (i.e. the current state of the 
CAN). Therefore, which games agents can play are determined on the fly.  
 
3- Our protocol specifies the combination rules of different dialogue games and how agents 
can use these rules in a logical way. An interesting consequence of this specification is that 
the protocol does not have the problem of managing exceptions (messages not specified by 
the protocol). The reason is that the protocol does not specify a fixed number of 
possibilities, but only the logical rules that agents can use and reason about in any 
situations.    
 

9.7 Conclusion 
 
The contribution of this chapter is the proposition of a logical language for specifying 
persuasion protocols between autonomous agents using our commitment and argument 
approach. This language has the advantage of expressing the public elements and the 
reasoning process that allows agents to choose an action among several possible actions. 
Because our protocol is defined as a set of dialogue games, this protocol is more flexible 
than the traditional protocols such as those used in FIPA-ACL. This flexibility results from 
the fact that these games can be combined to produce complete and more complex protocols 
and from the fact that agents can reason about the protocol. We formalized these games as a 
set of conversation policies, and we described the persuasion dynamics by the combination 
of five dialogue games. Another contribution of this chapter is the tableau-based termination 
proof of the protocol. We also implemented this protocol using an agent-oriented language 
and a logical programming paradigm and we analyzed its computational complexity. 
Finally, we presented an example to illustrate the persuasion dynamics by the combination 
of different dialogue games. 



 

 

Chapter 10 

Conclusion 

 

10.1 General Discussion 
 
In this thesis we proposed a unified framework for the pragmatics and the semantics of 
agent communication. Our framework has the advantage of being based on solid 
philosophical foundations and equipped with a logical formalization. The philosophical 
foundations are supplied by the philosophical definition of social commitments, Speech Act 
Theory and formal dialectics (the philosophy of arguments). The logical formalization is 
defined in terms of a combination of branching time logic (CTL*) and dynamic logic. 
  
Another advantage of this framework lies in the fact that it captures both the pragmatics and 
semantics of agent interactions. We discuss these two aspects in this section.  
 
Pragmatics: The interactions between autonomous agents are reflected by the actions that 
they perform on commitments and on their contents. These actions can be supported by 
arguments. The dynamics of the interactions is reflected by the creation of commitments, by 
the agents’ positioning on these commitments (acceptance, refusal, challenge, attack, etc.), 
and by the evolution of commitment states in time (satisfied, withdrawn, etc). All the 
commitments and arguments handled in an interaction can be represented using our 
commitment and argument networks (CAN). This formalism allows us to model the 
dynamics of conversations and offers an external representation of the conversational 
activity. This notion of external representation is very useful because it provides participants 
with a common understanding of the current state of the conversation and its advancement. 
The formalism also allows us to ensure conversational consistency when considering the 
actions performed by the agents. It relies on our approach combining commitments and 
arguments. This approach has the advantage of capturing both the social and public aspects 
of a conversation, and the reasoning aspect required in order to take part in conversations. 
Thus, the formalism can clearly illustrate the creation phases of new commitments and the 
positioning phases on these commitments, as well as the argumentation and justification 
phases. 
 
Semantics: All the elements captured by the pragmatic aspects of our framework are 
semantically defined in a logical formalism combining temporal and dynamic logics 
(DCTL*CAN). The concept of social commitment, the different types of commitments and 
the concept of argument are defined as modal operators logic. The actions that agents apply 
to commitments and on their contents as well as the argumentation relations are defined 
using the Perform operator that reflects the performance of actions. The important link
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between commitments and arguments that we established in the pragmatic level is formally 
captured by the semantics in the form of properties using the other elements of the logical 
model. Our semantics offers a clear and unambiguous means to introduce the different 
elements and the various operations that we described in the pragmatic level of agent 
communication. It can also be used for verification purposes. A direct application is to 
check if a particular protocol (for example a negotiation or a persuasion protocol) respects 
the introduced specifications.  
 
Our pragmatic approach presented in Chapter 5 is different from the social approach 
proposed by Singh (1998, 2000) and Colombetti (2000) in the sense that social 
commitments in our approach are not only public states but also deontic notions. Agents 
must justify and defend their commitments if necessary. Thanks to the link we established 
between commitments and arguments, agents can reason about their commitments and 
consequently can communicate in a flexible way. In addition, there are many differences 
between our approach and the argumentative approach proposed by Amgoud and her 
colleagues (2002a, 2000b). The main difference is that Amgoud et al.’s proposal is based 
upon dialectical systems, and the evolution of agent conversations is captured using the 
commitment stores that only record what is uttered during the conversation (MacKenzie, 
1979). However, in our approach, the evolution is captured by the notion of commitment 
and commitment content states that evolve as a result of the actions that agents perform 
when conversing (creation, withdrawal, reactivation, violation and satisfaction). The main 
idea of our approach is that agent communication is considered as actions that agents 
perform on social commitments and arguments. Thus, different speech act types can be 
expressed using these actions. 
 
The CAN formalism presented in Chapter 6 as the basis of our pragmatic approach allows 
us to represent the dynamics of agent communication in a formal way. This new formalism 
for agent communication is different from all other agent communication formalisms 
proposed in (Pitt and Mamdani, 2000), (FIPA-ACL, 2001), (Yolum and Singh, 2002) and 
(Fornara and Colombetti, 2003). Unlike these formalisms, the CAN formalism can be used 
as a means to help agents to participate in conversations. In addition, this formalism enables 
agents to reason about their communicative acts and about the current state of the 
conversation in order to decide about the next actions to be performed. This reasoning 
aspect is tied to the agents’ argumentation systems. 
 
Semantically speaking, our logical model presented in Chapter 7 is different from the 
semantics defined by Singh (2000) and by Verdicchio and Colombetti (2003). Our 
semantics is based not only on a temporal logic, but also on a dynamic logic and it captures 
different commitment types, different commitment states and different actions performed on 
commitments. Our semantics is defined as a model-theoretic semantics that can be 
successfully used to capture the semantics of defeasible arguments. It is therefore different 
from the semantics defined in (Amgoud et al., 2002) which is based on an informal logic. 
Another difference is that our semantic framework can be used to express the meaning of 
different speech act types.  
 
In addition, in Chapter 8, we proposed a new model checking algorithm for the verification 
of dialogue game protocols whose complexity matches that of the best existing algorithms. 
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Our model-checking technique allows us not only to verify if the dialogue game protocol 
satisfies a given property expressed in our DCTL*CAN, but also if this protocol respects a 
simplified version of the tableau semantics of the communicative acts. To our knowledge, 
this model-checking technique is the first proposal in the domain of dialogue game 
verification. 
 
Finally, there are many differences between our dialogue game protocol presented in 
Chapter 9 and the other dialogue game protocols discussed in Chapter 3. The main 
differences are:  
1- Our proposal is based on a social and argument approach. Consequently, agents can 
reason about their actions in order to decide about the dialogue game to be played.   
2- The decision making process is based not only on the agents’ argumentation systems, but 
also on the agents’ trustworthiness. 
In addition, we provided a termination proof of our protocol, and we discussed its 
computational complexity. 
 

10.2 Contributions 
 
The main contributions of this thesis are: 
 
1- A formal pragmatic approach capturing the conversations’ public elements and the 
agents’ reasoning mechanisms using their private states for modeling agent communication. 
This approach was published in (Bentahar et al., 2003). 
 
2- A formalism called Commitment and Argument Network representing the dynamics of 
agent communication and helping agents to participate in conversations in a flexible way. 
This main contribution resulted in two publications: (Bentahar et al., 2004b, 2004c). 
Together, contributions 1 and 2 allowed us to achieve our first and second objectives stated 
in Chapter 1. 
 
3- A model-theoretic semantics for the pragmatic approach defining the meaning of the 
different communicative acts that we use in our pragmatic approach, especially the ones 
commonly used in multi-agent interactions, and capturing the semantics of defeasible 
arguments. This semantics resulted in two publications (Bentahar et al., 2004e, 2004f). This 
contribution matches the third objective of this thesis. 
 
4- A tableau-based model checking technique for the verification of dialogue game 
protocols specified in our framework. This contribution is published in an internal report 
(Bentahar and Moulin, 2004), and it is the subject of a submitted paper (Bentahar et al., 
2005). This verification method is the fourth objective that we set in Chapter 1. 
 
5- A new persuasion dialogue game protocol specified in our framework using a logical 
language, and implemented using an agent-oriented programming language. This 
contribution that matches the fifth objective of this thesis is published in (Bentahar et al., 
2004d). The algorithmic specification of this protocol in the context of the CAN framework 
was the subject of another publication (Bentahar et al., 2004a).    
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Thus, all the objectives of this thesis are reached. In addition, contributions 1, 2, and 5 
answer the first research question stated in Chapter 1: “How may autonomous agents 

participate in conversations in a flexible way?” Contribution 3 answers the second research 
question: “How can we unify pragmatic and semantic approaches and how can the link 

between pragmatics and semantics be established in such an approach?” Finally, 
contributions 4 and 5 answer the third research question:  “How can we formally specify and 

verify the agent communication mechanisms?” 
 

10.3 Future Work 
 
As future work we intend: 
 
1- To use our unified framework to specify other sophisticated protocols according to 
Walton and Krabbe’s classification. Because this framework is based on a commitment and 
argument approach, the dialogue types in this dialectical-based classification can be 
supported. An important result of this work is to explain and formalize the shift between 
these different dialogue types during a conversation. The idea is to define a general 
dialogue-game protocol combining the different protocols (the combined protocol). The 
rules defining the dialectical shifts can be expressed in a logical language extending the one 
we proposed in Chapter 8. The implementation of such a protocol can be done using the 
same logic-programming and agent-oriented paradigm that we used for the persuasion 
dialogue game. 
 
2- To define an operational and a denotational semantics for the different protocols and for 
the combined protocol. The operational semantics constitutes a means to formally derive the 
computation steps of the protocols. The denotational semantics provides a tool for 
specifying the compositionality of these protocols. 
 
3- To implement and evaluate the model checking technique proposed in Chapter 8. The 
ABTA for DCTL*CAN will be implemented in the Concurrency WorkBench of the New 
Century CWB-NC verification tool (Cleaveland and Sims, 1996). The ABTA manipulation 
procedure will be implemented in Standard ML. This work will be done in collaboration 
with Rance Cleaveland from State University of New York at Stony Brook. 
 
4- To define a model checking technique for all the logic proposed in Chapter 7. The 
tableau technique proposed in Chapter 8 can be improved to support the complete version of 
the logic.  
 
5- To explore other argumentation models, particularly Toulmin’s model (1958) that is 
widely cited in the philosophy of argumentation, but still unexplored in the domain of agent 
communication. 
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