
Jamal Bentahar

A Pragmatic and Semantic Unified Framework for Agent

Communication

Thèse présentée
à la Faculté des études supérieures de l’Université Laval
dans le cadre du programme de doctorat en Informatique
pour l’obtention du grade de Philosophiæ Doctor (Ph.D.)

Faculté des Sciences et de Génie
Université Laval

Québec

Avril, 2005

© Jamal Bentahar, 2005

Abstract

In this thesis, we propose a unified framework for the pragmatics and the semantics of agent
communication. Pragmatics deals with the way agents use communicative acts when
conversing. It is related to the dynamics of agent interactions and to the way of connecting
individual acts while building complete conversations. Semantics is interested in the
meaning of these acts. It lays down the foundation for a concise and unambiguous meaning
of agent messages. This framework aims at solving three main problems of agent
communication:

1- The absence of a link between the pragmatics and the semantics.
2- The inflexibility of current agent communication protocols.
3- The verification of agent communication mechanisms.

The main contributions of this thesis are:

1- A formal pragmatic approach based on social commitments and arguments.
2- A new agent communication formalism called Commitment and Argument Network.
3- A logical model defining the semantics of the elements used in the pragmatic approach.
4- A tableau-based model checking technique for the verification of a kind of flexible
protocols called dialogue game protocols.
5- A new persuasion dialogue game protocol.

The main idea of our pragmatic approach is that agent communication is considered as
actions that agents perform on social commitments and arguments. The dynamics of agent
conversation is represented by this notion of actions and by the evolution of these
commitments and arguments. Our Commitment and Argument Network formalism based
on this approach provides an external representation of agent communication dynamics. We
argue that this formalism helps agents to participate in conversations in a flexible way
because they can reason about their communicative acts using their argumentation systems
and the current state of the conversation.

Our logical model is a model-theoretic semantics for the pragmatic approach. It defines the
meaning of the different communicative acts that we use in our pragmatic approach. It also
expresses the meaning of some important speech acts and it captures the semantics of
defeasible arguments. This logical model allows us to establish the link between the
semantics and the pragmatics of agent communication.

We address the problem of verifying dialogue game protocols using a tableau-based model
checking technique. These protocols are specified in terms of our logical model. We argue
that our model checking algorithm provides a technique, not only to verify if the dialogue
game protocol satisfies a given property, but also if this protocol respects the underlying
semantics of the communicative acts.

ii

Our persuasion dialogue game protocol is specified in our framework using a logical
language, and implemented using a logic programming and agent-oriented programming
paradigm. In this protocol, the agents’ decision making process is based on the agents’
argumentation systems and the notion of agents’ trustworthiness.

Résumé

Dans cette thèse, nous proposons un cadre unifié pour la pragmatique et la sémantique de la
communication entre agents logiciels. La pragmatique traite la façon dont les agents
utilisent les actes communicatifs lorsqu’ils participent aux conversations. Elle est liée à la
dynamique des interactions entre agents et à la manière avec laquelle les actes individuels
sont reliés pour construire des conversations complètes. La sémantique, quant à elle, est
intéressée par la signification de ces actes. Elle établit la base pour une signification concise
et non ambiguë des messages échangés entre les agents. Ce cadre unifié vise à résoudre trois
problèmes majeurs dans le domaine de communication entre agents :

1- L’absence d’un lien entre la pragmatique et la sémantique.
2- L’inflexibilité des protocoles actuels de communication entre agents.
3- La vérification des mécanismes de communication entre agents.

Les contributions principales de cette thèse sont :

1- Une approche pragmatique formelle basée sur les engagements sociaux et les
arguments.
2- Un nouveau formalisme pour la communication entre agents appelé Réseau
d’Engagements et d’Arguments.
3- Un modèle logique définissant la sémantique des éléments utilisés dans l’approche
pragmatique.
4- Une technique de vérification de modèles basée sur une sémantique à tableaux pour
vérifier une famille de protocoles flexibles de communication entre agents appelée
protocoles à base de jeux de dialogue.
5- Un nouveau protocole de persuasion à base de jeux de dialogue.

L'idée principale de notre approche pragmatique est que la communication entre agents est
modélisée comme des actions que les agents accomplissent sur des engagements sociaux et
des arguments. La dynamique de la conversation entre agents est représentée par cette
notion d’actions et par l’évolution de ces engagements et arguments. Notre formalisme
(Réseau d’Engagements et d’Arguments) basé sur cette approche fournit une représentation
externe de la dynamique de communication entre agents. Ce formalisme peut être utilisé par
les agents comme moyen pour participer à des conversations d’une manière flexible parce
qu’ils peuvent raisonner sur leurs actes communicatifs en utilisant leurs systèmes
d’argumentation et l’état actuel de la conversation.

Notre modèle logique est une sémantique, à base d’un modèle théorique, pour l’approche
pragmatique. Il définit la signification des différents actes de communication que nous
utilisons dans notre approche pragmatique. Il exprime également la signification de
quelques actes de discours importants dans le contexte de communication multi-agents et il

iv

capture la sémantique des arguments annulables. Ce modèle logique permet d’établir le lien
entre la sémantique et la pragmatique de communication entre agents.

Nous traitons le problème de vérification des protocoles à base de jeux de dialogue en
utilisant une technique de vérification de modèles basée sur une sémantique à tableaux. Ces
protocoles sont spécifiés sur la base de notre modèle logique. Nous montrons que notre
algorithme de vérification offre une technique, non seulement pour vérifier si le protocole à
base de jeux de dialogue (le modèle) satisfait une propriété donnée, mais également si ce
protocole respecte la sémantique des actes communicatifs.

Notre protocole de persuasion à base de jeux de dialogue est spécifié dans le contexte de
notre cadre unifié en utilisant un langage logique. Il est implémenté en utilisant une
programmation logique et un paradigme orienté-agent. Dans ce protocole, le processus
décisionnel des agents est basé sur les systèmes d’argumentation et sur la notion de
crédibilité des agents.

Acknowledgments

First, I would like to warmly thank my thesis supervisor, Bernard Moulin, for his invaluable
support and patience, for his precious and never lacking enthusiasm for research and for his
continuous assistance in preparing and writing this thesis. I also want to thank him for
having so strongly believed in me and provided me with insights which helped me solve
many of the problems I encountered in my research. I also acknowledge him for assisting
me financially during my Ph.D and for his generosity which gave me opportunities to attend
several international conferences and to visit Utrecht University in order to validate my
work with the members of Intelligent Systems Group.

I would like to express my gratitude to my co-supervisor, Brahim Chaib-draa, whose
expertise, understanding and patience, added considerably to my graduate experience. I
want to thank him for highly stimulating discussions (which generally took place in the
department corridor) that have led to the discovery of many results in this thesis and for
having given me the opportunity to collaborate with many researchers from Utrecht
University, Université Paris 9 Dauphine and University of Melbourne.

I want to thank Yves Lespérance from York University (Canada) for having accepted to
evaluate the first version of this thesis. I would like to thank him for his very interesting
comments and suggestions that allowed me to improve the quality of this thesis. I
appreciated the many discussions that I have had with him about the different parts of this
dissertation.

I also wish to gratefully thank Frank Dignum from Utrecht University (the Netherlands) and
Josée Desharnais from Laval University (Canada) for having accepted to evaluate my thesis
and participate in the jury.

A very special thanks goes out to John-Jules Ch. Meyer from Utrecht University (the
Netherlands) for his extremely appreciated collaboration that allowed me to improve the
logical model and the model checking technique proposed in this thesis. I have very much
enjoyed working with him. I also would like to thank him for having received me in his
Intelligent Systems Group for 2 weeks during the last month of my thesis and for having
given me the opportunity to discuss my work with Frank Dignum, Mehdi Dastani, Henry
Prakken, Broersen Jan, Martin Caminada, Van Riemsdijk Birna and Davide Grossi.
Particular thanks goes out to Frank Dignum for his helpful comments and interesting
suggestions.

I am particularly appreciative of the help I did receive from: Leila Amgoud from Institut de
Recherche en Informatique de Toulouse (France), Nicolas Maudet from Université Paris 9
Dauphine (France), Marco Colombetti from Politecnico di Milano (Italy), Iyad Rahwan
from University of Melbourne (Australia) and British University in Dubai (United Arab
Emirates), Rance Cleaveland from State University of New York at Stony Brook (USA),

vi

Girish Bhat from Cosine Communication Inc. (USA), Peter McBurney from University of
Liverpool (UK), Simon Parsons from City University of New York (USA), Claude Bélisle
from Université Laval, Department of Mathematics and Statistics (Canada), Josée
Desharnais from Université Laval (Canada), Daniel Vanderveken from Université de
Québec à Trois-Rivières, Department of Philosophy (Canada), Sylvain Delisle from
Université de Québec à Trois-Rivières (Canada) and my colleague Philippe Pasquier. I also
would like to thank Johanne Savard for her friendship and linguistic help.

My years as a Ph.D student would not have been as much fun without my friends,
particularly my colleagues: Nafaa Jabeur, Nabil Sahli, Walid Ali, Hedi Haddad, Mondher
Bouden, Tarek Sbeoui, and Boulekrouche Boubaker with whom I shared the laboratory and
unforgettable moments. I would like to thank him for being the surrogate family and for
their continued moral support. From the staff, Linda Goulet and Violaine Pellerin are
especially thanked for their care and attention.

Finally, I would like to thank my mother and all my family (Fatima, Mohammed, Faisal,
Hassan, Fadila, Bouchra, and Wiam) for the support they provided me through my entire
life and for their endless patience, without whose love, encouragement and editing
assistance, I would not have finished this thesis.

To my mother and in memory of my father,

to my family

with love and gratitude

Contents

Abstract ...i

Résumé.. iii

Acknowledgments ...v

1 Introduction ..1

1.1 Context of the Research.. 1
1.2 Motivations .. 2
1.3 Problems and Research Questions .. 3
1.4 Research Hypotheses ... 4
1.5 Objectives .. 4
1.6 Methodology .. 5
1.7 Overview of the Dissertation ... 6

2 Agent Communication ..7

2.1 Introduction .. 7
2.2 KQML ... 8
2.3 ARCOL ... 9
2.4 FIPA-ACL.. 9
2.5 A Taxonomy of ACL Semantics .. 10
2.6 Conversation Protocols... 12
2.7 From the Philosophy of Language to Agent Communication 13

2.7.1 From Speech Act Theory to Conversations ... 13
2.7.2 Walton and Krabbe’s Classification .. 14

2.8 Discussion .. 16

3 Dialogue Games .. 18

3.1 Introduction .. 18
3.2 Reeds’ Dialogue Frames ... 19
3.3 Protocols proposed by Dastani and his Colleagues .. 21
3.4 The Layer Model of McBurney and Parsons .. 22
3.5 The DIAGAL Language proposed by Maudet and Chaib-draa 23
3.6 Dialogue Games proposed by Lebbink and his Colleagues ... 24
3.7 Dialogue Games proposed by Dignum and his Colleagues ... 26

ix

3.8 Comparison and Discussion .. 27

4 A Taxonomy of the Proposed Approaches ... 30

4.1 Introduction .. 30
4.2 The Mental Approach... 31

4.2.1 Plan-based Models ... 31
4.2.2 Rational Interaction Theory ... 34
4.2.3 Other Work .. 36
4.2.4 Discussion .. 39

4.3 The Social Commitment-based Approach.. 39
4.3.1 Singh et al.’s Work .. 40
4.3.2 Colombetti et al.’s Work.. 41
4.3.3 Flores et al.’s Work.. 44
4.3.4 Discussion .. 44

4.4 The Argumentative Approach.. 45
4.4.1 Preliminary Concepts... 46
4.4.2 Dialectical Models of Argumentation.. 47
4.4.3 Modeling Dialogue using Argumentation ... 48
4.4.4 Other Work .. 49
4.4.5 Discussion .. 51

4.5 The Intentional-Conventional Approaches... 51
4.6 Comparison .. 52

5 A Pragmatic Approach based on Social Commitments and Arguments ... 54

5.1 Introduction .. 54
5.2 Social Commitments .. 55
5.3 The Notion of Commitment State... 59
5.4 Taxonomy of Commitment Types .. 62

5.4.1 Absolute Commitments ... 62
5.4.2 Conditional Commitments ... 64
5.4.3 Commitment attempts.. 65

5.5 The Link between Argumentation and Commitments .. 68
5.6 Communication Model ... 72

6 Commitment and Argument Network ... 75

6.1 Introduction .. 75
6.2 Formal Definition .. 76
6.3 Example ... 80
6.4 CAN: a Means of Inter-Agent Communication... 85
6.5 Other Examples... 87
6.6 CAN and Representation of Conversations .. 90
6.7 Related Work .. 94

x

7 A Logical Model for Commitments and Arguments... 98

7.1 Introduction .. 98
7.2 The Taxonomy of Social Commitments .. 99
7.3 Syntax ... 101

7.3.1 Propositional Elements .. 102
7.3.2 Actions ... 103
7.3.3 Social Commitments.. 103
7.3.4 Action Occurrences applied to Commitments ... 105
7.3.5 Action Occurrences applied to Commitment Contents 105
7.3.6 Argumentation Relations ... 106
7.3.7 State and Path Formulae .. 107

7.4 Semantics ... 108
7.4.1 The Formal Model ... 108
7.4.2 Propositional Elements .. 111
7.4.3 Actions ... 113
7.4.4 Social Commitments.. 113
7.4.5 Actions applied to Commitments... 115
7.4.6 Actions applied to Commitment Contents... 120
7.4.7 Argumentation Relations ... 121
7.4.8 Link between Commitments and Argumentation .. 124

7.5 Postulates ... 125
7.6 Discussion .. 127

7.6.1 Meaning of Speech Acts .. 127
7.6.2 A Model-Theoretic Semantics for Defeasible Argumentation 129
7.6.3 Related Work ... 130

7.7 Conclusion ... 134

8 A Tableau Method for Verifying Dialogue Game Protocols (a Model

Checking Approach) ...135

8.1 Introduction .. 135
8.2 Model-Checking Overview ... 138

8.2.1 Automata-Theoretic Approach .. 138
8.2.2 Tableau-based Algorithms for Model-Checking ... 139

8.3 Tableau rules for DCTL*CAN ... 140
8.4 Dialogue Game Protocols as Transition Systems .. 142

8.4.1 Specification .. 142
8.4.2 Logical Properties .. 144

8.5 Verification of Dialogue Game Protocols .. 144
8.5.1 Alternating Büchi Tableau Automata for DCTL*CAN ... 145
8.5.2 Translating DCTL*CAN into ABTA ... 149
8.5.3 Termination.. 150
8.5.4 Soundness and Completeness .. 156
8.5.5 Examples.. 162

xi

8.5.6 Model Checking Algorithm ... 166

8.6 Related Work .. 170
8.7 Conclusion ... 172

9 Application: Specifying and Implementing a Persuasion Dialogue

Game Protocol...174

9.1 Introduction .. 174
9.2 Specification of Dialogue Games ... 176

9.2.1 Philosophical Foundations ... 176
9.2.2 CAN and the Persuasion Protocol.. 177
9.2.3 Protocol Form .. 178
9.2.4 Dialogue Games... 179
9.2.5 Protocol Dynamics... 184
9.2.6 Algorithms ... 186
9.2.7 Termination Proof.. 189
9.2.8 Correctness and Complexity .. 192

9.3 Trustworthiness Model ... 193
9.3.1 Formulation.. 193
9.3.2 Estimating Agent’s Trustworthiness.. 194
9.3.3 Trust Graph .. 197

9.4 Implementation ... 200
9.4.1 General Architecture.. 200
9.4.2 Implementation of the Trustworthiness Model.. 202
9.4.3 Implementation of the Dialogue Games .. 204

9.5 Related Work .. 208
9.6 Discussion .. 211
9.7 Conclusion ... 211

10 Conclusion ..212

10.1 General Discussion .. 212
10.2 Contributions .. 214
10.3 Future Work ... 215

Bibliography ..216

List of Figures

Figure 4.1. The action schema of INFORM speech act... 33

Figure 4.2. Definition of INFORM in Vohen and Levesque's theory.................................. 35

Figure 4.3. Example of rationality, dialogue and update rules .. 49

Figure 5.1. The elements of our approach ... 55

Figure 5.2. Times tu, tsc and tϕ .. 56

Figure 5.3. Time tsc .. 56

Figure 5.4. Debtors and creditors actions .. 58

Figure 5.5. Commitment state diagram.. 60

Figure 5.6. State diagram associated to the content of an absolute commitment 63

Figure 5.7. State diagram associated to the content of a commitment attempt.................... 67

Figure 5.8. The links between the conversational agent architecture and the communication
model... 73

Figure 6.1. The function FEΣ .. 77

Figure 6.2. The function FEΣΣ .. 78

Figure 6.3. The function FΩ ... 78

Figure 6.4. The function FAΣΩ .. 79

Figure 6.5. The function FAΩΩ.. 79

Figure 6.6. The function FEΩΣ .. 80

Figure 6.7. The network representing the dialogue D1.. 85

Figure 6.8. The network representing the dialogue D2.. 88

xiii

Figure 6.9. The network representing the dialogue D3.. 89

Figure 6.10. The network representing the dialogue D4.. 90

Figure 6.11. Illustration of nested positioning actions... 93

Figure 7.1. Social commitment taxonomy ... 100

Figure 7.2. The branching time model ... 101

Figure 7.3. State transitions caused by the achievement of the action α 109

Figure 7.4. Social commitment activation ... 119

Figure 8.1. Tableau rules for propositional and universal formulas 140

Figure 8.2. Tableau rules for action formulas .. 141

Figure 8.3. Tableau rules for commitment formulas ... 141

Figure 8.4. Tableau rules for state formulas .. 142

Figure 8.5. A part of a transition system for a dialogue game protocol............................. 144

Figure 8.6. The tableau for E(G+F+
p)... 162

Figure 8.7. The ABTA of the formula E(G+F+
p) ... 163

Figure 8.8. The tableau for

AG+(Ch(Ag2, PC(Ag1, Ag2, t, φ)) ⇒ F+Jus(Ag1, PC(Ag1, Ag2, t, φ), φ’)) 164

Figure 8.9. The ABTA for the formula

AG+(Ch(Ag2, PC(Ag1, Ag2, t, φ)) ⇒ F+Jus(Ag1, PC(Ag1, Ag2, t, φ), φ’)) 165

Figure 8.10. Exploring product graph algorithm ... 167

Figure 8.11. The ABTA product of the TS of Figure 8.5 and the ABTA of Figure 8.9.... 169

Figure 9.1. Goal and initial situation of the persuasion dialogue 176

Figure 9.2. The general form of the protocol ... 179

Figure 9.3. The persuasion dialogue dynamics.. 184

Figure 9.4. Problem of measuring Agb’s trustworthiness by Aga 195

xiv

Figure 9.5. The general architecture of the system .. 201

Figure 9.6. Belief Data used in our prototype.. 202

Figure 9.7. Beliefsets used in our prototype .. 203

Figure 9.8. Events, plans and the conversational agent constructor implementing the
trustworthiness model ... 205

Figure 9.9. The screen shot of a trustworthiness evaluation process 206

Figure 9.10. The architecture of the conversational agents ... 207

Figure 9.11. Events and plans implementing the dialogue games 208

Figure 9.12. The example screen shot.. 209

List of Tables

Table 2.1. Walton and Krabbe's classification... 15

Table 3.1. Comparaison of some dialogue game frameworks ... 28

Table 4.1. The evolution of CSs during a dialogue ... 48

Table 4.2. A comparaison of the mental, the social and the argumentative approaches 53

Chapter 1

Introduction

In this chapter, we introduce the context of our research which is communication between

software agents in a multi-agent system. We also identify the motivations, problems, and

research questions that we address in this thesis. Finally, we present our hypotheses,

objectives, and methodology.

1.1 Context of the Research

This thesis is about communication between autonomous agents. In the multi-agent domain,
it is widely recognized that this communication is one of the major topics of research. All
the applications of Multi-Agent Systems (MASs) (Chaib-draa, 1995), (Wooldridge and
Jennings, 1995), (Moulin and Chaib-draa, 1996) (Wooldridge, 2002) ranging from digital
libraries through cooperative engineering to electronic commerce, have one thing in
common: the agents operating in these systems have to communicate. These systems consist
of multiple agents that communicate in order to solve some problems. If a problem is
particularly complex, large, or unpredictable, the only way it can reasonably be addressed is
to develop a number of functionally specific and modular components (agents) which are
able to solve a particular problem aspect (Sycara, 1998). This decomposition allows each
agent to use the most appropriate paradigm to solve its particular problem. When
interdependent problems arise, agents in the system must communicate in order to
coordinate with one another to ensure that interdependencies are properly managed.
Therefore, it is clear that the success of these systems need powerful communication
mechanisms.

Agent communication is related to several disciplines: philosophy of language, social
psychology, artificial intelligence, logic, mathematics, etc. In this domain, in order to be
able to negotiate, solve conflicts of interest, cooperate, find proofs, agents need not only
exchange single messages, but also take part in conversations with other agents. A
conversation is defined as a coherent sequence of utterances. The term “coherent” means
that the information conveyed by an utterance is related to the information conveyed by the
other utterances in a conversation. For example, if p is the information conveyed by an
utterance, the information conveyed by the next one can be the acceptance, the refusal, the
challenge, the attack, etc. of p. Indeed, if agents communicate by exchanging isolated
messages, the resulting communication is extremely poor and agents cannot participate in
complex interactions such as negotiations, persuasions, deliberations, etc, which are formed
by a sequence of utterances.

2

The language used by the agents for their exchanges is the Agent Communication Language
(ACL). An ACL stems from the need to coordinate the actions of an agent with that of the
other agents. A first attempt to come to a standardized ACL came from the DARPA
knowledge sharing project and produced KQML (Knowledge Query and Manipulation
Language) (Finin et al., 1995). Another effort to come to a standard ACL has started
through the Foundation for Intelligent Physical Agents (FIPA) initiative (FIPA, 2001a,
2002). KQML and FIPA-ACL are based on speech act theory and messages are considered
as communicative acts whose objective is to perform some action by virtue of being sent.
To enable agents to communicate, FIPA proposed a set of communication protocols that
agents can follow. FIPA contract net interaction protocol is an example of these protocols
(FIPA Interaction Protocols, 2001, 2002). In the contract net interaction protocol, one agent
(the initiator) takes the role of manager which wishes to have some task performed by one
or more other agents (the participants) and further wishes to optimise a function that
characterizes the task. This characteristic is commonly expressed as the price, in some
domain specific way, but could also be soonest time to completion, fair distribution of tasks,
etc. Generally, agent communication protocols describe the sequence of messages that
agents can exchange for particular applications. Although these protocols can successfully
be used for some simple applications, they are often too rigid to be used by autonomous
agents in their conversations. The reason is that these protocols are specified in such a way
that agents must follow them from beginning to end without specifying how these agents
can reason about them. To solve this problem, several researchers proposed dialogue game
frameworks inspired by the philosophy of argumentation (Reed, 1998), (McBurney and
Parsons, 2001, 2002), (Dignum et al., 2000, 2001). Dialogue games are abstract structures
that can be composed in order to reflect the whole dialogue. They are interactions between
two or more players, in which each player moves by making utterances, according to a pre-
defined set of rules. The rules typically define what locutions may or must be uttered in
different circumstances. However, the underlying semantics and the verification of these
dialogue games are aspects yet to be addressed.

1.2 Motivations

To be able to communicate, agents should use a common communication mechanism (for
example, a communication protocol). Because agents are autonomous, this mechanism must
be flexible enough and agents must reason about their communicative acts in order to
decide how they can pursue their conversations. Classical protocols, like those used in
distributed systems, are not suitable in this domain because they only describe the sequence
of allowed actions without any reasoning mechanism. Our first motivation is to give agents
flexible means of communication. These means must be formally specified by taking into
account the agents’ architecture.

In addition, in the domain of agent communication, semantics is one of the most important
aspects, particularly in the current context of open and interoperable MASs. Semantics lays
down the foundation for a concise and unambiguous meaning of agent messages. When
agents interact to achieve a goal, the mutual understanding of the exchanged messages
depends on the semantics given to communicative actions. Although some significant
research work was done in this field (Singh, 2000) (Guerin and Pitt, 2001) (Amgoud et al.,

3

2002), (McBurney, 2002), (Verdicchio and Colombetti, 2003), (Flores et al., 2004) the
definition of a clear and global semantics is an objective yet to be reached. Agent
communication pragmatics is another important aspect to be addressed in this domain.
While semantics is interested in the meaning of communication acts, pragmatics deals with
the way of using these acts. Pragmatics is related to the dynamics of agent communication.
Because agents do not exchange isolated messages, but participate in complete
conversations, the semantics must take into account the chaining of the communicative
actions. Therefore, the semantics must be defined in a pragmatic perspective. Our second
motivation is to contribute to the advance of research in this domain by developing a unified
formal framework establishing the link between the pragmatics and semantics of agent
communication. This motivation is related to the first one in the sense that the formal
specification of the communication mechanism should allow us to verify whether or not
agents respect the defined semantics when conversing.

1.3 Problems and Research Questions

The first problem that we address in this thesis is the lack of flexibility in most current agent
communication protocols (FIPA Interaction Protocols, 2001, 2002). These protocols are
static and agents must execute them from beginning to end in order to communicate. In
addition, these protocols do not specify how agents can manage exceptions (messages not
specified or not supported by the protocol), and how they can choose a communicative act
among others. To address this problem, several researchers proposed dialogue game
frameworks. These frameworks attempt to support more complex conversations by
combining different atomic dialogues. Agents participating in a dialogue game framework
must agree on all the rules of the framework. However, several proposals in this domain do
not specify how agents can reason about these rules and participate in conversations in a
flexible way. If the decision making process belongs to the agent architecture, the link
between this architecture and the communication model must be specified. In addition,
these frameworks do not take into account the link between the private mental states and the
reasoning abilities of agents. Thus, our initial research question is: “How may autonomous

agents participate in conversations in a flexible way?”

In the literature, three main approaches have been proposed for modeling agent
communication: the mental approach, the social approach, and the argumentative approach.
The mental approach focuses on the agents’ private mental states like beliefs, desires and
intentions. In this approach, the semantics of the communicative acts is defined using these
mental states. The social approach highlights the public and observable elements like social
commitments that agents exchange when conversing. A social semantics is defined using
the notion of social commitment. The argumentative approach is based on the agents’
reasoning capabilities. The meaning of communicative acts in this approach is defined in
terms of arguments in favor or against the content of these acts. These approaches reflect
only a partial view of agent communication. When participating in conversations, agents
should use their mental states, exchange observable elements, and reason about these states
and elements. Therefore, these approaches should be combined in a unified approach. The
question that we explore here is: “How can we unify these approaches?” Another related

4

question is: “How can the link between pragmatics and semantics be established in such an

approach?”

The third problem that we explore in this thesis is the verification of agent communication.
Two fundamental aspects need to be verified when specifying and developing agent
communication mechanisms: the agents’ compliance to the ACL semantics, and the
correctness of the specification in the sense that the mechanism satisfies some given
properties. Although this verification is extremely important in open environment and in
complex and interoperable systems, the different protocols proposed in the literature
(classical or based on dialogue games) do not address it. Verifying these protocols is not an
easy task when considering the different states of agents and their reasoning capabilities.
The question is: “How can we formally specify and verify the agent communication

mechanisms?” In addition, the termination of agent conversations and the complexity
analysis of the corresponding reasoning algorithms must be addressed.

1.4 Research Hypotheses

To take part in flexible conversations (persuasions, argumentative negotiations,
deliberations, etc.), software agents must have a suitable communication model. Agents
must build their conversation dynamically while it advances. Thus, our first research
hypothesis is that in their conversations, agents do not have to follow pre-established and
fixed protocols. Instead, they need to reason about all utterances that have been uttered
during the conversation in order to decide about what is necessary to utter next. In flexible
conversations, protocols are only interesting as long as agents can use them as stereotypes
which can help them in their conversations and not as means imposing what agents must do.
Protocols only specify the allowed communicative acts, and do not indicate how agents can
choose between these acts. In other words, protocols do not specify the underlying decision
making process which is fundamental for conversing agents.

The second hypothesis is related to the importance of the conversation context. The
conversation context is defined by the set of knowledge and beliefs that agents suppose they
share during their conversations. For example, as members of the same cultural community,
the participants in a conversation share knowledge of a general nature and knowledge
related to the existing standards and conventions. We make the hypothesis that agents
communicate in a particular context that they share.

1.5 Objectives

The main objectives of this thesis are:

1- To propose a pragmatic approach for agent communication taking into account the
different elements that agents use in their conversations. This pragmatic approach based on
social commitments and arguments must illustrate how agents use their communicative acts
when conversing. It must also represent the dynamics of agent communication. This
approach, based on speech act theory and specified by a formal language, will be used to
develop a formal framework allowing agents to take part in conversations in a flexible way.

5

This framework, specified as a mathematical structure, should be able to represent the
various actions that can take place in agent conversations and to model the dynamics of
these conversations.

2- To develop a communication model and a corresponding agent architecture on the basis
of the pragmatic approach.

3- To define a formal semantics related to the pragmatic approach. The idea is to specify a
unified framework for the pragmatics and the semantics of agent communication. The
meaning of the communicative acts must take into account the dynamics of agent
communication.

4- To develop a verification method for dialogue game protocols specified using the
unified framework.

5- To specify and to implement a flexible dialogue game protocol using the unified
framework.

1.6 Methodology

At the beginning of this thesis, we studied research work done in the domain of agent
communication. We noticed that the classical protocols used in this field are not suitable in
the context of MASs in which agents are autonomous. Particularly, we noted the absence of
the reasoning aspect in these protocols. For this reason, we looked at the work done in
another field: argumentation and defeasible reasoning. We had the idea to combine an
approach proposed in the domain of agent communication, the social approach, which has
the advantage of being semantically verifiable and an argumentative approach.

In addition, we noticed that the traditional formalisms used to model agent communication
are limited. They do not make it possible to reflect the dynamics of this communication in
terms of the actions which agents perform when conversing and do not help agents to take
part in these conversations in a flexible way. We thus developed a formalism addressing
these limits using our hybrid approach. The proposed approach and formalism only reflect
the pragmatics of agent communication. To deal with the semantic aspect, we proposed a
logical model for the pragmatic approach. Indeed, we developed a unified framework for
the pragmatics and semantics of agent communication.

Although certain researchers recently started to emphasize the importance of verifying
MASs, this aspect has yet to be explored in the field of agent communication. In this
domain, only a small amount of research work addressed this complicated issue, for
example (Wooldridge, 2000) (Huget and Wooldridge, 2004). For this reason, we studied
more profoundly this aspect which is traditionally related to software engineering. We
proposed a model-checking method in order to verify dialogue game protocols specified
using our unified framework. Finally, as an application of our theoretical results, we
specified and implemented a flexible dialogue game protocol. We proved its termination
and we discussed its computational complexity.

6

1.7 Overview of the Dissertation

This thesis is divided into two parts.

Part I is about the state of the art, and it consists of three chapters:

Chapter 2 introduces the agent communication. In this chapter we present some
examples of Agent Communication Languages (ACLs), we discuss their semantics,
and present their philosophical foundations.

Chapter 3 presents some dialogue game frameworks. In this chapter, we highlight
their theoretical foundations, advantages, and limits. These limits will be addressed
in our proposal.

Chapter 4 presents our taxonomy of the main approaches in the domain of agent
communication and dialogue modeling. This chapter compares and discusses these
different approaches.

Part II consists of five chapters in which we present our contributions:

Chapter 5 articulates a pragmatic approach combining the different approaches
discussed in Chapter 4.

Chapter 6 proposes a formalism based on the pragmatic approach presented in
Chapter 5. The purpose of this formalism is to represent the dynamics of agent
communication, analyze conversations, and help agents to participate in
conversations in a flexible way.

Chapter 7 defines the semantics related to the pragmatic approach as a logical
model. This chapter establishes the link between the pragmatics and the semantics of
our agent communication proposal.

Chapter 8 proposes a verification method for dialogue game protocols. These
protocols are specified using the unified framework presented in Chapter 7. In this
chapter, a tableau proof system for the logical model specified in Chapter 7 is
defined. This proof system is used in the verification method.

Chapter 9 presents a persuasion dialogue game protocol based on our approach.
This chapter discusses the formal specification, implementation, and complexity
analysis of this protocol.

We conclude this thesis by summarizing our contributions and identifying directions for
future work.

Chapter 2

Agent Communication

In this chapter, we present and discuss some proposals in the domain of agent

communication. We briefly present three main languages developed in this domain. We

discuss their semantics and philosophical foundations. Finally, we highlight their

limitations which we address in detail in the next chapters.

2.1 Introduction

An interesting characteristic of multi-agent systems is the principle that agents can function
more effectively in groups. Agents are designed to autonomously collaborate with each
other in order to satisfy both their internal goals and the shared external demands generated
by virtue of their participation in agent societies. This type of collaboration depends on a
sophisticated system of inter-agent communication. The language used by agents for this
communication is the Agent Communication Language (ACL). The main objective of an
ACL is to model a suitable framework that allows heterogeneous agents to interact and to
communicate with meaningful statements that convey information about their environment
or knowledge (Kone, 2000).

Over the last decade, two main ACLs have been proposed: the Knowledge Query and
Manipulation Language (KQML) (Finin et al., 1995) and the Foundation for Intelligent
Physical Agents’ Agent Communication Language (FIPA-ACL). FIPA-ACL is in turn
based on the ARTIMIS Communication Language (ARCOL). The formal specifications and
the semantics of these languages are based upon the philosophical foundation provided by
Speech Act Theory. The purpose of this chapter is to introduce these languages and their
philosophical foundations.

The rest of this chapter is organized as follows. In Sections 2.2, 2.3 and 2.4, we present
KQML, ARCOL and FIPA-ACL respectively. In Section 2.5, we discuss a taxonomy of
ACL semantics. Section 2.6 introduces the notion of conversation protocols. The
philosophical foundations of ACLs are explained in Section 2.7. The final discussion
(Section 2.8) evaluates the limits of these ACLs and establishes the link with the next
chapters of this dissertation.

8

2.2 KQML

KQML arose from work sponsored by the American Government’s Defense Advanced
Research Projects Agency (DARPA). It is the result of research done by the Knowledge
Sharing Effort (KSE), an initiative that aims at developing a foundation for software
systems interaction and interoperability. Three working groups compose this consortium:
the interlingua group, the shared and reusable knowledge base group, and the external
interface group. The first group designed the Knowledge Interchange Format (KIF) as a
common language for describing a message content. This format is an extension of first-
order logic. The second group worked on the content of sharable knowledge bases. This
group examined the problem of sharing the content of formally represented knowledge. The
approach focused on common ontologies. Every knowledge-based system relies on some
conceptualization of the world (objects, qualities, distinctions and relationships that matter
when performing some task) that is embodied in concepts, distinctions, etc. using a formal
representation. The group worked on the construction of ontologies for various domains.
Each ontology, written in KIF, defines a set of classes, functions, and objects for some
domain of discourse, and includes an axiomatization to constrain the interpretation. The
third group produced the KQML language and looked at interactions of system components.

The language’s primitives are called performatives. As the term suggests, the concept is
related to speech act theory (Austin, 1962). Performatives define the permissible actions
(operations) that agents may attempt when communicating with each other. KQML consists
of a set of communication primitives aiming to support interaction between agents. In this
language, an agent’s mental attitudes (belief, intention, and desire) are expressed in the label
of a message that represents a communicative act. A KQML message is conceptually
divided into three levels (Labrou et al., 1999): (1) the communicative level which specifies
the sender and receiver agents; (2) the message level which mainly specifies the type of
performatives (affirmation, question, etc.), the language (KIF, Prolog, etc.) and the used
ontology; (3) the content level, which specifies the message content. An example of KQML
message is the following:

(tell

:sender X
:receiver Y
:in-replay-to id1234
:ontology Software
:language Prolog
:content (Price MathType 150)

)

The goal of the tell KQML performative is to convey to some receiving agent that the
sending agent believes that a particular proposition (contained in the content field) is true.
The example indicates that agent X answers a message of agent Y about the price of a
software. It uses the Prolog language to describe the content and a particular ontology
(Software) which indicates the significance of “MathType” and the currency associated with
the value “150”.

9

Initially, KQML was proposed without a defined semantics. This criticism led researchers
to define a new language: the FIPA-ACL. The early version of KQML presented some
confusions and ambiguities in the usage of the performatives. Later on, its authors gave it a
semantics and limited the use of some performatives in order to avoid some of these
problems. The new semantics is defined in terms of: 1) preconditions on the mental states of
the sender and the receiver before the communication of the message, 2) postconditions that
should hold after the message is sent and 3) completion conditions that indicate when the
perlocutionary effect has been fulfilled. However, this semantics provides no semantic
model for mental attitudes.

2.3 ARCOL

The ARTIMIS agent technology developed by France Telecom is a generic framework for
instantiating communicating agents. This technology is based on the proposal of Sadek et
al. (1997). In ARTIMIS, an agent can cooperatively interact with humans as well as with
other agents. Agents’ communicative acts are modeled as rational actions. Agents can
reason about knowledge and actions pertaining to their communicative acts. ARCOL
(ARTIMIS Communication Language) is the ACL used in ARTIMIS. An ARCOL
expression relies on a semantic language SL for the definition of its semantics. SL, in turn,
uses the language SCL (Semantic Content Language) to describe the semantics content of a
communicative act. ARCOL includes the following set of primitives:

Inform: An agent uses the assertive act Inform to convey a message to another agent
provided that it believes the content of this message.

Request: The directive act request enables an agent to demand an action from another agent
provided that it has the capabilities to perform that action.

Confirmation: When the sender believes that the receiver is uncertain about the information
being transmitted, this communicative act can be used to confirm it.

Inform referent: This communicative act enables an agent to inform another agent of the
value of a referent with a given description.

The most important characteristic of the ARCOL language is its formal semantics as a
reliable support for interoperability. However, ARCOL’s fixed context with the sender
agent required to be sincere is an impediment to heterogeneity.

2.4 FIPA-ACL

FIPA-ACL arose from attempts to develop an industry standard for agent communication.
Its formal model and semantic language draw from the ARCOL Language. Conceptually,
FIPA-ACL distinguishes two levels in communication messages. At the inner level, the
content of messages can be expressed in any logical language. The outer level describes the
locutions that agents can use in their communication. The content of messages is wrapped

10

in these locutions. FIPA-ACL specifies 22 locutions (FIPA-ACL, 2001b). Here we mention
some of them:

Accept Proposal: The action of accepting a previously submitted proposal to perform an
action.

Agree: The action of agreeing to perform some action, possibly in the future.

Call for Proposal: The action of calling for proposals to perform a given action.

Confirm: The sender informs the receiver that a given proposition is true, where the receiver
is known to be uncertain about the proposition.

Inform: The sender informs the receiver that a given proposition is true.

Not Understood: The sender informs the receiver that it received a message that it does not
recognize or it is unable to process the content of this message.

Propose: The action of submitting a proposal to perform a certain action, given certain
preconditions.

Query If: The action of asking another agent whether or not a given proposition is true.

Request: The sender requests the receiver to perform some action or a communicative act.

FIPA-ACL is an agent communication language whose developpement involved several
parties in industry and academia. It lays out the practical components of agent
communication and cooperation and a well-defined formal semantics. However, some
practical applications pointed out several limitations of the FIPA standard (Kone, 2000). For
example, this standard provides no support for real-time and performance requirements of
telecommunication applications. In addition, FIPA-ACL semantics rests only on the belief
states of communicative agents. In this context, the sender does not guarantee the actual
accomplishment of the expected outcome at the destination because the semantics offers no
mechanism on how to infer the mental state of the receiving end.

2.5 A Taxonomy of ACL Semantics

As stated by McBurney (2002), when considering formal languages, different semantics can
be defined viewing them as a mathematical logic. A semantics is a relationship between the
language and a space M of mathematical structures, called models. A statement S in the

language specifies a subset ()M S of .M Such a statement is said to be true in a particular

model 0M if 0 ().M M S∈ A statement is said to be logically valid if it is true in every

model, i.e., if () .M S M=

Another type of semantics is derived from linguistics. As expressed by the linguist Morris
(1938), the syntax of a language is the formal relation of signs to one another and the

11

semantics of the language defines the relations of signs to the objects to which the signs are

applicable. Thus, it makes sense to speak of the truth of a sign, since this indicates that the
sign has a relationship to external objects in the world (McBurney, 2002).

Because ACLs are formal languages, their semantics can be defined as in mathematical
logic. However, because they are also intended as communication mechanisms, a
linguistics-based semantics can be defined. In this section, we are only interested by formal
semantics defined from mathematical logic. We can distinguish five formal semantics:
axiomatic semantics, operational semantics, denotational semantics, game-theoretic
semantics, and tableau semantics1.

Axiomatic semantics is defined by a set of assertions about properties of a system and how
they are affected by program execution. For ACLs, this semantics defines each locution in
terms of the preconditions which must be fulfilled before the locution can be uttered, and in
terms of the post-conditions which must become true after the production of the utterance.
We distinguish between public and private axiomatic semantics. In public axiomatic
semantics, the pre-conditions and post-conditions describe states or conditions of the
dialogue which can be observed by all participants. In private axiomatic semantics, pre and
post-conditions describe states or conditions which are internal to one or more of the
participants and thus are not directly observable by the others. For example, the semantics
defined for FIPA-ACL and KQML are private axiomatic semantics. For example, the
Inform FIPA-ACL act, in which one agent tells another some proposition, may only be
uttered if the first agent believes the proposition to be true. This is termed a sincerity
condition. This semantic approach, based on mental notions such as beliefs and intentions,
will be detailed in Chapter 4. On the other hand, the semantics provided for argument-based
ACLs is a public axiomatic semantics (Amgoud et al., 2002). For example, according to this
semantics, an agent a which asserts a proposition p is supposed to have an argument in
favor of it. Thus, if this proposition is attacked by another agent, agent a must defend it.

Operational semantics is defined by a set of rules specifying how the state of an abstract
machine changes while executing a set of instructions. Each rule specifies certain
preconditions on the contents of states and their new contents after the application of the
rule. In the context of ACLs, operational semantics considers the locutions as instructions
which operate successively on the states of some abstract machine. This semantics defines
the locutions in terms of the transitions they apply on the states of this machine. van Eijk
and his colleagues (2000) studied operational semantics for ACLs on the basis of an agent
communication programming language which is a formal framework that identifies basic
aspects of agent communication. The formal semantics of this language is given by means
of transition rules that describe its operational behavior. Moreover, the operational
semantics closely follows the syntactic structure of the language, and hence gives rise to an
abstract machine to interpret the language.

Denotational semantics is a technique for describing the meaning of programs in terms of
mathematical functions. Programs are translated into functions whose properties can be

1 McBurney (2002) only distinguished four formal semantics: axiomatic semantics, operational semantics,
denotational semantics, and game-theoretic semantics.

12

proved. In denotational semantics, each element of the language syntax attributes a
relationship to an abstract mathematical entity, its denotation. The possible world semantics
related to modal languages is an example of such semantics (Hintikka, 1962) (Kripke,
1963). For example, the semantics of the necessarily and possibly modal connectives are
given by introducing an accessibility relation into models for the language. This relation
defines what worlds are considered accessible from every other world. A formula is
necessarily true if it is true in every world accessible from the current world, and it is
possibly true if it is true in at least one world accessible from the current world. An example
of this semantics is given in Chapter 7 of this dissertation. Another example is given by
Parsons (1997). In this semantics, argumentation systems are connected to qualitative
probabilistic networks. Propositions correspond to nodes in these networks and arguments
between propositions correspond to the associated nodes. In order to use the denotational
semantics approach, we must be able to derive the semantic meaning of a statement
expressed in the language from the semantic meaning of its elements, this property is called
compositionality.

In game-theoretic semantics, each well formed formula in a language is associated with a
formal game between two players: a protagonist and an antagonist. A statement is
considered to be true when and only when a winning strategy exists for the protagonist in
the associated game. McBurney (2002) proposed a game-theoretic semantics for an inquiry
dialogue protocol. In this semantics, a winning strategy for a player is a set of rules enabling
the player to move in such a way that executing these moves guarantees that the player can
win the game, no matter which moves are made by the opposing player.
Tableau semantics is based on the use of assertions and proof rules. The proof rules are
inference rules aiming to prove the truth or falsity of the assertions. Unlike traditional proof
systems which are bottom-up approaches, tableau semantics uses a top-down or goal-
oriented approach. Proof rules are used in order to prove a certain formula by inferring
when a state in a Kripke structure satisfies such a formula. According to this semantics, we
start from a goal, and we apply a proof rule and determine the sub-goals to be proven. The
proof rules are designed so that the goal is true if all the sub-goals are true. In ACLs, this
semantics can be used to give the meaning of communicative acts by considering them as
goals, and then determining the sub-goals by applying a set of proof-rules. To our
knowledge, the only tableau semantics defined in the context of agent communication is the
one that we propose in Chapter 8 of this dissertation.

2.6 Conversation Protocols

When conversing, agents do not exchange isolated messages, but a sequence of
interdependent messages. To take into account this aspect, FIPA proposes to use
conversation protocols (also called conversation policies). Conversation protocols are
general constraints on the sequences of semantically coherent messages leading to a goal
(Greaves et al., 2000). The coherence of messages is ensured by these constraints. These
protocols are specified as static structures which define in a deterministic way the order in
which communicative acts are connected. Like protocols used in distributed systems, these
structures are generally modeled using finite state machines (Winograd and Flores, 1986)
(Barbuceanu and Fox, 1995), Petri nets (traditional or extended) (Cost et al., 2000) or UML

13

sequence diagrams. The idea of protocols is to facilitate the task of computing the possible
answers to a given message. Request Interaction Protocol, Contract Net Interaction

Protocol, and English Auction Interaction Protocol (FIPA, 1997, 1999, 2001a) are
examples of such protocols.

As outlined by Greaves and his colleagues (2000) and Vongkacem and Chaib-draa (2000),
conversation protocols must address two fundamental issues:

Flexibility: The aim of conversation protocols is basically to constrain the conversational
behavior of the participants while taking into account the fact that agents are autonomous.
These protocols must find equilibrium between the normative aspect ensured by the
constraints and the flexibility expected in multi-agent communications.

Specification: Conversation protocols must be specified while taking into account the
computational complexity of reasoning about them. For example, this specification must
avoid the state-explosion problem when analyzing a sequence of utterances in order to
decide which locution to utter next. In addition, these protocols should be designed in such
a way that a formal verification is possible. The verification of some properties in these
protocols, for example, deadlock, termination, correctness, etc. is extremely important in
open environments.

2.7 From the Philosophy of Language to Agent Communication

2.7.1 From Speech Act Theory to Conversations

The specifications of KQML, ARCOL, and FIPA-ACL are based on a philosophical theory
called speech act theory. This theory is due originally to a philosopher of language, Austin
(1962), and extended by Searle (1969, 1983) and Searle and Vanderveken (1985). It
considers human utterances as actions, in that they may change the state of the world.
Speech is not just used to designate something, it actually does something. This explains the
use of the word “act” in the description of ARCOL and FIPA-ACL locutions. According to
Searle, to understand language, one must understand the speaker’s intention. Since language
is intentional behavior, it should be treated like a form of action. Thus, Searle refers to
utterances as speech acts. The speech act is the basic unit of language used to express
meaning, an utterance that expresses an intention. In general, speech acts are acts of
communication. To communicate is to express a certain attitude, and the type of speech act
being performed corresponds to the type of attitude being expressed. For example, a
statement expresses a belief, a request expresses a desire, and an apology expresses a regret.
As a communicative act, a speech act succeeds if the audience identifies, in accordance with
the speaker's intention, the attitude being expressed.

Speech act theory identifies three distinct levels of action beyond the act of utterance itself.
It distinguishes the act of saying something (the “locutionary” act), what one does in saying
it (the “illocutionary” act), and what one does by saying it (the “perlocutionary” act).
Speech acts, being perlocutionary as well as illocutionary, generally have some ulterior
purpose, but they are distinguished primarily by their illocutionary type, such as asserting,

14

requesting, promising and apologizing, which in turn are distinguished by the type of
attitude expressed. The perlocutionary act is a matter of trying to get the hearer to form
some correlative attitude and in some cases to act in a certain way. For example, a statement
expresses a belief and normally has the further purpose of getting the addressee form the
same belief. A request expresses a desire for the addressee to do a certain thing and
normally aims for the addressee to intend to and, indeed, actually do that thing. A promise
expresses the speaker's firm intention to do something, together with the belief that by his
utterance he is obligated to do it, and normally aims further for the addressee to expect, and
to feel entitled to expect, the speaker to do it.

As outlined by Vanderveken (2001), speech act theory tends to study isolated illocutionary
acts performed by using sentences in single context of utterance. However, it is clear that
speech acts are seldom performed alone. Speakers perform their illocutionary acts within
entire conversations in order to achieve common goals such as discussing news,
coordinating their joint actions or negotiating. For this reason, Vanderveken proposed a
theory of discourse enriching Speech Act Theory. The purpose of this theory is to analyze
the structure of conversations whose type is provided with an internal discursive purpose
and to provide a taxonomy of these conversations. This taxonomy is based on the fact that
there are only four possible discursive goals that speakers can attempt to achieve by way of
conversing: the descriptive, deliberative, declarative, and expressive goals. These goals
correspond to one of the four possible directions of fit between words and things. Using
these directions, the four conversation types can be described as follow:

1. Conversations with the words-to-things direction of fit have the descriptive goal:
They serve to describe what is happening in the world. Such are descriptions, debates on a
question, persuasions, arguments, explications, interrogations, etc.

2. Conversations with the things-to-words direction of fit have the deliberative goal:
They serve to deliberate on which future actions speakers and hearers should commit
themselves to in the world. Such are deliberations, negotiations, bargaining sessions, a
compromise or the signing of a contract, auctions, etc.

3. Conversations with the double direction of fit have the declarative goal: They serve to
transform the world by way of doing what one says. Such are official declarations like
declarations of war or of independence, nominations, appointments, etc.

4. Conversations with the empty direction of fit have the expressive goal: They serve to
express common attitudes of their speakers. Such are the exchanges of greetings, welcomes,
congratulations, etc.

2.7.2 Walton and Krabbe’s Classification

Another taxonomy of dialogues was proposed by two philosophers of argumentation,
Walton and Krabbe (1995). In their book: Commitment in Dialogue, Basic Concepts of

Interpersonal Reasoning, Walton and Krabbe distinguish six main types of dialogues:

1. Persuasion, which is centered around conflicting points of view.

15

2. Negotiation, in which participants aim to achieve a settlement that is particularly
advantageous for individual parties.

3. Inquiry, in which the aim is to collectively discover more information, as well as to
destroy incorrect information.

4. Deliberation, which is driven by the need to take a collective decision.

5. Information-seeking, in which one party asks for information known by another.

6. Eristic, in which two parties combat each other in a quarrel.

While Vanderveken’s classification is based on directions of fit between words and things,
Walton and Krabbe’s classification is based upon two factors: the initial situation and the
goal of the dialogue. Table 2.1 illustrates these factors.

Dialogue type Initial situation Dialogue goal

Persuasion Conflicting point of view Resolution of conflict

Negotiation Conflict of interest Making a deal

Inquiry General ignorance Growth of knowledge

Deliberation Need for action Reach a decision

Information-seeking Personal ignorance Spreading knowledge

Eristic Antagonism Accommodation in
relationship

Table 2.1. Walton and Krabbe's classification

These six types may be refined into subtypes, simply by specifying more elaborate
conditions on the dialogues (e.g. the type of conflict or the degree of rigidity of the rules).
For example, a dispute is a subtype of persuasion, where each participant tries to defend its
point of view. In addition, this taxonomy is based on an argumentation vision and it
coincides with the dialectical systems proposed by Hamblin (1970). These systems will be
discussed in detail in Chapter 4, Section 4.4.2.

Walton and Krabbe introduced the notion of dialectical shift to capture the change in the
context of dialogue during a conversation from one type of dialogue to another. Indeed,
dialogues are usually not of a single type from their beginning to their end. For instance, it
is common to start an inquiry dialogue, to realize during the dialogue that there is a
controversial issue at stake, to enter in a dispute sub-dialogue, and to eventually resume the
inquiry dialogue when the issue has been resolved. This notion allows us to construct
complex dialogues by combining different types.

Table 2.1. Walton and Krabbe’s classification

16

Vanderveken’s classification can be regarded as more general than Walton and Krabbe’s
one in the sense that the dialogue types discussed by Walton and Krabbe are subtypes of the
four types proposed by Vanderveken. Persuasion, Inquiry, and Information-seeking are
conversations with a descriptive goal, negotiation and deliberation are conversations with a
deliberative goal, and Eristic is a conversation with an expressive goal.

2.8 Discussion

KQML, ARCOL, and FIPA-ACL have the advantage of being based on a theory largely
studied by philosophers of language. They are also formally specified using a modal logic.
However, their private axiomatic semantics does not provide any technique for checking the
agents’ compliance to this semantics. In other words, it is not possible to verify whether or
not the agents’ communicative behavior matches their mental states. To remedy this, the
semantics must also take into account the public (the observable) attitudes and the
argumentative considerations. Such considerations enable us to explain the reasons behind
the performance of communicative acts and how an agent can decide about the next act to
be performed. In Chapter 5, we show how a combined approach (mental, social and
argumentative approach) can resolve this problem.

Although FIPA protocols are practically interesting and can successfully be used in simple
applications, they are not flexible enough to be used by autonomous agents in flexible and
complex conversations such as persuasions, argumentative negotiations, deliberations, etc.
When the allowed communicative acts are limited and the purpose of the communication is
just to exchange some messages, rigid protocols provide an interesting solution and there is
no need to define supplementary mechanisms. However, when agents must participate in
complex conversations, for example in order to persuade each other, to negotiate, to
deliberate, etc., they should act autonomously in the sense that they must be able to make
decisions and to take initiatives. In this case, rigid protocols are not suitable. This is due to
the fact that agents must follow the whole protocol in order to communicate and it is not
clear how agents can make choices between several possible actions. For this reason, it is
preferable to use small conversation protocols that can be put together to construct complex
protocols. The combination rules must be formally specified and agents must be able to
reason about these protocols in order to be able to use them flexibly. In the next chapter, we
discuss dialogue game protocols aiming to address this issue. In Chapter 6, we propose a
framework enabling agents to reason about their communicative acts and in Chapter 9, we
show how this framework can be used to specify a flexible dialogue game protocol.

On the other hand, KQML and FIPA-ACL grew from efforts by DARPA to develop
technologies for knowledge sharing (Labrou et al., 1999). Such a conceptual paradigm
explains why several communicative acts seek to request or send information (e.g. Inform,
Inform-if, Conform, Query). Despite this, these languages have not been designed with the
possibility that such information may be questioned or challenged. An agent receiving an
Inform(ϕ) message who is unsure about the truth of its content ,ϕ or who does not hold the

belief that ϕ is true, has few options to express these views. In addition, these languages

have been developed without thinking that an agent can justify or defend its beliefs, or seek
to persuade another to change its beliefs. This is due to the absence of a logic of

17

argumentation in the specification of these languages. Such a logic is extremely useful for
capturing the agents’ reasoning. In Chapters 3 and 4, we present some proposals using this
type of logic. In Chapters 5 and 6, we present our proposal based on this logic and in
Chapter 7, we present a modal semantics capturing this logic and its relation to the social
approach.

Chapter 3

Dialogue Games

In this chapter, we go through some relevant proposals in dialogue game frameworks for

agent communication. We highlight the foundations and the structures of these frameworks.

We also compare these proposals and discuss their limits. Our dialogue game protocol

presented in Chapter 9 is an attempt to push these limits.

3.1 Introduction

To communicate, agents using traditional agent communication protocols, like those
proposed by FIPA, must follow the protocol sequences. Hence, these protocols are often
unsuitable for autonomous agents. This is due to the inflexibility of these protocols and to
the fact that there is no mechanism allowing agents to choose the communicative acts they
will perform. To solve this problem, several proposals have been put forward using formal
dialogue games. Formal dialogue games are abstract structures that can be composed to
construct the whole dialogue. They involve interactions between two or more players, in
which each player moves by making utterances according to a pre-defined set of rules. The
rules typically define which locutions may or must be uttered in different circumstances,
and they may also indicate when the dialogue terminates. As a joint activity, the dialogue
requires the coordination of the participants’ actions. In this context, dialogue games are
structures enabling agents to coordinate the dialogical activity.

Dialogue games have been studied in philosophy from at least the time of Aristotle (350
B.C) (van Emeren et al., 1996), and were extensively studied and practiced in medieval
times (Spade, 1979). They differ from the games of Economic Game Theory, in that payoffs
for winning or losing a game are not considered, and because there is no use of uncertainty
measures such as probabilities, to model the possible moves of opponents. Dialogue games
have been used in argumentation theory for the contextual analysis of fallacious reasoning,
on the assumption that what may count as a logical fallacy in one context may not be so in
another. The main proponents of this approach were Hamblin (1970, 1971) and MacKenzie
(1979, 1990). All Hamblin’s games have as their purpose, “the exchange of information
among the participants” and so may be considered as models of information-seeking
dialogues.

Another strand of philosophy, led by Lorenzen (1960), has used formal dialogue games to
provide a constructive proof-theory for statements in intuitionistic and classical logic. Here
a speaker in a dialogue game treats a proposition in a logical language as a statement. This

19

statement is subject to question and challenge by an opponent. The proponent of the
statement must defend the statement against the opponent’s attack in pre-defined ways. In
doing so, a proof (or disproof) of the statement is incrementally constructed. The precise
rules of the dialogue game determine whether this proof corresponds to classical or
intuitionistic logic.

Recently, dialogue games have been proposed as a basis for agent communication. Various
dialogue game protocols have been developed. Applications have included frameworks for
Walton and Krabbe’s analysis of dialogue types (Reed, 1998) (McBurney and Parsons,
2001, 2002), for negotiation protocols (Dastani et al., 2000), and for agent team-formation
dialogues modeled as combination of information-seeking and persuasion dialogues
(Dignum et al., 2000). Dialogue games have also been used for joint-intention-formation
dialogues, modeled as persuasion dialogues possibly containing embedded negotiation
dialogues (Dignum et al., 2001), for request for action (Maudet et al., 2002), and for
inconsistent and biased information (Lebbink et al., 2004). In this chapter, we go through
these proposals in some details.

The rest of this chapter is organized as follows. In Section 3.2, we summarize Reeds’
dialogue frames. In Section 3.3, we present Dastani et al.s’ negotiation protocols. In Section
3.4, we discuss the layer model of McBurney and Parsons. Maudet et al.’s DIAGAL
language and Lebbink et al.s’ dialogue games will be presented in Sections 3.5 and 3.6. In
Section 3.7 we review Dignum et al.s’ dialogue games. Finally, in Section 3.8, we compare
and discuss these proposals.

3.2 Reeds’ Dialogue Frames

Reed (1998) proposed the notion of dialogue frames as abstract exchange structures. This
notion is used to explore the dialogue typology proposed in (Walton and Krabbe, 1995) and
one of its important features, the concept of functional embedding. In these frames,
persuasion, inquiry and information seeking are epistemic, negotiation is concerned with
contracts, and deliberation with plans. Epistemic issues can be modeled by a BDI approach
(Rao and Georgeff, 1991), or a propositional logic encompassing beliefs, values (such as
those employed to evaluate issues during negotiation), rules, intentions, etc. The notion of
contract is intended to abstract from the precise structure used to reach a deal. Plan refers to
the abstract notion of a set of partially ordered contracts. The foundation of the model is a
set of agents, A, a set of agent’s beliefs, B, a set of agent’s contracts, C, and a set of agent’s
plans, P.

Contracts are composed of <issue, value> pairs. To make explicit the assumption that there
is some basic result of a fulfilled contract, this result can be expressed as a conjunction of
beliefs. Let us consider the example of a contract specifying that for agent a to receive
information from agent b, a must pay b $10. The issue-value pairs are <Price, $10>,
<Quality, High>. Plans can be constructed from contracts: a complete plan is a fully ordered
set of contracts each of which is fully specified with respect to its result, r, its list of issue-
value pairs, vn , and the settings of both issue and value in each value pair vi.

20

The set of dialogue types D is defined on the basis of the sets defined above (first paragraph
of this section). Each type is a name-substrate pair:

{ , , , , , , , , , }D persuade B negotiate C inquire B deliberate P infoseek B= < > < > < > < > < >

Formally, a dialogue frame is defined as a tuple with four elements:

{ }
0 0

0
,...,, , ,

n n

n
y yx xu uF t D τ → →=<< ∆ >∈ ∈ ∆ >

where t is the type of this dialogue frame, ∆ is the set of beliefs, contracts or plans,τ is the

topic of the dialogue frame, 0 0, yx A∈ are the interlocutors, and
i i

i
yxu → refers to the ith

utterance occurring in a dialogue between agents ix and ,iy in which ix is the originator of

the utterance 1i iyx += and 1.iiy x += An utterance
i i

i
yxu → is a pair { }0,...,, ,ns σ σ< > in which s

is a statement (i.e. a well formed formula in the communication language), and the i Bσ ∈

represent the arguments supporting that statement.

A dialogue frame is thus of a particular type, t , and focuses on a particular topic. For

example, for a persuasion dialogue, the topic focuses on a particular belief, and for a
negotiation dialogue, the topic focuses on a contract. A dialogue frame is initiated by a
propose-accept sequence that can be considered as meta-acts whose purpose is to open the
frame. These meta-acts have an empty support .{} The frame terminates with a

characteristic utterance indicating acceptance or concession to the topic on the part of one of
the agents.

Let us consider the following example of persuasion dialogue between two agents a and b.

0 : (, (,)) ,a bu propose persuade has c information→ << > >{}
1 : (, (,)) ,b au accept persuade has c information→ << > >{}

{ }2 : ((,)) , _ ((,),)a bu tell has c information told by has c information d→ << > >

3 : (()) ,b au tell unreliable d→ << > >{}
4 : (((,))) ,a bu concede unknown has c information→ << > >{}

In this example, agent a initiates the dialogue to persuade agent b that some third party, c,
has information. The dialogue is open because agent b accepts it. Agent a supports its claim
by citing d as its source. Agent b undercuts the argument by pointing out the unreliability of
d, and with no further supports available, agent a retracts its assertion with a concede which
terminates the dialogue frame.

Reed considers two kinds of game compositions, sequencing and embedding. Sequencing is
the canonical ordering and embedding is captured within the model without further
complications of the structures. Indeed, since propositions to enter a frame are moves like
any others, they can be made within ongoing frames. When a new dialogue frame 1φ is

proposed at turn i by a, and accepted by b at i+1 while a frame 0φ was open, Reed assumed

21

that 0φ is just suspended (1φ is then embedded in 0φ). When the frame terminates, 0φ

resumes where it was stopped. Generally, the speaker who concedes in the embedding
frame is not the speaker who resumes in the embedding frame.

3.3 Protocols proposed by Dastani and his Colleagues

Dastani, Hulstijn and der Torre (Dastani et al., 2000) proposed a methodology for
constructing flexible negotiation protocols based on joint actions and dialogue games,
following the work of (Hulstijn, 2000a, b). Negotiation is considered as a combination of
joint actions represented by simple dialogue games from which larger interactions can be
constructed. These dialogue games consist of initiatives followed by responses.

The key notion of these negotiation protocols is coherence. An utterance or move in a
negotiation dialogue is coherent with the dialogue context, if (i) it fits a plan that might
achieve the apparent goals of the agent, and (ii) it fits the current interaction rules. The
information conveyed or requested by an utterance is called the semantic content. An
utterance has a purpose: the communicative function. Each utterance is analyzed as a
dialogue act which is characterized by a semantic content and a communicative function.

Negotiation dialogue games are sequences of moves. Each move corresponds to a type of
utterance. Moves can be either initiatives or responses. Each initiative must be followed by
an appropriate response, although there may be other exchanges first. For example, a
clarification exchange may precede the answer to a question. The basic game structure is an
exchange capturing that an initiative can be followed by either a positive or a negative
response, or else a retry. For example, a proposal is an initiative, an acceptance is the
corresponding positive response, a rejection is the negative response, and a counter-proposal
is an example of a retry. An exchange is allowed, given that the coherence constraint on the
semantic contents of the initiative and response is met. In other words, the response must
address the initiative. Formally, an exchange between two agents, a and b about the

content ζ (the response content) is specified as follows:

(, ,) (, ,); _ (, ,)exchange a b initiative a b pos response b aζ η ζ=

| _ (, ,)neg response b a ζ

| (, ,)retry b a ξ

where , (,)a bM coherent η ζ

,a bM is the shared dialogue context, η is the initiative content, and ξ is the retry content.

Games can be composed by sequencing or chaining. A sequential combination is specified
as follows:

(, , (.)) (, ,); (, ,)game a b exchange a b game b aη ζ η ζ=

 where , (,)a bM coherent η ζ

22

The recursive nature of the definition indicates that it is possible to combine as many games
as requested. Like in the basic exchange, some coherence constraints are stated between the
games’ topic. For instance, to be combined, games have to share a common subject matter.
With regard to chaining composition, constraints require the last dialogue act (reactive) of
the first game being the first (initiative) of the second game. Canonical examples of such
chaining structures are question / answer / evaluation or proposal / counter-proposal. The
difference between sequencing and chaining is that unlike chaining, sequencing does not
impose any constraint about the relationship between the games.

3.4 The Layer Model of McBurney and Parsons

McBurney and Parsons defined a model for a generic dialogue game protocol to represent
combinations of dialogues according to the typology proposed by Walton and Krabbe
(1995). This model is used in the development of a three-level hierarchical formalism for
agent dialogues. The lowest level is the topic layer, the next level is the dialogue layer, and
the highest level is the control layer. The topic layer defines the matters which may be
discussed in the dialogue. These matters refer to real-world objects or to states of affairs.

In the dialogue layer, different dialogue games are modeled as classical dialectical systems2
with the following components: (i) beginning rules, (ii) locution rules, (iii) combination

rules, (iv) commitment rules, and (v) termination rules. Beginning rules define the
circumstances under which the dialogue starts. Locution rules indicate which utterances are
permitted. Typically, legal locutions allow participants to assert propositions, to question or
contest prior assertions. They also allow agents to justify the propositions that they have
asserted which have been subsequently questioned or contested. Combination rules define
the dialogue contexts under which particular locutions are permitted or not. For instance, it
may not be permitted for a participant to assert a proposition p and subsequently to assert
the proposition again in the same dialogue, without in the meanwhile having retracted the
former assertion. Commitment rules define the circumstances under which participants
express commitment to a proposition. These rules are inspired by formal dialogue systems
proposed by Hamblin (1970) that establish public sets of commitments, called commitment
stores, for each participant. This notion will be detailed in Chapter 4. Termination rules
define the circumstances under which the dialogue ends.

The selection of specific dialogue types and transition between these types is presented in
the control layer. This layer is defined in terms of two components: a set of atomic dialogue

types which include the dialogue types of Walton and Krabbe, and a set of control dialogues
which are dialogues that have as their discussion subjects other dialogues rather than topics.
These dialogues include beginning and termination dialogues.

In addition, McBurney and Parsons propose the following combinations of atomic or
control dialogues:

Iteration: If G is a dialogue, then Gn is also a dialogue consisting of the n-fold repetition of
G. Each dialogue starts after termination of the preceding dialogue.

2 The notion of the dialectical system will be discussed in Chapter 4, Section 4.4.2.

23

Sequencing: If G and H are both dialogues, then G ; H is also a dialogue consisting of
undertaking G until its closure and then immediately undertaking H.

Parallelization: If G and H are both dialogues, then G ∩ H is also a dialogue consisting of

undertaking both G and H simultaneously until termination.

Embedding: If G and H are both dialogues, then G[H| Φ] is also a dialogue consisting of
undertaking G until a sequence of legal locutions Φ of G has been executed, and then
switching immediately to dialogue H which is undertaken until its termination, whereupon
dialogue G resumes from where it was interrupted.

Testing: If p is a well formed formula, then <p> is a control dialogue testing p truth status.
When p is found to be false, the current active dialogue ends.

3.5 The DIAGAL Language proposed by Maudet and Chaib-draa

Maudet and Chaib-draa (2002) proposed an agent communication language DIAGAL
(DIAlogue Game based Agent Language) by adapting the Maudet’s work (2001) to the
communication between software agents. An implementation of this language as a dialogue
game simulator is described in (Labrie et al., 2003). In the model proposed by the authors,
dialogue games are handled through a contextualization game which aims at defining how
games are opened, combined, and closed during the conversation. This model adopts a strict
commitment-based approach within the game structure. This approach proposed by (Singh,
1998) and (Colombetti, 2000) will be discussed in detail in Chapter 4.

In DIAGAL, games are bilateral structures capturing the different commitments created
during the dialogue (Chaib-draa et al., 2005). These games are defined by entry conditions,
success conditions, exit conditions, and dialogue rules. Entry conditions define conditions
which must be fulfilled at the beginning of the game. Success conditions are conditions
which indicate whether the game terminates successfully or not. Exit conditions define the
goal of the participants when they are engaged in the game. Dialogue rules indicate the
permitted communicative acts that participating agents can perform. In their formulation,
the authors use sanctions penalizing agents that will not follow the expected dialogical
behavior as described in the dialogue rules.

Maudet, Chaib-draa, and Labrie (Maudet et al., 2002) used DIAGAL to model the request
for action proposed by Winograd and Flores (1986) as a composition of different basic
games. These compositions which can have conditions and effects are:

Sequencing: denoted g1 ; g2, which means that g2 starts immediately after termination of g1.
Conditions game g1 is closed.
Effects termination of game g1 involves entering g2.

Choice: denoted g1 | g2, which means that participants play either g1 or g2 non-
deterministically. This combination has no specific conditions nor consequences.

24

Pre-sequencing: denoted g2 g1, which means that g2 is opened while g1 is proposed.
Conditions game g1 is proposed.
Effects successful termination of game g1 involves entering game g2.
These pre-sequencing games are used to ensure that entry conditions of a forthcoming game
are actually established.

Embedding: denoted g1 < g2, which means that g1 is now opened while g2 was already
opened. This means that g2 is suspended and one must return to it after the termination of
g1.
Conditions game g1 is open.
Effects Commitments of the embedding games are considered proprietary over those of the
embedding game.

Flores, Pasquier, and Chaib-draa (2004) proposed a conversational semantics for DIAGAL
using social commitments. This semantics defines the meaning of messages on the basis of
their use as coordinating devices advancing conversations. This semantics captures the
evolution of conversations using the state of social commitments and the state of activities
in which agents participate. According to the authors, a commitment could be either
accepted or rejected according to whether or not agents are engaged in it. If accepted, a
commitment is active, violated or fulfilled. If rejected, it is either inactive or cancelled.
Commitments can move between states through four transition types: adoption, where an
active commitment becomes accepted; violation and fulfillment, where an active
commitment becomes violated or fulfilled, respectively; and discharge, where an accepted
commitment becomes cancelled.

In this semantics, the meaning of communicative acts is defined through four levels:
compositional level, conversational level, commitment state level, and joint activity level.
Compositional level deals with message classification. Definitions at this level identify
messages based on the type and identity of their components. Conversational level indicates
the significance of messages once they are uttered. This significance is given taking into
account the fact that messages as part of conversations seeking agreement to advance the
state of commitments. Commitment state level refines the definitions of messages according
to the shared state of the commitment being manipulated. Joint activity level refers to the
meaning given to messages when they are used as part of joint activities. Definitions at this
level are given in terms of the type of actions the commitments bring about, and in terms of
the roles that interacting agents play in these actions.

3.6 Dialogue Games proposed by Lebbink and his Colleagues

Lebbink, Witteman and Meyer (Lebbink et al., 2004) proposed dialogue games in which
coherent conversational sequences with inconsistent and biased beliefs are described at the
speech act level. A belief is called “biased” when more evidence exists to believe than to
disbelieve something or vice versa. In the former, the belief is said to be biased true, and in
the latter, the belief is said to be biased false. A special case of a biased belief is when an
agent has evidence to believe a statement but it also has an equal amount of evidence to

25

believe the contrary. In such a situation, an agent’s belief is considered inconsistent from an
epistemic perspective.

The authors present these biased and inconsistent beliefs with bilattice structures (Fitting,
1991) that are constructed from two complete lattices 1(,)B ≤ and 2(,).D ≤ A complete

lattice is a structure (,)B ≤ such that B is a non empty set ordered according to ≤ and for all

S B⊆ , there is a greatest lower bound and a least upper bound of .S A bilattice is an

algebraic structure that formalizes an intuitive space of generalized truth-values with two
lattice orderings B and D . The intuition is that B provides evidence for believing a
statement and D provides evidence for disbelieving a statement. A bilattice has at least four
truth-values: t, f, u, and i. Truth-value t represents full evidence for believing and no
evidence for disbelieving. Opposite to t is truth-value f that represents no evidence for
believing but maximal evidence for disbelieving. Truth-values t and f correspond to the true
and false values of classical logic. In truth-value u neither evidence for believing nor for
disbelieving exists. In truth value i both maximal evidence for believing and for
disbelieving exist.

In addition, the authors define a multi-valued logic in order to describe dialogue games in
which agents can communicate about their cognitive states. Whereas in classical logic terms
are assigned a truth value true or false, in multi-valued logic, new truth-values can be
captured to represent epistemic attitudes. These truth-values can represent unknown
information and inconsistent and biased information. A language of multi-valued logic is
defined in order to formalize two types of sentences: atomic sentences and conditional

sentences. Atomic sentences consist of a propositional formula taken from an ontology ο .

Conditional sentences resemble the conditionals of classical logic.

In the dialogue games proposed by the authors, communicative acts are utterances used by
agents to manifest parts of their cognitive states. Three communicative acts are used:
questions, statements of belief and statements of ignorance. A question is a request for a
belief addition, that is, an agent a asks an agent b whether it may add a sentence to its
beliefs. In a statement of belief, an agent a states to an agent b that a given sentence is part
of its beliefs and that b may add this to its beliefs. A belief statement can be an approval of a
request for a belief addition. This request can also be denied, which is in effect a statement
of ignorance, that is, an agent a states to an agent b that it is ignorant about a given
sentence.

A dialogue game is formalized by, first, defining the agent’s cognitive state as a set of
multi-valued theories, second, by defining the dialogue rules, and last, by defining update
rules. As a motivation to participate in a dialogue game, agents have the incentive to reduce
an imbalanced desire and belief state (Grice, 1975). There is an imbalance in the agents’
belief and desire state, when these agents do not believe a proposition but they do desire to
believe it. In such case, it is said that the agent is interested to add the proposition to its
beliefs. For example, two roles of questions are distinguished. The first role is to reduce the
imbalance between an agent’s desire and belief, that is, the question is about a sentence the
agent itself is interested to believe. The second role is to reduce an imbalanced desire and
belief state of another agent, that is, the question is about a sentence another agent is

26

interested to believe. Dialogue rules define which communicative acts are applicable in a
dialogue game. For example, a question from an agent a to an agent b is applicable when a
is interested in a sentence and this sentence is sensible, that is, it is not part of b’s ignorance
as a is aware of. In addition, the question must be fresh, that is, a is not allowed to pose a
question for the same information more than once. Update rules prescribe the cognitive state
of both the sending and the receiving agent after the information in a communicative act is
accepted by both agents. For example, if an agent a has uttered a belief statement to an
agent b, agent b believes the underlying sentence, b is aware that a believes the sentence,
and a is aware that b believes the sentence. In fact, Dialogue rules and update rules describe
pre and post conditions on agent’s cognitive state.

3.7 Dialogue Games proposed by Dignum and his Colleagues

The dialogue game protocols presented in the work of Dignum, Duin-Keplicz and
Verburgge (2000, 2001) are intended to enable agents to form teams and to agree on joint
intentions. They present a theory for agents that are able to discuss the team formation and
to adopt joint intentions and subsequently work as team members until the collective goal
has been fulfilled. For both protocols, the authors assume that one agent, an initiator or
proponent, seeks to persuade others (opponents) to join a team, and that another initiator
(possibly the same agent) seeks, after the team formation, to persuade team members to
adopt a group belief or intention. They present structured dialogues, with an emphasis on
persuasion, which can be shown to lead to the required team formation and joint intentions.
The dialogue games are formally specified using modal logics and speech acts. The team-
formation dialogue is modeled as information-seeking dialogue followed by a persuasion,
while the joint-intentions-formation dialogue is modeled as a persuasion dialogue, which
may include embedded negotiation dialogues. For the persuasion dialogue, the authors
adapt the rigorous persuasion dialogue game of Walton and Krabbe (1995).

The protocol for joint intention formation dialogues includes seven locutions: statement,
question, challenge, challenge with statement, question-with-statement and final remarks.
The statements associated with challenges and questions may be concessions made by the
speaker. The protocol for team formation dialogues may also use the same set of locutions.
The authors assume the participating agents have a belief-desire-intention architecture
(BDI) and vest the locutions with a private axiomatic semantics, the locutions being defined
in terms of their impacts on agent mental states.

For team formation by dialogue, the authors postulate that agent architecture should contain
a number of specific modules. The heart of the system is the reasoning module. When
realizing the consecutive stages leading ultimately to team formation, interaction with the
planning, communication and social reasoning modules is necessary. All these modules
contain a number of specific reasoning rules. Each rule refers to a specific aspect of the
reasoning process.

The first task of the initiator in the team formation protocol is to form a partial plan for the
achievement of the overall goal. For this reason, it determines which agents might be most
suited to form the team. In order to determine this match, the initiator tries to find out the

27

properties of the agents, being interested in three aspects, namely their abilities,
opportunities, and their willingness. The initiator has to form beliefs about these aspects of
the individual agents. Thus, it may first investigate the willingness of particular agents, and
on this basis ask the interested ones about their abilities and opportunities. The questions in
this stage form part of an information seeking dialogue game. To establish a collective
intention within the team, agents start a persuasion dialogue consisting of three main stages:
information exchange, rigorous persuasion, and completion.

3.8 Comparison and Discussion

In this section, we compare and discuss the dialogue game frameworks presented in this
chapter using the following factors: the formal language used for the specification, the
dialogue types supported by the framework, the architecture of the participating agents, the
purpose of the proposal, the mechanism, if any, used in the framework for the decision
making process, and the computational issues. Table 3.1summarizes this comparison.

Different logics are used to specify the dialogue game frameworks presented in this chapter.
Modal and multi-valued logics are used to formalize and reason about agents’ mental states.
Nonmonotonic logic is used to formalize arguments that agents use to support their
communicative acts. Other formal languages are also used to describe some elements such
as the dialogue frames (Reed, 1998) and the contextualization game (Maudet and Chaib-
draa, 2002). Lebbink et al. use a specific algebraic language to represent inconsistent
information that is a part of the agent’s cognitive state.

All the dialogue game proposals, with the exception of Maudet et al.’s framework and
Lebbink et al.s’ dialogue games, are based on the dialogue typology proposed by Walton
and Krabbe. Reeds’ dialogue frames and the layer model of McBurney and Parsons are
defined to represent all the types according to this dialogue typology and the combination of
these different types. Hence, these frameworks are more general than the other frameworks
defined for specific dialogues. Maudet et al.’s DIAGAL is specified by four basic games:
Request game, Offer game, Inform game, and Ask game. Although the combination of these
games can describe different dialogue types, the authors do not specify these types. Lebbink
et al.’s proposal does not use any philosophical foundation, but focuses on inconsistent
dialogues without taking into account the goal of the dialogue.

Dastani et al. and McBurney and Parsons do not make assumptions concerning the internal
architecture of agents. Consequently, it is not clear how these frameworks can be
implemented and how agents establish the link between their mental states and their
locutions during a dialogue. Reed does not specify a specific architecture, but only supposes
that agents have epistemic issues, whose referent could equally be modeled by a BDI
architecture or a propositional logic. On the other hand, Maudet and his colleagues propose
an architecture in which each agent has a private agenda containing its commitments. Using
this agenda, agents can follow the action effects on each move, i.e. check the creation,
cancellation, fulfillment … of commitments. In addition, agents can use a shared action
board representing the actions which were played during the dialogue. This board is
represented as a history of the performed actions. In Lebbink et al.’s framework, agents

28

have a cognitive state consisting of a set of mental constructs: beliefs, desires and
ignorance. These constructs can be private or manifested (communicated explicitly).
Dignum and his colleagues propose an architecture in which agents have beliefs, intentions
and goals. In addition, agents can reason about these states and about other agents.

 Specification

language

Dialogue

types

Agents’

architecture

Purpose Decision

making

process

Computation

Reed Private formal
language +

Nonmonotonic
logic

Dialogue
types of

Walton and
Krabbe

Abstract
architecture

Modeling and
analyzing
dialogues

Partially
supported

No
computation

Dastani et

al.

Modal logic Negotiation
+

Information
seeking

Unspecified Constructing
flexible

negotiation
protocols

Unsupported No
computation

McBurney

and

Parsons

Modal logic Dialogue
types of

Walton and
Krabbe

Unspecified Representing
combination
of dialogues
+ generating

dialogues

Supported An operational
semantics

Maudet et

al.

Private formal
language

Request +
Offer +

Information
+ Ask

Each agent
has an
agenda

containing its
commitments

Analyzing,
modeling and

verifying
automated

conversations

Unsupported Implementation
of a simulator

Lebbink et

al.

Algebraic
language +

Multi-valued
logic

Dialogues
with

inconsistent
and biased
information

Agents have
a cognitive

state

Analyzing
inconsistent
dialogues

Unsupported No
computation

Dignum et

al.

Modal logic
(KDn45)

Persuasion
+

Information
seeking +

Negotiation

Agents have
mental sates

Constructing
agent

dialogues for
team

formation

Partially
supported

No
computation

Table 3.1 Comparison of some dialogue game frameworks

Reed’s dialogue frames do not specify the rules that govern the performance of
communicative acts but only an abstract form of these acts. Consequently, the formalism is
descriptive and not generative. The purpose of Reed’s work is to analyze conversation, but
cannot be used to help agents to take part in these conversations. Although the dialogue
games proposed by Maudet et al. and by Lebbink et al. specify dialogue rules and update
rules, these two formalisms do not specify how agents can generate dialogues. The reason is
that they do not specify the decision making process enabling agents to decide, at a given
moment, about the next communicative act to be performed. Dastani et al. propose a

Table 3.1. Comparison of some dialogue game frameworks

29

methodology to construct protocols by specifying some combination rules. However,
because this methodology does not provide any decision making process, it does not specify
how agents can use these protocols in an autonomy way. On the other hand, McBurney and
Parsons’s model and Dignum et al.s’ dialogue games are defined for generating dialogues.
The layer model is equipped with an argumentation theory that provides a decision making
process and agents can reason about their locutions using dialogue layer rules. In the team
formation dialogues, agents can also reason about their locutions. However, this reasoning
mechanism is not clearly specified.

With the exception of the proposals of MacBurney and Parsons, and Maudet and his
colleagues, there is no computational analysis in the other proposals. However, McBurney
and Parsons propose only an operational semantics in order to achieve the objective of
automating dialogues; they do not provide any implementation or complexity analysis.
Operational semantics indicates how the states of a system change as a result of execution
of the commands in a programming language. In dialogue games, the commands are the
moves, and the states are the dialogue states which can be described by the different
commitments. On the other hand, Maudet et al. provide a dialogue game simulator, but the
computational complexity of the implemented dialogue games is not studied.

As a conclusion, the dialogue game frameworks discussed in this chapter have two main
limitations. The first limitation is related to the link between private mental states, public or
manifested states and the decision making process. This link is extremely important to
generate dialogues and enable agents to participate flexibly in conversations. The second
limitation is related to the computational issues. For example, complexity, termination and
correctness of dialogue game algorithms should be analyzed when developing these
algorithms. In addition, verifying whether agents respect or not these dialogue games
protocols is another relevant issue to be addressed.

Chapter 4

A Taxonomy of the Proposed Approaches

In this chapter, we present our taxonomy of the proposed approaches in the domain of

dialogue modeling and agent communication. We distinguish three main approaches: the

mental approach, the social approach and the argumentative approach. The mental

approach is based on the agents’ private mental states like beliefs, desires, and intentions.

The social approach highlights the importance of the public and social aspect of agent

conversations. The argumentative approach uses the dialectical models discussed by the

philosophers of argumentation.

4.1 Introduction

Communication between autonomous agents is widely recognized as a challenging research
area in artificial intelligence and more particularly in the multi-agent systems community.
Agent communication is at the intersection of several disciplines: philosophy of language,
social psychology, artificial intelligence, logics, mathematics, etc. In a multi-agent system,
agents may communicate in order to negotiate, to solve conflicts of interest, to cooperate, or
simply to exchange information. All these communication requirements cannot be fulfilled
by simply exchanging messages. Agents must be able to take part in coherent conversations
which result from the performance of coordinated speech acts (Searle, 1969).

Over the years, important contributions have been made in modeling communication
between software agents. Three main approaches have been proposed and applied to agent
interactions and to agent communication languages (ACLs): the mental approach, the social
approach, and the argumentative approach. Besides these approaches, some researchers
proposed combined methods, called intentional-conventional approaches (Maudet, 2001).
All these approaches originate from the research on the formalization of rational agents
initiated by the pioneering work of Moore (1980) and Morgenstern (1986, 1987) in which
knowledge and actions are considered.

In this chapter, we present and discuss these approaches on which our pragmatic approach
presented in Chapter 5 is based. In Section 4.2, we present the mental approach. We
summarize the model proposed by Cohen, Allen and Perrault, the rational interaction theory
and other work. In Section 4.3, we present the social commitment approach. We discuss
Singh et al.’s work, Colombetti et al.’s work and Flores and Kremer’s work. In Section 4.4,
we discuss the argumentative approach. We present the dialectical models and the use of
argumentation for dialogue modeling. In Section 4.5, we briefly present some intentional-

31

conventional approaches. In Section 4.6, we conclude the chapter by comparing the
different approaches.

4.2 The Mental Approach

In the mental approach, so-called agent’s mental structures (e.g. beliefs, desires and
intentions: BDI) are used to model conversations and to define a formal semantics of speech
acts. The objective of the BDI approach is to describe agents’ rational behavior.

Beliefs are simply an agent’s information at a given moment of time, i.e. what this agent
believes to be true regarding the state of the world or other agents’ knowledge. Desires
represent the states of the world wished by an agent, without other consideration: it is
completely possible to have unrealizable or contradictory desires. The process by which an
agent selects, among these desires, those which could be pursued is deliberation. In order to
select these desires, an agent can evaluate the feasibility of each desire. Other criteria like
preferences between desires can also be considered (Hulstijn, 2000b). To define the concept
of intention, many philosophical works have been put forward. For example, Bratman
(1987) distinguishes doing something intentionally and intending to do something. Searle
(1983) speaks about the intentions directed towards the future and the intentions in action.
These two concepts are dependent since the intentions directed towards the future are
generally related to the performance of intentional actions. The link between the concepts of
goal and intention was discussed by many researchers. Some authors like Grosz and Kraus
(1996) distinguish the notion of intending that (a proposition is performed), close to the
notion of goal, and the notion of intending to (perform an action). The difference between
these two concepts is that the first one does not necessarily involve an action performed by
the agent itself.

In this section we summarize two main proposals in this approach: the plan-based models of
Cohen, Perrault and Allen and the rational interaction theory of Cohen and Levesque.

4.2.1 Plan-based Models

Plan-based models of dialogue can be claimed to originate from three classic papers: Cohen
and Perrault (1979), Perrault and Allen (1980), and Allen and Perrault (1980). These models
admit the hypothesis that agents participating in a conversation have rational behaviors
leading them to build and to execute plans in order to achieve some goals. The production
of an utterance by a speaker is related to the performance of a communication sub-goal. The
communicative actions are registered in the plans formulated by the conversational agents at
the same level as the physical actions.

The notion of plan

Planning is the construction of a plan, from a model of the world, while respecting certain
criteria. A plan is an organized set of actions whose performance enables agents to achieve
a goal. A plan allows agents to anticipate a succession of actions in order to achieve this
goal, i.e. a certain final state of the world. To introduce this notion, we consider the

32

following example in which an agent A asks another agent B a question, to which the latter
then responds. The presentation is taken from (Allen and Perrault, 1980):

A has a goal to acquire certain information. This causes him to create a plan that involves
asking B a question. B will hopefully possess the sought information and answer the
question. A then executes the plan, and thereby asks B the question. B receives the question
and attempts to infer A’s plan. In the plan, there might be goals that A cannot achieve
without assistance. B can accept some of these goals as his own goals and create a plan to
achieve them. B then executes its plan and thereby responds to A’s question.

Plan inference is the process through which an agent A attempts to infer another agent B’s

plan, based on observed actions performed by B. Usually, this process starts with an
incomplete plan, containing only a single observed action or an expected goal.

These two activities are modeled using the agents’ cognitive components. To establish or
recognize a plan, knowledge about the state of the world is needed in order to be able to
modify this world and to reach the final state corresponding to the fixed goal. Agents also
need to have knowledge about the means of achieving this goal. The participants also have
beliefs about the world and knowledge and beliefs on the other participants. They finally
have intentions to do an action and intentions to be in a certain situation.

Mental attitudes are omnipresent in plan-based models. The formalization of such attitudes
is inspired by Hintikka’s work (Hintikka, 1963). Allen and Perrault developed a modal logic
in which the concepts of beliefs and knowledge are represented by the modal operators BEL
and KNOW. This epistemic logic allows an agent to reason about what it knows and to deal
with information that can be contradictory with its knowledge. There is no logical relation
between what an agent A believes about another agent B’s beliefs and agent A’s own beliefs.
For example, it is possible that agent A believes that a proposition p is true and believes that
the agent B does not believe that p is true.

This epistemic logic is formalized as follows:
The formula BEL(A, p) is read: "agent A believes that the proposition p is true". In modal
logic and according to the semantics of possible worlds, this means that: if there is a world
M in which the proposition BEL(A, p) is true, p is true in all the accessible worlds from the
world M by agent A using a belief accessibility relation. Worlds can be considered as a
discrete sequence of events stretching infinitely into future (Cohen and Levesque, 1990).
They can also be viewed as Kripke structures for a CTL-like logic (Rao and Georgeff,
1995) (Wooldridge, 2000). Intuitively, accessible worlds using a belief accessibility relation
are the worlds that the agent believes possible. The formula KNOW(A, p) is true if
BEL(A, p) is true and if p is indeed true. The authors assumed that the BEL operator satisfies
the following axioms:

• BEL(A, p) ⇒ BEL(A, BEL (A, p)): transitivity

• BEL(A, p) ⇒ ¬(BEL(A,¬ p): coherence

• BEL(A, p) ∧ BEL(A, q) ⇒ (BEL(A, p ∧ q): conjunction

• BEL(A, p) ∨ BEL(A, p) ⇒ BEL(A, p ∨ q): disjunction

33

• BEL(A, p) ∧ BEL(A, p → q) ⇒ BEL(A, q): rationality

To formalize speech acts as actions, the authors use the concept of action schema. An action
schema is a rule described by a name, a set of parameters, and some formulae which are its
pre-conditions, effects, and body. Preconditions are conditions that must be true if the
action's execution is to succeed. Effects are conditions that become true after the action is
executed. The body is a set of partially ordered goal states that must be achieved after
performing the action. An action is intentional when its author wants to perform it. A
speech act is an intentional action. The pre-conditions of such an action contain the formula
WANT(A, Action). Figure 4.1 explains these notions for the INFORM speech act. The
definition of INFORM is based on Grice's idea (Grice, 1957) that the speaker informs the
hearer of something merely by causing the hearer to believe that the speaker wants him to
know something. This is like an operation in planning.

Figure 4.1. The action schema of INFORM speech act

Allen and Perrault identified three types of inference rules: the ones concerning actions, the
ones concerning knowledge, and the ones concerning planning by others. Rules concerning
actions are rules that support plan recognition. Four inference rules concerning actions are
defined as follows:

Precondition-Action Rule: If P is a precondition of an action ACT, and an agent S believes
that another agent A wants to achieve P, then we can probably infer that S believes A wants
ACT to be performed.

Body-Action Rule: If B is part of the body of ACT, and if S believes that A wants B to be
performed, it is likely that S believes that A may want to perform ACT.

Action-Effect Rule: If E is an effect of an action ACT, and S believes A wants to perform
ACT, then it is plausible that S believes that A wants the effect of that action.

Want-Action Rule: If S believes that A wants another agent N to want some action ACT to be
performed, then S may believe that A wants ACT to be performed.

Rules concerning knowledge define relations between goals of acquiring knowledge and
goals and actions that use that knowledge. Rules concerning planning by others are
construction rules that can be seen as the inverse of plan inference rules. The plan
construction rules are: Action-Precondition Rule, Action-Body Rule, Effect-Action Rule,

INFORM (A, B, p)
• Pre-conditions:

o WANT(A, INFORM (A, B, p)
o KNOW(A, p)

• Effect: KNOW(B, p)
• Body: BEL(B, WANT(A, KNOW(B, p)))

Figure 4.1. The action schema of INFORM speech act

34

Know Rule, Nested-Planning Rule, and Recognizing Nested-Planning Rule. These rules
resemblance to previously mentioned rules.

Several researchers explored the idea of using plans to model agent interactions and
suggested different types of plans: domain plans and discourse plans (Litman and Allen,
1990), individual plans (Pollack, 1990), and shared plans (Grosz and Sidner, 1990).
However, the fact that interaction is a dynamic activity and is dependent on the action
context makes it difficult to model it using a planning approach. In particular, the plan
recognition that is necessary to deduce other agents’ intentions is extremely complex.

4.2.2 Rational Interaction Theory

Cohen and Levesque (1990) proposed an action theory upon which a rational interaction
theory has been built. This theory is based on a modal logic whose semantics is given in
terms of possible worlds. Action representation is based on dynamic logic. The
corresponding language contains the usual connectives of a first-order language, operators
for the propositional attitudes, as well as action expressions. These elements are:

(BEL A p), (GOAL A p): p follows from A’s beliefs or goals.
(BMB A B p): A believes that p is a mutual belief with B.
(AGT A a): A is the only agent of action a.

a ≤ b: action a is an initial subsequence of b. Action variables range over sequences of
primitive actions.
(HAPPENS a), (DONE a): action a will happen next, action a has just happened.
a ; b: action sequence.
a | b nondeterministic choice.
p? test action.
a* repetition.
p? ; a action a occurring when p holds.
a ; p? action a occurs after which p holds.

From these elements, the following abbreviations can be adopted:

p =def ∃a (HAPPENS a ; p?)

(LATER p) =def ¬p ∧ p

p =def ¬ ¬p

(PRIOR p q) =def ∀c (HAPPENS c ; q?) ⊃ ∃a (a ≤ c) ∧ (HAPPENS a ; p?)

(KNOW A p) =def p ∧ (BEL A p)

To define the notion of intention, the authors use the notion of Persistent Goal P-GOAL that
is an internal and individual commitment of agent. Formally:

(P-GOAL A p q) =def

1- (BEL A ¬p) ∧

2- (GOAL A (LATER p)) ∧

3- [KNOW A (PRIOR [(BEL A p) ∨ (BEL A ¬p) ∨ (BEL A ¬q)]

35

¬[GOAL A (LATER p)])].

This definition indicates that the agent A believes that p is currently false, chooses that it
will be true later, and knows that before abandoning this choice, it must either believe it is
true, believe it never will be true, or believe that q, an escape clause (used to model sub-
goals, reasons, etc.) is false.

In this theory, intention to do an action a is a kind of persistent goal in which an agent
commits to do an action, in a particular mental sate. Formally:

(INTEND A a q) =def (P-GOAL A [DONE A (BEL A (HAPPENS a))? ; a]q).

A fundamental notion in Cohen and Levesque’s theory is an ATTEMPT. This notion

discussed by Searle (1969) is used to define the illocutionary acts. An attempt to achieve ψ

via Φ by performing an action a is defined as follows:

{ATTEMPT A a ψ Φ} =def [(GOAL A (LATER ψ))

 ∧ (INTEND A a ; Φ? (GOAL A (LATER ψ)))]? ; a

This definition indicates that, before performing a, the agent A chooses that ψ should

eventually become true, and intends that a should produce Φ relative to that choice. So, ψ

represents some ultimate goal that may or may not be achieved by the attempt, while Φ
represents what it takes to make an honest effort. Using this notion, the authors defined the
semantics of some illocutionary acts. Figure 4.2 illustrates the case of the INFORM act.

Figure4.2 Definition of INFORM in Vohen and Levesque's theory

The illocutionary act of informing is defined as an attempt by which the speaker (agent A) is
committed (in the sense of persistent goal) to the addressee’s knowing that A knows p. In
other words, agent A is committed to the addressee’s knowing in which mental state A is.
Although A is committed to getting the addressee to believe something about its goals, what
A hopes to achieve is for the addressee to come to know p. To achieve this goal, it is
necessary that the addressee B shares with A the mutual belief that B knows that A knows
that p is true.

The fundamental idea of this approach is that illocutionary acts can only be derived from the
analysis of the agents’ mental states. In addition, in Cohen and Levesque’s framework an

{INFORM A B a p} =def
{ATTEMPT A a

(KNOW B p)
[BMB B A

(P-GOAL A

(KNOW B (KNOW A p)))]}

Figure 4.2. Definition of INFORM in Cohen and Levesque’s theory

36

agent intends to do an action if it has the persistent goal to have done the action. This
reduction of intentions to do actions for goals is criticized by (Meyer et al., 1999): although
intentions to do actions should be related to goals, this relation should express that doing the
action helps in bringing about some goal and not that doing the action in itself is a goal.

According to the rational interaction theory, cooperation and sincerity are the two
characteristics on which the agents’ rational behavior rests. Cooperation can take the form
of very strict constraints, like the adoption of goals. An agent is cooperative when it adopts
the goal of its addressee. Thus, recognizing the speaker’s underlying goals, as precisely as
possible, is necessary to offer cooperative answers to it. In addition, the semantics of speech
acts is conditioned by the fact that the speaker is sincere and that the addressee believes that
the speaker is sincere. For example, in the INFORM act, the speaker is assumed to be
sincere when it is committed to the addressee’s knowing its mental state.

4.2.3 Other Work

Shapiro, Lespérance and Levesque (1998) proposed a language for specifying and verifying
communicating multi-agent systems called Cognitive Agent Specification Language
(CASL). Extended by Shapiro and Lespérance (2001) and Shapiro et al. (2002), CASL
models agents as entities with mental states (knowledge and goals). It is based on a
declarative action theory defined in the situation calculus (McCartyh and Hayes, 1969)
combined to a programming language ConGolog (De Giacomo et al., 2000). CASL models
Knowledge using a possible worlds account adapted to the situation calculus. A situation
represents a snapshot of the domain. K(a, s’, s) is used to denote that in situation s, agent a
thinks that it could be in situation s’. φ [s] means that φ is true in the situation s. Using K,

the knowledge of an agent is defined as follows:

Know(a, φ , s) =def ∀ s’ (K(a, s’, s) ⇒ φ [s’])

An agent a knows a formula ,φ if φ is true in all K-accessible situation by agent a.

In CASL, three variants of the inform communicative action are supported (Lespérance,
2002):

inform(a, b, φ): agent a inform agent b that φ currently holds.

informWhether(a, b, φ): agent a inform agent b about the current truth value of .φ

informRef(a, b, φ): agent a inform agent b of who/what φ is.

The preconditions of these three actions are expressed using Know predicate. For example,
an agent a can inform an agent b that ,φ iff a knows that φ currently holds, and does not

believe that b currently knows the truth value of .φ

In CASL, goals are modeled using an accessibility relation W over possible situations. The
goal accessible situations for an agent are the ones where it thinks that all its goals are
satisfied. W-accessible situations may include situations that the agent thinks are

37

impossible. Intentions are defined using W and K relations so that the intention accessible
situations are W-accessible situation that are also compatible with what the agent knows, in
the sense that there is a K-accessible situation in the history of W-accessible situations.
Thus, unlike goals, agents can only intend things that they believe are possible.

Using the CASL framework, Khan and Lespérence (2004) defined a model of cooperative

ability, and show how agents use their intentions to determine their next actions. In a single
agent domain, an agent’s ability to achieve a goal can be defined as its knowledge of a plan
that is physically and epistimically executable and whose execution achieves the goal. As
argued by the authors, modeling multi-agent ability is more complex because it requires to
take into account the agents’ knowledge about other’s knowledge and intentions as well as
how they select actions, behave rationally, etc. At the communication level, the authors
extended CASL by providing two intention transfer communication actions: request and
requestAct, and two cancellation actions: cancelRequest and cancelRequestAct. Finally,
they defined rational plans and specified a planning framework for cooperating and
communicating agents. The main idea in this framework is the role of intention and
rationality in adopting a rational plan and in determining an agent’s actions.

On the basis of the rational interaction theory, a broad range of ACL performatives have
been defined (Huber et al., 2001) (Huber et al., 2004) (Kumar et al., 2000). However, the
complexity of the definitions causes sometimes confusion when selecting the correct
performative in multi-message exchanges. In addition, these definitions have changed to
match changes in the first version of performatives that have been defined, but not all
performatives previously defined have been updated with each underlying definition change
(Huber et al., 2004).

Several approaches have been defined for implementing cognitive concepts (Huhns and
Singh, 1998). According to one of these approaches, the agent represents its beliefs,
intentions, and desires in modular data structures and performs explicit manipulations on
those structures to carry out means-ends reasoning or plan recognition. When the cognitive
concepts are defined formally, the explicit manipulations can be accomplished through the
application of a suitable theorem prover. Among the best of the systems using this approach
is ARTIMIS (Sadek et al., 1997). ARTIMIS is an intentional system designed for human
interaction and applied in a spoken-dialogue interface for information access. This system is
based on a logic of beliefs and intentions defined from the Cohen and Levesque framework.
In ARTIMIS, agents’ communicative acts are modeled as rational actions. The rational unit
of the system enables agents to reason about knowledge and plans pertaining to their
communicative acts.

One of the other best-known formalizations in the mental approach is Rao and Georgeff’s
BDI-logic (Rao and Georgeff, 1991). Dealing with desires and intentions as primitives, the
authors focus on the process of intention revision. The BDI-architecture is particularly
interesting because it combines three distinct components: A philosophical foundation, a
software architecture and a logical formalization (van der Hoek and Wooldridge, 2003).
Syntactically, BDI logic is essentially branching time logic enhanced with additional modal
operators: Bel, Des and Intend to capture agents’ beliefs, desires and intentions respectively.

38

The semantics that Rao and Georgeff give to BDI modalities in their logic are based on
Kripke structures and possible worlds. However, rather than assuming that worlds are
instantaneous states of the real world, it is assumed that worlds are themselves branching
temporal structures. While this enables the authors to define some interesting properties, it
complicates the semantic machinery of the logic.

Although Rao and Georgeff’s BDI-logic shares much in common with Cohen and
Levesque’s intention logic, there are two main differences between these two logics. The
first and most obvious distinction is that Rao and Georgeff’s BDI-logic uses explicitly a
CTL-like branching time logic. The second distinction is that worlds are a discrete sequence
of events in the formalism proposed by Cohen and Levesque, and are branching temporal
structures in the formalism proposed by Rao and Georgeff. In term of expressivity, Rao and
Georgeff’s approach explores the possible interrelationships between beliefs, desires, and
intentions from the perspective of semantic characterization. The most obvious relationships
that can exist between agent’s belief, desire, and intention accessibility relations are whether
one relation is a subset of another. For example, if desire accessibility relation is a subset of
intention accessibility relation for a given agent, then we would have as an interaction
axiom the fact that if this agent intends that a proposition is true, then it desires that this
proposition is true.

Another important formalization is the KARO framework (for Knowledge, Actions, Results
and Opportunities) proposed by (van Linder et al., 1998). KARO is a formal system that
may be used to specify, analyze, and reason about the behavior of rational agents. The core
of KARO is a combination of epistemic and dynamic logic. The framework comes with a
sound and complete axiomatization. For instance, it is possible to model, using this
framework, that an agent knows that some action is able to bring about some state of affairs
since it knows that an action is feasible in the sense that the agent knows of its ability to
perform the action.

The main difference between the KARO framework and Cohen and Levesque’s approach is
that the KARO framework employs explicitly dynamic logic, a programming logic with
explicit reference to actions (programs) within the language. In addition, according to
Cohen and Levesque’s approach, an agent intends to do an action if it has the persistent goal
to have done the action, however, in the KARO framework, intentions are represented by
commitments consisting of actions. Because commitments have a very computational
flavor, The KARO framework is more computational in nature. On the other hand, the
difference between Rao and Georgeff’ logic and The KARO formalism is that the first logic
focuses on the process of intention revision rather than the commitment acquisition which is
essential to the KARO framework. Another difference is that BDI-logic rests on temporal
logic rather than dynamic logic as in the case of the KARO formalism. Consequently,
desires and intentions in BDI-Logic suffer from the problems associated with logical
omniscience. A detailed description of these problems is discussed in (Meyer et al., 1999).

Several researchers used the approaches of Cohen and Levesque, Rao and Georgeff or
KARO to define a formal semantics of ACLs (Hindriks et al., 2000), (Labrou, 1997),
(Labrou and Finin, 1998), (Sadek, 1991), (van Eijk, 2000). For example, according to the

39

semantics proposed by Labrou and Finin (1998), the fact that an agent Ag1 informs another
agent Ag2 that a proposition p is true is interpreted as “Ag1 believes that p is true and
believes that Ag2 intends to find whether p is true or not”. However, these semantics have
been criticized for not being verifiable because it is not possible to verify whether the
agents’ behaviors match their private mental states (Dignum and Greaves, 2000), (Singh,
2000).

4.2.4 Discussion

The mental approach has the advantage of being formally defined on the basis of modal
logic and of a logic of action, which explains its success in the field of the human-machine
interfaces. It also has the advantage of offering a complete theory which makes it possible
to cover the three basic elements of the communication: syntax, semantics and pragmatics
which is captured by the concept of planning. However, the approach based on planning has
several limitations. The concept of plan can be useful when we consider simple
conversations that agents can plan in advance. But as soon as the conversations become
more complicated, this approach becomes inadequate. This is due to the fact that the
dialogue is a very dynamic activity, whereas plans, although they can be revised when
circumstances change, are static in nature because all communicative acts are planed in
advance. In addition, plan revision is a computationally complex task. Moreover, the
computational complexity of plan recognition algorithms is another limit. The plan
recognition problem is also non decidable in certain cases (Bylander, 1991).

The semantics defined in this approach rests on a multimodal logic combined with an action
theory. To use a language based on this semantics, agents must be specified according to a
BDI approach. This semantics is simple, declarative and unambiguous. However, it remains
difficult to verify it because agent’s mental states are private. Moreover, this semantics
supposes that agents are sincere and cooperative. Although it is useful in certain cases, this
assumption is not valid for all dialogue types, for example negotiation and persuasion. In
addition, this semantics gives only the meaning of individual performatives and no
semantics is defined for conversations. Defining pre / post-conditions of speech acts does
not specify how BDI agents can take part in coherent conversations.

4.3 The Social Commitment-based Approach

An alternative to the mental approach was proposed by Singh (1998) and Colombetti (2000)
under the name of social approach. In opposition to the mental approach, this approach
stresses the importance of conventions and the public and social aspects of dialogue. It is
based on social commitments that are thought of as social and deontic notions. As argued by
Dignum and her colleagues (Dignum et al., 2003), deontic concepts are important and
fundamental elements to specify interactions in agent societies. Social commitments are
commitments towards the other members of a community (Castelfranchi, 1995). They differ
from the agent’s internal psychological commitments which capture the persistence of
intentions as specified in the rational interaction theory (Cohen and Levesque, 1990). A
speaker is committed to a statement when he made this statement or when he agreed upon
this statement made by another participant. In fact, we do not speak here about the

40

expression of a belief, but rather about a particular relationship between a participant and a
statement. What is important here is not that an agent agrees or disagrees upon a statement,
but rather the fact that the agent expresses agreement or disagreement, and acts accordingly.
A social commitment is therefore a public attitude of a participant relative to a proposition.

4.3.1 Singh et al.’s Work

This notion of social commitment was proposed in order to define a formal semantics that is
verifiable (Singh, 2000). Thus, based on Habermas’s work (Habermas, 1984), Singh
proposed a three-level semantics such that each act is associated with three validity claims:
the objective claim (that the communication is true), the subjective claim (that the
communication is sincere) and the practical claim (that the speaker is justified in making the
communication). For instance, by informing agent B that proposition p is true, agent A
(called debtor) commits towards B (called creditor) that p holds (objective conclusion), that
it believes that p is true (subjective conclusion), and to the whole agent group that it has a
reason to believe that p is true (practical conclusion). Singh’s approach is based on the
mental approach when considering the subjective claim which is embedded within a social
attitude when considering the practical claim. The practical claim actually leads to a social
commitment made by the speaker towards the whole agent group. The commitment-based
semantics has therefore been introduced in order to capture these three levels.

Technically, Singh defined the semantics of social commitments as an operator using
Computation Tree Logic (CTL) (Emerson, 1990). This semantics is given relative to the

following model: , , , , , , , ,M S N R A B I C= < < ≈ > . S is a set of states, S S< ⊆ × is a partial

order indicating branching time, S S≈ ⊆ × relates states to similar states, 2:N S Φ→ is an

interpretation which tells us which atomic propositions (Φ) are true in a given state. The set
of paths derived from < is denoted P . :R S P→ gives the real path originating from a

state. A is a set of agents. 2: SB S A× → , 2: PI S A× → , and 2: PC S A A× × → give the

modal accessibility relations for beliefs, intentions, and commitments respectively. B
assigns to each agent at each moment the set of moments that the agent believes possible at
that moment. I assigns to each agent a set of paths that the agent is interpreted as having
selected or preferred. C assigns to each agent a set of paths on which the agent commits

towards another agent. A commitment is denoted 1 2(, ,)Ag AgCom p where 1Ag and 2Ag are

two agents, and p is a propositional formula. The meaning of a commitment is given by the

following formula:

,1 2 1 2
(, ,) (: (, ,))t pa tM Com p iff pa pa C t M pAg Ag Ag Ag∀ ∈ ⇒

tM p expresses “ M satisfies p at state t ” and ,pa tM p expresses “ M satisfies p at state

t along path pa ”.

Although it is verifiable at the objective level, this semantics remains unverifiable at the
subjective level because this level is expressed in terms of mental states. In addition, the
semantics given for the notion of social commitments does not reflect the deontic or the

41

public aspect but only the fact that the content is true in the accessible states along some
paths. The algebraic properties of this relation are also not specified.

Using Singh’s approach, Mallya et al. (2004) defined some constraints in order to capture
some operations on commitments. These operations are: Create (that establishes the
commitment), Cancel (that cancels the commitment), Release (that releases the debtor from
a commitment), Assign (that replaces a commitment’s creditor by another), Delegate (that
replaces the commitment’s debtor by another), and Discharge (that fulfills the
commitment). An example of the defined constraints is: a commitment cannot be created
more than once with a given identifier. The authors developed a representation for the
temporal content capable of capturing realistic contracts. Then, they dealt with the problem
of solving temporal commitments by showing how the satisfaction or breach of a
commitment can be detected.

On the basis of the social commitment approach, Yolum and Singh (2002) proposed an
approach for specifying protocols in which the content of the actions is captured through
agent’s commitments. In this approach, commitments are formalized using a variant of the
event calculus (Kowalski, 1986). The authors used the same operations specified in (Mallya
et al., 2004). Then, they defined reasoning rules to capture the evolution of commitments
through the agents’ actions. Using these rules in addition to the event calculus axioms and
an event calculus planner (Shanahan, 2000), agents can reason about their actions. The
event calculus planner is used to demonstrate how possible transitions can be generated
between an initial state and a goal state given a protocol specification. As a related work,
Chopra and Singh (2004) proposed a commitment-based formalism called non-monotonic

commitment machines for representing multi-agent interaction protocols. This formalism
uses commitments for representing states and actions. The meaning of a state is given by the
commitments that hold in this state. The meaning of an action is defined by the way it
manipulates commitments. This formalism does not directly specify sequences of states and
transitions. Instead, it specifies rules in nonmonotonic causal logic (Giunchiglia et al.,
2003). These rules model the changes in the state of a protocol as a result of the execution
of actions. The inference mechanism in this logic computes new states at runtime. The
nonmonotonic causal logic is used only to reason about actions in the sense that an action
can be the cause for a formula to be true, for example 1 2(, ,)Ag AgCreate p causes

1 2(, ,)Ag AgCom p and 1 2(, ,)Ag AgDischarge p causes 1 2(, ,).Ag AgCom p¬

4.3.2 Colombetti et al.’s Work

Colombetti (2000) proposed a commitment-based semantics for an ACL called Albatross
(Agent Language Based on a TReatment Of a Social Semantics). The definition of this ACL
is based on an extended first order modal language L. This language contains terms of
different sorts including: agent, action token, action type, force indicator, and message

body. Colombetti used this language to define the meaning of speech acts according to
Searle and Vanderveken’s classification (1985). To express the meaning of directive speech
acts, he introduced the notion of precommitment. For example, when an agent A requests
another agent B to do something, A is trying to induce B to make a commitment. In this
situation, we speak about a precommitment of .A An expression of the form (, , ,)C e A B ϕ

42

(respectively (, , ,)PC e A B ϕ) means that action e commits (respectively precommits) agent

A to ϕ relative to agent .B If e is an action token and α is an action type, then (,)Act e α

means that e is a token of action type .α If A is an agent and e is an action token, an

expression of the form (,)Done e A means that agent A has just completed the execution of

the action token e . This predicate can be overloaded as follows:

(, ,) (,) (,)defDone e A Act e Done e Aα α= ∧

In Albatross, A message is an expression with sub-expressions specifying a sender, a list of
receivers, a force indicator (in the sense of speech act theory), and a body (i.e., a statement
of a content language conveying the content of the message). If A and B are agents, f is

a force indicator, and s is a message body, the term (, , ,)Send A B f s denotes the following

action type: a message is sent with sender A , B as one of the receivers, force indicator
,f and body .s For every message body s there is a logical statement ϕ such that

()Holds s ϕ↔ is valid, where the intuitive meaning of ()Holds s is that s holds. This

assumption is considered as meta-theoretic. A term of the form (, , ,)SpeechAct A B f ϕ

denotes the following action type: a speech act is performed with A as the speaker, B as
one of the addressees, force ,f and content .ϕ The speaker of a speech act coincides with

the agent that performs it. The relationship between messages and speech acts is expressed
through an inference rule:

()

(, (, , ,)) (, (, , ,))

Holds s

Act e Send A B f s Act e SpeeechAct A B f

ϕ
ϕ

↔
→

Using the language L, Colombetti defined a number of speech acts: declarations, assertives,
commisives, directives. For example, for an assertive act, the point is to commit its actor to
the truth of what is asserted, relative to every addressee and for a directive act, the point is
to have the addressee perform some action. Assertive and directive acts are defined as
follows:

(, ,) (, , ,)

(, , (, ,)) (, , ,)

Assert A B SpeechAct A B Assert

Done e A Assert A B C e A B

ϕ ϕ
ϕ ϕ

=
→

Re (, ,) (, ,Re ,)

(, ,Re (, , (,))) (, , , (,))

quest A B SpeechAct A B quest

Done e A quest A B Done B PC e B A Done B

ϕ ϕ
α α

=
→

Fornara and Colombetti (2002) defined an operational specification of Albatros by using
social commitments. The essential components of this specification are: a commitment class
that can be instantiated to a set of commitment objects, a fixed set of actions that agents
may perform and a fixed set of roles that agents play during an interaction. Some basic
operations on commitments are defined: Make commitment, Make precommitment, Cancel

commitment, Cancel precommitment, Accept precommitment, Reject precommitment. These
operations are used to define the meaning of the basic types of communicative acts as

43

identified by speech act theory. The authors used this specification to define some
interaction protocols (Fornara and Colombetti, 2003, 2004).

Verdicchio and Colombetti (2003) proposed a logical model of social commitments based
on CTL+- (CTL* augmented with past operators). The purpose of their framework is to
define an ACL semantics based upon the concept of social commitments. This framework
relies on the assumption that agent communication should be analyzed in terms of
communicative acts, by means of which agents create and manipulate commitments. They
extended the temporal language of CTL+- in order to represent events and actions. Events
are treated as a sort of individuals called event tokens. Every event token belongs to at last
one event type, and takes place (happens) at exactly one time instant. By taking

(), (,)Happens e Type e t and (,)Actor e x as primitives, with e is an event token, t an event

type, and x an agent, they defined:

(, ,) () (,) (,)defDone e x t Happens e Type e t Actor e x∧ ∧=

This formula expresses the fact that event e of type t is brought about by agent .x

Commitments and precommitments are only defined syntactically by two predicates Comm

and Prec without any semantics. (, , ,)Comm e x y u (respectively (, , ,)Prec e x y u) means

that event e has brought about a commitment (respectively a precommitment) for agent ,x

relative to agent ,y to the truth of u . The action types for commitment and precommitment

manipulation are defined by axioms describing their constitutive effects, that is, by
describing the state of affairs that necessarily hold if a token of a given action type is
successfully performed. For example, the following axiom says that: if an agent x

successfully performs an action of making a commitment with x as the debtor, y as the

creditor, and u as the content, then on all paths agent x is committed, relative to ,y to

content ,u until agent x possibly cancels such a commitment, after which the commitment

no longer exists. The authors also studied fulfillment and violation of commitments.

Using commitment-based semantics proposed by Colombetti (2000) and by Verdicchio and
Colombetti (2003), Fornara, Vigano, and Colombetti (2004) proposed to regard an ACL as
a set of conventions to act on a fragment of institutional reality. Communicative acts are
regarded as a sort of institutional actions, that is, as actions performed within an institution
to modify a fragment of social reality (Searle, 1995). According to the authors, defining the
semantics of an ACL has two sides: one side is the definition of the institutional effects
brought about by the performance of communicative acts; the other side is the definition of
the social context in which agents can carry out institutional actions. Institutional actions are
particular types of actions that agents cannot perform by exploiting causal links. Rather,
institutional actions are performed on the basis of a shared set of conventions and norms.
Norms prescribe which institutional actions should or should not be executed among those
that are authorized. They are important in the sense that they make an agent’s behavior at
least partially predictable and allow agents to coordinate their actions according to the
expected behavior of the others.

44

The approach proposed by Colombetti, Fornara, Verdicchio, and Vigano offers an
operational specification and a logical definition of agent communication. However, this
approach is only based on the notion of social commitments and it neglected the agents’
mental states and their reasoning process. Without this process it is not clear how agents
manipulate their commitments when conversing.

4.3.3 Flores et al.’s Work

Flores and Kremer (2002) proposed a social model for agent conversations for action based
on social commitments and their negotiation. They used observable behavior and the
concept of shared social commitments to ensure the coherence of agent conversations.
During the conversation, each agent maintains a private record to which shared
commitments are added and from which they are removed. The authors formally specify
their model using the Z language.

In addition, they defined a basic protocol for the negotiation of social commitments called
PFP (Protocol For Proposals). The protocol starts with a proposal from a sender to a
receiver to concurrently adopt or discharge a social commitment. Either the receiver replies
with an acceptance, rejection, or counteroffer or the sender issues a withdrawal or
counteroffer. All utterances except a counteroffer terminate an instance of the protocol.
Finally, it is expected that when an acceptance is issued, both speaker and addressee will
simultaneously apply the proposed commitments to their record of shared commitments.

Flores et al. (2004) presented a conversational model where the meaning of messages is
based on their use as coordinating devices. They distinguished two types of meaning:
speaker's meaning, which is based on the use of messages for the communication of intent,
and signal meaning, which is based on the use of messages as coordinating devices
incrementing the common ground of interacting agents. Following this view, the meaning of
messages is incrementally defined based on the following levels: a compositional level,
where the meaning of messages is given according to their constituents; a conversational

level, where the meaning of messages is given based on their occurrence as part of a
conversation in which agents concur to advance the state of commitments; a commitment

state level, where the meaning of messages is given according to the state of the
commitments these messages manipulate; and a joint activity level, where the meaning of
messages is given according to their use in joint activities.

4.3.4 Discussion

The social approach is regarded as a change in agent design: from individual representation
(private representation) to social interaction (public representation). An ACL must be
conceived taking certain standards into consideration in such a way that agents belonging to
different environments could interact. These standards are supposed to provide the
possibility of testing the compliance of these agents with respect to the ACL specification.
Commitment-based semantics has the advantage of being verifiable because unlike mental
states, commitments are objective and public. They do not require to be reconstituted using
inference processes. Compliance testing in this approach is based on the following idea: an
observer of a MAS can maintain a record of the commitments being created and modified.

45

From these, the observer can determine the compliance of other agents with respect to the
given protocol. However, this technique does not allow us to check whether the protocol
satisfies or not the properties that it should satisfy and whether the participating agents
respect or not the semantics of the communicative acts. Indeed, when agents communicate
using a semantics, we need to verify that they use the same semantics. In Chapter 8, we
address this problem in a formal way using a model checking technique.

This approach has also been critiqued in (Khan and Lespérance, 2004) because
communication cannot be reduced to the public social commitments level. The reason
agents communicate is that this serves their private goals. Therefore, they must reason about
these goals and the associated beliefs when communicate. Thus, a mentalistic semantics is
also essential. For this reason, we think that a combined mental-social-argumentative
semantics provides a good understanding of the agents’ communicative behavior.

On the other side, specifying protocols using a commitment-based approach does not
provide a solution to the flexibility problem if agents cannot reason about their
commitments. Although the event calculus planner and causal logic offer a reasoning
mechanism to agents, this reasoning remains elementary. The reason is that agents cannot
decide about the next act to be performed. The decision-making process is not taken into
account in the protocols suggested in this approach. In Chapters 5 and 6, we show that using
an argumentative theory in this approach provides such a process. On the other hand, in
Chapter 9, we show that integrating dialogue games in a hybrid approach based on
commitments and arguments provides more flexibility for these protocols.

The approach proposed by Colombetti and his colleagues is completely based on the social
commitments and neglects the agents’ mental aspect. Therefore, this approach captures only
the observable part of the communication, and does not explain how agents can participate
in conversations. Finally, although the approach proposed by Singh mentions agents’
mental states, it does not specify how agents establish the link between their mental states
and the different commitments. For example, how agents handle their commitments on the
basis of their mental states is not specified. In our pragmatic approach (Chapters 5 and 6),
we show how this link is established using the agents’ reasoning mechanism.

4.4 The Argumentative Approach

Another approach, called the argumentative approach, was proposed by Amgoud and her
colleagues (Amgoud, 1999), (Amgoud et al., 2000a, 200b, 2002) as an extension to Dung’s
work (Dung, 1995), and by McBurney and his colleagues (McBurney and Parsons, 2000),
(McBurney, 2002), (McBurney et al., 2002). This approach is based upon an argumentation
system that can include a preference relationship between arguments (Amgoud, 1999).
According to this approach, the agents’ reasoning capabilities are often linked to their
ability to argue. They are mainly based on the agent’s ability to establish a link between
different facts, to determine if a fact is acceptable, to decide which arguments support which
facts, etc. Before studying this approach we introduce some preliminary concepts.

46

4.4.1 Preliminary Concepts

Argumentation theory has been applied in the design of intelligent systems in several ways
over the last decade. Arguments can be considered as tentative proofs for propositions (Fox
et al., 1992), (Krause et al., 1995). One may imagine that knowledge in some domain is
expressed in a logical language, with the axioms of the language corresponding to premises
in the domain. Theorems in the language correspond to claims in the domain which can be
derived from the premises by successive applications of some set of inference rules. For
many real-life domains, the premises will be inconsistent in the sense that contrary
propositions may be derived from them. In this formulation, arguments for propositions, or
claims, are the same as proofs in a deductive logic, except that the premises on which these
proofs rest are not all known to be true. Arguments are thus treated as tentative proofs for
claims.

Many formalisms of argumentation such as (Pollock, 1991, 1992), (Prakken and Sartor,
1996), and (Vreeswijk, 1997) regard an argument as a structured chain of rules. An
argument begins with one or more premises. After this follows the repeated application of
various rules, which generate new conclusions and therefore enable the application of
additional rules.

The understanding of an argument as a tentative proof and a chain of rules attends to its
internal structure, as analogous to a chain of inference steps connecting a set of premises to
a claim. A second strand of research in artificial intelligence has emphasized the
relationship between arguments when considered as abstract entities, ignoring their internal
structures. This approach has enabled argumentation systems to be defined as defeasible
reasoning systems (Pollock, 1991, 1992), (Simari and Loui, 1992). Arguments are thus
defeasible, meaning that the argument by itself is not a conclusive reason for the
conclusions it brings about. In defeasible logic (also called nonmonotonic logic), inferences
are defeasible, that is, the inferences can be defeated when additional information is
available.

In this logic, the conclusions are not deductively valid: it is possible that the premises are
true while the conclusion is not. Whether or not an argument should be accepted depends on
its possible counterarguments. To decide about the acceptability of arguments, Dung (1995)
proposed the use of a formal argumentation framework. In this framework, an argument

framework is a set of arguments (considered as abstract entities) together with a binary
relationship across this set, called attack. A set of arguments Args is conflict-free if there is
no arguments Arg1 and Arg2 in Args such that Arg1 attacks Arg2. Any given argument is said
to be acceptable with respect to a designated subset S of the set of arguments if every
argument which attacks the given argument is itself attacked by an argument in the
designated subset. Such a subset S is said to be admissible if it is conflict-free and if every
argument it contains is acceptable with respect to S. Intuitively, acceptable arguments with
respect to some set S are those which are defended by the elements of S against all attacks.
Similarly, an admissible set of arguments is one which defends its own members against all
attacks.

47

4.4.2 Dialectical Models of Argumentation

The monological models of argumentation, like Toulmin’s model (Toulmin, 1958), focus on
structural relationships between arguments. On the contrary, formal dialectics proposes
dialogical structures to model the connectedness of utterances. Dialectical models focus on
the issue of fallacious arguments, i.e., invalid arguments that appear to be valid. They are
rule-governed structures of organized conversations in which two parties (in the simplest
case) speak in turn in an orderly way. These rules are the principles that govern the
participants’ acts, and consequently the use of dialectical moves.

Hamblin (1970) and MacKenzie (1979) proposed a mathematical model of dialogues. They
defined some connectors necessary to the formalization of the propositional contents of
utterances, and a set of locutions for capturing the speech acts performed by participants
when conversing. The dialectical system proposed by MacKenzie, and called system DC, is
an extension to the one proposed by Hamblin. MacKenzie’s DC proposed in the course of
analyzing the fallacy of question-begging provides a set of rules for arguing about the truth
of a proposition. Each participant, called player, has the goal of convincing the other
participant, and can assert or retract facts, challenging the other player’s assertions, ask
whether something is true or not, and demand that inconsistencies be resolved. When a
player asserts a proposition or an argument for a proposition, this proposition or argument is
inserted into a public store accessible to both participants. These stores are called
commitments stores (CS). There are rules which define how the commitment stores are
updated and whether particular illocutions can be uttered at a particular time.

A MacKenzie’s dialectical system mainly consists of:
1. A set of moves: they are linguistic acts, for example assertions, questions, etc.
2. A commitment store: it contains the different propositions and arguments asserted by the
players. This store, accessible by all the players, makes it possible to keep the trace of the
various phases of the dialogue.
3. A set of dialogue rules: they define the allowed and the prohibited moves. These rules
have the following form "if condition, moves C are prohibited". A dialogue is said to be
successful when the participants conform to its rules.

The language used in DC contains propositional formulae: “p”, “¬p” and “p ∨ q”.
Locutions are constructed from communicative functions that are applied to these

propositions. For example, the moves: “question(fine)” and “assertion (fine, fine → hot)”
indicate respectively the question “is it fine?” and the assertion “the weather is fine, and
when the weather is fine, the weather is hot”.

Table 4.1 illustrates the evolution the CSs of two players A and B during the following
dialogue:

A1: The doctors cannot make this surgery

B2: Why?

A3: Because the patient is too old and that he refuses

B4: Why does he refuse?

48

A5: Because there is little chance of success.

Turn Player Move CS(A) CS(B)

1
2
3
4
5

A

B

A

B

A

Assert(¬d)

Challenge(¬d)

Assert(p ∧ ¬a)

Challenge(¬a)
Assert(s)

¬d

¬d

¬d, p ∧ ¬a, p ∧ ¬a → ¬d

¬d, p ∧ ¬a, p ∧ ¬a→ ¬d

¬d, p ∧ ¬a, s, p ∧ ¬a → ¬d,

s → p

¬d

?¬d

?¬d, p ∧ ¬a, p ∧ ¬a → ¬d

?¬d, p, ?¬a, p ∧ ¬a → ¬d

?¬d, p, ?¬a, s, p ∧ ¬a → ¬d,

s → p

Table 4.1 The evolution of CSs during a dialogue

The dialogue starts with A’s assertion (¬d): “the doctors cannot make this surgery”. Thus, A
commits itself and commits its adversary B to this fact. Thereafter, B challenges this
assertion (one speaks in this case about a disengagement on the fact and an engagement on
the challenge). After that, A provides a justification, which commits the two players to this
assertion and to the fact that this assertion logically implies the challenged fact. The
dialogue continues in a similar way with B’s challenge of an A’s justification part, which
involves a new A’s justification.

4.4.3 Modeling Dialogue using Argumentation

Several researchers have attempted to use argumentation techniques for modeling and
analyzing negotiation dialogues (Sycara, 1990), (Parsons and Jennings, 1996), (Tohmé,
1997) (Rahwan et al., 2004). Amgoud and her colleagues (2000a, 2000b) extended these
proposals by investigating the use of argumentation for a wider range of dialogue types. In
this section we summarize this work.

The approach proposed by Amgoud et al. relies upon MacKenzie’s formal dialectics. The
dialogue rules of this system are formulated in terms of the arguments that each player can
construct. Dialogues are assumed to take place between two agents, P and C, where P is
arguing in favor of some proposition, and C argues “con”. Each player has a knowledge

base ΣP and ΣC respectively, containing their beliefs. As in DC, each player has another
knowledge base, accessible to both players, containing commitments made during the
dialogue. These commitment stores are denoted CS(P) and CS(C) respectively. The union of
the commitment stores can be viewed as the state of the dialogue at turn t. All the bases
described above contain propositional formulae and are not closed under deduction.

Both players are equipped with an argumentation system. Each has access to his own
private knowledge base and to both commitment stores. The two argumentation systems are
then used to help players to maintain the coherence of their beliefs, and thus to avoid

asserting things which are defeated by other knowledge from CS(P) ∪ CS(C). In this sense
the argumentation systems help to ensure that players are rational.

To model dialogue types proposed by Walton and Krabbe (1995) (see Chapter 2, Section
2.7.2), the authors used seven dialogue moves: assert, accept, question, challenge, request,
promise and refuse. For each move, they defined rationality rules, dialogue rules, and

Table 4.1. The evolution of CSs during a dialogue

49

update rules. The rationality rules specify the preconditions for playing the move. The
update rules specify how commitment stores are modified by the move. The dialogue rules
specify the moves the other player can make next, and so specify the protocol under which
the dialogue takes place. Figure 4.3 presents these rules for the assert and challenge moves.

The authors showed that this framework can be used to implement the language for
persuasive negotiation interactions proposed by Sierra et al. (1998). In (Parsons et al.,
2002), this approach is used to analyze formal agent dialogues using the dialogue typology
proposed by Walton and Krabbe. The authors defined a set of locutions by which agents can
trade arguments and a set of protocols by which dialogues can be carried out. In (Parsons et
al., 2003), this approach is used to examine the outcomes of the dialogues an argumentation
system permits. As an outcome, the authors used the set of acceptance propositions (i.e.
what agents come to accept during the course of the dialogue). This argumentation approach
has the advantage of linking communication and reasoning as well as of being verifiable.
However, the approach by itself does not allow capturing certain notions such as
obligations, conventions, roles, etc.

Figure 4.3 Example of rationality, dialogue and update rules

4.4.4 Other Work

On the basis of Amgoud et al.’s work, Sadri et al. (2001) proposed a protocol but with fewer
locutions called dialogue moves. The legal dialogue moves are request, promise, accept,
refuse, challenge and justify. The content of the dialogue moves request and promise are
resources, while the content of the other four dialogue moves are themselves dialogue
moves. For example, accept(Move) is used to accept a previous dialogue move Move and
challenge(Move) is used to ask a justification for a previous dialogue move Move. Because
the intended application is a dialogue over scarce resources, the authors proposed a
semantic linking utterances to a first-order logic describing resources. In this framework, an

assert(p) where p is a propositional formula.
Rationality the player uses its argumentation system to check if there is an

acceptable argument for the fact p.
Dialogue the other player can respond with:

 1: accept(p)

 2: assert(¬p)
 3: challenge(p)

Update CSi(P) = CSi-1(P) ∪ {p} and CSi(C) = CSi-1(C)

challenge(p) where p is a propositional formula.

Rationality ∅

Dialogue the other player can onle assert (S) where S is an argument supporting p.
Update CSi(P) = CSi-1(P) and CSi(C) = CSi-1(C)

Figure 4.3. Example of rationality, dialogue and update rules

50

agent’s knowledge is described as an abductive logic program consisting of if then rules and
of the resources owned by the agent. The abducibles of this logic program are the possible
locutions which the agent may utter in response to a message it receives.

The research work on argumentation that we have described concentrates on formal
dialectics. Another field of argumentation in artificial intelligence focuses on discourses
which are rhetorically argumentative. This field, called rhetorical argumentation, deals
with arguments which are both based on the audience’s perception of the world, and with
evaluative judgments rather than with establishing the truth of a proposition (Grasso, 2002).
In Aristotle’s rhetorical argumentation, the emphasis is put on the audience rather than on
the argument itself. In a persuasive dialogue, the rhetorician appeals to the audience’s set of
beliefs in order to try to persuade this audience, rather than to achieve general acceptability
(Aristotle, 1926). Using Aristotle’s definition, philosophers Perelman and Olbrechts-Tyteca
(1969) proposed a new rhetoric theory aiming at identifying discursive techniques. Based
on an approach that goes from examples to generalization, this theory proposes a collection
of argument schemas which are successful in practice. This collection is classified in terms
of the objects of the argumentation and the types of audience’s beliefs that the schema
exploits. Each schema is described by associations of concepts, either known or new to the
audience in order to win the audience’s acceptance. A rhetorical schema is meant to express
when it is admissible to use a given relationship between concepts. Grasso used this theory
to propose a framework for rhetorical argumentation (Grasso, 2002) and a mental model for
a rhetorical arguer (Grasso, 2003). The purpose is to build artificial agents able to engage in
rhetorical argumentation. In this framework, argumentation aims at reaching an evaluation
of an object or of a state of affairs. This evaluation is a way to pass value from one topic to
another, in the same way as a deductive argument passes truth from one proposition to
another. Formally, we say that there exists an evaluation of a concept c, in the set of
concepts C from a certain perspective p of a set P from which the evaluation is made, if
there exists a mapping E of the pair (c, p) into a set V of values. Assuming that V is a set
consisting of two elements: good and bad, we write:

E: C × P → V = {good, bad}

Grasso defines a rhetorical argument as the act of putting forward the evaluation of a
concept, on the basis of a relationship existing between this concept and another concept,
and by means of a rhetorical schema. If we have a concept c and an evaluation of such a
concept, we can put forward a rhetorical argument in favor or against a second concept c’ iff
1) a relationship exists between the two concepts c and c’ and 2) a schema can be identified
that exploits such a relation.

As a related work, Reed, Walton and Prakken (Prakken et al., 2003), (Reed and Walton,
2003), (Walton and Reed, 2003) proposed a classification and a formalization of
argumentation schemes. Argumentation schemes are forms of argument (structures of
inference) representing common types of argumentation. They represent structures of
arguments used in everyday discourse, as well as in specific contexts such as legal
argumentation or scientific argumentation. They represent the deductive and inductive
forms of argument which are classical in logic. But they can also represent forms of

51

argument that are neither deductive nor inductive, but that fall into a third category,
sometimes called abductive or presumptive. The authors illustrated how argumentation
schemes should be fitted into the technique of argument diagramming, using an XML
system: the Araucaria (Reed and Rowe, 2001). This system provides an interface through
which the user can mark up a text of discourse to produce an argument diagram. They also
studied how to model legal reasoning about evidence within general theories of defeasible
reasoning and argumentation.

4.4.5 Discussion

The advantage of the argumentative approach lies in the link that it establishes between
communication and reasoning. Like humans, agents must reason to be able to take part in
intelligent dialogues. In addition, the distinction made between the reasoning level
(rationality rules) and the commitment level (update rules) is important for the use of an
ACL because it makes it possible to show in an implicit way the relation between agent
reasoning (in particular on the basis of its argumentation system) and its participation in
conversations. However, the commitment level remains elementary since it only captures
the propositions asserted in a dialogue. Other commitment types, such as commitments to
do actions and conditional commitments are not taken into account. Moreover, the handling
of these commitments in a dialogue is only reflected by the addition and the suppression of
propositions in or from commitment stores. However, attack, defense, justification and
withdrawal operations that can be applied to these commitments are not supported. In
addition, to accept or refuse arguments, agents must use not only their argumentation
systems but also some social considerations such as agents’ trustworthiness.

The dialectical systems on which this approach is based has the advantage of being
governed by dialectical rules. These systems are normative frameworks of argumentation
considered as dialectical games that each agent must win. This winning-based vision is
useful for modeling certain argumentative dialogues like persuasion and negotiation.
However, it is not adapted for cooperative dialogues like information-seeking or problem
resolution dialogues. In fact, although the formal dialectics provides a dialogical structure, it
does not offer a complete dialogue model. The reason is that the evolution and the dynamics
of dialogues are only captured by their histories presented by the concept of commitment
stores. These histories do not represent the dialogue state and do not distinguish the
argumentation phases from the other phases.

In addition to these approaches, certain researchers added to the mental approach some
social aspects. These combined approaches are called intentional-conventional approaches.

4.5 The Intentional-Conventional Approaches

As outlined by Clark (1974), agent communication is both a cognitive and a social activity.
The mere individual dispositions of the participants cannot explain this phenomenon in a
satisfactory manner. This is why an increasing number of researchers often use the terms of
mixed or reactive / deliberative approaches (Pulman, 1996), (Traum, 1996), (Hulstijn,
2000a). During the conversation, deliberative processes related to the participants’

52

intentions and desires can take place, as well as more reactive processes related to the
conventional aspects of the interactions. The idea is to integrate social attitudes (obligations,
interpersonal relationships, roles, powers, etc.) into mental approaches.

In this respect, Pulman (1996) introduces a BDIO (Belief-Desire-Intention-Obligation)
approach. In the same direction, Broersen and his colleagues proposed the BOID approach
(Broersen et al., 2001). This approach is an abstract agent representation that consists of the
four components Beliefs, Obligations, Intentions and Desires. The simple-minded BOID is
a lightweight stimulus response agent, that only exhibits reactive behavior. This simple-
minded BOID is extended (as time and resources allow) with capabilities for deliberation
which may result in more complex (e.g. pro-active) behavior. The BOID architecture
contains mechanisms to solve conflicts between the outputs of the four components. This
approach consists of two phases: the first phase results in an intermediate epistemic state,
and the second phase results in new intended actions. Moreover, Rousseau, Moulin and
Lapalme (1996) presented a multi-agent system for simulating conversations involving
software agents based on a conversation model and communication protocols designed in
order to take into account phenomena present in human conversations. The conversation is
thought of as a language game (Wittgenstein, 1958) in which agents negotiate about the
mental states they transfer to their interlocutors. An agent proposes certain mental states
(beliefs, intentions, emotions, etc.) and other participants react to these proposals, accepting
or rejecting the proposed mental objects, asking for further information or justifications, etc.
Agents position themselves with respect to the transferred mental states. In the same
direction, Moulin and Bouzouba (Moulin, 1998), (Bouzouba and Moulin, 1999), suggest
adding mechanisms enabling agents involved in a conversation to manipulate social
knowledge such as the agents’ social power within the interaction context. They show that
agents’ social relationships should be taken into account in the interaction framework. Thus,
they propose an architecture (a conversation manager) that stresses the importance of social
relationships and allows agents to handle explicit and implicit information conveyed by
speech acts.

4.6 Comparison

In this chapter, we reviewed a certain number of proposals relevant for the study of the
general problem of communication between software agents in a MAS. These various
proposals share the theoretical base provided by speech act theory. Beyond the isolated
aspect of exchanges, agents can communicate by using traditional protocols like those of
FIPA or those based on dialogue games. Table 4.2 illustrates a comparison between these
proposals on the basis of three criteria: formalisms, semantics and pragmatics.

The semantics of the mental approach is unverifiable since it is impossible to check, without
access to the agent’ programs, the compliance of this agent with respect to the given
semantics. For example, if an agent A informs another agent B that p is true, one cannot
check whether or not A believes that p is true. Because it is based on public commitments,
the semantics of the social approach is verifiable. The semantics of the argumentative
approach is also verifiable because it uses arguments that are public. For example, if an
agent A informs another agent B that p is true, one can check whether or not agent A has an

53

argument supporting p by challenging it. These three semantics are declarative because they
are based on attitudes that are described declaratively rather than by procedures. These
semantics describe the meaning of the communicative acts rather than how they can be
used.

 Formalisms Semantics Pragmatics

Mental approach BDI logic (temporal +
action logic + situation

calculus)

Unverifiable, declarative Planning

Social approach Commitment logic
(temporal logic), Causal

logic, Event calculus

Verifiable, declarative Commitment-
based protocols,

commitment-
based dialogue

games

Argumentative
approach

Defeasible logic Verifiable, declarative Formal dialectics,
dialogue games

Table 4.2 A comparison of the mental, the social and the argumentative approaches

At the pragmatic level, the mental approach is based on the concept of planning, whereas
the argumentative approach uses the formal dialectics and dialogue games. On the other
hand, the social approach uses operational descriptions of protocols specified by
commitments.

It is clear that the pragmatic level must be improved because planning, formal dialectics and
commitment-based protocols do not allow agents to take part in conversations in a flexible
way while respecting their autonomy. In order to participate flexibly in complex
conversations such as negotiations, persuasions and deliberations, agents must be able to
make decisions and not only to execute pre-defined plans and protocols. In addition, in the
research work on agent communication there is no conversational model that specifies the
dynamics and the evolution of conversations and that provides an efficient decision making
process enabling agents to decide how to act next. On the other hand, the approaches
discussed in this chapter do not take into account the social relationships that can exist
between agents, for example how agents’ trustworthiness can be considered as an
acceptability criterion of arguments. Finally, these approaches do not address the
correctness and the verification issues of the communication mechanisms. Verifying that a
given agent communication protocol satisfies some properties that are important in a given
application context, and verifying that agents respect the semantics when communicating
are interesting aspects yet to be addressed. In the second part of this dissertation, we
propose our unified framework for the pragmatics and the semantics in which we address
these different issues.

Table 4.2. A comparison of the mental, the social and the argumentative approaches

Chapter 5
*

A Pragmatic Approach based on Social

Commitments and Arguments

In this chapter, we propose a formal approach for modeling the pragmatics of agent

communication. This pragmatics captures the evolution and the dynamics of agent

conversations. This approach is based on the combination of the social approach and the

argumentative approach. The link between commitments and arguments that we establish

in this chapter enables us to capture both the public and the reasoning aspects of agent

communication pragmatics. On the basis of this approach we also propose a layered

communication model and a conversational agent architecture.

5.1 Introduction

Agent communication pragmatics deals with the way that agents use communicative acts
when conversing. Pragmatics is related to the dynamics of agent interactions and to the
way of connecting individual acts while building complete conversations. In the domain
of agent communication, many researchers addressed pragmatics. For example Dastani
and his colleagues (2000), Fornara and Colombetti (2003, 2004) and Pitt and Mamdani
(2000) proposed the notion of protocols as a pragmatic mechanism. Pasquier and his
colleagues (Pasquier and Chaib-draa, 2003), (Pasquier et al., 2003) proposed a cognitive
coherence theory for this pragmatics. However, these approaches do not specify the
evolution of conversations and they are specified informally or semi-formally. In
addition, protocol-based approaches do not indicate how agents select their
communicative acts. In the cognitive coherence approach, this aspect is addressed using
the cognitive dissonance theory that enables agents to cognitively react to a statement.
However, this approach does not allow agents to argue, for example, in order to persuade
another agent or to negotiate with it.

In this chapter, we propose theoretical foundations for an approach to agent
communication pragmatics. This approach uses three fundamental elements: social
commitments, actions, and arguments. As illustrated in Figure 5.1, these elements are

* We would like to thank John-Jules Ch. Meyer, Frank Dignum and Henry Prakken from Utrecht
University, Intelligent Systems Group, and Yves Lespérance from York University for their useful
comments about the approach presented in this chapter. This approach is published in (Bentahar et al.,
2003, 2004c).

55

separated in three levels. The first level includes social commitments that agents use in
their conversations. The second level includes actions that agents apply to the
commitments. The speech acts that agents perform when conversing are defined in terms
of these actions. The third level is composed of arguments that agents use to support their
actions applied to the commitments. The evolution of agent conversations is represented
by the notion of commitment state. Agents use their argumentation systems in order to be
able to select the appropriate communicative acts to be performed considering the current
state of the conversation.

Figure 5.1. The elements of our approach

The purpose of this chapter is to introduce our pragmatic approach that we will use in
Chapter 6 in which we develop our framework called commitment and argument
network. This framework models the connection between the communicative acts in a
conversation and the evolution of this conversation. It is also a means that helps agents to
communicate. We also use this pragmatic approach to propose a new persuasion protocol
that we develop in Chapter 9.

This chapter is organized as follows. In Section 5.2, we present our social commitment-
based framework. In Section 5.3, we introduce the notion of commitment state. A
taxonomy of social commitments is given in Section 5.4. In Section 5.5, we establish the
link between commitments and arguments. In Section 5.6, we present our communication
model. In Section 5.7, we conclude the chapter by a discussion.

5.2 Social Commitments

A social commitment SC is a public commitment made by an agent (called the debtor),
and directed towards a set of agents (called creditors) (Castelfranchi, 1995), indicating
that some fact is true or that some action will be performed. A commitment is an
obligation in the sense that the debtor must respect and behave in accordance with this
commitment. A representation of this notion as directed obligations using a deontic logic
is proposed in (Herrestad, 1995). Commitments are social in the sense that they are
expressed publicly and governed by some rules. This means that they are observable by
all the participants. The main idea is that a speaker is committed to a statement when he
made this statement or when he agreed upon this statement made by another participant
and acts accordingly. What is important here is not that an agent agrees or disagrees upon
a statement, but rather the fact that the agent expresses agreement or disagreement.

 Social commitments

 Actions

Arguments

Figure 5.1. The elements of our approach

56

Consequently, social commitments are different from the agent’s private mental states
like beliefs, desires and intentions. This notion allows us to represent agent conversations
as observed by the participants and by an external observant, and not on the basis of the
internal agents’ states.

In our framework, we distinguish between the social commitment which can be modeled
as an object, and the social commitment content. This distinction will be discussed latter

in this section. The commitment content is characterized by a time tϕ, which is generally
different from the utterance time denoted tu, and from the time associated with the

commitment and denoted tsc. tϕ is the time described by the utterance, and thus by the

content ϕ. Time tsc that can be used as an identifier of the commitment refers to the time
during which the commitment holds. It can correspond to a fixed value or an interval.

When it is an interval, this time is denoted [t inf
sc , t sup

sc]. When a temporal bound is

instantiated, it takes a numerical value that respects the time unit used by agents. For
example, let us consider the following utterance U sent by agent Ag1 to agent Ag2: U: I

will give you 5$ at 5PM. We can describe the content by the following predicate: ϕ =

Give(Ag1, Ag2, 5$). We have: tϕ = 5PM. The commitment time tsc is an interval: tsc = [tu,
5PM] with tu is the utterance time (Figure 5.2).

Figure 5.2. Times tu, tsc and tϕ

If the commitment is satisfied or violated we have tsc = [tu, tϕ]. However, if the
commitment is withdrawn, we have: tsc = [tu, tw], with tw the withdrawal time (Figure 5.3).
Time tsc indicates the time during which the commitment holds, i.e. the time during which

the commitment is active. Time tϕ indicates the moment at which the commitment must
be satisfied.

Figure 5.3. Time tsc

We denote a social commitment as follows:

SC(Ag1, A*, tsc, (ϕ, tϕ))

tu tϕ

tsc

Figure 5.2. Times tu, tsc and tϕ

 tsc

Create Satisfy or violate tsc

Create Withdraw

Figure 5.3. Time tsc

57

where Ag1 is the debtor, A* is the set of the creditors (A*=A / {Ag1}, where A is the set of

participants), tsc is the time associated with the commitment, ϕ its content and tϕ the time

associated with the content ϕ. A social commitment can be identified by tsc. Logically
speaking, a commitment is a public propositional attitude. The logical semantics of this
notion is defined in Chapter 7. The content of a commitment can be a proposition or an
action. A detailed taxonomy of the social commitments that we use in our approach will
be discussed latter. To simplify the notation, we suppose throughout this chapter that
A = {Ag1, Ag2}.

In order to model the dynamics of conversations, we interpret speech acts as actions
performed on commitments. A speech act is an abstract act that an agent, the speaker,
performs when producing an utterance U and addressing it to another agent, the

addressee. According to the Speech Act Theory (Searle, 1969), (Searle and Vanderveken,
1985), the primary units of meaning in the use of language are not isolated propositions
but rather speech acts of the type called illocutionary acts. Assertions, questions, orders
and declarations are examples of these illocutionary acts. For the moment, our
interpretation of a speech act can be denoted by:

SA(ik, Ag1, Ag2, tu, U) =def Act(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ, tϕ)))

where =def means “is interpreted by definition as”.

The definiendum (SA(ik, Ag1, Ag2, tu, U)) is defined by the definiens

(Act(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ, tϕ)))) as an action performed on a social commitment.
SA is the abbreviation of "Speech Act", ik is the identifier of the speech act, Ag1 is the
speaker, Ag2 is the addressee, tu is the utterance time, U is the utterance and Act indicates

the action performed by the debtor on the commitment: Act ∈ {Create, Withdraw,

Reactivate, Violate, Satisfy}.

These five actions are the actions that the debtor can apply to a commitment and reflect
only the debtor’s point of view. However, we must also take into account the creditor
when modeling a conversation which is, by definition, a joint activity. The following
example illustrates this aspect:

U1: Quebec is the capital of Canada.

U2: No, the capital of Canada is Ottawa.

The utterance U1 leads the debtor to create a commitment whose content is “Quebec is
the capital of Canada”. On the other hand, the utterance U2 highlights a creditor’s action
on this content that is in this case a refusal. We thus propose to model the creditors’
actions, which are applied to the commitment contents and not to the commitments
themselves (Figure 5.4). This separation between the commitment and its content enables
us to remain compatible with the semantics of commitments, i.e. the fact that only the
debtor can handle its commitments. The creditor can only handle the content of the
debtor’s commitment. Hence, we must differentiate between the actions applied to a

58

commitment Act and the actions performed on the content of a commitment Act-content:

Act-content ∈ {Submit-content, Accept-content, Refuse-content, Challenge-content,

Change-content, Suspend-content, Justify-content, Defend-content, Attack-content}. We
denote an action applied to the content of an Agi’s commitment as follows:

Act-content(Agk, tu, SC(Agi, Agj, tsc, (ϕ, tϕ)))

where i, j, k ∈ {1, 2} and i ≠ j.

Agent Agk can thus act on the content of its own commitment (in this case we get k = i) or
on the content of another agent’s commitment (in this case we get k = j).

Figure 5.4. Debtors and creditors actions

Thus, a speech act leads either to an action on a commitment when the speaker is the
debtor, or to an action on a commitment content when the speaker is the debtor or the
creditor. When an agent acts on the content of a commitment created by another agent,
we refer to this as “taking a position on a commitment content”.3 However, it should be
noted that the same utterance can lead both to take a position on the content of an existing
commitment and to create a new commitment. Generally, a speech act leads to an action
on a commitment and/or an action on a commitment content. Formally, in our framework
a speech act can be defined using BNF notation as follows:

Definition 5.1 SA(ix, Ag1, Ag2, tu, U) =def Act(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ, tϕ)))

| Act-content(Ag1, tu, SC(Agi, Agj, tsc, (ϕ, tϕ)))

| Act(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ, tϕ))) &

Act-content(Ag1, tu, SC(Agi, Agj, tsc, (ϕ, tϕ)))

where i, j ∈ {1, 2} and the meta-symbol “&” indicates “and”.

This definition will be enriched when we establish the link between social commitments
and arguments (Section 5.5)

3 The term “taking position” is inspired by the work done by Rousseau, Moulin and Lapalme (1996) and
extended by Bouzouba and Moulin (1998) and Bouzouba, Moulin and Kabbaj (2001). In these proposals,
agents communicate by taking positions on the agents’ private mental states which are exchanged by agents
while conversing.

 Commitment

Content
The debtor A creditor

Act

Act-content

Act-content

Figure 5.4. Debtors’ and creditors’ actions

59

Let us take the previous example:
U1: Quebec is the capital of Canada.

The utterance U1 leads to the creation of a new commitment:

SA(I0, Ag1, Ag2, tu1, U1) =def

Create(Ag1, tu1, SC(Ag1, Ag2, tsc1, (Capital(Canada, Québec), tϕ1)))

U2: No, the capital of Canada is Ottawa.

The utterance U2 leads at the same time to a positioning on the content of the
commitment created following the utterance U1 and to the creation of another
commitment. Formally:

SA(I1, Ag2, Ag1, tu2, U2) =def

Refuse-content(Ag2, tu2, SC(Ag1, Ag2, tsc1, (Capital(Canada, Quebec), tϕ1)))

& Create(Ag2, tu2, SC(Ag2, Ag1, tsc2, (Capital(Canada, Ottawa), tϕ2)))

5.3 The Notion of Commitment State

A commitment can evolve and be transformed as a result of the actions that the debtor
performs on it (creation, withdrawal, reactivation, violation and satisfaction). Its content
may also be transformed as a consequence of the actions that the debtor and the creditors
apply to it (change, acceptance, justification, etc.). Therefore, agents act on their own
commitments and on the contents of both their commitments and other agents’
commitments. These actions lead to the transformation of these commitments and
commitment contents. Hence, the notion of state makes it possible to capture the
evolution of commitments and their contents. However, we must distinguish between the
notion of the commitment state (Verdicchio and Colombetti, 2002) and the notion of the
content state relative to this commitment as we propose here. Indeed, whenever an agent
acts on its commitment, the commitment state is affected; whereas when an agent acts on
the content of a commitment, the content state is transformed. Consequently, the notion
of commitment state alone does not reflect the conversation dynamics since it only
captures the debtor’s actions on its commitment. The two states (the commitment state
and the content state of the commitment) reflect this dynamics. This notion is of great
importance since it allows us to keep a trace of the dialogue evolution in so far as each
speech act leads to an action performed on a commitment or on its content. Contrary to
the notion of the commitment store (Hamblin, 1970) which allows us only to track "who
said what", the notion of state makes it possible to illustrate how participants change the
dialogue state by performing actions on existing commitments or on their contents.

Here are the states that we propose to use in our model. Once created, a commitment will
take the active state and its content takes the submitted state. This expresses the fact that
the content is presented for possible negotiation. A commitment can be in one of four
states: active, satisfied, withdrawn, and violated (Figure 5.5). A commitment content can
be in one of nine states: submitted, changed, refused, accepted, challenged, justified,

60

contradicted, suspended, attacked and defended. These states and the operations which
trigger them depend on the commitment type. We notice that justification, contradiction,
attack and defense are argumentation-related actions. This means that their semantics is
defined using the argumentation notions (this aspect will be detailed in Chapter 7).

Active
Create

Satisfy

Withdraw

Reactivate

Violate

Fugure 5.5. Commitment state diagram

Satisfied

Withdrawn

Violated

Figure 5.5Commitment state diagram

The set of different states of a commitment whose identifier is tsc is denoted sctS and the

set of different states of a commitment content whose identifier is tsc is denoted .sct
contentS

sctS and sct
contentS are finite and ordered sets. The ordering relation ≺ between the

elements of these sets is defined as follows:

Definition 5.2 1 2 1 2, (),scsc tt
contents s S S s s∀ ∈ ∈ ≺ iff the commitment (the commitment

content) whose identifier is tsc was in state 1s before to be in state 2.s

The current state of a commitment (commitment content) whose identifier is tsc is the

biggest element of the set sctS (sct
contentS) according to the ordering relation ≺ .

The following example illustrates this notion of state and its evolution:

U1: The book is not allowed during the test.

U2: Why?

U3: Because the answers are given in this book.

U4: Ok, Thank you.

By utterance U1, agent Ag1 creates a commitment, whose state is “active”. The state of
the content is “submitted”. Formally:

61

SA(I0, Ag1, Ag2, tu1, U1) =def

Create(Ag1, tu1, SC(Ag1, Ag2, tsc1, (¬Allow(Book, Test), tϕ1)))

1sctS = {active}

1sct
contentS = {submitted}

By utterance U2, agent Ag2 challenges the content of the commitment identified by tsc1.
This commitment always remains in the “active” state, but its content takes the state
“challenged”. Formally:

SA(I1, Ag2, Ag1, tu2, U2) =def

Challenge-content(Ag2, tu2, SC(Ag1, Ag2, tsc1, (¬Allowed(Book, Test), tϕ1)))

1sctS = {active}

1sct
contentS = {submitted, challenged} where submitted ≺ challenged

By utterance U3, agent Ag1 creates a new commitment. The state of this commitment is
“active”, and the state of its content is “submitted”. By the same utterance, this agent
justifies the content of its commitment identified by tsc1. The state of this commitment is
always “active” and “justified” becomes the current state of its content. Formally:

SA(I2, Ag1, Ag2, tu3, U3) =def

Create(Ag1, tu3, SC(Ag1, Ag2, tsc2, (Give(Answers, Book), tϕ2)))

& Justify-content(Ag1, tu3, SC(Ag1, Ag2, tsc1, (¬Allow(Book, Test), tϕ1)))

1sctS = {active}

1sct
contentS = {submitted, challenged, justified} where challenged ≺ justified

2sctS = {active}

2sct
contentS = {submitted}

By utterance U4, agent Ag2 accepts the content of the commitment identified by tsc2.
Thus, “satisfied” becomes the current state of this commitment and “accepted” becomes
the state of its content. Consequently, this agent also accepts the content of the
commitment identified by tsc1. Thus, “satisfied” and “accepted” are the current states
respectively of this commitment and its content. Formally:

SA(I3, Ag2, Ag1, tu4, U4) =def

Accept-content(Ag2, tu4, SC(Ag1, Ag2, tsc2, (Give(Answers, Book), tϕ2)))

& Accept-content(Ag2, tu4, SC(Ag1, Ag2, tsc1, (¬Allow(Book, Test), ϕ1)))

1sctS = {active, satisfied} where active ≺ satisfied

1sct
contentS = {submitted, challenged, justified, accepted} where justified ≺

accepted

2sctS = {active, satisfied} where active ≺ satisfied

2sct
contentS = {submitted, accepted} where submitted ≺ accepted

62

5.4 Taxonomy of Commitment Types

In the literature (Walton and Krabbe, 1995), (Singh, 1999), (Fornara and Colombetti,
2002), several commitment types have been proposed. In our approach we distinguish
absolute commitments, conditional commitments and commitment attempts.

5.4.1 Absolute Commitments

Absolute commitments are commitments whose fulfillment does not depend on any
particular condition. An absolute commitment is denoted:

ABC(Ag1, Ag2, tabc, (λ, tλ)))

Two types can be distinguished: propositional commitments and action commitments.

A. Propositional Commitments

Propositional commitments are related to the state of the world. They are expressed by
assertives or by speech acts of declaratory and expressive types. They can be directed
towards the past, the present, or the future. We denote a propositional commitment as
follows:

PC(Ag1, Ag2, tpc, (p, tp))
where p is the proposition on which Ag1 commits.

Example:

U: The door is open

SA(I0, Ag1, Ag2, tu, U) =def Create(Ag1, tu, PC(Ag1, Ag2, tpc, (open(door), tp)))
such that tpc = tp.

Because propositional commitments are particular cases of social commitments, the
relationship between tu and tpc is similar to the one existing between tu and tsc.

B. Action Commitments

Action commitments (also called commitments to a course of action) are directed towards
the present or the future and are related to actions that the debtor is committed to perform.
The fulfillment and the violation of such commitments depend on the performance of the
underlying action and the specified delay. This type of commitment is typically conveyed
by promises. We denote an action commitment as follows:

AC(Ag1, Ag2, tac, ((α, p), tα))

where α is the action to be performed, and by performing α, the proposition p becomes

true. The relationship between the symbol action α and the proposition p is similar to the

63

relationship existing between α and p in the operator <α>p of dynamic logic. Adding a
proposition to the notation of an action commitment enables us to define the semantics of
this commitment using this operator. This aspect will be detailed in Chapter 7. We notice

here that p does not need a temporal argument because if α is performed at tα, then p
becomes true at this moment.

Example:

U: I will give you 10 dollars in one hour

SA(I0, Ag1, Ag2, tu, U) =def

Create(Ag1, tu, AC(Ag1, Ag2, [tu, tu+1h], ((α, Give(Ag1, Ag2, 10 dollars)), tα)))

where α is an action symbol whose performance makes the proposition

Give(Ag1, Ag2, 10 dollars)) true, and tα = tu + 1h.

The state diagram of an absolute commitment is similar to that of Figure 5.5. Figure 5.6
presents the state diagram associated with the content of such a commitment. It contains
the possible states for the commitment contents and the transitions corresponding to the
operations, which can be applied to these contents. The dotted transitions in the figure
correspond to the creditor’s actions and the non-dotted transitions correspond to the
debtor’s actions. These operations are reflected by the participants’ utterances. Thus, the
debtor can submit a commitment content, contradict it, justify it, defend it and change it.
The creditor can accept this content, refuse it, challenge it and attack it.

Submitted /

Changed

Challenged Justified

Defended

Attacked

Refused

Accepted
Contradicted

Submit

Change

Contradict

Refuse

Refuse

Refuse

Accept Accept
Accept

Challenge

Attack

Attack

Justify

Attack

Defend

Defend

Figure 5.6. State diagram associated to the content of an absolute commitment

Debtor’s action

Creditor’s action

Figure 5.6. State diagram associated to the content of an absolute commitment

64

A commitment towards the present or the future can be interpreted either as a
propositional commitment or as an action commitment. For example, the utterance
"tomorrow the door will be open" may be interpreted as a propositional commitment
made by the speaker on a future state of the world. It can also be interpreted as an action
commitment if the speaker is responsible for opening the door in question. Therefore, the
commitment made by the speaker depends on the conversation context. It is in this sense
that social context is a fundamental issue in communication (Moulin, 1998). In particular,
this allows us to handle properly indirect speech acts (Bouzouba and Moulin, 1999).

In our framework, there is no explicit relation between propositional commitments and
action commitments. When the current state of the world does not satisfy a propositional
commitment, we speak about a violation of this commitment. There is no rule indicating
that an agent develops an action commitment to make the content of its propositional
commitment true when this commitment becomes violated. A propositional commitment
is a commitment about a state of the world that the debtor agent can or cannot realize. In
contrast, an action commitment is a commitment about an action that the debtor commits
to perform in the present or in the future.

5.4.2 Conditional Commitments

Absolute commitments do not consider the conditions that may restrain their fulfillment.
However, in several cases, agents need to make commitments not in absolute terms but
under given conditions. Another commitment type is therefore required in order to be
able to capture situations defined by certain conditions. These commitments are said to be
conditional. The structure of a conditional commitment, which must reflect the
underlying condition, is different from the structure of a social commitment. We denote a
conditional commitment as follows:

CC(Ag1, Ag2, tcc, ((p, tp), (λ, tλ)))

This commitment expresses the fact that if p is true at time tp, then Ag1 will be committed

towards Ag2 to perform λ or so that λ is true at time tλ. The future for a conditional
commitment depends not only on time but also on the satisfaction of the underlying
condition. Like for absolute commitments, we can distinguish between conditional
commitments about propositions denoted:

PCC(Ag1, Ag2, tpcc, ((p, tp), (p’, tp’)))

and conditional commitments about actions denoted:

ACC(Ag1, Ag2, tacc, ((p, tp), ((α, p’), tα)))

The relationship between the action symbol α and the proposition p’ is similar to the one
existing between this action and this proposition in action commitments.

65

This distinction is implicit since according to the axiom (A1) a conditional commitment
becomes an absolute commitment when the condition is satisfied.

A1: CC(Ag1, Ag2, tcc, ((p, tp), (λ, tλ))) ∧ (p, tp) ≡ true

⇒ ABC(Ag1, Ag2, tabc, (λ, tλ))

where tabc = tcc.

The state diagram associated with a conditional commitment is similar to that of Figure
5.5. The state diagram associated with the content of such a commitment is identical to
that of the content of an absolute commitment (Figure 5.6). Indeed, we can consider any
social commitment as a conditional commitment whose underlying condition is always
true. Thus, we have the following (syntactical) equivalence:

SC(Ag1, Ag2, tsc, (ϕ, tϕ)) ≡ ∀t CC(Ag1, Ag2, tsc, ((true, t), (ϕ, tϕ)))

Example:

U: If industrial countries ratify the Kyoto Protocol, it can take effect

SA(I0, Ag1, Ag2, tu, U) =def

Create(Ag1, tu, PCC(Ag1, Ag2, tcc,
((ratify(industrial countries, Kyoto Protocol), tp), (can-take-effect(Kyoto Protocol), tp’)))

where tp’ = tp.

5.4.3 Commitment attempts

The commitments described so far directly concern the debtor who commits either that a
certain fact is true or to perform certain action. For example, these commitments do not
allow us to explain the fact that an agent asks another one to be committed to perform an
action (by a speech act of a directive type). To solve this problem, we propose the
concept of commitment attempt inspired by the notion of pre-commitment proposed in
(Colombetti, 2000). We consider a commitment attempt as a request made by a debtor to
push a creditor to be committed. Thus, when an agent Ag1 requests another agent Ag2 to
do something, we say that the first agent is trying to induce the other agent to make a
commitment. In this chapter, we denote a commitment attempt as follows:

CT(Ag1, Ag2, tct, (ϕ, tϕ))

where ϕ is the content of the commitment attempt. This formulation seems more intuitive
than Colombetti’s one according to which the agent Ag2 is the debtor and the agent Ag1 is
the creditor. In Chapter 7, we will improve this notation in order to be able to express the
semantics of this type of commitments using an existential qualifier.

A commitment attempt about a proposition p is denoted:

66

PCT(Ag1, Ag2, tpct, (p, tp))

A commitment attempt about an action α whose performance makes true a proposition p

is denoted:

ACT(Ag1, Ag2, tact, ((α, p), tα))

The relationship between the action symbol α and the proposition p is similar to the one

existing between α and p in action commitments.

Example:

U: Could you call me at 4PM?

SA(I0, Ag1, Ag2, tu, U) =def

Create(Ag1, tu, ACT(Ag1, Ag2, tact, ((α, call(Ag2, Ag1)), 4PM)))

A commitment attempt is thought of as a type of social commitment because it conveys
content which is made public once the attempt is performed. However, in our approach,
there is a true commitment only after the creditor agent reacts in response to the
commitment attempt by accepting it or by refusing it. We speak here about the “co-

construction” of social commitments by the two interlocutors. This idea is similar to the
one proposed by Rousseau, Moulin and Lapalme (1996) in which agents co-construct
speech acts using their private mental states. The debtor and the creditor of a commitment
attempt can act both on the attempt and on its content. On the one hand, the creditor agent
reserves the right to accept a commitment attempt, to refuse it or to suspend it (for
example by asking for a period of time for thought). It can also challenge the content of a
commitment attempt. On the other hand, the debtor agent can withdraw a commitment
attempt. It can also change the content of a commitment attempt and justify it. The states
of a commitment attempt and those of its content can also be described by a state
diagram. Figure 5.7 illustrates the state diagram associated to the content of a
commitment attempt. Like a social commitment, a commitment attempt can be absolute
(ABCT) or conditional (CCT). An absolute commitment attempt is denoted:

ABCT(Ag1, Ag2, tabct, (γ, tγ))

A conditional commitment attempt is used for example when an agent asks another one
to do some thing if a certain condition is true. A conditional commitment attempt about a
proposition is denoted:

CCTP(Ag1, Ag2, tcctp, ((p, tp), (p’, tp’)))

A conditional commitment attempt about an action is denoted:

CCTA(Ag1, Ag2, tccta, ((p, tp), ((α, p’), tα)))

where p is the underlying condition.

67

Submited/

Changed
Accepted

Refused

Suspended

Challenged

Justified

Submit Accept

Refuse

Suspend

Refuse

Accept
Challenge

Justify

Suspend

Refuse

Accept

Figure 5.7. State diagram associated to the content of a commitment attempt

Debtor’s action

Creditor’s action

Figure 5.7. State diagram associated to the content of a commitment attempt

The refusal and the acceptance of a commitment attempt automatically lead to the
creation of a new commitment that is in the active state. The two following rules illustrate

this characteristic when the commitment attempt relates to a proposition or an action γ :

R1: Create(Ag1, tu, ABCT(Ag1, Ag2, tabct, (γ, tγ)))

& Refuse-content(Ag2, trefuse, ABCT(Ag1, Ag2, tabct, (γ, tγ)))

⇒ Create(Ag2, trefuse, ABC(Ag2, Ag1, tabc, (¬γ, tγ)))

Syntactically, if λ is an action, ¬λ indicates that this action will not be performed.

R2: Create(Ag1, tu, ABCT(Ag1, Ag2, tabct, (γ, tγ)))

& Accept-content(Ag2, taccept, CT(Ag1, Ag2, tabct, (γ, tγ)))

⇒ Create(Ag2, taccept, ABC(Ag2, Ag1, tabc, (γ, tγ)))

When the commitment attempt relates to a condition, the rules R1 and R2 become:

R1’: Create(Ag1, tu, CCT(Ag1, Ag2, tcct, ((p, tp), (γ, tγ))))

& Refuse-content(Ag2, trefuse, CCT(Ag1, Ag2, tcct, ((p, tp), (γ, tγ))))

⇒ Create(Ag2, trefuse, SC(Ag2, Ag1, tsc, (¬((p, tp), (γ, tγ)))))

R2’: Create(Ag1, tu, CCT(Ag1, Ag2, tcct, ((p, tp), (γ, tγ))))

& Accept-content(Ag2, taccept, CCT(Ag1, Ag2, tcct, ((p, tp), (γ, tγ))))

⇒ Create(Ag2, taccept, CC(Ag2, Ag1, tcc, ((p, tp), (γ, tγ))))

According to rule R1’, refusing a commitment attempt which relates to a condition
consists of refusing its content without committing towards its condition. However,
according to rule R2’, accepting a commitment attempt consists of accepting it under its
condition, which leads to a conditional commitment.

68

5.5 The Link between Argumentation and Commitments

Argumentation is based on the construction of arguments and counter-arguments
(arguments attacking other arguments), the comparison of these various arguments and
finally the selection of the arguments that are considered to be acceptable. A defeasible
argumentation system essentially includes a logical language L, a definition of the
argument concept, a definition of the attack relation between arguments and finally a
definition of acceptability. In our model the formal definitions of these notions are

inspired by (Elvang-Goransson et al., 1993). Here Γ indicates a knowledge base, stands

for classical inference and ≡ for logical equivalence.

Definition 5.3 An argument is a pair (H, h) where h is a formula of L and H a sub-set of

Γ such that: i) H is consistent, ii) H h and iii) H is minimal, so that no subset of H

satisfying both i and ii exists. H is called the support of the argument and h its

conclusion.

Definition 5.4 Let (H1, h1), (H2, h2) be two arguments.

(H1, h1) attacks (H2, h2) iff H2 ¬h1. In other words, an argument is attacked if and only

if there exists an argument for the negation of its conclusion.

The concept of acceptability is defined as follows (Dung, 1995):

Definition 5.5 An argument (H, h) is acceptable for a set S of arguments iff for any

argument (H’, h’): if (H’, h’) attacks (H, h) then (H’, h’) is attacked by S.

Intuitively, an argument is acceptable if it is not attacked, if it defends itself against all its
attackers, or if it is defended by an acceptable argument.

According to (Dung, 1995), any argumentation system includes two essential elements:
one element is used to build and generate arguments, the other is used to analyze these
arguments by determining their acceptability. This view is important for our
communication model. Indeed, agents must reason about their own mental states in order
to build arguments in favor of their future commitments, as well as about other agents’
commitments in order to be able to take position with regard to the contents of these
commitments. Surely, an argumentation system is essential to help agents to act on
commitments and on their contents. However, reasoning about other social attitudes
should be taken into account in order to explain agents’ decisions. This aspect will be
discussed in Chapter 9, in which we highlight the importance of agents’ trustworthiness
to decide, in some cases, about the acceptance of arguments.

The systems proposed in the literature, for example in (Dung, 1995), (Vreeswijk, 1997),
(Amgoud, 1999) do not discuss how arguments can support communicative actions. We
will specify this here. In fact, before committing to some proposition h being true (i.e.
before creating a commitment whose content is h, the speaker agent must use its
argumentation system to build an argument (H, h). On the other side, the addressee agent
must use its own argumentation system to select the answer it will give (i.e. to select the

69

appropriate manipulation of the content of an existing commitment). For example, an
agent Ag1 accepts the commitment content h proposed by another agent Ag2 if Ag1 is able
to build an argument which supports this content from its knowledge base which is

assumed to be consistent. If Ag1 has an argument (H’, ¬h), then it refuses or attacks this

commitment content. If Ag1 does not have any argument for h, or for ¬h, then it must ask
for an explanation. In this case, Ag2 must justify the content h.

Thus, an agent should always use its argumentation system before creating a new
commitment or positioning itself on an existing commitment and on its content.
Consequently, an argument of an agent Ag1 must support an action of this agent on a
given commitment and/or on its content. Formally, an agent Agk’s argument supporting
its action at time tu on a given commitment is denoted:

Arg(Agk, H, Act(Agk, tu, SC(Agi, Agj, tsc, (ϕ, tϕ))))

An Agk’s argument supporting its action at time tu on a given commitment content is
denoted:

Arg(Agk, H, Act-content(Agk, tu, SC(Agi, Agj, tsc, (ϕ, tϕ))))

with H being the support of the argument and the agent identifiers i, j and k verify:

i, j, k ∈ {1, 2} and i ≠ j.

In the first formula, H is the support of the action Act performed by agent Agk on the
commitment identified by tsc. In the second formula, H is the support of the action Act-

content performed by agent Agk on the content of this commitment. We notice that this
support holds at the moment of the action. Thus, according to the nonmonotonicity of
arguments, it is possible that this support becomes invalid if new information becomes
available for Agk. In this case, Agk must update its knowledge base by removing the
invalid argument and adding the new valid argument.

We notice that there is a logical relation between arguments supporting actions and
arguments supporting propositions. The argument supporting an action is the argument
supporting the proposition that becomes true when the action is performed. This relation
is similar to the relation existing between actions and propositions in a dynamic logic
(Harel, 1984). In this logic, the semantics of an action is defined as follows:

(' : (, ')&)'Rp iff w w w pw wαα〈 〉 ∃M M

This means that in a Kripke structure M (the model) the action α is satisfied in a world

w iff there is an Rα − accessible world 'w in which the proposition p becomes true (Rα

is called accessibility relation). The idea is that by doing the action α the proposition p

becomes true in an accessible world. In our approach an argument H supporting an action
Act (respectively an action Act-content) performed on a commitment whose content is ϕ

(respectively on the content ϕ) is satisfied in a world w iff there is an ActR − accessible

70

world 'w in which H supports ϕ or .ϕ¬ ActR is the accessibility relation associated with

the action Act (respectively Act-content). For example, the argument supporting an
acceptance action of a social commitment content is the argument supporting this content.

In fact, the relation between H and the commitment content ϕ depends on the values of

Act and Act-content. Thus, for an absolute or a conditional commitment we have the
following axiom:

A2: Act ∈ {Create, Satisfy} ⇒ H ϕ

Act = Withdraw ⇒ H: H ϕ

Act-content ∈ {Submit-content, Accept-content, Change-content, Justify-content,

Defend-content} ⇒ H ϕ

Act-content ∈ {Refuse-content, Attack-content} ⇒ H ¬ϕ

For example, the first rule indicates that if Act takes the value “Create” or “Satisfy”, then
H supports ϕ .

To illustrate this idea, let us take the following example between agents Ag1 and Ag2 that
we dealt with in Section 5.3:

U1: The book is not allowed during the test.

U2: Why?

U3: Because the answers are given in this book.

U4: Ok, Thank you.

We suppose that the Ag1’s knowledge base contains the arguments (H, φ) and (φ, φ), and
the Ag2’s knowledge base contains the argument (φ, φ) where H = Give(Answers, Book)

and ϕ = ¬Allow(Book, Test). By utterance U3, agent Ag1 presents the support H in order

to justify the content φ of the commitment identified by tsc1. Formally we have:

Arg(Ag1, Give(Answers, Book),

Create(Ag1, tu1, SC(Ag1, Ag2, tsc1, (¬Allow(Book, Test), tϕ1))))

For a commitment attempt we have the following axiom:

A3: Act = Create ⇒ H: H φ or H ¬φ

Act-content = Suspend-content ⇒ H: H φ or H ¬φ

Act-content = Accept-content ⇒ H ϕ

Act-content = Refuse-content ⇒ H ¬ϕ

Act-content ∈ {Change-content, Justify-content} ⇒ H ϕ

An agent can create a commitment attempt related to a proposition p, if it does not have

any argument for p or for ¬p. This reasoning is also valid for a commitment attempt

related to a condition or an action. In the case of an action α the agent does not have any

71

argument for or against the proposition p that becomes true by performing α. We notice
here that this aspect cannot be verified because the fact that an agent does not have an
argument for or against a proposition is related to its internal state. The idea is that an
agent can create a commitment attempt related to a proposition p even if it has an
argument for p. In addition, the creation of a commitment attempt related to an action can
also depend on the context. For example, to create a commitment attempt in the form of
an order, the debtor must have the social capacity to give orders to the other agent.

When considering the creation of a new commitment, the agent must also have a reason
supporting it (a kind of goal to be achieved). In our approach, this reason is considered as
an argument for the action, which is different from the argument that supports the
content. Let us take the following example:

Example:

U: The book “Agent Technology” is interesting

SA(i0, Ag1, Ag2, tu, U) =def

Create(Ag1, tu, PC(Ag1, Ag2, tpc, (Interesting(book Agent Technology), tp)))
such that tpc = tp.

To create this commitment, Ag1 must have a reason to do it, as for example in order to
ask Ag2 to buy the book. This reason can be considered as an argument supporting the
creation action that is different from the argument supporting the content, corresponding
for example to “this book is interesting because its editors are well known authors”. It is
thus significant in this case to distinguish the argument supporting the creation action
itself and the argument supporting the content. Generally, the arguments supporting the
creation actions are not expressed in speech acts, but correspond to agents’ private goals.
We define an argument supporting a creation action as follows:

Definition 5.6 An argument supporting a creation action of a commitment is a pair

(β ,Create(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ , tϕ)))) such that i) β is a proposition representing

an agent Ag1’s goal and ii) ϕ β .

The proposition β can be any Ag1’s goal. For example, the goal can be just to inform

another agent that some thing is true.

After the introduction of the argumentation in our approach, we note that a speech act can
lead to an action not only on a commitment as explained in Section 5.2, but also on an
argument. An agent can thus accept, refuse, defend or attack an argument. Thus, using
BNF notation, we have the following definition improving Definition 5.1:

Definition 5.7 SA(Ix, Ag1, Ag2, tu, U) =def

Act(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ, tϕ)))

| Act-content(Ag1, tu, SC(Agi, Agj, tsc, (ϕ, tϕ)))

| Act(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ, tϕ)))

72

& Act-content(Ag1, tu, SC(Agi, Agj, tsc, (ϕ, tϕ)))

| Act-content(Ag1, tu, Arg(Ag1, H, Act(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ, tϕ)))))

 | Act-content(Ag1, tu, Arg(Agk, H, Act-content(Agk, tu, SC(Agi, Agj, tsc, (ϕ, tϕ)))))

| Act(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ, tϕ)))

& Act-content(Ag1, tu, Arg(Ag1, H, Act(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ, tϕ)))))

| Act(Ag1, tu, SC(Ag1, Ag2, tsc, (ϕ, tϕ)))

& Act-content(Ag1, tu, Arg(Agk, H, Act-content(Agk, tu, SC(Agi, Agj, tsc, (ϕ, tϕ)))))

where i, j, k, ∈ {1, 2} and i ≠ j.

In Chapter 6 (Section 6.3), we will give a detail example illustrating this definition.

5.6 Communication Model

In the previous sections we proposed a formulation of the pragmatics of agent
communication using the notion of actions that agents perform on commitments and the
arguments enabling agents to select the communicative act to be performed. In this
section, we propose an architecture of a communication model in which this approach
takes place. In fact, this model combines the three approaches discussed in our taxonomy
of the prior approaches (see Chapter 4). It is based on a hybrid approach that we call
MSA (Mental-Social-Argumentative). Indeed, if they are taken individually, these three
approaches do not allow us to model all the aspects of agent communication. For this
reason, we suggest to combine them in a unified approach. In addition, conversation is a
cognitive and social activity, which requires a mechanism making it possible to reason
about mental states, about what other agents say (public aspects), and about the social
aspects (conventions, standards, obligations, etc). These three approaches are thus not
exclusive but rather complementary.

The MSA approach has the advantage of capturing simultaneously the mental aspect that
characterizes agents participating in a conversation, the social aspect that reflects the
context in which these agents communicate, and the reasoning aspect which is essential
to be able to take part in conversations. The combination of commitments and arguments
seems essential to us because agents must be able to justify the claims to which they are
committed and to justify their actions on commitments. This justification cannot be made
if agents do not have the necessary argumentation mechanisms. In addition, the
combination of commitments and private mental states is necessary because public
commitments reflect these mental states that contain additional information motivating
the agent’s communicative acts. Finally, the combination of argumentation and mental
states is significant because agents have to reason about their mental states before
committing in a conversation.

73

The communication model is composed of three layers: the conversation layer, the
commitment/argument layer and the cognitive layer (see Figure 5.8). The abstraction
levels justify this stratification in layers. The conversation layer is directly observable
because it is composed of the speech acts that agents perform. These acts are not
performed in an isolated way, but within a particular conversation. The
commitment/argument layer is used to correctly manage the social commitments and the
arguments that are related to the conversation. Finally, the cognitive layer is used to take
into account the private mental states of agents, the social relations and other elements
that agents use in order to communicate.

In order to allow conversational agents to suitably use the communication model, this
model must be compatible with the agent architecture. Thus, we propose an architecture
of conversational agents, which is composed of three models: the mental model, the
social model and the reasoning model (Figure 5.8). The mental model includes beliefs,
desires, goals, etc. The social model captures the social concepts such as conventions,
roles, etc. Social commitments constitute a significant component of this model. The
commitments that an agent makes public when performing speech acts are different from
the private mental states, but these two elements are not independent. Indeed, social
commitments reflect mental states. Thus, agents must use their reasoning capabilities to
reason about their mental states before producing or manipulating social commitments.
The agent’s reasoning capabilities are represented by the reasoning model using an
argumentation system. The conversational agent model also involves by general
knowledge, such as the knowledge of the conversation subject. An agent will use this
knowledge in order to build the common ground that it must share with its partners. The
notion of common ground introduced by the philosophers of language Clark and
Haviland (1974) indicates the set of knowledge, beliefs, and presuppositions, which
agents believe that they share during their conversations.

Figure 5.8. The links between the conversational agent architecture and the communication model

Conversation layer
Speech acts

Cognitive layer
Private mental states, social

relations, etc.
 Commitment / argument layer

The communication model

 Mental model
(Beliefs, desires, intentions, etc.)

Social model
(Powers, relations, etc.)

Commitment model
(Manipulation of
commitments)

Reasoning model

(argumentation system)

The conversational agent architecture

General knowledge

(Concepts, patterns, etc.)

Common ground

Figure 5.8. The links between the conversational agent architecture and the communication model

74

5.7 Discussion

In this chapter, we argued that the three approaches discussed in Chapter 4 can be
successfully combined in one pragmatic approach. This unified approach has the
advantage of capturing the external public aspect of agent communication and the
internal private aspect of agents. The main idea of this approach is that agent
communication is considered as actions that agents perform on social commitments and
arguments. The dynamics of agent conversation is represented by this notion of actions.
In addition, the notion of commitment state enables us to reflect the evolution of agent
conversations. The current state of a conversation is clearly described by the state of the
different commitments. The use of argumentation allows agents to participate in complete
conversations because at each moment they can select the next action to be performed.
This approach can be used to specify protocols that are more flexible than classical
protocols in the sense that participating agents can make decisions by reasoning about the
current state of their conversations. Because it captures the private and the public aspects
of agent communication, this approach can also be used to specify the different dialogue
types according to the classification proposed by Walton and Krabbe (1995) (see Chapter
2). Thus, in Chapter 9, we will show how it can be used to specify dialogue games in the
case of a persuasion dialogue game protocol. We also used this approach to develop a
computational model for the dialogization and the implicit information in a
communicational model (Bouzouba et al., 2004). A comparison between our approach
and other proposals will be made in the next chapter.

Chapter 6
*

Commitment and Argument Network

In this chapter, we propose a formal framework called Commitment and Argument Network

(CAN) which offers an external representation of conversations between agents. This

framework is based on our pragmatic approach proposed in the previous chapter. Using

this formalism allows us: (1) to represent the dynamics of conversations between agents;

(2) to analyze agent conversations; (3) to help autonomous agents take part in

conversations.

6.1 Introduction

As outlined in Chapters 3 and 4, several proposals on agent communication have been
focused on modeling pragmatic and semantic issues. However, few researchers have
addressed the issue of representing the dynamics of conversations. The purpose of this
chapter is to propose a formal framework called Commitment and Argument Network
(CAN) for representing these dynamics. This framework represents agent actions likely to
take place in a conversation. As outlined in Chapter 5, these actions are interpreted in terms
of the creation of and positioning on social commitments and arguments. The proposed
formalism allows us to model the dynamics of conversations and offers an external
representation of the conversational activity. An external representation of a conversation is
a representation of the different communicative acts that can be observed by an external
observant. This notion of external representation (Clark, 1996) is extremely useful because
it provides conversational agents with a common understanding of the current state of the
conversation and its evolution (Rousseau et al., 1996). Based on our formalism, a model is
made available to agents which they can access simultaneously. This formalism clearly
illustrates the creation steps of new commitments and the positioning steps on these
commitments, as well as the argumentation steps.

In the previous chapter, we presented our formulation of commitments and of the relations
between these commitments and arguments. Indeed, our goal is to develop a pragmatic
approach based on commitments and arguments. This approach aims at providing software
agents with a flexible means to interact. Thus, agents can participate in conversations by

* We would like to thank John-Jules Ch. Meyer, Frank Dignum from Utrecht University, Intelligent Systems
Group, Iyad Rahwan from University of Melbourne, and Yves Lespérance from York University for the
helpful discussions about the formalism presented in this chapter. This formalism is published in (Bentahar et
al., 2004b, 2004c).

76

manipulating commitments and by producing arguments. It is the agents’ responsibility (and
not the designers’ role) to choose, in an autonomous way, the actions to be performed by
using their argumentation systems. In this chapter, we show how a conversation can be
modeled using the CAN formalism on the basis of this approach. In a conversational
activity, agents manage commitments and arguments. Our purpose is to represent the
dynamics of conversations using this formalism. This representation allows us to ensure
conversational consistency and coherence in terms of the actions performed by agents on
the commitments and arguments. Indeed, this framework has two objectives: it can be used
to analyze conversations, as well as provide a means for allowing agents to take part in
conversations.

The rest of this chapter is structured as follows. In Section 6.2, we present the foundations
of the CAN formalism. In Section 6.3, we give an example illustrating how an agent
conversation can be represented and analyzed using this framework. In Section 6.4, we
demonstrate how our formalism can be used as a means permitting agents to take part in
conversations. Two additional examples using additional commitment types are then
presented in Section 6.5. We show, in Section 6.6, that the CAN framework can represent
any argumentative conversation. Finally in Section 6.7, we compare our pragmatic approach
and our framework to related work.

6.2 Formal Definition

In this chapter, we simplify the notation of a social commitment by omitting the argument

related to content time. A social commitment will be denoted: SC(Ag1, Ag2, t, ϕ) instead of

SC(Ag1, Ag2, tsc, ϕ, tϕ).

A commitment and argument network is a mathematical structure which we define formally
as follows (the explanation of the different components will be given after):

Definition 6.1 A commitment and argument network is a 12-uple:

<A, E, SC(Ag1, Ag2, t0, ϕ0), T, Ω, Σ, FEΣ, FEΣΣ, FΩ, FAΣΩ, FAΩΩ, FEΩΣ>

where:

• A: a finite and nonempty set of participants.

In this chapter, we suppose that: A = {Ag1, Ag2}.

• E: a finite and nonempty set of social commitments.

These commitments can be absolute commitments (ABC), conditional commitments (CC) or

commitment attempts (CT) .

E={SC(Ag1, Ag2, t0, ϕ0), …, SC(Agi, Agj, tn, ϕn)} such that: i, j ∈ {1, 2}.

• SC(Ag1, Ag2, t0, ϕ0): a distinguished element of E indicating the initial commitment.

This element allows us to define the subject of a conversation.

• T: the set of time points.

T = {t0, …, tn}.

• Ω: the set of creation and positioning actions.

Ω = {Create, Withdraw, Reactivate, Satisfy, Violate, Accept-content, Refuse-content,

Challenge-content, Suspend-content, Change-content}.

77

• Σ: the set of argumentation relations.

Σ = {Defend-content, Attack-content, Justify-content, Contradict-content}.

• FEΣ: a partial function relating one commitment to a second commitment using one

argumentation relation and a time unit. We call this function: commitment-argument-

commitment function.

FEΣ: E × E ∑ × T

• FEΣΣ: a partial function relating one commitment to a pair made up of an argumentation

relation and a time point using one argumentation relation and another time point. We call

this function commitment-argument-argument function.

FEΣΣ: E × ∑ × T ∑ × T

• FΩ: a partial function relating an agent (a participant) to a commitment using a set of

pairs made up of a creation or a positioning action and a time point. We call this function

agent-commitment function.

FΩ: A × E 2Ω × T

• FAΣΩ: a partial function relating an agent to an argumentation relation characterized by

a time point using a set of pairs made up of a creation or positioning action and a time

point. We call this function agent-action-argument function.

FAΣΩ: A × ∑ × T 2Ω - {Change-content} × T

• FAΩΩ: a partial function relating an agent to a creation or a positioning action

characterized by a time unit using a set of pairs made up of a positioning action and a time

unit. We call this function agent-action-action function.

FAΩΩ: A × Ω × T 2Ω - {Create, Satisfy, Violate, Change-content} × T

• FEΩΣ: a partial function relating a commitment to a creation or a positioning action
characterized by a time unit using one argumentation relation. We call this function

commitment-argument-action function.

FEΩΣ: E × Ω × T ∑ × T

Let us now comment upon these sets and functions.

The function FEΣ allows us to define the argumentation relation which can exist between
two commitment contents, i.e. a defense, an attack, a justification or a contradiction relation.
For example:

FEΣ(SC(Ag1, Ag2, ti, ϕi), SC(Ag1, Ag2, tj, ϕj)) = (Defend-content, tk)

This means that the content of the commitment identified by ti (called source of the defense
relation) defends the content of the commitment identified by tj (called target of the defense
relation). The time unit tk, associated with the defense relation, is the time at which this
defense has occurred.

Schematically, the function FEΣ is presented in the following way (Figure 6.1):

Figure 6.1. The function FEΣ

SCi SCj Defend-content, tk

Figure 6.1. The function FEΣ

78

In all the figures of this chapter, a social commitment identified by ti will be denoted SCi.

The function FEΣΣ allows us to define an argumentation relation on another argumentation
relation. For example:

FEΣΣ(SC(Ag1, Ag2, ti, ϕi), Defend-content, tk) = (Attack-content, tl)

This relation points out that the content of the commitment identified by ti attacks at time tl
the content of a defense relation that occurred at time tk. This defense relation is defined

using the function FEΣ. The content of an argumentation relation is the content of the
argument used in this relation.

Schematically, we present the function FEΣΣ in the following way (Figure 6.2):

Figure 6.2. The function FEΣΣ

The function FΩ allows us to define a set of creation and positioning actions (acceptance,
refusal, etc.) performed by an agent on a commitment content. For example:

FΩ (Ag1, SC(Ag2, Ag1, ti, ϕi)) = {(Accept-content, tk)}

This reflects the acceptance at moment tk of the content related to the commitment identified
by ti.

Schematically, we present the function FΩ as follows (Figure 6.3):

Figure 6.3. The function FΩ

The function FAΣΩ allows an agent to take position by accepting or refusing an
argumentation relation. For instance:

FAΣΩ (Ag1, Defend-content, tk) = {(Refuse-content, tl)}

Figure 6.2. The function FEΣΣ

SCi

SC?

SC?

Defend-content, tkAttack-content, tl

SCi
Accept-content, tk

Figure 6.3. The function FΩ

Ag1

79

This means that the agent Ag1 refuses at time tl the defense relation which is defined by the

function FEΣ. The defense relation has occurred at time tk.

The function FAΣΩ is presented as follows (Figure 6.4):

Figure 6.4. The function FAΣΩ

The function FAΩΩ allows an agent to position itself relative to a positioning action by
accepting it, refusing it, challenging it, withdrawing it or reactivating it. The positioning

action on which an agent can take positions can be defined by the function FΩ or the

function FAΣΩ. For instance:

FAΩΩ (Ag1, Refuse-content, tk) = {(Challenge-content, tl)}

This example shows the case in which the agent Ag1 challenges at time tl a refusal action

that occurred at time tk. This refusal action is defined by the function FΩ.

Schematically, the function FAΩΩ is illustrated as follows (Figure 6.5):

Figure 6.5. The function FAΩΩ

The function FEΩΣ allows us to define an argumentation relation binding a commitment to a

creation or a positioning action. This action is defined by the function FΩ. For example:

FEΩΣ (SC(Ag1, Ag2, ti, ϕi), Refuse-content, tk) = (Defend-content, tl)

This example highlights the case in which the content of the commitment identified by ti
defends at time tl the refusal action that occurred at time tk. The refusal action is defined by

the function FΩ.

Ag1
Refuse-content, tl

Figure 6.4. The function FAΣΩ

SC?

SC?

Defend-content, tk

Ag1

Ag?SC?
Refuse-content, tk

Challenge-content, tl

Figure 6.5. The function FAΩΩ

80

The graphical representation of this function is shown as follows (Figure 6.6):

Figure 6.6. The function FEΩΣ

6.3 Example

In this section, we show how to represent a dialogue between two agents using the CAN
framework. We use the conceptual graphs notation (CG) proposed by Sowa (1984) in order
to describe the propositional contents of commitments. Conceptual graphs are a system of
logic and a knowledge representation language consisting of concepts and relations between
these concepts. They are labeled graphs in which concept nodes are connected by relation
nodes. With their direct mapping to natural language, CG serve as an intermediate language
for translating computer-oriented formalisms to and from natural languages. A concept is
represented by a type (ex. PERSON) and a referent (ex. john) and denoted [TYPE:
Referent] (ex. [PERSON: John]). A conceptual relation links two concepts and is
represented between brackets. When representing natural language sentences, case-relations
are normally used. Examples are: AGNT (agent), PTNT (patient), OBJ (object), CHRC
(characteristic), PTIM (point in time). The advantage of CG over predicate calculus is that
they can be used to represent the literal meaning of utterances, without ambiguities, and in a
logically precise form.

Before considering the example, we introduce the following notation: (,)H hS denoting the

set of different states of an argument (H, h). (,)H hS is a finite and ordered set. The ordering

relation ≺ between the elements of this set is defined as follows:

Definition 6.2 1 2 (,) 21
, ,H hs s S ss∀ ∈ ≺ iff the argument (H, h) was in state 1s before to be in

state 2.s

The current state of an argument (H, h) is the biggest element of the set (,)H hS according to

the ordering relation ≺ .

Let us consider the following dialogue D1:

Ag?
SC?

Refuse-content, tk

SCi

Defend-content, tl

Figure 6.6. The function FEΩΣ

81

SA(I0, Ag1, Ag2, tu0, U0): The disease M is not genetic.
SA(I1, Ag2, Ag1, tu1, U1): Why?
SA(I2, Ag1, Ag2, tu2, U2): Because it does not appear at birth.
SA(I3, Ag2, Ag1, tu3, U3): A disease which does not appear at birth can be genetic as well.
SA(I4, Ag1, Ag2, tu4, U4): How?
SA(I5, Ag2, Ag1, tu5, U5): It can be due to a genetic anomaly in the DNA appearing at a
certain age.
SA(I6, Ag1, Ag2, tu6, U6): It is true, you are right.

With its speech act identified by I0, agent Ag1 creates, as explained in Chapter 5, a
propositional commitment, i.e.:

SA(I0, Ag1, Ag2, tu0, U0) =def

 Create(Ag1, tu0, PC(Ag1, Ag2, t0, p0))

0tS = {active}

0t
contentS = {submitted}

where PC(Ag1, Ag2, t0, p0) is the initial commitment of the dialogue and p0 is the
propositional content which can be described by the following CG:

¬[[DISEASE : M]→(CHRC)→[GENETIC]]

In the CAN formalism, this speech act results in the function:

FΩ(Ag1, PC(Ag1, Ag2, t0, p0)) = {(Create, tu0)}

Thereafter, agent Ag2 performs the speech act identified by I1 and takes position on the
content of PC(Ag1, Ag2, t0, p0) by challenging it. Thus, "challenged" becomes the current
state of the commitment. Hence, we have:

SA(I1, Ag2, Ag1, tu1, U1) =def

 Challenge-content(Ag2, tu0, PC(Ag1, Ag2, p0))

0tS = {active}

0t
contentS = {submitted, challenged}

In the CAN formalism, this speech act results in the function:

FΩ(Ag2, PC(Ag1, Ag2, t0, p0)) = {(Challenge-content, tu1)}

Then, agent Ag1 justifies the propositional content p0 of its commitment by performing the
speech act identified by I2. Hence, it creates another commitment PC(Ag1, Ag2, t1, p1). Thus,
"justified" becomes the current state of the commitment identified by t0. We have:

82

SA(I2, Ag1, Ag2, tu2, U2) =def

 Justify-content(Ag1, tu2, PC(Ag1, Ag2, t0, p0))
 & Create(Ag1, tu2, PC(Ag1, Ag2, t1, p1))

0tS = {active}

0t
contentS = {submitted, challenged, justified}

1tS = {active}

1t
contentS = {submitted}

where p1 is described by the following CG:

¬[[DISEASE : M]←(AGNT)←[APPEAR]→(PTIM)→[BIRTH]]

The Ag1’s knowledge base contains the arguments (p1, p0) and (p1, p1). Thus, in
argumentation terms, agent Ag1 presents its argument (p1, p0). We have:

Arg(Ag1, p1, Justify-content(Ag1, tu0, PC(Ag1, Ag2, t0, p0))

This is represented in the CAN formalism by the functions:

FΩ(Ag1, PC(Ag1, Ag2, t1, p1)) = {(Create, tu2)},

FEΣ(PC(Ag1, Ag2, t1, p1), PC(Ag1, Ag2, t0, p0)) = (Justify-content, tu2)

By the speech act identified by I3, agent Ag2 refuses Ag1’s argument. Then, it creates a new
commitment PC(Ag2, Ag1, t2, p2). We have:

SA(I3, Ag2, Ag1, tu3, U3) =def

 Refuse-content(Ag2, tu3, Arg(Ag1, p1, Justify-content(Ag1, tu0, PC(Ag1, Ag2, t0, p0))))
 & Create(Ag2, tu3, PC(Ag2, Ag1, t2, p2))

1 0(,)p pS = {refused}

2tS = {active}

2t
contentS = {submitted}

where the content p2 is described by the following CG4:

¬[¬[[DISEASE :*x]←(AGNT)←[APPEAR]→(PTIM)→BIRTH]]

∧ [[*x]→(CHRC)→[GENETIC]]]

This is represented in the CAN formalism by the functions:

4 To get this graph, we use the rule:

p⇒q ≡ ¬(p∧¬q), with p = ¬("there is a disease that appears at birth") and q = ¬("this disease is genetic").
Note that in the formula, *x is a mark of coreference which appears in the referent part of a concept.

83

FAΣΩ(Ag2, Justify-content, tu2) = {(Refuse-content, tu3)},

FΩ(Ag2, PC(Ag2, Ag1, p2)) = {(Create, tu3)}

Agent Ag1’s speech act, identified by I4, challenges the content of the commitment
identified by t2. This allows us to change the content for the “challenged” state:

SA(I4, Ag1, Ag2, tu4, U4) =def

 Challenge-content(Ag1, tu4, PC(Ag2, Ag1, t2, p2))

2tS = {active}

2t
contentS = {submitted, challenged}

In the CAN formalism, this results in the function:

FΩ(Ag1, PC(Ag2, Ag1, t2, p2)) = {(Challenge-content, tu4)}

Then, agent Ag2 justifies the content of its commitment PC(Ag2, Ag1, t2, p2) by performing
the speech act identified by I5. It then creates another commitment PC(Ag1, Ag2, t3, p3).
Thus, “Justified” becomes the current state of PC(Ag2, Ag1, t2, p2). We have:

SA(I5, Ag2, Ag1, tu5, U5) =def

 Justify-content(Ag2, tu5, PC(Ag2, Ag1, t2, p2))
 & Create(Ag2, tu5, PC(Ag2, Ag1, t3, p3))

2tS = {active}

2t
contentS = {(submitted, challenged, justified}

3tS = {active}

3t
contentS = {submitted}

where the content p3 is described by the following CG:

[[ANOMALY-DNA : *x]-

(AGNT)←[CAUSE]→(PTNT)→[DISEASE : M]]

[[*x]←(AGNT)←[APPEAR]→(PTIM)→[AGE : @certain]]
In argumentation terms, agent Ag2 presents its argument (p3, p2). Thus, we have:

Arg(Ag2, p3, Justify-content(Ag2, tu5, PC(Ag2, Ag1, t2, p2))

In the CAN formalism, this results in the following functions:

FΩ(Ag2, PC(Ag2, Ag1, p3)) = {(Create, tu5)},

FEΣ(PC(Ag2, Ag1, t3, p3), PC(Ag2, Ag1, t2, p2)) = (Justify-content, tu5)

84

Agent Ag2’s speech act, identified by I6, reflects Ag2’s acceptance of both the content of the
commitment identified by t3 and the argument defending it. Thus, “Accepted” is the final
state of this commitment. We have:

SA(I6, Ag1, Ag2, tu6, U6) =def

 Accept-content(Ag1, tu6, Arg(Ag2, p3, Justify-content(Ag2, tu5, PC(Ag2, Ag1, t2, p2))))
 & Accept-content(Ag1, tu6, PC(Ag2, Ag1, t3, p3))

3 2(,)p pS = {accepted}

3tS = {active, satisfied}

3t
contentS = {submitted, accepted}

In the CAN formalism, this is represented by the functions:

FAΣΩ(Ag1, Justify-content, tu5) = {(Accept-content, tu6)},

FΩ(Ag1, PC(Ag2, Ag1, t3, p3)) = {(Accept-content, tu6)}

To summarize, the dialogue D1 can be represented by the following CAN:

<A, E, PC(Ag1, Ag2, t0, p0), T, Ω, Σ, FEΣ, FEΣΣ, FΩ, FAΣΩ, FAΩΩ, FEΩΣ> such that:

A = {Ag1, Ag2}
E = {PC(Ag1, Ag2, t0, p0), PC(Ag1, Ag2, t1, p1), PC(Ag2, Ag1, t2, p2), PC(Ag2, Ag1, t3, p3)}
T = {tu0, …, tu6}

FΩ(Ag1, PC(Ag1, Ag2, t0, p0)) = {(Create, tu0)}

FΩ(Ag2, PC(Ag1, Ag2, t0, p0)) = {(Challenge-content, tu1)}

FΩ(Ag1, PC(Ag1, Ag2, t1, p1)) = {(Create, tu2)}

FEΣ(PC(Ag1, Ag2, t1, p1), PC(Ag1, Ag2, t0, p0)) = (Justify-content, tu2)

FAΣΩ(Ag2, Justify-content, tu2) = {(Refuse-content, tu3)}

FΩ(Ag2, PC(Ag2, Ag1, t2, p2)) = {(Create, tu3)}

FΩ(Ag1, PC(Ag2, Ag1, t2, p2)) = {(Challenge-content, tu4)}

FΩ(Ag2, PC(Ag2, Ag1, t3, p3)) = {(Create, tu5)}

FEΣ(PC(Ag2, Ag1, t3, p3), PC(Ag2, Ag1, t2, p2)) = (Justify-content, tu5)

FAΣΩ(Ag1, Justify-content, tu5) = {(Accept-content, tu6)}

FΩ(Ag1, PC(Ag2, Ag1, t3, p3)) = {(Accept-content, tu6)}

Figure 6.7 shows the graphical representation of the network.

85

Figure 6.7. The network representing the dialogue D1

6.4 CAN: a Means of Inter-Agent Communication

So far, we have shown how the CAN formalism enables us to illustrate the connectedness of
speech acts performed by agents in a conversation. In the previous section’s example, we
started from an existing dialogue, which we examined and modeled it using a CAN. This
highlights a process that enables us to analyze a conversation using the CAN formalism.
However, our formalism also provides a means for agents to take part in conversations.

Agents can jointly build the network that represents their conversation as it progresses. This
allows agents:
1- To make sure at any time that the conversation is consistent;
2- To determine which speech act to perform on the basis of the current state of the
conversation, using an argumentation system and other cognitive elements.
Consistency is ensured by the relationships existing between various commitments, diverse
argumentation relations and different actions (creation, acceptance, fulfillment, etc.). A
speech act is consistent with the rest of the conversation if it leads to the creation of a new
commitment related to another commitment through an argumentation relation, or if it
makes it possible to take position on a commitment, on an argumentation relation or on an
action (i.e. creation, refusal, etc.). Moreover, the agent must know everything about the
current state of the conversation in order to determine its next speech act. For example,
when an agent creates a commitment and/or an argumentation relation, the other agent may
decide to act on what has been created by accepting it, by refusing it, or by challenging it,
depending on its argumentation system. Similarly, when an agent finds that its commitment,
argument or action is being challenged, it must create a commitment in order to justify it.
The network is built as the conversation progresses. This process differs from the one used
to analyze a conversation. Therefore, agents use a dynamic process in order to build the
network while taking part in the conversation.

Create, tu0

PC1

Ag1 PC0 Ag2

Challenge-content, tu1

Create, tu2

Justify-content, tu2

Refuse-content, tu3

PC2

Create, tu3

Challenge-content, tu4 PC3

Create, tu5

Justify-content, tu5

Accept-content, tu6

Accept-content, tu6

Figure 6.7. The network representing the dialogue D1

86

In order to illustrate this way of using the CAN formalism, we revisit the example of
Section 6.3 and demonstrate how agents build the network piece by piece while performing
their speech acts. By doing that, agents are able to continue the conversation. The rules for
building a CAN are the constraints specified in the axioms presented in Chapter 5. These
axioms specify how agents can perform communicative acts according to there
argumentation systems. The Ag1’s knowledge base contains the arguments (p1, p0), (p1, p1),
and (p3, p3). The Ag2’s knowledge base contains the arguments (p3, p2) and (p3, p3).

Let us simulate the conversation of agents Ag1 and Ag2 using the CAN approach. Agent Ag1
decides to start the conversation about a particular topic p0 that interests it (the underlying
mechanism related to this choice belongs to the cognitive layer that is not considered here
(see our agent architecture in Section 5.6 of Chapter 5)). Hence, Ag1 creates a propositional
commitment whose content is p0 since it has an argument supporting it, i.e.:

FΩ(Ag1, PC(Ag1, Ag2, t0, p0)) = {(Create, tu0)}

This corresponds to the speech act identified by I0:
SA(I0, Ag1, Ag2, tu0, U0): The disease M is not genetic.

Then, agent Ag2 decides to take position on the content of PC(Ag1, Ag2, t0, p0) by
challenging it since it does not have any argument in favor or against it. As a matter of fact,
Ag2 wants to know which Ag1’s argument supports the content of this commitment.
Therefore, Ag2 performs the action corresponding to the speech act identified by I1:

SA(I1, Ag2, Ag1, tu1, U1): Why?

FΩ(Ag2, PC(Ag1, Ag2, p0)) = {(Challenge-content, tu1)}

We notice here that as for commitment attempts (Chapter 5, Axiom A3), we cannot verify
wether Ag2 has an argument for or against p0 or not because this aspect is related to its
private internal state.

Now, Ag1 must defend its proposition: it creates the commitment PC(Ag1, Ag2, t1, p1) whose
content justifies the content of PC(Ag1, Ag2, t0, p0). In doing so, this agent performs the
action corresponding to the speech act identified by I2:

SA(I2, Ag1, Ag2, tu2, U2): Because it does not appear at birth.

FΩ(Ag1, PC(Ag1, Ag2, p1)) = {(Create, tu2)}

FEΣ(PC(Ag1, Ag2, t1, p1), PC(Ag1, Ag2, t0, p0)) = (Justify-content, tu2)

Ag2 has an argument against the justification relation. Consequently, it refuses it by creating
the commitment PC(Ag2, Ag1, t2, p2). It performs the action corresponding to the speech act
identified by I3:

SA(I3, Ag2, Ag1, tu3, U3): A disease which does not appear at birth can be genetic as well.

87

FAΣΩ(Ag2, Justify-content, tu2) = {(Refuse-content, tu3)}

FΩ(Ag2, PC(Ag2, Ag1, t2, p2)) = {(Create, tu3)}

Because agent Ag1 does not have any argument for or against p2, it challenges the content of
PC(Ag2, Ag1, t2, p2) using its argumentation system. By doing that, it performs the action
corresponding to the speech act identified by I4:

SA(I4, Ag1, Ag2, tu4, U4): How?

FΩ(Ag1, PC(Ag2, Ag1, t2, p2)) = {(Challenge-content, tu4)}

The content of Ag2’s commitment PC(Ag2, Ag1, t2, p2) being challenged. Therefore, agent
Ag2 must try to justify it. Because its knowledge base contains the argument (p3, p2), it
creates the commitment PC(Ag2, Ag1, t3, p3) and performs the actions corresponding to the
speech act identified by I5:

SA(I5, Ag2, Ag1, tu5, U5): It can be due to a genetic anomaly in the DNA appearing at a
certain age.

FΩ(Ag2, PC(Ag2, Ag1, t3, p3)) = {(Create, tu5)}

FEΣ(PC(Ag2, Ag1, t3, p3), PC(Ag2, Ag1, t2, p2)) = (Justify-content, tu5)

Thereafter, because the Ag1’s knowledge base contains an argument for p3, it accepts the
content of PC(Ag2, Ag1, t3, p3) and the argumentation relation (Justify-content, tu5) using its
argumentation system. It performs the actions corresponding to the speech act identified by
I6:

SA(I6, Ag1, Ag2, tu6, U6): It is true, you are right.

FAΣΩ(Ag1, Justify-content, tu5) = {(Accept-content, tu6)}

FΩ(Ag1, PC(Ag2, Ag1, t3, p3)) = {(Accept-content, tu6)}

6.5 Other Examples

In the following examples, we give the final version of the networks without illustrating the
steps that led to their construction. Moreover, for simplicity, we do not describe the content
of commitments.

The example presented in Section 6.3 illustrated the case in which an agent takes position
on a commitment and on an argumentation relation. The following example of dialogue
(D2) illustrates the case in which an agent takes position on a creation action.

SA(I0, Ag1, Ag2, tu0, U0): I will travel to the Himalayas.
SA(I1, Ag2, Ag1, tu1, U1): Why do you tell me that?
SA(I2, Ag1, Ag2, tu2, U2): It is only to inform you.
SA(I3, Ag2, Ag1, tu3, U3): Ok, thank you.

88

The network associated with this dialogue is:

<A, E, AC(Ag1, Ag2, t0, (α, p0)), T, Ω, Σ, FEΣ, FEΣΣ, FΩ, FAΣΩ, FAΩΩ, FEΩΣ> such that:
A = {Ag1, Ag2}

E = { AC(Ag1, Ag2, t0, (α, p0)), PC(Ag1, Ag2, t1, p1)}
T = {tu0, …, tu3}

FΩ(Ag1, AC(Ag1, Ag2, t0, (α, p0)) = {(Create, tu0)}

FAΩΩ(Ag2, Create, tu0) = {(Challenge-content, tu1)}

FΩ(Ag1, PC(Ag1, Ag2, t1, p1)) = {(Create, tu2)}

FEΩΣ(PC(Ag1, Ag2, t1, p1), Create, tu0) = (Justify-content, tu2)

FΩ(Ag2, PC(Ag1, Ag2, t1, p1)) = {(Accept-content, tu3)}

The graphical representation of this network is illustrated by Figure 6.8.

Agent Ag1 creates an action commitment AC(Ag1, Ag2, t0, (α, p0)) (it is committed to
traveling to the Himalayas) by performing the speech act identified by I0. Thereafter, agent
Ag2 challenges the creation action of this commitment by performing the speech act

identified by I1. In order to justify its creation action of AC(Ag1, Ag2, t0, (α, p0)), Ag1 creates
a propositional commitment PC(Ag1, Ag2, t1, p1) by performing the speech act identified by
I2. Finally, Ag2 accepts the content of this commitment by performing the speech act
identified by I3.

Figure 6.8. The network representing the dialogue D2

The CAN formalism also allows us to manage commitment attempts. Dialogues D3 and D4
illustrate respectively the acceptance and the refusal of a commitment attempt.

Dialogue D3:

SA(I0, Ag1, Ag2, tu0, U0): Can you drive me to the airport at 5PM?
SA(I1, Ag2, Ag1, tu1, U1): Yes, I can.
SA(I2, Ag2, Ag1, tu2, U2): I will be available at 5PM.

Ag1 AC0

Create, tu0

Ag2

PC1

Create, tu2

Figure 6.8. The network representing the dialogue D2

Justify-content, tu2

Accept-content, tu3

Challenge-content, tu1

89

The network associated with this dialogue is:

<A, E, ACT(Ag1, Ag2, t0, (α, p0)), T, Ω, Σ, FEΣ, FEΣΣ, FΩ, FAΣΩ, FAΩΩ, FEΩΣ> such that:
A = {Ag1, Ag2}

E = { ACT(Ag1, Ag2, t0, (α, p0)), AC(Ag2, Ag1, t1, (α, p0)), PC(Ag2, Ag1, t2, p1)}
T = {tu0, tu1, tu2}

FΩ(Ag1, ACT(Ag1, Ag2, t0, (α, p0))) = {(Create, tu0)}

FΩ(Ag2, ACT(Ag1, Ag2, t0, (α, p0))) = {(Accept-content, tu1)}

FΩ(Ag2, AC(Ag2, Ag1, t1, (α, p0))) = {(Create, tu1)}

FΩ(Ag2, PC(Ag2, Ag1, t2, p1)) = {(Create, tu2)}

FEΣ(PC(Ag2, Ag1, t2, p1), AC(Ag2, Ag1, t1, (α, p0))) = (Justify-content, tu2)

The graphical representation of this network is illustrated by Figure 6.9.

Figure 6.9. The network representing the dialogue D3

Agent Ag1 creates a commitment attempt ACT(Ag1, Ag2, t0, (α, p0)) about an action α by
performing the speech act identified by I0. Agent Ag2 accepts this commitment by
performing the speech act identified by I1. Therefore, it creates the action commitment

AC(Ag2, Ag1, t1, (α, p0)) (it commits to drive agent Ag1 to the airport at 5PM). Thereafter,
Ag2 creates the propositional commitment PC(Ag2, Ag1, t2, p1) that supports the content p0
by performing the speech act identified by I2.

Dialogue D4:

SA(I0, Ag1, Ag2, tu0, U0): Can you drive me to the airport at 5PM?
SA(I1, Ag2, Ag1, tu1, U1): No, I cannot.
SA(I2, Ag1, Ag2, tu2, U2): Why not?
SA(I3, Ag2, Ag1, tu3, U3): Because I have a meeting at 5PM.
SA(I4, Ag1, Ag2, tu4, U4): Ok, thank you.

The network associated with this dialogue is:

<A, E, ACT(Ag1, Ag2, t0, (α, p0)), T, Ω, Σ, FEΣ, FEΣΣ, FΩ, FAΣΩ, FAΩΩ, FEΩΣ>
such that:
A = {Ag1, Ag2}

Ag1 CT0

Create, tu0
Ag2

AC1

Create, tu1

Figure 6.9. The network representing the dialogue D3

Accept-content, tu1

PC2

Create, tu2

Justify-content, tu2

90

E = {ACT(Ag1, Ag2, t0, (α, p0)), PC(Ag2, Ag1, t1, ¬p0), PC(Ag2, Ag1, t2, p1)}
T = {tu0, …, tu3}

FΩ(Ag1, ACT(Ag1, Ag2, t0, (α, p0))) = {(Create, tu0)}

FΩ (Ag2, ACT(Ag1, Ag2, t0, (α, p0))) = {(Refuse-content, tu1)}

FΩ (Ag2, PC(Ag2, Ag1, t1, ¬p0)) = {(Create, tu1)}

FΩ (Ag1, PC(Ag2, Ag1, t1, ¬p0)) = {(Challenge-content, tu2)}

FΩ (Ag2, PC(Ag2, Ag1, t2, p1)) = {(Create, tu3)}

FEΣ(PC(Ag2, Ag1, t2, p1), PC(Ag2, Ag1, t1, ¬p0)) = (Justify-content, tu3)

The graphical representation of this network is illustrated by Figure 6.10.

Figure 6.10. The network representing the dialogue D4

As a result of refusing the commitment attempt ACT(Ag1, Ag2, t0, (α, p0)) by performing the
speech act identified by I1, agent Ag2 creates the propositional commitment

PC(Ag2, Ag1, t1, ¬p0). By performing the speech act identified by I2, agent Ag1 challenges
the content of this commitment. Therefore, Ag2 creates the propositional commitment
PC(Ag2, Ag1, t2, p1), by performing the speech act identified by I3, in order to justify

PC(Ag2, Ag1, t1, ¬p0).

6.6 CAN and Representation of Conversations

So far, we have shown how the CAN formalism allows us to represent conversations by
illustrating the connectedness of speech acts performed by agents. However, we did not
show if it can represent any coherent conversation. To do this we have to provide a
mathematical demonstration. The purpose is to show that the formalism is sufficient to
handle any argumentative conversation for communication between software agents. An
argumentative conversation is a conversation that contains argumentation relations in order
to achieve a goal (for example a persuasion or a negotiation goal). First, we have to define
what is a conversation and what is a coherent conversation. For us, a conversation is a
sequence of utterances (i.e. a sequence of speech acts). A coherent conversation is a
conversation in which there is a positioning relation or an argumentation relation between
the utterances. For example, if an agent Ag1 performs a speech act whose content is p, and

Ag1 CT0

Create, tu0
Ag2

PC1

Create, tu1

Figure 6.10. The network representing the dialogue D4

Refuse-content, tu1

PC2

Create, tu3

Challenge-content, tu2
Justify-content, tu3

Accept-content, tu4

91

another agent Ag2 performs another speech act in which it accepts, refuses, challenges,
attacks, etc. p, then, this part of the conversation is considered as coherent. However, if Ag2
performs a speech act whose content is q without any positioning or argumentation relation
between p and q, then, the conversation is considered as incoherent.

In this section we show that the CAN formalism covers all the elements describing a
conversation. We use for this purpose the following formal presentation due to (Günter,
1984).

Let A be a set of agents (A = {Ag1, …, Agn}), L be a set of well-formed expressions

(L = {ϕ0,…, ϕm}), P be a set of designatory phrases (P = {p0,…, pk}), and V be a set of

performatives (V = { v0,…, vl}). A conversation is a finite sequence of 4-tuples, each of

which consists of: a name Agi ∈ A, a well-formed expression ϕi ∈ L, a performative verb

vi ∈ V, and a designatory phrase pi ∈ P. The well-formed expressions represent the
participants’ statements. The term sequence highlights the temporal order in which these
expressions are used. The names represent the participants in the conversation. The
performative verb indicates the type of the speech act performed when using the expression.
The designatory phrase identifies the speech act. Formally:

C is a conversation iff: there are a language ,L a set A of participants, a set V of

performative verbs, a set P of designatory phrases, and
, 1 , , , ,iii in i n A L V PAg pvϕ∃ ∈ ∀ ≤ ≤ ∃ ∈ ∃ ∈ ∃ ∈ ∃ ∈N and

111 1((, , ,),..., (, , ,),..., (, , ,)).i ni ni i n nC Ag p Ag p Ag pv v vϕ ϕ ϕ=

The CAN formalism allows us to represent these various elements. The language L is used
to describe the commitment content (for example predicate calculus or conceptual graphs).

The expressions ϕi are thus represented by the commitment content ϕ. The set of the
participants is the set A of the CAN formalism. The performative verbs and the designatory
phrases are captured by the actions that agents perform on commitments and arguments.
The sequence of the 4-tuples is modeled by the utterance times associated with the different
actions in the CAN formalism. It is modeled by the set T of time units associated with the

set of the actions Ω and to the set of the argumentation relations Σ (see Definition 6.1).

According to (Günter, 1984), a conversation can also highlight the goal of the accomplished
actions. In the CAN formalism, this is illustrated by the fact that it is possible to justify not
only a commitment content, but also a creation action of a commitment (see Definition 5.5
of Chapter 5).

Notation

We denote D the set of coherent conversations and R the set of commitment and argument
networks. We denote a commitment and argument network which is associated with a
coherent conversation C by ()CAN C with C is an element of D and ()CAN C an element

of R .

Proposition 6.3 , ()C D CAN C R∀ ∈ ∃ ∈ .

92

In other words, for any coherent conversation, there is always a CAN which represents it.

Proof

We use a proof by contradiction. A conversation C can be described in the simplest form as

a sequence of utterances 0,..., ,...i nU U U . Each utterance is associated with a participant Agj.

Let us assume that: C∃ a coherent conversation such that ()CAN C . In other words, let us

assume that there is a coherent conversation C such that no network can represent it. This

implies the existence of an utterance iU which one cannot represent in a network. Let

0 1' ,..., .iC U U −= Therefore the utterance iU does not allow us to perform one of the following

actions:
1- Creating a new commitment.
2- Taking position on a commitment of (')CAN C .

3- Taking position on an action of (')CAN C .

4- Taking position on an argumentation relation of (')CAN C .

It remains only two possibilities to interpret :iU

1- Taking position on a commitment, an action or an argumentation relation which does not
belong to (')CAN C . In this case the resulting conversation is not coherent because it

highlights a positioning on an element which was not created. For example, challenging the
content of a commitment which does not exist (see our definition of coherence above).

2- The utterance iU cannot result in an element which can be supported by the elements of

the CAN. This can be due to one of the two following reasons:
Reason1: The utterance iU cannot lead to the creation of a commitment, a positioning

action and / or an argumentation relation. This is false by definition.
Reason2: The positioning action reflected by iU cannot be presented by one of the

functions of the CAN (i.e. the functions: FEΣ, FEΣΣ, FΩ, FAΣΩ, FAΩΩ, FEΩΣ). This is false
because it is possible to take position by nesting, n times, on a positioning action, or on an
argumentation relation. The reason is that a positioning action of an unspecified order X is

always represented by the Cartesian product: Ω × T.

Let us show this last issue by the illustration of Figure 6.11.

93

Figure 6.11. Illustration of nested positioning actions

Let Ω be the following set Ω = {Ω0, …,Ωm}. Using the definition of the function FΩ we
have:

FΩ(Ag1, SC(Ag1, Ag2, t0, ϕ0)) = (Ω0, t1)

Using the definition of the function FAΩΩ we obtain:

FAΩΩ(Ag2, FΩ(Ag1, SC(Ag1, Ag2, t0, ϕ0))) = FAΩΩ(Ag2, Ω0, t1) = (Ω1, t2)

Therefore, we obtain:

FAΩΩ(Ag1, FAΩΩ(Ag2, FΩ(Ag1, SC(Ag1, Ag2, t0, ϕ0)))) = FAΩΩ(Ag1, Ω1, t2) = (Ω2, t3)

.
.
.

FAΩΩ (Ag2, FAΩΩ (Ag1, … FΩ(Ag1, SC(Ag1, Ag2, t0, ϕ0))…)) = FAΩΩ (Ag2, Ωn-2, tn-1)

= (Ωn-1, tn)

In the same way, one can show that it is always possible to define an argumentation relation
on any argumentation relation created previously, considering that an argumentation

relation of any order is represented by the Cartesian product: Σ × T.

Therefore, the starting assumption is false. Thus, we proved that any coherent conversation
can be represented by a CAN formalism.

Proposition 6.4 , ! ()C D CAN C N∀ ∈ ∃ ∈ .

In other words, for any coherent conversation, there is one and only one CAN which
represents it.

Ag1 SC0

FΩ(Ag1, SC(Id0, Ag1, Ag2, ϕ0))
Ag2

FAΩΩ(Ag2, FΩ(Ag1, SC(Id0, Ag1, Ag2, ϕ0)))

FAΩΩ (Ag1, FAΩΩ (Ag2, FΩ(Ag1, SC(Id0, Ag1, Ag2, ϕ0)))

.

.

.

FAΩΩ (Ag2, FAΩΩ (Ag1, … FΩ(Ag1, SC(Id0, Ag1, Ag2, ϕ0))…)))

Figure 6.11. Illustration of nested positioning actions

n

94

Proof

The proof of this proposition is based on the proposition 6.1 and on the fact that any speech
act can be interpreted in our approach in a unique way as an action performed on a
commitment or on an argument. Because any action is presented by one and only one
function, the CAN representing a conversation is unique.

In Section 6.2 we presented the structure of the CAN formalism, and we illustrated its
construction process through the example of Section 6.3. In these two sections, we only
highlighted the fact that the CAN formalism can be used to represent conversations.
However, in the proposition 6.1, we showed generally that the CAN formalism is able to
represent any coherent conversation, in particular by showing the falseness of the reason
Reason2. The proposition is thus not a "petitio principii" since “nesting property” (see
Reason2) is not an assumption in our proof. Our proof is rather a proof by construction
because we showed that we can build a CAN for any coherent conversation.

This theoretical result is of great utility because it offers a formal framework to represent
different types of conversations, for example, the conversation types proposed by Walton
and Krabbe (1995).

6.7 Related Work

KQML was the first standard proposed to specify communications between agents (Finin et
al., 1995). More recently, FIPA (1997, 1999, 2001a) proposed a new standard called FIPA-
ACL. KQML and FIPA-ACL are both based on the mental approach. These two languages
use protocols like those proposed by Pitt and Mamdani (2000) and the Contract Net (Smith,
1980) and the NetBill (Cox et al., 1995). These protocols define, in a fixed way, which
sequences of moves are conventionally expected in a conversation. Protocols are often
technically modeled as finite state machines that represent sequences of states and
transitions and are usually too rigid to be used to model conversations between autonomous
agents. In this context, the CAN formalism can allow the action sequences described by a
protocol, but in a more flexible way. Contrary to protocols, agents using the CAN system do
not follow a pre-planned sequence, but they reason in terms of commitments, arguments
and relations between these two types of elements. In order to select the next
communicative act to be performed, an agent reasons on the current state of the
conversation using its argumentation system. This state is represented by the CAN
framework and by the notion of commitment and argument state. In addition, protocols are
semi-formally specified. However, the CAN framework is formally specified using a formal
approach based on action and argumentation theories. These formal foundations allow us to
prove some interesting properties like propositions 6.1 and 6.2. They also enable us to
define a formal semantics and a verification method for agent communication using a model
checking technique. Chapters 7 and 8 detail these two issues.

Several researchers proposed dialogue games in order to offer more flexibility (Dastani et
al., 2000), (Maudet and Chaib-draa, 2002), (McBurney et al., 2002). The CAN formalism
can be used to represent these dialogue games and to illustrate how various games can be

95

combined in order to build complete conversation. In Chapter 9, we present a persuasion
dialogue game protocol specified using our approach. Additionally, the CAN framework
can be used not only as a specification tool but also as a means that agents can use in order
to be able to effectively participate in coherent conversations.

Singh and Colombetti propose a commitment-based approach that emphasizes the
importance of the social aspect of communication (Colombetti, 2000), (Singh, 1998, 2000).
Singh’s and Colombetti’s work were focused on the definition of a semantics for speech
acts. When considering the conversational aspect, Singh simply proposed the enhancement
of the classical protocols (like those used in FIPA) by using commitments in order to ensure
the compliance of the agents’ behavior with the protocol. A participating agent can maintain
a record of the commitments being created and modified. From these, the agent can
determine the compliance of the other agents according to the given protocol. However, this
approach is still not flexible and it does not indicate how agents can select the
communicative acts. Colombetti proposed general conversational principles from which the
structure of well-formed conversations should be derived. However, the way of
implementing these principles is not specified. The management of commitments is only
partially addressed in this approach.

On the basis of Singh’s and Colombetti’s proposals, Yolum and Singh (2002) developed a
technique for specifying protocols in which actions’ content is captured through agents’
commitments. They provide operations and reasoning rules to capture the evolution of
commitments. Using these rules, agents can reason about their actions. Chopra and Singh
(2004) proposed a commitment-based formalism called non-monotonic commitment

machines for representing multi-agent interaction protocols. This formalism specifies rules
using nonmonotonic causal logic. These rules model the changes in the state of a protocol
as a result of the performance of actions. The nonmonotonic causal logic in this formalism
is used only to reason about actions in terms of whether an action can be the cause of
another action. However, how agents can select actions using this reasoning mechanism is
not addressed. In addition, the relation between this reasoning and private mental states of
agents is not specified. In a similar way, Fornara and Colombetti (2003) proposed a method
to define interaction protocols. This method is based on the specification of an interaction
diagram (ID) specifying which actions can be performed under given conditions. The
advantage of these approaches is that they are verifiable because they are based on public
notions. They also allow us to represent the interaction dynamics through the allowed
operations. Like these proposals, our approach and our CAN formalism are also based on
commitments. However, our approach uses an argumentation theory which is more general
that the nonmonotonic causal logic used in (Chopra and Singh, 2004). This is due to the fact
that in our approach, agents can reason about commitments, commitment contents, and
positioning actions in order to decide about the next act to be performed. This
argumentation-based reasoning uses both the agents’ mental states and the current state of
the conversation. Our approach explicitly specifies how agents handle their commitments
and how they take positions on other agents’ commitments by using arguments. In addition,
the operations we use in our pragmatic approach are different from the operations used in
(Fornara and Colombetti, 2003), (Chopra and Singh, 2004), (Yolum and Singh, 2002).
Finally, unlike the other formalisms, the CAN formalism can be used both to assist agents

96

to communicate in a coherent way by representing the evolution of the conversation and to
specify flexible protocols using, for example, the dialogue game approach.

Amgoud and her colleagues (2000a, 2000b, 2001) proposed to model dialogues using an
argumentative approach and formal dialectics. Using MacKenzie’s dialectical system
(1979), they defined a certain number of dialogue rules and update rules for the different
types of locutions supported by their dialogue model. These locutions are: assert, accept,
question, challenge, request, promise and refuse. Dialogue rules define the protocol, while
update rules capture the effect of the speech acts on the state of the dialogue. To reflect the
dialogue dynamics, they use the concept of a commitment store. Each agent has its own
commitment store accessible by all the other agents. These commitment stores contain only
the moves which were performed. Therefore, they reflect only the dialogue history. In the
same way, Parsons et al. (2003), McBurney (2002) and Sadri et al. (2001) proposed
protocols based on an argumentative approach. These protocols are based on Walton and
Krabbe’s classification of dialogues and on formal dialectics. In these protocols, agents can
argue about the truth of propositions. Agents can communicate both propositional
statements and arguments about these statements. These protocols have the advantage of
taking into account the capacity of agents to reason as well as their attitudes (confident,
careful,…). Semantically, these protocols are specified by defining pre- and post-conditions
for each locution. The main difference between these proposals and our work is that our
approach formalizes a social aspect of agent interaction (represented by the notion of social
commitments) and its relation to the agent reasoning using an argumentation theory. Thus,
our approach is an hybrid one that is based on commitments and arguments. Another
important difference is that argumentation-based protocols (McBurney, 2002), (McBurney
et al., 2002), (Parsons et al., 2003) use moves from formal dialectics, whereas our approach
uses an action theory to specify agents’ speech acts as actions that these agents apply to
commitments and to arguments. The semantics of these actions is defined in Chapter 7
using dynamic logic. By using these actions we can capture not only the locutions used in
these protocols but also the argumentation actions represented in our framework by attack,
defense, justify and contradict actions. In addition, in our approach, dynamics is reflected
not only by the connectedness of the commitments resulting from the performed speech
acts, but also by the concepts of the commitment state, the commitment content state and
the argument state. The CAN formalism more clearly illustrates this dynamics in terms of
actions on commitments and arguments. Moreover, unlike the CAN formalism, the notion
of commitment store does not make it possible to distinguish the argumentation phases from
the other phases and does not allow us to illustrate the positioning of an agent on an another
agent’s action.

Reed (1998) introduced the notion of dialogue frame as a model of inter-agent
communication. He used this notion to present the dialogue types defined by Walton and
Krabbe (1995): persuasion, negotiation, investigation, deliberation and information seeking.
These types are represented by a set D as follows:

{ , , , , , , , , , }D persuade B negotiate C inquire B deliberate P infoseek B= < > < > < > < > < >

where B is a set of agent’s beliefs, C a set of agent’s contracts, and P a set of agent’s plans.

97

Formally, a dialogue frame is a 4-tuple:

{ }
0 0

0
,...,, , ,

n n

n
y yx xu uF t D τ → →=<< ∆ >∈ ∈ ∆ >

where t is the type of the dialogue frame, ∆ is the set of beliefs, contrasts or plans, τ is the

topic of the dialogue frame, x0 and y0 are the interlocutors and u
j
xj→yj refers to the jth

utterance occurring in a dialogue between agents xj and yj such that (xj = yj+1 and yj = xj+1). A

dialogue frame is of a particular type (<t, ∆ > ∈ D), and focused on a particular topic

(τ ∈ ∆). For instance, a persuasion dialogue will be focused on a particular belief, a
deliberation on a plan, and so on. Reed’s approach makes it possible to illustrate the
conversation dynamics only in terms of sequences of utterances. As an external
representation, the CAN formalism is more complete than the concept of dialogue frame. In
the CAN formalism, the dynamics is reflected by the actions that agents perform on
commitments and arguments and by the argumentation relations existing between these
commitments and arguments. The sequence of utterances is captured in our framework by
the set T of time units that we associate with the various actions. In addition to being a
means to analyze conversations, the CAN formalism provides agents with a means that
enables them to participate in coherent conversations and to select their future moves. Like
the dialogue frames, our formalism can represent any dialogue type. In Chapter 9, we
present the example of the persuasion dialogue.

Chapter 7
*

A Logical Model for Commitments and

Arguments

In this chapter, we develop a semantics of the pragmatic approach proposed in Chapters 5

and 6. We propose a logical model based on CTL* (Extended Computation Tree Logic) and

on Dynamic logic that we call DCTL*CAN.. This logical model addresses three basic

elements: social commitments, actions that agents apply to these commitments and

arguments that agents use to support their actions. The advantage of this logical model is to

gather all these elements and the existing relations between them within the same

framework. The semantics we develop here makes it possible to reflect the dynamics of

agent communication. It also allows us to establish the important link between commitments

as a deontic concept and arguments. On the one hand CTL* enables us to express all the

temporal aspects related to the handling of commitments and arguments. On the other

hand, dynamic logic enables us to capture the actions which agents are committed to

perform.

7.1 Introduction

In the domain of agent communication, semantics is one of the most important aspects
particularly in the current context of open and interoperable multi-agent systems (MAS)
(Chaib-draa and Dignum, 2002), (Dignum and Greaves, 2000). Although much significant
research work was done in this field, for example (Singh, 2000), (Wooldridge, 2000),
(Guerin and Pitt, 2001), (Amgoud et al., 2002), (Vericchio and Colombetti, 2003), the
definition of a clear and global semantics (i.e. dealing with the various aspects of agent
communication) is an objective yet to be reached.

While pragmatics deals with the way of using communication acts, semantics is interested
in the meaning of these acts. Pragmatics is related to the dynamics of agent interactions and
to the way of connecting the isolated acts to build complete conversations. Pragmatics was
also addressed by many researchers, for example (Dastani et al., 2000), (Pitt and Mamdani,

* We would like to thank John-Jules Ch. Meyer, Frank Dignum, Mehdi Dastani, Henry Prakken and Broersen
Jan from Utrecht University, Intelligent Systems Group, Josée Desharnais from Laval University, Department
of Computer Science and Software Engineering, and Yves Lespérance from York University for the helpful
discussions and for their useful comments about the logical model presented in this chapter. An extended
abstract of this chapter is presented in AAMAS’04 (Bentahar et al., 2004e). Another version is presented in
(Bentahar et al., 2004f).

99

2000), (Pasquier and Chaib-draa, 2003). However, little previous work tried to address these
two facets of agent communication in the same framework, considering the difficulty of
such a task. Even in this work, semantics and pragmatics are dealt with as a unique object of
research whereas they are different in nature. In this context, we believe that the success of
applications based on agent communication requires to address these two elements together
but keeping them distinct.

The objective of this chapter is to develop the semantic part of our unified framework based
on commitments and arguments for agent communication. Thus, the chapter deals with
semantic issues in the approach proposed in Chapters 5 and 6 and the link with pragmatic
ones. The semantics we define here addresses all the aspects that we use in our commitment
and argument approach. This chapter presents two results: 1. it semantically establishes the
link between commitments and arguments; 2. it uses a combination of temporal logic
(CTL* with some additions) and a dynamic logic to define a complete and unambiguous
semantics.

The rest of this chapter is organized as follows. In Section 7.2, we recall the taxonomy of
social commitments we used in our pragmatic approach. In Sections 7.3 and 7.4, we present
the syntax and the semantics of our logical model. In Section 7.5, we define some
postulates. A discussion is presented in Section 7.6 and finally we conclude the chapter.

7.2 The Taxonomy of Social Commitments

In the following section, we briefly recall the taxonomy we presented in Chapter 5. We use
this taxonomy in the logical model presented in this chapter.

A. Absolute Commitments (ABC)

Absolute commitments are commitments whose fulfillment does not depend on any
particular condition. Two types can be distinguished: propositional commitments and action
commitments.

A1. Propositional Commitments (PC)

Propositional commitments are related to the state of the world. They are generally, but not
necessarily5, expressed by assertives. They can be directed towards the past, the present, or
the future.

A2. Action Commitments (AC)

Action commitments (also called commitments to a course of action) are directed towards
the present or the future and are related to actions that the debtor is committed to carrying
out. The fulfillment and the lack of fulfillment of such commitments depend on the
performance of the underlying action and the specified delay. This type of commitment is
typically conveyed by promises.

5 Propositional commitments can also be expressed by speech acts of declaratory and expressive types.

100

B. Conditional Commitments (CC)

Absolute commitments do not consider conditions that may make relative the need for their
fulfillment. However, in several cases, agents need to make commitments not in absolute
terms but under given conditions. Another commitment type is therefore required. These
commitments are said to be conditional. We distinguish between conditional commitments
about propositions (PCC) and conditional commitments about actions (ACC). A conditional
commitment about a proposition p’ expresses the fact that if a condition p is true, then the
creditor will be committed towards the debtor that p’ is true.

C. Commitment Attempts (CT)

The commitments described so far directly concern the debtor who commits either that a
certain fact is true or that a certain action will be carried out. For example, these
commitments do not allow us to explain the fact that an agent asks another one to be
committed to carrying out an action (by a speech act of a directive type). To solve this
problem, we propose the concept of commitment attempt. We consider a commitment
attempt as a request made by a debtor to push a creditor to be committed. Thus, when an
agent Ag1 requests another agent Ag2 to do something, we say that the first agent is trying to
induce the other agent to make a commitment. A commitment attempt is thought of as a
type of social commitment because it conveys content which is made public once the
attempt is performed. However, in our approach, there is a true commitment only after the
creditor agent reacts in response to the commitment attempt. We distinguish four types of
commitment attempts: propositional commitment attempts (PCT), action commitment
attempts (ACT), conditional commitment attempts about propossitions (CCTP), and
conditional commitment attempts about actions (CCTA).

Figure 7.1 illustrates the taxonomy explained in this section.

Figure 7.1. Social commitment taxonomy

In our framework, there is no explicit relation between propositional commitments and
action commitments. When the current state of the world does not satisfy a propositional
commitment, we speak about a violation of this commitment. There is no rule indicating
that an agent develops an action commitment to make the content of its propositional
commitment true when this commitment becomes violated. A propositional commitment is
a commitment about a state of the world that the debtor agent can not realize. In contrast, an
action commitment is a commitment about an action that the debtor commits to perform in
the present or in the future.

SC

•

•
CC

•

•
ABC

•
PC

•
AC

Figure 7.1. Social commitment taxonomy

•
PCC

•
ACC

CT

•
PCT

•
CCTP

•
CCTA

•
ACT

101

In the two following sections we define the logical model (syntax and semantics) of our
commitment and argument based-approach (CAN). We call this logical model DCTL*CAN
because it is based on CTL* and Dynamic Logic.

7.3 Syntax

In this section we specify the syntax of the different elements that we use in our framework.
These elements are: propositional elements, actions, social commitments, actions applied to
commitments and argumentation relations.

Our formal language £ (the metalanguage) is based on an extended version of CTL*
(Emerson and Halpern, 1986), (Hafer and Thomas, 1987) and on dynamic logic (Harel,
1979). Temporal logic and dynamic logic are two powerful logics developed to specify and
to prove properties of computational processes (Harel, 1984), (Pnueli, 1986). We use a
branching time for the future and we suppose that the past is linear (Ben-Ari et al., 1983).
Each node in the branching time model is represented by a state si and a time point tj (Figure
7.2). We also suppose that time is discrete. In our model, temporal logic enables us to
express all the temporal aspects related to the handling of commitments and arguments. On
one hand, we use the branching time in order to formalize the different choices that agents
have when they participate in conversations. On the other hand, dynamic logic allows us to
capture the actions that agents are committed to perform and the actions that agents perform
on different commitments and commitment contents when they participate in these
conversations. Indeed, from a philosophical point of view, action and branching time are
logically related (Belnap, 1991). The actions of agents are not fully determined. Moreover,
these actions can have many different possible future effects. For this reason, it is preferable
to work out a logic of action that is compatible with indeterminism. According to
indeterminism, several moments of time might follow the same moment in the future of the
world. Any moment of time can belong to several paths (or histories) representing possible
courses of the world with the same past and present but different historic continuations of
that moment.

Figure 7.2. The branching time model

Let Φp be the set of atomic propositions and Φa be the set of atomic action symbols. The
set of agents is denoted A and the set of time points is denoted TP. The various types of

(s0, t0)

(s1, t1) (s2, t1)

(s3, t2) (s4, t2) (s5, t2) (s7, t2) (s6, t2)

Figure 7.2. The branching time model

A

102

commitments, the agents’ actions on commitments and on their contents and the
argumentation relations are introduced as modal operators. We distinguish between
commitment formulae and commitment free formulae. In this chapter, a commitment

formula, independently of the commitment type, is denoted: SC(Ag1, Ag2, t, ϕ) where t is the

utterance time (time at which the commitment is created) and ϕ is a commitment free

formula. A commitment free formula is a well-formed formula that does not have the form

of a commitment formula. In a commitment formula Ag1 and Ag2 are two agents and ϕ is
the commitment content. When t is unknown because the commitment is not yet created, we
drop it from the commitment formula. In this case a commitment is denoted:

SC(Ag1, Ag2, , ϕ). In this logical model we use the symbol ∧ in the object language and the

symbol & in the metalanguage for “and”. For “or” we use the symbol ∨ in the object

language and the symbol | in the metalanguage. For “not” we use the same symbol ¬ in the
two languages.

The language £ can be defined by the following syntactic rules.

7.3.1 Propositional Elements

Atomic formula

R1. ∀ψ ∈ Φp, ψ ∈ £.

Conjunction

R2. p, q ∈ £ ⇒ p ∧ q ∈ £.

Negation

R3. p ∈ £ ⇒ ¬p ∈ £.

Argumentation

R4. p, q ∈ £ ⇒ p ∴ q ∈ £.

This means that p is an argument for q. We can read this formula: p, so q. The property of
nonmonotonicity of arguments does not appear at this level. The reason is that R4
introduces only argumentation as a logical relation between propositions. As Prakken and
Vreeswijk argued, argumentation systems are able to incorporate the monotonic notions of
logical consequence as a special case in their definition of what an argument is (Prakken
and Vreeswijk, 2000). In our model, we capture the property of nonmonotonicity by the
argumentation relations (attack, defense, justification, etc.). We deal with this aspect in the
following sections.

Universal path-quantifier

R5. p ∈ £ ⇒ Ap ∈ £.

Existential path-quantifier

R6. p ∈ £ ⇒ Ep ∈ £.

103

Until (in the future)

R7. p, q ∈ £ ⇒ p U+ q ∈ £.
Informally, p U+

 q (p until q) means that on a given path from the given moment, there is
some future moment in which q will eventually hold and p holds at all moments until that
future moment.

Next moment (in the future)

R8. p ∈ £ ⇒ X+p ∈ £.

X+

p holds at the current moment, if p holds at the next moment.

Since (in the past)

R9. p, q ∈ £ ⇒ p U− q ∈ £.

The intuitive interpretation of p U−
 q (p since q) is that on a given path from the given

moment, there is some past moment in which q eventually held and p holds at all moments
since that past moment.

Previous moment (in the past)

R10. p ∈ £ ⇒ X−p ∈ £.

X−
p holds at the current moment, if p held at the previous moment.

7.3.2 Actions

Action performance

R11. p ∈ £ & α ∈ Φa ⇒ Perform(α)p ∈ £, where p is a commitment free formula.

Perform(α)p is an operator from dynamic logic. It indicates that the achievement of action

α makes the proposition p true. This operator allows us to represent the fact that by way of
performing actions, agents bring about facts in the world. They make true propositions
representing these facts (Chellas, 1992).

7.3.3 Social Commitments

Propositional commitments

R12. p ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A ⇒ PC(Ag1, Ag2, t, p) ∈ £, where p is a
commitment free formula.

Action commitments

R13. α ∈ Φa & p ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A ⇒ AC(Ag1, Ag2, t, (α, p)) ∈ £, where p
is a commitment free formula.

Conditional commitments about propositions

R14. p, p’ ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A ⇒ PCC(Ag1, Ag2, t, (p, p’)) ∈ £, where p and
p’ are commitment free formulae.

104

Conditional commitments about actions

R15. α ∈ Φa & p, p’ ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A ⇒

ACC(Ag1, Ag2, t, (p, (α, p’))) ∈ £, where p and p’ are commitment free formulae.

Commitment attempts

In order to formally introduce the notion of commitment attempt (syntax and semantics) we
introduce the following definition.

Definition

some(x, {c1, …, cn}, p(x)) =def p(c1) ∨… ∨ p(cn)
where c1, …, cn are constant terms. A constant term can be a number, a name, etc.

We can define the syntax of propositional commitment attempts, action commitment
attempts, conditional commitment attempts about propositions and conditional commitment
attempts about actions as follows:

Propositional commitment attempts

R16. p ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A ⇒

PCT(Ag1, Ag2, t, some(x, {c1, ..., cn}, p(x))) ∈ £, where p is a commitment free formula.

Action commitment attempts

R17. α ∈ Φa & p ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A

⇒ ACT(Ag1, Ag2, t, (α, p)) ∈ £, where p is a commitment free formula.

Conditional commitment attempts about propositions

R18. p, p’ ∈ £ & {Ag1, Ag2} ⊆ A ⇒

CCTP(Ag1, Ag2, t, (p, some(x, {c1, ..., cn}, p’(x)))) ∈ £, where p and p’ are commitment
free formulae.

Conditional commitment attempts about actions

R19. α ∈ Φa & p, p’ ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A

⇒ CCTA(Ag1, Ag2, t, (p, (α, p’))) ∈ £, where p and p’ are commitment free formulae.

Agent’s desire about a propositional commitment from the addressee

R20. p ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A ⇒ Want(Ag1, PC(Ag2, Ag1, t, p)) ∈ £, where p is a
commitment free formula.

This formula means that agent Ag1 wants that agent Ag2 commits that p is true.

Agent’s desire about an action commitment from the addressee

R21. α ∈ Φa & p ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A ⇒

Want(Ag1, AC(Ag2, Ag1, t, (α, p))) ∈ £, where p is a commitment free formula.

Agent’s desire about a propositional conditional commitment from the addressee

R22. p, p’ ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A ⇒ Want(Ag1, PCC(Ag2, Ag1, t, (p, p’))) ∈ £,
where p and p’ are commitment free formulae.

105

Agent’s desire about an action conditional commitment from the addressee

R23. α ∈ Φa & p, p’ ∈ £ & t ∈ TP & {Ag1, Ag2} ⊆ A ⇒

Want(Ag1, ACC(Ag2, Ag1, t, (p, (α, p’)))) ∈ £, where p and p’ are commitment free
formulae.

7.3.4 Action Occurrences applied to Commitments

We use the abbreviation SC(Ag1, Ag2, t, ϕ), where ϕ is a commitment free formula, to

indicate a social commitment. The syntactical form of the commitment content ϕ depends
of the commitment type according to the following rules:

If SC is a PC then ϕ has the syntactical form of p.

If SC is an AC then ϕ has the syntactical form of (α, p).

If SC is a PCC then ϕ has the syntactical form of (p, p’).

If SC is an ACC then ϕ has the syntactical form of (p, (α, p’)).

If SC is a PCT then ϕ has the syntactical form of some(x, {c1,…, cn}, p(x)).

If SC is an ACT then ϕ has the syntactical form of (α, p).

If SC is a CCTP then ϕ has the syntactical form of (p, some(x, {c1,…, cn}, p’(x))).

If SC is a CCTA then ϕ has the syntactical form of (p, (α, p’)).

Creation of a commitment

R24. SC(Ag1, Ag2, t, ϕ) ∈ £ ⇒ Create(Ag1, SC(Ag1, Ag2, t, ϕ)) ∈ £.

Withdrawal of a commitment

R25. SC(Ag1, Ag2, t, ϕ) ∈ £ ⇒ Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ)) ∈ £.

Satisfaction (or fulfillment) of a commitment

R26. SC(Ag1, Ag2, t, ϕ) ∈ £ ⇒ Satisfy(Ag1, SC(Ag1, Ag2, t, ϕ)) ∈ £.

Violation of a commitment

R27. SC(Ag1, Ag2, t, ϕ) ∈ £ ⇒ Violate(Ag1, SC(Ag1, Ag2, t, ϕ)) ∈ £.

Reactivation of a commitment

R28. SC(Ag1, Ag2, t, ϕ) ∈ £ ⇒ Reactivate(Ag1, SC(Ag1, Ag2, t, ϕ)) ∈ £.

An active commitment

R29. SC(Ag1, Ag2, ϕ) ∈ £ ⇒ Active(SC(Ag1, Ag2, ϕ)) ∈ £.

7.3.5 Action Occurrences applied to Commitment Contents

Acceptation of a commitment content

R30. SC(Ag1, Ag2, t, ϕ) ∈ £ ⇒ Accept-content(Ag2, SC(Ag1, Ag2, t, ϕ)) ∈ £.

Refusal of a commitment content

R31. SC(Ag1, Ag2, t, ϕ) ∈ £ ⇒ Refuse-content(Ag2, SC(Ag1, Ag2, t, ϕ)) ∈ £.

106

Challenge of a commitment content

R32. SC(Ag1, Ag2, t, ϕ) ∈ £ ⇒ Challenge-content(Ag2, SC(Ag1, Ag2, t, ϕ)) ∈ £.

7.3.6 Argumentation Relations

In the argument-based approach, nonmonotonic, or defeasible reasoning is formalized by
using notions like attack, defeat, defense and justification. Indeed, the property of
nonmonotonicity is captured by the interaction of arguments for and against certain
conclusions (Prakken and Vreeswijk, 2000). In this section, we introduce five
argumentation relations in order to capture this property in our logical model.

Attack of a commitment content

R33 (1). PC(Ag1, Ag2, t, p) ∈ £ & p’ ∈ £ ⇒

Attack-content(Ag2, PC(Ag1, Ag2, t, p), p’) ∈ £, where p’ is a commitment free
formula.

We overload this formula as follows:

R33 (2). PC(Ag1, Ag2, t, p) ∈ £ ⇒ Attack-content(Ag2, PC(Ag1, Ag2, t, p)) ∈ £.

Defense of a commitment content against an attacker

R34 (1). PC(Ag1, Ag2, t, p) ∈ £ & p’ ∈ £ ⇒

Defend-content(Ag1, PC(Ag1, Ag2, t, p), p’) ∈ £, where p’ is a commitment free
formula.

R34(2). PC(Ag1, Ag2, t, p) ∈ £ ⇒ Defend-content(Ag1, PC(Ag1, Ag2, t, p)) ∈ £.

Defense of a commitment content against all the attackers (strong defense)

R35 (1). PC(Ag1, Ag2, t, p) ∈ £ & p’ ∈ £ ⇒

Defend+-content(Ag1, PC(Ag1, Ag2, t, p), p’) ∈ £, where p’ is a commitment free
formula.

 R35 (2). PC(Ag1, Ag2, t, p) ∈ £ ⇒ Defend+-content(Ag1, PC(Ag1, Ag2, t, p)) ∈ £.

Justification of a commitment content

R36 (1). PC(Ag1, Ag2, t, p) ∈ £ & p’ ∈ £ ⇒

Justify-content(Ag1, PC(Ag1, Ag2, t, p), p’) ∈ £, where p’ is a commitment free
formula.

R36 (2). PC(Ag1, Ag2, t, p) ∈ £ ⇒ Justify-content(Ag1, SC(Ag1, Ag2, t, p)) ∈ £.

Contradiction of a commitment content

R37. PC(Ag1, Ag2, t, p) ∈ £sc ⇒ Contradict-content(Ag1, SC(Ag1, Ag2, t, p)) ∈ £sc.

This relation means that an agent contradicts the content of its commitment.

107

Agent’s desire about the justification of a commitment content from the addressee

R38. Justify-content(Ag2, PC(Ag2, Ag1, t, p)) ∈ £ ⇒

Want(Ag1, Justify-content(Ag2, PC(Ag2, Ag1, t, p))) ∈ £.

7.3.7 State and Path Formulae

As in CTL*, we have in our model two types of well-formed formulae : state formulae and
path formulae (Emerson, 1990). State formulae are formulae which are evaluated (true or
false) in particular states. Path formulae are formulae which are evaluated along certain
paths.

R39. Any atomic formula is a state formula.

R40. Any state formula is a path formula.

R41. If p, q are state formulae, then p ∧ q, ¬p are also state formulae.

R42. If p, q are path formulae, then p ∧ q, ¬p are also path formulae.

R43. If p, q are path formulae, then p U+ q, X+p, p U− q, X−p are also path formulae.

R44. If ϕ is a path formula, then SC(Ag1, Ag2, ϕ) is a state formula.

R45. Actions performed on commitments and on their contents:

if SC(Ag1, Ag2, ϕ) is a state formula, then

Act(Ag1, SC(Ag1, Ag2, ϕ)) and Act-content(Ag1, SC(Ag1, Ag2, ϕ)) are path formulae,
Want(Ag1, SC(Ag2, Ag1, t, p))) and Want(Ag1, Justify-content(Ag2, PC(Ag2, Ag1, t, p))) are
state formulae.

Abbreviations

We use in our model the following abbreviations:

A1. p ∨ q (disjunction) is the abbreviation of ¬(¬p ∧ ¬q)

A2. p ⇒ q (classical implication) is the abbreviation of ¬p ∨ q

A3. true is the abbreviation of p ∨¬p

A4. false is the abbreviation of ¬true

A5. F+p (sometimes in the future) is the abbreviation of true U+ p

A6. G+p (globally in the future) is the abbreviation of ¬F+¬p

A7. F+∞ (infinitely often in the future) is the abbreviation of G+F+p

108

A8. G+∞ (almost everywhere in the future) is the abbreviation of F+G+p

A9. p B+ q (p before q in the future) is the abbreviation of ¬((¬p) U+ q)

A10. F−p (sometimes in the past) is the abbreviation of true U− p

A11. G−p (globally in the past) is the abbreviation of ¬F−¬p

A12. F−∞ (infinitely often in the past) is the abbreviation of G−F−p

A13. G−∞ (almost everywhere in the past) is the abbreviation of F−G−p

A14. p B− q (p after q in the past) is the abbreviation of ¬((¬p) U− q)

7.4 Semantics

In this section, we define the formal model in which we evaluate the well-formed formulae
of our framework. Thereafter, we give the semantics of the different elements that we
specified syntactically in the previous section.

7.4.1 The Formal Model

Let S be a set of states and R ⊆ S × S be a transition relation indicating branching time. A

path Pa is an infinite sequence of states <s0, s1,…> where: 1, ,)(iii Rs s +∀ ∈ ∈ and

1() () 1.i is sT T+ = + The function T gives us for each state si the corresponding moment t (this

function will be specified later).

We use the notation si [Pa to indicate that the state si belongs to the path Pa (i.e. si appears

in the sequence <s0, s1,…> that describes the path Pa). We denote the set of all paths by σ.

The set of all paths traversing the state si are denoted: σsi. We suppose that all paths start
from s0 (T(s0) = 0).

In our vision of branching future, we can have several states at the same moment. Thus, in
Figure 7.2 we have two different states: s1 and s2 at the same time t1. At moment t2 we have
the states s3, s4, s5, s6, s7. Along a given path (for example the real path) there is one and
only one state at one moment. Indeed, in our framework, si does not indicate (necessarily)
the state at moment i. Therefore, it is necessary to specify the state s and the moment t i.e. a

pair (s, t) ∈ S × TP.

According to this formalization, we can use the notation: M, si, T(si) ψ to indicate that ψ
is satisfied in the model M at state si at moment T(si). To simplify this notation, we will use

in the rest of this chapter the following abreviation: M, si ψ. In this notation: M, si ψ
there is a "hidden" time.

A formal model for £ is defined as follows:

109

M(S, R, A, TP, Np, Fap, T, Rsc, Rw)

where:

S : a nonempty set of states.

R : R ⊆ S × S a transition relation that defines all the transitions of the model.

A : a nonempty set of agents.

TP : a nonempty set of time points.

Np : S → 2
Φp : function relating each state s ∈ S to the set of the atomic propositions that

are true in this state.

Fap : S × Φa → 2
S : function that gives us the state transitions caused by the achievement

of an action. For instance, in the Figure 7.3 we have : Fap(si, α) = {sj, sl}. The transitions
defined by Fap are a sub-set of the transitions defined by R. This function allows us to
represent what is known in philosophical logic by “moments of time that are related by
virtue of the actions of the agents”. As Chellas pointed out (1992), to each moment m there
corresponds the set of alternative moments m’ which are compatible with all the actions that
an agent Ag performs at moment m. These moments m’ as under the control of, or
responsive to the actions of, agent Ag at the moment m.

T : S → TP : function associating to any state si the corresponding time. For instance, in

Figure 7.2 we have: T(s5) = t2.

Rsc : A × A × S → ()σ℘ : function producing the accessibility modal relations for social

commitments. ()σ℘ is a powerset of paths.

Rw : A × S → ()σ℘ : function producing the accessibility modal relations for agent’

desires about the commitments of the addressee.

Figure 7.3. State transitions caused by the achievement of the action α

The function Rsc gives us all the paths along which the commitment created by an agent
Ag1 towards another agent Ag2 must be satisfied (fulfilled). These paths are conceived as
merely "possible", and as paths when the content of a commitment should be true. Indeed,
the outputs of the function Rsc are known only after the creation of the commitments. Thus,
this depends on the state in which the commitment is created. For example, if we have:

si

α

α

sj

sk

sl

Figure 7.3. State transitions caused by the achievement of the action α

110

Pa ∈ Rsc(Ag1, Ag2, si), then this means that at moment T(si) agent Ag1 is committed towards
agent Ag2 to satisfy a certain commitment along the path Pa. We can see that Rsc depends
on the current moment T(si).

As operators, the social commitments we introduced in our model and whose semantics will
be defined on the basis of this relation are modal operators like the operator () (Chellas,
1980). The reading of p is as follows: an agent Ag1 commits towards an agent Ag2 that p
is true or an action will be performed making p true.

The function Rw(Ag1, si) gives us the paths along which Ag1 wants that the addressee
commits or justifies its commitment. This accessibility modal relation will be used to define
the semantics of the commitment attempts and the challenge of a commitment attempt.

Our logical model of absolute and conditional commitments is a KD modal logic (D: serial).
This logic allows us to capture interesting intuitions about the manipulation of
commitments. The rule of necessitation in this model can be expressed as follows: if p is a
theorem, then SC(Ag1, Ag2, t, p) is also a theorem. A commitment is a theorem iff it is
satisfied in all states of the model. Semantically speaking, if the commitment-content is a
theorem, then the commitment is always satisfied. However, expressed in such a way, this
rule indicates that agents commit about all theorems. In the context of agent communication
that we address in this thesis, this rule should be expressed as follows: if p is a theorem and
an agent Ag1 creates at moment t a commitment towards another agent Ag2 about p, then
SC(Ag1, Ag2, t, p) is a theorem. In addition, the N axiom can be expressed as follows: if an
agent commits towards another agent about a proposition, then it commits that this

proposition is true or false (i.e. PC(Ag1, Ag2, (p ∨ ¬p))).

The accessibility modal relation Rsc is serial, i.e.:

∀Ag1, Ag2 ∈ A & ∀si ∈ S ∃Pa ∈ σ : Pa ∈ Rsc(Ag1, Ag2, si)

This property fits with the notion of infinite paths in CTL*. It means that if an agent
commits towards another agent that a proposition is true or that an action will be performed,
then this agent does not commit about the negation of this proposition or so that this action

will not be performed (i.e. p ⇒ ¬ ¬p). An agent cannot commit about some thing and
its negation.

The accessibility modal relation Rw is serial:

∀Ag1 ∈ A & ∀si ∈ S ∃Pa ∈ σ : Pa ∈ Rw(Ag1, si)

Therefore, the logic of commitment attempts is a KD modal logic.

As in CTL*, we have in our model path formulae and state formulae. We propose to
evaluate the different types of commitments as state formulae. These formulae can also be
interpreted on paths in which case one considers satisfaction in the first state of a path. On
the other hand, we propose to evaluate the actions on commitments and the argumentation

111

relations on paths. These path formulae can be interpreted on states if they are true on all the

paths traversing a given state. The notation M, si ψ indicates that the formula ψ is

evaluated in the state si of the model M. The notation M, Pa, si ψ indicates that the

formula ψ is evaluated at the state si along the path Pa where si [Pa.
We can now define the semantics of the elements of £ in the model M.

7.4.2 Propositional Elements

Atomic formula

S1. M, si ψ iff ψ ∈ Np(si) with ψ ∈ Φp

Conjunction

S2. M, si p ∧ q iff M, si p & M, si q

Negation

S3. M, si ¬p iff M, si p

Argumentation

S4. M, si p ∴ q iff M, si p & (∀M’∈M & ∀sj ∈ SM’ M’, sj p ⇒ M’, sj q)

where M is the set of models, and SM’ is the set of states of the model M’.

We add the first clause to capture the following aspect: when an agent presents an argument

p for q (i.e. p ∴ q) for this agent p is true and if p is true then q is true.

Universal path-quantifier

S5. M, si Ap iff (∀Pa Pa ∈ σ si ⇒ M, Pa, si p)

Existential path-quantifier

S6. M, si Ep iff (∃Pa ∈σsi & M, Pa, si p)

Propositional path formulae

S7. M, Pa, si ψ iff M, si ψ with ψ ∈ Φp

S8. M, Pa, si p ∧ q iff M, Pa, si p & M, Pa, si q

S9. M, Pa, si ¬p iff M, Pa, si p

S10. M, Pa, si p ∴ q iff

M, Pa, si p & (∀M’∈M & ∀sj ∈ SM’ & ∀Pa’ ∈ σM’ : sj [Pa’

M’, Pa’, sj p ⇒ M’, Pa’, sj q)

where M is the set of models, SM’ is the set of states of the model M’, and σM’ is the set of

paths of the model M’.

Until (in the future)

S11. M, Pa, si p U+ q iff (∃sj : sj [Pa & T(si) ≤ T(sj) & M, Pa, sj q

112

& (∀sk T(si) ≤ T(sk) < T(sj) & sk [Pa ⇒ M, Pa, sk p))

Next moment (in the future)

S12. M, Pa, si X+p iff M, Pa, sj p where T(sj) = T(si) + 1 & sj [Pa

Since (in the past)

S13. M, Pa, si p U− q iff (∃sj : sj [Pa & T(sj) ≤ T(si) & M, Pa, sj q

& (∀sk T(sj) < T(sk) ≤ T(si) & sk [Pa ⇒ M, Pa, sk p))

Previous moment (in the past)

S14. M, Pa, si X−p iff M, Pa, sj p where T(sj) = T(si) – 1 & sj [Pa

For more clearness, we give the semantics of some abbreviations that we consider as
propositions (P15-P25)

Sometimes in the future

P15. M, Pa, si F+p iff ∃sj : sj [Pa & T(sj) ≥ T(si) & M, Pa, sj p

Globally in the future

P16. M, Pa, si G+p iff ∀sj sj [Pa & T(sj) ≥ T(si) ⇒ M, Pa, sj p

Infinitely often in the future

P17. M, Pa, si F+∞p iff ∀sj sj [Pa & T(sj) ≥ T(si) ⇒ M, Pa, sj F+p

In other words

P18. M, Pa, si F+∞p iff ∀sj sj [Pa & T(sj) ≥ T(si) ⇒ ∃sk : (sk [Pa & T(sk) ≥ T(sj)
 & M, Pa, sk p)

Almost everywhere in the future

P19. M, Pa, si G+∞p iff ∃sj : sj [Pa & T(sj) ≥ T(si) & (∀sk sk [pa & T(sk) ≥ T(sj)

 ⇒ M, Pa, sk p)

p before q in the future

P20. M, Pa, si p B+ q iff ∀sj (sj [Pa & T(sj) ≥ T(si) & M, Pa, sj q)

⇒ (∃sk : sk [Pa & T(si) ≤ T(sk) < T(sj) & M, Pa, sk p)

Sometimes in the past

P21. M, Pa, si F−p iff ∃sj : sj [Pa & T(sj) ≤ T(si) & M, Pa, sj p

Globally in the past

P22. M, Pa, si G−p iff ∀sj sj [Pa & T(sj) ≤ T(si) ⇒ M, Pa, sj p

Infinitely often in the past

P23. M, Pa, si F−∞p iff ∀sj sj [Pa & T(sj) ≤ T(si) ⇒ ∃sk : (sk [Pa & T(sk) ≤ T(sj)

113

 & M, Pa, sk p)

Almost everywhere in the past

P24. M, Pa, si G−∞p iff ∃sj : sj [Pa & T(sj) ≤ T(si) & (∀sk sk [Pa &T(sk) ≤ T(sj)

 ⇒ M, Pa, sk p)

p before q in the past

P25. M, Pa, si p B− q iff ∀sj (sj [Pa &T(sj) ≤ T(si) & M, Pa, sj q)

⇒ (∃sk : sk [Pa &T(sj) < T(sk) ≤ T(sj) & M, Pa, sk p)

In the following sections we specify our semantics in the form of definitions and properties
that follow from these definitions.

7.4.3 Actions

In this section we give the semantics of action performance. This semantics is expressed by

using Perform(α)p operator.

Definition

Action performance

S26. M, Pa, si Perform(α)p iff Fap(si, α) ≠ ∅ & ∀sj sj ∈ Fap(si, α) & sj [Pa

⇒ M, Pa, sj p

The fact that Fap(si, α) ≠ ∅ means that Perform(α)p is actual and not conditional.

S27. M, si Perform(α)p iff ∀Pa Pa ∈ σsi ⇒ M, Pa, si Perform(α)p

7.4.4 Social Commitments

In this section we define the semantics of different types of social commitments according
to the taxonomy that we specified in Section 7.2.

Definitions

Social commitment as a path formula

S28. M, Pa, si SC(Ag1, Ag2, t, ϕ) iff M, si SC(Ag1, Ag2, t, ϕ)

Propositional commitments

S29. M, si PC(Ag1, Ag2, t, p) iff ∀Pa Pa ∈ Rsc(Ag1, Ag2, si) ⇒

∃sj [Pa : T(sj) = T(si) & M, Pa, sj p

We notice here that we evaluate p along an accessible path Pa at a state sj that can be
different from the current state si. This allows us to model agents’ uncertainty about this
current state. This means that we do not assume that agents know the current state.
However, we assume that these agents know which time is associated to each state.

114

This formula gives us the semantics of propositional commitments in terms of accessible
paths. The commitment is satisfied in a model at a state si iff its content is satisfied in the
model along all accessible paths. This formula gives us the meaning of a social
commitment, but states nothing about the fact that the agent must commit that some thing is
true. Consequently, the omniscience problem in the sense that the agent commits that all the
theorems are true is not present in our logic. On the other hand, to capture the idea that the
agent commits that some proposition is true, we use dynamic logic.

Action commitments

S30. AC(Ag1, Ag2, t, (α, p)) =def PC(Ag1, Ag2, t, Perform(α)p)

The formula S29 indicates that the commitment of agent Ag1 towards agent Ag2 about a
proposition p is satisfied in the model iff along all accessible paths Pa p is true. The formula

S30 indicates that agent Ag1 is committed towards agent Ag2 to do α and that along all

accessible paths Pa performing α makes p true. According to formulae S29 and S30, the
semantics we give to the commitments requires their fulfillment. Thus, if it is created, a
commitment must be held. This satisfaction-based semantics reflects the idea of “prior
possible choices of agents” that Belnap and Perloff used in their logic of agency (Belnap
and Perloff, 1992). In this logic, agents make choices in time. In our model, these choices
are represented by the commitments created by these agents. The notion of acting or
choosing at a moment m is thought of in Belnap and Perloff’s logic as constraining the
course of events to lie within some particular subset of the possible histories available at
that moment. This subset of the possible histories is represented by the set of paths along
which the commitment must be satisfied. However, it is always possible to violate or
withdraw such a commitment. For this reason, these two operations (violation and
withdrawal) are explicitly included in our framework. Thus, it is possible to have wrong
commitments because the accessibility relation Rsc gives us the paths along which the
commitment created by an agent Ag1 towards another agent Ag2 must be satisfied.

Conditional commitments about propositions

S31. M, si PCC(Ag1, Ag2, t, (p, p’)) iff (∃Pa ∈ σsi & ∃sj [Pa : T(sj) ≥ T(si) & M, sj p)

⇒ M, sj PC(Ag1, Ag2, t, p’)

This formula indicates that agent Ag1 commits that p is true only if the condition p is true
(or is satisfied).

Conditional commitment about actions

S32. ACC(Ag1, Ag2, t, (p, (α, p’))) =def PCC(Ag1, Ag2, t, (p, Perform(α)p’))

Agent’s desire about a propositional commitment from the addressee

S33. M, si Want(Ag1, PC(Ag2, Ag1, , p)) iff ∀Pa Pa ∈ Rw(Ag1, si) ⇒

∃sj [Pa : T(sj) = T(si) & M, Pa, sj PC(Ag2, Ag1, , p))

Ag1’s desire about a propositional commitment of Ag2 whose content is p is satisfied in the
model iff along all accessible paths via Rw, Ag2 commits towards Ag1 that p. In the same
way we can define the semantics of an agent’s desire about the other commitment types.

115

Propositional commitment attempts

S34. M, si PCT(Ag1, Ag2, t, some(x, {c1, ..., cn}, p(x))) iff

M, si PC(Ag1, Ag2, t, Want(Ag1, PC(Ag2, Ag1, , p(c1)) ∨ … ∨ PC(Ag2, Ag1, p(cn))))

The Ag1’s propositional commitment attempt towards Ag2 is satisfied in the model iff Ag1
commits that it wants that Ag2 commits at a certain moment that one of the propositions
p(ci) is true. This notion of commitment attempt captures open and yes/no questions.

Action commitment attempts

S35. M, si ACT(Ag1, Ag2, t, (α, p)) iff

M, si PC(Ag1, Ag2, t, Want(Ag1, AC(Ag2, Ag1, , (α, p))))

The Ag1’s action commitment attempt towards Ag2 is satisfied in the model iff Ag1 commits
that it wants that Ag2 commits to perform the action. In the same way we can define the
semantics of conditional commitment attempts about propositions and about actions.

7.4.5 Actions applied to Commitments

In this section we specify the semantics of different actions that agents can apply on their
commitments. These actions are: creation, withdrawal, satisfaction, violation and
reactivation. We also specify the relation between satisfaction and violation and we discuss
the link between commitment states and these different actions.

Definitions

Create a social commitment

S36. M, Pa, si Create(Ag1, SC(Ag1, Ag2, t, ϕ)) iff

∃α ∈ Φa & M, Pa, si Perform(α)SC(Ag1, Ag2, t, ϕ) & t = T(si)

This formula indicates that the creation of a commitment is satisfied in the model M along a

path Pa iff there is an action α whose performance makes true the commitment (i.e. the

commitment holds after the performance of the action α) and if the creation moment is
equal to the time associated to the current state. This formula highlights the fact that the

creation of a commitment is an action in itself. Indeed, the action α corresponds to the
agent’s utterance which creates the commitment.

Withdraw a social commitment

S37. M, Pa, si Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ)) iff

∃α ∈ Φa &

M, Pa, si F−Create(SC(Ag1, Ag2, t, ϕ)

∧ (¬F− Satisfy(Ag1, PC(Ag1, Ag2, t, ϕ)))

∧ (¬F− Violate(Ag1, PC(Ag1, Ag2, t, ϕ)))

∧ Perform(α)¬ SC(Ag1, Ag2, t, ϕ))

This formula indicates that an agent withdraws its commitment for ϕ iff the following
conditions are satisfied:

116

1- The agent has already created this commitment in the past.
2- The commitment is not yet satidfied or violated in the past

3- The agent performs an action α so that this commitment does not hold at the current
moment.

In addition, we add the following meaning postulate which is a constraint that agents must
respect when communicating.

Meaning postulate

M38. AG+(Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ)) ⇒

X−

(¬Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ))

U−

Create(Ag1, SC(Ag1, Ag2, t, ϕ)) ∨ Reactivate(Ag1, SC(Ag1, Ag2, t, ϕ))))

According to this constraint, if an agent withdraws its commitment, this means that before
the current moment this commitment is not withdrawn since its creation or last reactivation.

On the other hand, commitments are persistent until their withdrawal. Formally, we have
the following meaning postulate:

Meaning postulate

M39. AG+(SC(Ag1, Ag2, t, ϕ) ∧ ¬Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ)) ⇒

X+ SC(Ag1, Ag2, t, ϕ))

Satisfy a propositional commitment

S40. M, Pa, si Satisfy(Ag1, PC(Ag1, Ag2, t, p)) iff

∃Pa’ ∈σ & ∃sj T(sj) ≤ T(si) & M, Pa’, sj CreatePC(Ag1, Ag2, t, p))

& Pa ∈ Rsc(Ag1, Ag2, sj)

A propositional commitment is satisfied along a path Pa at a state si iff it was already
created, and the path Pa is accessible via the relation Rsc. This means that, the path Pa
corresponds to the satisfaction path of the commitment which is true at the state sj. Along
this accessible path the commitment content is true.

In addition, we add the following meaning postulate indicating that globally in all paths, if a
commitment is withdrawn and not reactivated in the future, globally it can not be satisfied
or violated.

Meaning postulate

M41. AG+
(Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ)) ∧ ¬F+Reactivate(Ag1, SC(Ag1, Ag2, t, ϕ))

⇒ G+(¬Satisfy(Ag1, SC(Ag1, Ag2, t, ϕ)) ∧ ¬Violate(Ag1, SC(Ag1, Ag2, t, ϕ))))
Satisfy an action commitment

S42. Satisfy(Ag1, AC(Ag1, Ag2, t, (α, p))) =def Satisfy(Ag1, PC(Ag1, Ag2, t, Perform(α)p))

117

Satisfy a conditional commitment about a proposition

S43. M, Pa, si Satisfy(Ag1, PCC(Ag1, Ag2, t, (p, p’))) iff

 M, Pa, si F−p ∧ Satisfy(Ag1, PC(Ag1, Ag2, t, p)).

A conditional commitment is satisfied in the model M along the path Pa iff the underlying
condition p is satisfied in the past and that the debtor satisfies in (M, Pa, si) the resulting
commitment PC(Ag1, Ag2, t, p). In the same way we define the semantics of a conditional
commitment about an action.

Satisfy a conditional commitment about an action

S44. Satisfy(Ag1, ACC(Ag1, Ag2, t, (p, (α, p’)))) =def

Satisfy(Ag1, PCC(Ag1, Ag2, t, (p, Perfoprm(α)p’))).

Satisfy a propositional commitment attempt

S45. M, Pa, si Satisfy(Ag2, PCT(Ag1, Ag2, t, some(x, {c1,..., cn}, p(x)))) iff
 M, Pa, si Satisfy(Ag2, PC(Ag2, Ag1, , p(c1)))

∨ … ∨ Satisfy(Ag2, PC(Ag2, Ag1, , p(cn)))

A propositional commitment attempt is satisfied by the creditor iff this agent satisfies the
resulting propositional commitment. In the same way we define the semantics of the
satisfaction of the other commitment attempt types.

Satisfy an action commitment attempt

S46. M, Pa, si Satisfy(Ag2, ACT(Ag1, Ag2, t, (α, p))) iff

 M, Pa, si Satisfy(Ag2, AC(Ag2, Ag1, , (α, p)))

Satisfy a conditional commitment attempt about a proposition

S47. M, Pa, si Satisfy(Ag2, CCTP(Ag1, Ag2, t, (p, some(x, {c1, ..., cn}, p’(x))))) iff

 M, Pa, si F−p ∧ Satisfy(Ag2, PCT(Ag1, Ag2, , some(x, {c1,..., cn}, p’(x))))

Satisfy a conditional commitment attempt about an action

S48. M, Pa, si Satisfy(Ag2, CCTA(Ag1, Ag2, t, (p, (α, p’)))) iff

 M, Pa, si F−p ∧ Satisfy(Ag2, ACT(Ag1, Ag2, , (α, p’)))

In the same way, the violation of the different types of commitments can be formulated. We
give here just the definition of the violation of a propositional commitment

Violate a propositional commitment

S49. M, Pa, si Violate(Ag1, PC(Ag1, Ag2, t, p)) iff

∃sj T(sj) ≤ T(si) & M, sj PC(Ag1, Ag2, t, p))

& Pa ∉ Rsc(Ag1, Ag2, sj)

A propositional commitment is violated along a path Pa at a state si iff it already exists, and
the path Pa does not correspond to the satisfaction path of the commitment which is true at
the state sj. Along this path the commitment content is false.

118

We have also the following proposition:

Proposition

P50. M, Pa, si Violate(Ag1, SC(Ag1, Ag2, t, ϕ)) iff

∃sj T(sj) ≤ T(si) & M, sj SC(Ag1, Ag2, t, ϕ))

& M, Pa, si ¬Satisfy(Ag1, SC(Ag1, Ag2, t, ϕ))

The proof is a consequence of the definitions.

Reactivate a social commitment

S51. M, Pa, si Reactivate(Ag1, SC(Ag1, Ag2, t, ϕ)) iff

∃α ∈ Φa &

M, Pa, si X−F−Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ))

∧ (¬F− Satisfy(Ag1, PC(Ag1, Ag2, t, p)))

∧ (¬F− Violate(Ag1, PC(Ag1, Ag2, t, p)))

∧ Perform(α)SC(Ag1, Ag2, t, ϕ)

A commitment is reactivated iff:
1- It was previously withdrawn.
2- The commitment is not yet satidfied or violated in the past
3- The agent performs an action making the commitment true at the current moment.

Like for withdrawl, we add the following meaning postulate which is a constrant that agents
must respect when communicating.

Meaning postulate

C52. AG+(Reactivate(Ag1, SC(Ag1, Ag2, t, ϕ)) ⇒

X−

(¬Reactivate(Ag1, SC(Ag1, Ag2, t, ϕ))

U−

Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ))))

According to this constraint, if an agent reactivates its commitment, this means that before
the current moment this commitment is not reactivated since its last withdrawal.

Commitment states

The semantics of the actions that agents apply to commitment contents is related to the
notion of commitment states (see Chapter 5). Thus, the semantics of these actions must be
defined in terms of the semantics of these commitment states. Since a commitment state
only holds as a result of the debtor’s action, the semantics of a commitment state is
determined by the operation that leads to this state. For example, the operation "withdraw"
leads to the state "withdrawn". The semantics of the actions applied on the commitment
contents requires a combination of all possible commitment states. An agent cannot act on a
commitment content whose state is withdrawn. Thus, to simplify the notation, we suppose
that a commitment is either active, or not active (withdrawn).

119

After introducing the different actions that the debtor can apply to its commitment, we can
define the semantics of an active commitment as follows:

S53. M, Pa, si Active(SC(Ag1, Ag2, t, ϕ)) iff

 M, Pa, si ¬Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ)))

 U−

(Create(Ag1, SC(Ag1, Ag2, t, ϕ)) ∨ Reactivate(Ag1, SC(Ag1, Ag2, t, ϕ)))

This property indicates that a commitment is active iff the two following conditions are
satisfied (see Figure 7.4):
1- This commitment was already created or reactivated.
2- Until the current moment, the commitment was not withdrawn.
Therefore, once the commitment is withdrawn, it becomes inactive.

Figure 7.4. Social commitment activation

The formula S53 explains a persistence property of social commitments. A social
commitment is persistent while it is active. This means that, it is persistent in all the states
following the state in which it was created until its withdrawal, violation or satisfaction. The
active state is satisfied in the model in the state in which the commitment is created and in
all the states until its withdrawal, satisfaction or violation. In addition, we have the
following properties:

Properties

P54. AG+
(Active(PC(Ag1, Ag2, t, p)) ∧ Active(PC(Ag1, Ag2, t’, q) ⇔

Active(PC(Ag1, Ag2, , p ∧ q))

P55. AG+
(Active(PC(Ag1, Ag2, t, p)) ∨ Active(PC(Ag1, Ag2, t, q) ⇔

Active(PC(Ag1, Ag2, , p ∨ q))

The proof of ⇐ is straightforward. The proof of ⇒ is a consequence of the semantics of
Active.

Active ¬Active (Withdrawn) Active

Create Withdraw Reactivate

Figure 7.4. Social commitment activation

120

7.4.6 Actions applied to Commitment Contents

In this section we define the semantics of different actions that agents can perform on their
commitment contents or on the commitment contents of other agents. These actions are:
acceptation, refusal, and challenge.

Definitions

Accept a commitment content

S56. M, Pa, si Accept-content(Ag2, SC(Ag1, Ag2, t, ϕ)) iff :

M, Pa, si Active(SC(Ag1, Ag2, t, ϕ)) ∧ Create(Ag2, SC(Ag2, Ag1, T(si), ϕ))

This formula indicates that the acceptance of the commitment content ϕ by agent Ag2 is
satisfied in the model M along a path Pa iff:
1- The commitment is active on this path because we cannot act on a commitment content
if the commitment is not active.

2- Agent Ag2 creates a commitment whose content is ϕ. Therefore, Ag2 becomes

committed towards the content ϕ.

Refuse a commitment content

S57. M, Pa, si Refuse-content(Ag2, SC(Ag1, Ag2, t, ϕ)) iff :

M, Pa, si Active(SC(Ag1, Ag2, t, ϕ)) & Create(Ag2, SC(Ag2, Ag1, T(si), ¬ϕ))

The refusal of the commitment content ϕ by an agent Ag2 is satisfied in the model M along a
path Pa iff:
1- The commitment is active on this path.

2- Agent Ag2 creates a commitment whose content is ¬ϕ. Therefore, Ag2 becomes

committed towards the content ¬ϕ.
Refusal is thus the dual notion of acceptance.

Challenge a commitment content

S58. M, Pa, si Challenge-content(Ag2, SC(Ag1, Ag2, t, ϕ)) iff

∃α ∈ Φa &

M, Pa, si Active(SC(Ag1, Ag2, t, ϕ))

∧ Perform(α)Want(Ag2, Justify-content(Ag1, SC(Ag1, Ag2, t, ϕ)))

This formula indicates that the challenge of the commitment content ϕ by an agent Ag2 is
satisfied in the model M along a path Pa iff:
1- The challenged commitment is active on this path.
2- Agent Ag2 performs an action so that it wants that agent Ag1 justifies its commitment

content ϕ.

This formula highlights the fact that the challenge of a commitment content is an action in

itself. As for the creation operation, the action α corresponds to the production of the
utterance that challenges the commitment content.

121

7.4.7 Argumentation Relations

In this section we define the semantics of the argumentation relations that we introduced in
Section 7.3.6. These argumentation relations are: justification, attack, defend, defend+ and
contradiction. We also formulate an interesting property that enables us to reflect the
nonmonotonic nature of arguments.

Definition of basic notions

Justify the content of a social commitment

S59 (1). M, Pa, si Justify-content(Ag1, PC(Ag1, Ag2, t, p), p’) iff

M, Pa, si Active(PC(Ag1, Ag2, t, p)) & Create(Ag1, PC(Ag1, Ag2, T(si), p’ ∴ p))

This formula indicates that the justification of the commitment content ϕ by an agent Ag1 is
satisfied in the model M on a path Pa iff:
1- This commitment is active on this path.
2- This agent creates on this path a commitment whose content is p’ that supports the
conclusion p.

In other words, a social commitment of an agent to another one to make a content p true is
justified (by means of p') iff the social commitment exists (has been created) and moreover
a social commitment is created to establish an argument (p’, p), where p' is committed to be

true because accordingly to the definition of the connector (∴), p’ is true for Ag1. The fact
that this operator is included in the commitment indicates that the agent is committed that p’
is true and then p is true, i.e. p is true because p’ is true. We define the semantics of the
overloaded formula of Justify-content as follows:

S59 (2). M, Pa, si Justify-content(Ag1, PC(Ag1, Ag2, t, p)) iff

∃p’ ∈ £ :
M, Pa, si Justify-content(Ag1, PC(Ag1, Ag2, t, p), p’)

We notice here that the purpose of this chapter is to give a semantics of the different actions
that agents can perform when conversing. Thus, how do agents choose an argument among
others and how do we ensure that the argumentation process terminates are questions that
are addressed in Chapters 5 and 8.

The justification operation is the basis of other argumentation operations. As shown by the
following definitions (formulae S54, S55, S56), this is due to the fact that all the other
operations are defined using this operation.

Contradict the content of a social commitment

S60. M, Pa, si Contradict-content(Ag1, PC(Ag1, Ag2, t, p)) iff

∃p’ ∈ £ :

M, Pa, si Active(PC(Ag1, Ag2, t, p)) ∧ Create(Ag1, PC(Ag1, Ag2, T(si), p’ ∴ ¬p))

122

This formula indicates that an agent contradicts its previous commitment whose content is p

if it creates another commitment whose content is a logical conclusion of ¬p, whereas its
commitment for p is still active.

Definition of derived notions

Attack the content of a social commitment

S61 (1). M, Pa, si Attack-content(Ag2, PC(Ag1, Ag2, t, p), p’) iff
M, Pa, si Active(PC(Ag1, Ag2, t, p))

∧ Justify-content(Ag2, PC(Ag2, Ag1, T(si), ¬p), p’)

This formula indicates that the attack of the commitment content p by an agent Ag2 is
satisfied in the model M along a path Pa iff:
1. This commitment is active on this path.

2. This agent justifies along this path its commitment whose content is ¬p.

S61 (2). M, Pa, si Attack-content(Ag2, PC(Ag1, Ag2, t, p)) iff

∃p’ ∈ £ :
M, Pa, si Attack-content(Ag2, PC(Ag1, Ag2, t, p), p’)

Defend the content of a social commitment

S62 (1). M, Pa, si Defend-content(Ag1, PC(Ag1, Ag2, t, p), p’) iff

∃p’’ ∈ £ :
M, Pa, si Active(PC(Ag1, Ag2, t, p))

∧ X−F−Attack-content(Ag2, PC(Ag1, Ag2, t, p), p’’))

∧ Attack-content(Ag1, SC(Ag2, Ag1, , p’’), p’))

This formula indicates that the defense of the commitment content p by an agent Ag1 is
satisfied in the model M along a path Pa iff:
1. This commitment is active on this path.
2. This agent attacks the attacker of the content of its commitment.

S62 (2). M, Pa, si Defend-content(Ag1, PC(Ag1, Ag2, t, p)) iff

∃p’ ∈ £ :
M, Pa, si Defend-content(Ag1, PC(Ag1, Ag2, t, p), p’)

Defend strongly the content of a social commitment

S63. M, Pa, si Defend+-content(Ag1, PC(Ag1, Ag2, t, p)) iff
M, Pa, si Active(PC(Ag1, Ag2, t, p))

& (∀p’’ ∈ £

M, Pa, si X−F−Attack-content(Ag2, PC(Ag1, Ag2, t, p), p’’)

⇒ Attack-content(Ag1, PC(Ag2, Ag1, , p’’)))

This formula indicates that the strong defense of the commitment content ϕ by an agent Ag1
is satisfied in the model M in along a path Pa iff:
1. This commitment is active on this path.

123

2. This agent attacks all the attackers of the content of its commitment.

Agent’s desire about the justification of a commitment content from the addressee

S64. M, si Want(Ag1, Justify-content(Ag2, PC(Ag2, Ag1, t, p))) iff

∀Pa Pa ∈ Rw(Ag1, si) ⇒

∃sj [Pa : T(sj) = T(si) & M, Pa, sj F+Justify-content(Ag2, PC(Ag2, Ag1, t, p)))

Ag1’s desire about the justification of a commitment of Ag2 is satisfied in the model iff
along all accessible paths via Rw, Ag2 justifies in the future this commitment.

Property of nonmonotonicity

According to the property of nonmonotonicity, adding arguments can lead to the defeat of
existing arguments. An argument is defeated if it is attacked successfully by a
counterargument. In other words, an argument becomes invalid when it is attacked and it
cannot be defended. In our model, that results in the following meaning postulate: in all
paths of the model M, if Ag2 attacks the content p of Ag1’s commitment and if Ag1 cannot
defend this content or attack the content of Ag2’s commitment, then Ag1’s commitment
becomes unsatisfied in the model M. Formally, we have the following meaning postulate:

Meaning postulate

M65 (1). AG+
(Attack-content(Ag2, PC(Ag1, Ag2, t, p), p’)

∧ G+
(¬Defend-content(Ag1, SC(Ag1, Ag2, t, p))

∧ ¬Attack-content(Ag1, SC(Ag2, Ag1, , p’)))

⇒ ¬PC(Ag1, Ag2, t, p))

In defeasible reasoning, an argument is valid until a counterargument attacks it. This
property can be formally specified in our model by the following meaning postulate:

Meaning postulate

M65 (2). AG+
(Create(Ag1, PC(Ag1, Ag2, t, p ∴ p’)) ⇒

X+
(G+(PC(Ag1, Ag2, t, p ∴ p’))

∨ (PC(Ag1, Ag2, t, p ∴ p’)

U+ Attack-content(Ag2, PC(Ag1, Ag2, t, p ∴ p’)))))

This property indicates that in all paths of the model if a commitment whose content is an
argument is created, then in the next state this commitment is either globally valid or it is
valid until a counterargument attacks it. This property can be formulated using the week

until operator U+w of CTL* as follows:

M65 (3). AG+
 (Create(Ag1, PC(Ag1, Ag2, t, p ∴ p’)) ⇒

X+
(SC(Ag1, Ag2, t, p ∴ p’)

U+w Attack-content(Ag2, SC(Ag1, Ag2, t, p ∴ p’))))

In this section we defined the semantics of argumentation relations about propositional
commitments. The argumention relation about the other types of commitments are related to
the underlying propositional commitments. For example, the justification of a conditional

124

commitment about a proposition is defined as the justification of the associated
propositional commitment. Formally:

Justify-content(Ag1, PCC(Ag1, Ag2, t, (p, p’))) =def

Justify-content(Ag1, PC(Ag1, Ag2, t, , p’))

7.4.8 Link between Commitments and Argumentation

Until now we gave the syntax and semantics of all the elements of our formalism. We can
now formally establish the link between commitments and argumentation. This link is
shown by the two following formulae.

Creation conditions

S66. AG+
(Create(Ag1, PC(Ag1, Ag2, t, p)) ⇒

G+¬Contradict-content(Ag1, PC(Ag1, Ag2, t, p))

∧ F+(Challenge-content(Ag2, PC(Ag1, Ag2, p))

⇒ AX+F+ Justify-content(Ag1, PC(Ag1, Ag2, t, p)))

∧ F+(Attack-content(Ag2, PC(Ag1, Ag2, t, p))

⇒ AX+F+ Defend-content(Ag1, PC(Ag1, Ag2, t, p))))

This formula is a rationality postulate that we impose in the model. It provides the
conditions generated by the creation of a commitment on all paths. The agent must be in a
position to check these conditions before creating commitments. Indeed, if an agent creates
a commitment, then it should not contradict itself during the conversation. It must also be
able to justify its commitment if it is challenged and to defend it if it is attacked. By
establishing the link between commitments and arguments, this formula reflects the deontic
aspect of commitments. These conditions are also valid for withdrawal, acceptance and
refusal because their semantics is expressed in terms of the creation operation.

Because this formula holds on all paths of the model, it seems to be strong. However, this
formula is defined as a constraint that software conversational agents must respect. When an
agent participates in a conversation using some protocol, it must respect this constraint. If
not, we conclude that this agent does not respect the semantics. Therefore, it is easy to
verify whether agents respect or not the semantics by verifying if they respect the different
constraints. The protocol they use must also respect these constraints. In Chapter 8, we
propose a model checking technique addressing this issue. Computationally speaking,
agents’ programs must include these constraints as rules, and the protocol can be
implemented as a set of rules representing these constraints. In Chapter 9, we propose such
an implementation using a set of dialogue games.

We notice that it is possible to relax this constraint by changing the model. The idea is to
change the model when an agent creates a commitment (and in a general way when an agent
performs an action). In this case, this constraint will hold on all paths of the new model and
not of the original model. This means that, it is possible to capture, for example, the case in
which an agent contradicts itself. However, our objective is not to model the different
possibilities but to specify the constraints to be respected by agents. In other words, we are

125

only interested in models respecting these constraints. In addition, changing the whole
model increases the complexity of the model checking (see for example (Rao and Georgeff,
1993)).

On the other hand, an agent challenges a commitment content if it has no argument for or
against this content. Therefore, an agent challenges a commitment content if it cannot
accept or refuse such a commitment content. Formally:

Challenge conditions

S67. AG+((Active(PC(Ag1, Ag2, t, p))

∧ ¬Accept-content(Ag2, PC(Ag1, Ag2, t, p))

∧ ¬Refuse-content(Ag2, PC(Ag1, Ag2, t, p)))

⇒ Challenge-content(Ag2, PC(Ag1, Ag2, p)))

7.5 Postulates

In this section we give some additional propositions (P) of our logical model. Proofs of
these propositions are based on the semantics we defined in the previous section.

P1. AG+(Create(Ag1, SC(Ag1, Ag2, t, ϕ)) ⇒

¬X−F−(Active(SC(Ag1, Ag2, t, ϕ)))

∧ (Active(SC(Ag1, Ag2, t, ϕ))
U+

Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ))))

This formula states that if an agent creates a commitment then:
1. The commitment was never active in the past (thus it does not exist).
2. The commitment will hold until the moment of its withdrawal.
In other words, a commitment becomes active after its creation, and it remains active until
its withdrawal.

Proof

If an agent creates a commitment which is already active, then according to S53 this
commitment has already been created or reactivated. If the commitment is reactivated, then
according to S51 and S37 it has already been created. However, this is not possible
according to the semantics of the creation action (S36).

In addition, according to S53, a commitment is active iff it has already been created or
reactivated and not yet withdrawn. Consequently, one can check if a commitment is active
at a given moment on a path Pa by checking if it was already created in the past and if since
its creation, it has been not withdrawn. Thus, the creation of a commitment implies that it is
active until withdrawal.

P2. AG+(¬Active(SC(Ag1, Ag2, t, ϕ)) ⇒

 ¬X+Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ)))

126

Formula P2 indicates that if a commitment is not active, then it can not be withdrawn.

Proof

This formula is a consequence of formula S53 and the semantics of U−. Let us suppose that
the commitment is inactive at a given moment. Consequently, either this commitment was
not created or reactivated in the past, or, since its creation or reactivation, the commitment
was already withdrawn. In these two cases, the commitment cannot be withdrawn.

P3. AG+(Satisfy(Ag1, SC(Ag1, Ag2, t, ϕ)) ⇒

G+(Satisfy(Ag1, SC(Ag1, Ag2, t, ϕ))

∧ ¬Violate(Ag1, SC(Ag1, Ag2, t, ϕ))

∧ ¬Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ))))

This formula states that if a commitment is satisfied, then it remains always satisfied and it
cannot be violated or withdrawn.

Proof

According to the semantics of satisfaction (S40), Satisfy formula is satisfied in the model
along a path Pa at any state of this path. Consequently, if it is satisfied, it remains always
satisfied. Because the path Pa is a satisfaction path in the sens of the accessibility relation
Rsc, the commitment cannot be violated along this path. In addition, according to S53, if an
agent satisfies a commitment, then this commitment becomes inactive. Therefore, the
commitment cannot be withdrawn

In the same way we can prove the following proposition:

P4. AG+(Violate(Ag1, SC(Ag1, Ag2, t, ϕ)) ⇒

G+(Violate(Ag1, SC(Ag1, Ag2, t, ϕ))

∧ ¬Satisfy(Ag1, SC(Ag1, Ag2, t, ϕ))

∧ ¬Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ))))

P5. AG+(Create(Ag1, SC(Ag1, Ag2, t, ϕ) ∨ Reactivate(Ag1, SC(Ag1, Ag2, t, ϕ))) ⇒

X+F+ Violate(Ag1, SC(Ag1, Ag2, t, ϕ))

∨ X+F+ Satisfy(Ag1, SC(Ag1, Ag2, t, ϕ))

∨ X+F+ Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ)))

This formula indicates that if an agent creates or reactivates a commitment, then it must
violate it, satisfy it, or still withdraw it. These operations can take place in the future of the
moment following the creation of the commitment. The proof of this proposition follows
from the semantics of theses operations.

P6. AG+(Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ)) ⇒

G+ ¬SC(Ag1, Ag2, t, ϕ)

∨

127

(¬SC(Ag1, Ag2, ϕ) U+ Reactivate(Ag1, SC(Ag1, Ag2, ϕ)))

This proposition states that a commitment remains withdrawn until an eventual reactivation.
Thus, the only authorized operation after the withdrawal of a commitment is its reactivation.
The proof of this proposition follows from the semantics of Withdraw and Reactivate and
from the meaning postulates M39.

We have also the following meaning postulates:

M6. AG+¬(Active(SC(Ag1, Ag2, t, ϕ)) ∧ Active(SC(Ag1, Ag2, t’, ¬ϕ)))

This postulate states that it is not possible to have on a given path two active commitments

of the same debtor whose contents are respectively ϕ and ¬ϕ.

M7. AG+ (Active(SC(Ag1, Ag2, t, ϕ) & Accept-content(Ag1, SC(Ag2, Ag1, t’, ¬ϕ)) ⇒

Withdraw(Ag1, SC(Ag1, Ag2, t, ϕ)))

This formula indicates that if:

1. The agent Ag1 already is committed that ϕ,
2. The commitment still holds,

3. This agent accepts the commitment of its interlocutor for ¬ϕ,

then this implies that the agent withdraws its commitment for ϕ. If Ag1 does not withdraw
this commitment, we would have two active commitments on a given path whose contents

are ϕ and ¬ϕ. However, this is not possible according to M6.

7.6 Discussion

7.6.1 Meaning of Speech Acts

The meaning of some important speech acts, especially the ones commonly used in multi-
agent interactions, can be expressed using our framework. According to illocutionary logic
(Searle and Vanderveken, 1985), the five illocutionary points of language use are: the
assertive point, the commissive point, the directive point, the declaratory point and the

expressive point. The assertive point consists in representing how things are in the world.
The commissive point consists in committing the speaker to doing something. The directive

point consists in trying to get the hearer to do something. The declaratory point consists in
doing something by way of representing oneself as doing it. The expressive point consists in
expressing attitudes.

Assertive acts can be represented by propositional commitments and by conditional
commitments about propositions. For example, the performance of an Inform act can be
defined as the creation of a propositional commitment. The inform act Inform(Ag1, Ag2, t, p)
indicates that the speaker Ag1 wants to inform the addressee Ag2 that p is true. Formally, we
can write:

128

Inform(Ag1, Ag2, t, p) =def Create(Ag1, PC(Ag1, Ag2, t, p))

The operations applied on the content of these commitments can be considered as assertive
or directive acts. For example, the Assert act Assert(Ag1, Ag2, t, p) means that the speaker
Ag1 is committed relatively to the addressee Ag2 that p is true. In our framework, this acts
can be defined by the acceptance of a commitment content in the context where this
commitment exists. Formally:

Assert(Ag2, Ag1, t, p) =def Accept-content(Ag2, PC(Ag1, Ag2, , p))

The assertive act about an argument can be defined by a justification relation:

Assert((Ag2, Ag1, t, p∴p’)) =def Justify-content(Ag1, PC(Ag1, Ag2, , p), p’)

Commissive acts can be reflected by the action commitments and the conditional
commitments about actions. The point of the commissive acts is to commit the debtor,

relative to the creditor, to the performance of an action α with or without a certain

condition. The performance of the action α makes a proposition p true. For example, a

promise act Promise(Ag1, Ag2, t, α, p) means that agent Ag1 is committed towards agent Ag2

to do α without condition. This act can be defined either by the creation of an action
commitment or by the acceptance of the content of a commitment attempt:

Promise(Ag1, Ag2, t, α, p) =def Create(Ag1, AC(Ag1, Ag2, t, (α, p))

 ∨ Accept-content(Ag1, ACT(Ag2, Ag1, , (α, p)))

Directive acts can be represented by commitment attempts and by challenges of
commitment contents. The operations applied to the content of commitment attempts can be
considered as assertive, commissive or directive acts. Request is an example of a directive
act that can be defined in our framework as follows:

Request(Ag1, Ag2, t, α, p) =def Create(Ag1, ACT(Ag1, Ag2, t, (α, p)))

The request act Request(Ag1, Ag2, t, α) indicates the fact that agent Ag1 asks agent Ag2 to do

α. If Ag2 accepts the request, then it promises Ag1 to do α (see the previous definition of the
promise act).

A declaratory act brings about a state of affairs that makes its content true (Colombetti,
2000). An example of declaration is “the auction is open” that is used to open an auction. In
our framework, a delaratory act can be captured by the immediate satisfaction of a
propositional commitent. Formally:

Declare(Ag1, Ag2, t, p) =def

Create(Ag1, PC(Ag1, Ag2, t, p)) ∧ Satisfy(Ag1, PC(Ag1, Ag2, t, p))

Expressive acts can also be captured using propositional social commitments.

129

In this section we showed that our formalism handles in a unified framework both
pragmatic and semantic issues of agent conversation. In addition, the framework can
capture many different types of illocutionary acts according to speech acts theory. Since the
framework makes it possible to capture all these aspects, it can be used as a powerful means
to specify, model and implement flexible and highly expressive protocols for agent
communication.

7.6.2 A Model-Theoretic Semantics for Defeasible Argumentation

According to several researchers in defeasible argumentation, using a model-theoretic
semantics is not adapted to defining the meaning of the central notions of defeasible
argumentation like attack, rebuttal, defense, etc. The purpose of this section is to show that
such a model theory can be successfully used to capture the semantics of these notions.

 According to Pollock (1991), Vreeswijk (1997), and Prakken and Vreeswijk (2000), the
meaning of defeasible notions should not be found in a correspondence with reality by using
a model theory, but in their role in dialectical inquiry. The reason is that these notions are
not ‘propositional’, and consequently, their meaning is not naturally captured in terms of
correspondence between a proposition and the world. We agree with the fact that the
defeasible notions are not propositional, because in our framework they are actions applied
to social commitments. Thus, these defeasible concepts (considered in this chapter as
argumentation relations), can be captured in a model theory by using a dynamic logic within
a global framework of temporal logic. Using these two logics enables us to represent the
relation between arguments by taking into account the temporal and the dynamic
characteristics of the argumentative interactions between agents. Our theoretical model
semantics does not establish a correspondence between defeasible notions (as propositions)
and the world, but defines the meaning of operations that agents can apply on their social
commitments and the meaning of argumentative supports of these operations. This
semantics allows us to capture the conditions on handling commitments and arguments (see
S66 and S67). The branching temporal nature of our logical model makes it possible to
capture the fact that an agent in a given state at a given moment has several strategies.
Agents use their argumentation systems to choose a strategy among others.

On the other hand, the nonmonotonicity property of arguments can be captured in a model
theory of branching temporal logic. The idea is that an argument is valid only in a given
state, at a given moment for a given agent. An argument is not valid (not satisfied in the
Kripke model) when it is attacked and cannot be defended. This idea can be formulated as a
property in our logical model by using the path quantifiers A and E (see M65 (1), S65 (2)).
In addition, an advantage of using a model theory of temporal and dynamic logics to define
the semantics is that we can then use model-checking techniques (Clarke et al., 1986).
These techniques enable us to verify some interesting properties of the formalism. In this
context, we can use our approach to specify interaction protocols illustrating how agents
interact by acting on commitments and on arguments. The automatic tools of model
checking (called model checkers) make it possible to provide simulations and traces of
execution of such protocols in order to verify properties that these protocols must satisfy
(Clarke et al., 2000), (Wooldridge et al., 2002). These techniques are not offered for a logic
based on dialectical systems.

130

In the context of agent interactions, using only an argumentative-based semantics is not
sufficient to capture the nonmonotonic reasoning of agents. The reason is that in their
conversations, agents do not use only an acceptance theory based on arguments and on
attack and defense relations. Agents must also take into account social relations such as
trustworthiness.

Finally, we think that a model theoretical semantics and a dialectical-based semantics are
not contradictory but rather complementary in the context of agent communication. A
model theoretical semantics using temporal and dynamic logics has the advantage of
capturing actions and temporal issues of communicative acts. Dialectical-based semantics
have the advantage of representing the interaction between arguments that agents use in
their conversations.

7.6.3 Related Work

Semantical considerations for agent interaction have recently begun to find a significant
audience in the MAS community. We can distinguish four kinds of semantics for agent
interactions:

1- Mentalistic semantics: This subjective semantics is based on so-called agent’s mental
states (e.g. beliefs, desires and intentions). The best-known formalisms describing it are:
Cohen and Levesque’s intention logic (1990), Rao and Georgeff’s BDI framework (1995),
and the KARO framework proposed by van Linder et al. (1998). KQML (Finin et al., 1995)
and FIPA-ACL (FIPA, 1997, 1999, 2001a) use this type of semantics to define a pre/post
conditions semantic of communication acts. For example, the semantics of a KQML
message is given by the following three ingredients: 1) a precondition on the mental states
of the sender and the receiver before the communication of the message, 2) a postcondition
that should hold after the communication and 3) a completion condition that indicates when
the perlocutionary effect has been fulfilled. The advantage of this semantics is its
compatibility with the formalisms used for reasoning about rational agents. Hence, the same
formalism can be used to specify the agents’ mental states and the communication acts they
perform. However, the verification of such a semantics is not possible if we cannot access to
the agents’ programs. In this situation we cannot verify whether the agents’ behavior
matches their private mental states. In this context, van Eijk and his colleagues (2003)
proposed a verification method for agent communication using a framework called Agent
Communication Programming Language (ACPL) (van Eijk et al., 2001). ACPL is designed
to program systems of agents that communicate by exchanging information. The authors
consider the operational semantics of this language which describes the agents’ behavior in
terms of their computations. From this semantics, they identified a notion of observable
behavior that captures those aspects of computations that are visible to an external observer,
and they introduced an assertion language to express specifications of this behavior. To
check if agents act in accordance with the behavior specification, the authors developed a
verification calculus based on a compositional proof system.

Another limitation of KQML is the pre/post condition semantics. This semantics offers no
dynamic or operational description of agent interactions. Because our approach is based on
public and argumentative concepts, the compliance verification can be made without having

131

access to the agents’ programs. The satisfaction and the violation of agents’ commitments
make it possible to determine if the agent respects our semantics. In addition, the agents’
ability to argue and to justify their commitments facilitates this verification. Moreover, our
semantics treats more explicitly the dynamic aspect of agent communication. This aspect is
modeled not only by the agents’ actions on commitments and on their contents and by the
argumentation relations, but also by the evolution of commitment states and commitment
content states.

2- Social semantics: This objective semantics was proposed by Singh as an alternative to the
mentalistic one (Singh, 2000). It is based on social commitments and it stresses the
importance of conventions and the public aspects of agent interactions. Singh used CTL to
propose a formal language and a formal model in which the notion of commitment is
described by using an accessibility relation. Verdicchio and Colombetti proposed a logical
model of social commitments by extending CTL* (Verdicchio and Colombetti, 2003). They
introduced a number of predicates in order to represent events and actions. They specified
some axioms to model agents that create commitments, create precommitments, and accept
precommitments. They also studied the fulfillment and violation of commitments. Mallya et
al. (2004) used the temporal commitment structure specified by Fornara and Colombetti
(2002) to define some constraints in order to capture some operations on commitments.
They dealt with temporal commitments by studying their satisfactions and breaches. Our
logical model belongs to this class of semantics, but it differs from these proposals in the
following respects:

a) In our approach the commitment semantics is defined as an accessibility relation that
takes into account the satisfaction of the commitment. The commitment semantics is
defined in terms of the paths along which the commitment must be satisfied. This way is
more intuitive than the semantics defined by Singh.

b) We differentiate commitments as static structures evaluated in states from the operations
applied to commitments as dynamic structures evaluated on paths. This enables us to
describe more naturally the evolution of the communication as a system of states /
transitions which reflects the interaction dynamics. Thus, our logical model allows us to
describe the dynamics of agent interactions in terms of the actions that agents apply to
commitments, commitment contents and to arguments. These actions are captured by the
perform operator used in dynamic logic and that we introduce in our model.

c) In our model, the strength of commitments as a basic principle of agent communication
does not result only from the fact that they are observable, but also from the fact that they
are supported by arguments. The social commitment notion we formalize is not only a
public notion but also a deontic one. The deontic aspect is captured by the fact that
commitments are thought of as obligations. The agent is obliged to respect its commitments
(i.e to satisfy them), to behave in accordance with these commitments and to justify them.
The idea is to impose this constraint in the model we are interested in. The agent is also
obliged not to contradict its commitment contents during the conversation. The creation
operation and the argumentation relations capture this deontic aspect. Formulae S66 and
S67 which supplement our semantics show how our approach makes it possible to capture
this aspect. Indeed, the link we establish between commitments and arguments enables us to

132

formally express the following idea: by committing towards other agents that a certain
formula is true, the agent is compelled not to contradict itself during the conversation. It
must also be able to explain, argue, justify and defend itself if another participant
contradicts it.

d) In our semantics, we capture not only propositional commitments, but the various
othertypes of commitments. This enables us to have a greater expressivity and to capture
many different types of speech acts. In addition, all the elements constituting our
commitment and argument approach are expressed using the same logical framework. The
different types of commitments, the different operations on them, and the different
argumentation relations are semantically specified in a clear and unambiguous way.

3- Argumentation-based semantics: This type of semantics is defined in (Amgoud et al.,
2002), (Parsons et al., 2002), (Parsons et al., 2003) to capture the meaning of certain
communication acts. It is based upon an argumentation system in which the agents’
reasoning capabilities are often linked to their ability to argue. These reasoning capabilities
are mainly based on the agent’s ability to establish a link between different facts, to
determine if a fact is acceptable, to decide which arguments support which facts, etc. The
authors proposed a two-layered semantics. The first layer captures the reasoning level of
agents. Agents must check some preconditions in order to use a communication act. These
preconditions are described in terms of arguments. For example, before using an assertion
act that p, an agent checks whether it has an argument in favor of p. The second layer relies
upon the formal dialectics introduced by Mackenzie (1970). Dialectical models are rule-
governed structures of organized conversations in which two parties (in the simplest case)
speak in turn in an orderly way. These models associate to each agent a commitment store
(CS), which holds the information given by the interlocutors during the dialogue. This layer
describes the rules which define how the CS is updated. For example, after an assertion act
that p is true, the CS of the speaker is updated by adding p to it. This semantics has the
advantages of being simple and of taking into account the argumentation aspect of agent
communication. In addition to the fact that this semantics does not take into account the
temporal and dynamic aspects of communicative acts in its formalization, it is different
from our approach on several points. The fact that it uses a logic without theoretical model
makes a formal verification impossible. On the other hand, the semantics is described in
terms of pre/post conditions and it does not capture the meaning of the different
communication acts. The commitment notion used in this semantics is different from the
one we use in our semantics. In Amgoud et al’s approach, this concept captures only the
propositions stated by the agents. Contrary to our approach, the satisfaction, violation,
cancellation and reactivation notions do not appear. Moreover, in terms of argumentation,
only the argue operation is captured. The attack and defense operations are not addressed in
this semantics. Finally, the dynamic aspect of agent communication is reduced to the sole
update operations of the CS. These operations reflect only the history without clearly
reflecting the current state of the communication. On the other hand, in our approach this
state is well captured by the states of different commitments and arguments handled in the
conversation.

4- Protocol based semantics: Developed by Pitt and Mamdani (2000), this type of semantics
is based on the notion of protocol. The communication between two (or more) agents is

133

viewed as a conversation. The meaning of communication acts is specified by describing an
input-output relationship. The meaning of a speech act (as input) is defined to be the
intention to perform another speech act (as output). This meaning then matches the set of
the possible following answers. This semantics has the advantage of taking into account the
context and the conversation state. However, technically, protocols are used as a practical
tool and not as a means to define semantics. For example, by using only protocols, we
cannot define the meaning of some notions like satisfaction, violation, contradiction,
justification, etc. Protocols must be specified in accordance with a given semantics in such a
way that a compliance verification is possible. In our approach we can define protocols by
using our semantics and verify whether some properties (that we have to specify yet) are
satisfied. For instance, such a property can be stated as follows: “It is not possible to
withdraw a commitment that is previously satisfied”. Because our semantics is expressed in
a temporal logic, we can use protocols specifying that an action cannot take place before
another. For example, a commitment cannot be cancelled before its creation. A protocol can
also specify that when a commitment is created by an agent Ag1, several paths are possible
for its interlocutor Ag2 (acceptance, refusal, challenge). However, the choice of the path
cannot be made without returning to the semantics. For example, acceptance indicates that
the agent is also committed towards the accepted content. Thus, agent Ag2 must be able to
justify this content and to satisfy the commitment.

Finally, we notice that although our accessibility relation Rsc is a dynamic function, we do
not need to change the Kripke model M to capture this dynamics. This way of modeling is
different from that used for example in KARO framework (Meyer et al., 1999). In KARO,
the whole Kripke model must be changed as illustrated by the following formula:

M, s <doi(α)>ϕ iff ∃M’, s’ (M’, s’ ∈ r(i, α)(M, s) & M’, s’ ϕ)

Where <doi(α)>ϕ represents the fact that agent i has the opportunity to do the action α and

that doing α leads to ϕ, and r is a function defined from another function r0 as follows:

r0: A × At → (S ∪ {∅}) → (S ∪ {∅})

where A is a set of agents, At is a set of atomic actions and S a set of states. r0(i, α)(s) yields

the (possibly empty) state transition in s caused by the event doi(α). A successful
performance of an atomic action always results in a state transition to another state in the
model. r is defined as follows:

r(i, α)(M, s) = M, r0(i, α)(s)

r(i, α)(M, s) yields the model change and the state transition caused by the event doi(α). In
our model that fits in naturally with the use of CTL* the whole dynamics is represented in
one unique model. Thus, we do not need to define a function like r0. Indeed, we can capture
all the actions that agents apply to commitments and to their contents without changing the
model, but simply by changing the states of the model. This solution increases the number
of states in the model. However, it enables us to reduce the complexity of the underlying
decision procedure, and it gives rise to more efficient model-checking.

134

7.7 Conclusion

In this chapter, we developed a logic and formal semantics for our pragmatic approach
based on commitments and arguments to model agents’ interactions. We proposed a logical
model based on a combination of CTL* and dynamic logic. The model captures the
different commitment types, the different actions that agents apply to these commitments
and the various argumentation relations. In addition, the model captures the link between
commitments and arguments that enables us to express the deontic aspect of commitments.
Our semantic framework can also be used to express the meaning of some important speech
acts, especially the ones commonly used in multi-agent interactions. Finally, we argued that
our model-theoretic semantics can be successfully used to capture the semantics of
defeasible arguments.

Chapter 8
*

A Tableau Method for Verifying Dialogue

Game Protocols (a Model Checking

Approach)

In this chapter, we address the problem of verifying dialogue game protocols using a

tableau-based model checking technique. These protocols are specified using the DCTL*CAN

logic that we developed in Chapter 7. Unlike the model checking algorithms proposed in the

literature, the algorithm that we propose in this chapter allows us not only to verify if the

dialogue game protocol (the model) satisfies a given property expressed in DCTL*CAN, but

also if this protocol respects the tableau rules of the communicative acts. This algorithm is

an on-the-fly efficient algorithm.

8.1 Introduction

As outlined in Chapter 3, dialogue games provide an interesting way of specifying agent
communication protocols (see for example (Dastani et al., 2000), (McBurney and Parsons,
2002), (Maudet and Chaib-draa, 2002), (Bentahar et al., 2004a, 2004d)). These games aim
at offering more flexibility by combining different small games to construct complete and
more complex protocols. Dialogue games can be thought of as interaction games in which
each agent plays a move in turn by performing utterances according to a pre-defined set of
rules.

From another point of view, formal verification methods became usable by industry quite
recently and there is a growing demand for professionals able to apply them (Huth and
Ryan, 2000). We can think of formal verification techniques as being composed of three
parts:
• A framework for modeling systems, typically a description language.
• A specification language for describing the properties to be verified.
• A verification method to establish whether the description of a system satisfies the
specification or not.

* We would like to thank John-Jules Ch. Meyer from Utrecht University, Intelligent Systems Group, Girish
Bhat from Cosine Communication Inc., Rance Cleaveland from State University of New York at Stony Brook,
and Yves Lespérance from York University for their interesting comments and extremely helpful discussions
about the matter presented in this chapter.

136

The two main approaches to verify system properties are proof-based approaches and
model-based approaches. In the proof-based approaches, the system description is a set of

logical formulae Γ and the specification is another formula φ. The verification method

consists of trying to find a proof that Γ φ. This typically requires guidance and expertise
from the user in order to identify suitable lemmas and auxiliary assertions. In the model-
based approaches, the system is represented by a finite model M using an appropriate logic.

The specification is again represented by a formula φ and the verification method consists of

computing whether the model M satisfies φ or not. This is usually done automatically.

Model-based techniques rely on models describing the system’s possible behaviors in a
mathematical precise and unambiguous manner (Queille and Sifakis, 1981), (Lichtenstein
and Pneuli, 1985), (Clarke et al., 1986). The system models are accompanied by algorithms
that systematically explore all the states of the system model. This provides the basis for a
whole range of verification techniques ranging from an exhaustive exploration (model
checking) to experiments with a restrictive set of scenarios in the model (simulation), or in
reality (testing).

Recently, the verification of MAS has become an attractive field of research. Several
proposals have been put forward for model checking MAS. Some of these proposals use
existing model checkers (for example SPIN and JPF2) by translating some agent
specification languages (for example MABLE and AgentSpeak) to the languages used by
these model checkers (Wooldridge et al., 2002), (Bordini et al., 2003a, 2003b). Other
proposals adapt some model checking techniques (for example bounded and unbounded
model checking) and propose new algorithms for verifying temporal and epistemic
properties of MAS (Penczek and Lomuscio, 2003), (Kacprzak and Penczek, 2004a, 2004b),
(Raimondi and Lomuscio, 2004).

In the domain of agent communication, only some research work tried to address the
verification of agent communication protocols. Endriss and his colleagues (2003) dealt with
the problem of checking and possibly enforcing conformance to agent communication
protocols. Huget and Wooldridge (2004) addressed the problem of checking that agents
correctly implement the semantics of an agent communication language. Walton (2004)
applied model checking techniques in order to verify the correctness of a communication
protocol. Baldoni and his colleagues (2004) tackle some aspects of the conformance
verification, i.e. the verification that a given protocol implementation conforms to its
abstract specification. Giordano and her colleagues (2004) addressed the problem of
specifying and verifying systems of communicating agents in a Dynamic Linear Time
Temporal Logic (DLTL).

Except the work done by (Giordano et al., 2004), all the other work on model checking of
MAS are based only on temporal and epistemic logics. In this chapter, we propose a model
checking-based verification of dialogue game protocols using a temporal and dynamic
logic. These protocols are specified as transition systems using our DCTL*CAN logic
(Dynamic and CTL* logic for Commitment and Argument Network) that we developed in
Chapter 7. In contrast to (Giordano et al., 2004), the dynamic aspect of our logic is
represented by action formulae and not by strengthening the until operator by indexing it

137

with the regular programs of dynamic logic. Our protocols are specified as actions that
agents apply to social commitments (SC) and to SC contents. In addition, the model
checking procedure that we propose allows us to verify not only that the dialogue game
protocol (the theoretical model) satisfies a given property, but also that the tableau
semantics of the communicative acts is respected. The idea is to integrate this semantics in
the specification of the protocol, and then to propose a parsing method to verify that the
protocol specification respects the semantic definition. Consequently, if agents respect these
protocols, then they also respect the semantics of the communicative acts. We have here a
mechanism for checking the agents’ compliance with the semantics without taking into
account the agents’ specifications created by the developers. Indeed, we have only one
procedure to verify: 1) the correctness of the protocols relative to the properties that the
protocols should satisfy; and 2) the conformance of agents to the semantics of the
communicative acts. However, the tableau semantics (the tableau rules) we use in this
chapter describe only the structure of the commitment formulae and not the semantics as
defined in Chapter 7. The purpose of this technique is to verify the temporal properties of
the protocol and to ensure that the structures of the commitments are the same in both the
protocol and the specification. The advantage of verifying the structures of the
commitments is to ensure that all agents participating in a communication share the same
description of the communicative acts. In addition this technique based on the tableau
method can be generalized to also verify the semantic definitions proposed in Chapter 7.
This work goes beyond the objectives of this thesis and will be a priority subject of our
future research.

To our knowledge, until now there is no work that addressed the verification problem of
dialogue game protocols. Indeed, the contributions of this chapter are:

1- A formulation of dialogue game protocols using transition systems. This formulation
enables us to represent not only the allowed communicative acts but also the underlying
tableau semantics.
2- An automata and tableau-based technique to check if a protocol satisfies the
specifications and the structure. These two verifications are done at the same time.

The rest of this chapter is organized as follows. Section 8.2 introduces the model checking
problem and a class of algorithms based on the tableau method to which our procedure
belongs. Section 8.3 presents a tableau semantics of our DCTL*CAN logic. Section 8.4
defines the transition systems that we use to model dialogue game protocols and the
underlying semantics. The problem of verifying these protocols is addressed in Section 8.5.
In this section, we present the Alternating Büchi Tableau Automata, the translation
procedure of temporal and action formulae to this automata, and the model checking
algorithm. Proofs of different properties are also presented in this section. Section 8.6
presents related work and Section 8.7 concludes the chapter.

138

8.2 Model-Checking Overview

8.2.1 Automata-Theoretic Approach

The model-checking problem for a branching temporal logic is as follows: Given a Kripke

structure K and a branching temporal formula ψ, determine if K ψ. The state space of a
transition system can be thought of as a Kripke structure. For linear temporal logics, a close
and fruitful connection with the theory of automata on infinite words has been developed
(Vardi and Wolper, 1986), (Courcoubetis et al., 1992). The basic idea is to associate with
each linear temporal logic formula a finite automaton on infinite words that accepts exactly
all the computations that satisfy the formula. For these logics, each Kripke structure may
correspond to infinitely many computations. Model checking is thus reduced to check
inclusion between the set of computations allowed by the Kripke structure and the language
of an automaton describing the formula (Vardi and Wolper, 1986). For branching temporal
logics, each Kripke structure corresponds to a single non-deterministic computation. On that
account, model checking is reduced to check the membership of this computation to the
language of the automaton describing the formula (Wolper, 1989). For these logics, the
automata-theoretic counterpart is automata on infinite trees. By reducing the satisfiability to
the non-emptiness problem for these automata6, optimal decision procedures have been
obtained for various branching temporal logics (Emerson and Lei, 1986), (Vardi and
Wolper, 1986), (Emerson and Sistla, 1984), (Courcoubetis et al., 1992).

Bernholtz, Vardi, and Wolper (1994) argued that alternating tree automata are the key to a
comprehensive and satisfactory automata-theoretic framework for branching temporal
logics. Alternating tree automata on infinite trees generalize the standard notion of non-
deterministic tree automata by allowing several successor states to go down along the same
branch of the tree (Muller and Schupp, 1987). Tree automata generalize sequential automata
in the following way: on a given binary tree, the automaton starts its computation at the root
in an initial state and then simultaneously works down the paths of the tree level by level.
The transition relation specifies the two states that are the two sons of a node. The tree
automaton accepts the tree if there is a run built up in this fashion which is successful. A run
is successful if all its paths are successful in a sense given by an acceptance condition for
sequential automata.

It is known that while the translation from branching temporal logic formulae to non-
deterministic tree automata is exponential, the translation to alternating tree automata is
linear (Muller et al., 1988). This explains the efficiency of model checking for these logics.
Thus, alternating tree automata provide a unifying and optimal framework for both
satisfiability and model-checking problems for branching temporal logics.

6 The non-emptiness problem for automata is to decide, given an automaton A, whether its language L(A) is

non-empty. The language L(A) is the set of words accepted by A.

139

The model checking approach that we use for our logic is based on an alternative view of
model checking proposed by Bhat and Cleaveland (1996, 2001). This view relies on
translating formulae into intermediate structures, Alternating Büchi Tableau Automata
(ABTA). Unlike the other model checking techniques, this technique allows us to verify not
only temporal formulae, but also action formulae. Because our logic is based on an action
theory, this technique is more suitable. This approach is a tableau-based model checking.
The following section introduces this approach.

8.2.2 Tableau-based Algorithms for Model-Checking

Tableau-based algorithms are based on the use of assertions and proof rules. Assertions are

typically of the form s M φ and mean that state s in model M satisfies the formula φ. Using
a set of proof rules we aim to prove the truth or falsity of assertions. But unlike traditional
proof systems which are bottom-up approaches, tableau-based algorithms work in a top-

down or goal-oriented fashion. Proof rules are used in order to prove a certain formula by
inferring when a state in a Kripke structure satisfies such a formula. According to this
approach, we start from a goal, and we apply a proof rule and determine the sub-goals to be
proven. The proof rules are designed so that the goal is true if all the sub-goals are true. The
advantage of this method is that the state space is explored in a need-driven fashion. The
algorithm searches only the part of the state space that needs to be explored to prove or
disprove a certain formula. The state space is constructed while the algorithm runs. This
kind of algorithms, also referred to on-the-fly or local algorithms, have been found to be
useful in practice since in many cases only a small part of the state space needs to be
explored to prove a formula (Cleaveland, 1990), (Stirling and Walker, 1991), (Bhat and
Cleaveland, 2001).

The tableau-based algorithms proposed in (Cleaveland, 1990), (Stirling and Walker, 1991)
have exponential time and space complexity. The exponential penalty incurred by these
algorithms is mainly due to the fact that these algorithms work by constructing proof trees.
Like (Bhat, 1998), the algorithm that we use for our DCTL*CAN logic avoids this
exponential penalty by using graphs instead of trees to represent proofs.

The tableau decision algorithm that we use provides a systematic search for a model which
satisfies a particular formula of our logic. It is a graph construction algorithm. Nodes of the
graph are sets of DCTL*CAN formulae and tableau rule names. Tableau rules are inference
rules designed so that the formula is true if all the sub-formulae are true. The main
difference between proof rules and tableau rules is that proof rules work on assertions, while
tableau rules work on logical formulae. The difference between assertions and logical
formulae is that logical formulae are written without taking into account the states of the
model. The interpretation of vertex labeling is that for the vertex to be satisfied, it must be
possible to satisfy all the formulae in the set together. Each edge in the graph represents a
satisfaction step of the formula contained in the starting vertex. These steps correspond to
the application of a set of tableau rules. These rules express how the satisfaction of a
particular formula (the goal) can be obtained by the satisfaction of its constituent formulae
(sub-goals).

140

8.3 Tableau rules for DCTL*CAN

The semantics we use here is a tableau semantics (Cleaveland, 1990) that we can consider
as a simplification of the semantics that we defined in Chapter 7. This semantics is specified
in terms of the decomposition of formulae to sub-formulae using a set of tableau rules.
These rules are given in Figures 8.1, 8.2, 8.3 and 8.4. For simplification reasons, we use in
this chapter a simplified version of DCTL*CAN that is sufficient for the specification of
dialogue game protocols. For example we consider only propositional and action
commitments, and we do not consider formulae of commitment states and formulae of
contradiction of commitment contents. In addition, to simplify the Challenge-content
formula, we introduce a syntactical operator ?. Syntactically, ?ψ means that, a given agent

does not know whether ψ is true or not.

1R
ψψ
ψψ

21

21:
∧

∧ 2R
ψψ
ψψ

21

21:
∨

∨ 3R
ψ
ψE)(

:∨ 4R
ψ
ψ¬

¬ : 5R
ψ
ψ?

:?

6R
)Φ(

)Φ(
:

¬
¬

E

A

Figure 8.1. Tableau rules for propositional and universal formulas

Figure 8.1. Tableau rules for propositional and universal formulas

The tableau semantics enables us to define top-down proof systems. The idea is: given a
formula, we apply a tableau rule and determine the sub-formulae to be proven. Tableau
rules are inference rules used in order to prove a formula by proving all the sub-formulae.
The labels of these rules are the labels of states in the automata constructed from a given

formula. For example, rule R1 of Figure 8.1 labeled by "∧" indicates that ψ1 and ψ2 are the

two sub-formulae of ψ1 ∧ ψ2. This means that, in order to prove that a state labeled by "∧"

satisfies the formula ψ1 ∧ ψ2, we have to prove that the two children of this state satisfy ψ1

and ψ2 respectively. This idea will be detailed in Section 8.5.1 when we will define the
alternating Büchi tableau automata. According to rule R2, in order to prove that a state

labeled by "∨" satisfies the formula ψ1 ∨ ψ2, we have to prove that one of the two children

of this state satisfies ψ1 or ψ2. Rule R3 labeled by "∨" indicates that ψ is the sub-formula to

be proved in order to prove that a state satisfies E(ψ). According to rule R4 (resp. R5), the

formula ¬ψ (resp. ?ψ) is satisfied in a state labeled by "¬" (resp. ?), if this state has a

successor representing ψ. Rule R6 is defined in the usual way where Φ is a set of path
formulae.

The label "<αφ>" (rule R7 of Figure 8.2) is the label associated with the action α whose

performance makes the proposition φ true (see Chapter 7). According to this rule, in order to

prove that a state labeled by "<αφ>" satisfies Perform(α)φ, we have to prove that an

accessible state via a transition labeled by Perform(α) satisfies φ. Rule R8 is defined using
the same idea. The label "<C>" (rule R9) is the label associated with the creation action of a
social commitment SC. According to this rule, in order to prove that a state satisfies

Create(Ag1, SC(Ag1, Ag2, t, φ)), we have to prove that an accessible state via a transition

141

labeled by the creation action satisfies the sub-formula SC(Ag1, Ag2, t, φ). The rules R10 to
R21 are defined in the same way.

(, ())
7 :

(,)

E Perform
R

E
φ

α φ
α

φ
Φ

< >
Φ

 1 2

1 2

(, () (, , ,))
8 :

(, (, , ,))
SC

E Perform SC tAg Ag
R

E SC tAg Ag

α φ
α

φ
Φ

< >
Φ

1 1 2

1 2

(, (, (, , ,)))
9 :

(, (, , ,))

E Create SC tAg Ag Ag
R C

E SC tAg Ag

φ
φ

Φ
< >

Φ

1 1 2

1 2

(, (, (, , ,)))
10 :

(, (, , ,))

E Withdraw SC tAg Ag Ag
R W

E SC tAg Ag

φ
φ

Φ
< >

Φ ¬

1 1 1 2(, (, (, , ,)))
11 :

(,)

Ag
PC

E Satisfy PC tAg Ag Ag
R S

E

φ
φ

Φ
< >

Φ

1 1 1 2(, (, (, , , (,)))
12 :

(, ())

Ag
AC

E Satisfy AC tAg Ag Ag
R S

E Perform

α φ
α φ

Φ
< >

Φ

1 1 1 2(, (, (, , ,)))
13 :

(,)

Ag
PC

E Violate PC tAg Ag Ag
R V

E

φ
φ

Φ
< >

Φ ¬

1 1 1 2(, (, (, , , (,))))
14 :

(, ())

Ag
AC

E Violate AC tAg Ag Ag
R V

E Perform

α φ
α φ

Φ
< >

Φ ¬

1 1 2

1 2

(, (, (, , ,)))
15 :

(, (, , ,))

E Reactivate SC tAg Ag Ag
R Rea

E SC tAg Ag

φ
φ

Φ
< >

Φ

2 1 2

2 1

(, (, (, , ,)))
16 :

(, (, , ',?))

E Challenge content PC tAg Ag Ag
R Ch

E PC tAg Ag

φ
φ

Φ
< >

Φ
–

2 1 2

2 1

(, (, (, , ,)))
17 :

(, (, , ',))

E Accept content SC tAg Ag Ag
R Acc

E SC tAg Ag

φ
φ

Φ
< >

Φ
–

2 1 2

2 1

(, (, (, , ,)))
18 :

(, (, , ',))

E Refuse – content SC tAg Ag Ag
R Ref

E SC tAg Ag

φ
φ

Φ
< >

Φ ¬

1 1 2

1 2

(, (, (, , ,), '))
19 :

(, (, , ', '))

E Justify content PC tAg Ag Ag
R Jus

E PC tAg Ag

φ φ
φ φ

Φ
< >

Φ ∴
–

2 1 2

2 1

(, (, (, , ,), '))
20 :

(, (, , ', '))

E Attack content PC tAg Ag Ag
R Att

E PC tAg Ag

φ φ
φ φ

Φ
< >

Φ ∴¬
–

1 1 2

1 2

(, (, (, , ,), '))
21 :

(, (, , ', '))

E Defend content PC tAg Ag Ag
R Def

E PC tAg Ag

φ φ
φ φ

Φ
< >

Φ ∴
–

Figure 8.2. Tableau rules for action formulas

Figure 8.2. Tableau rules for action formulas

22R 1 2
1

(, (, , ,))
[] :

(,)
Ag

E PC tAg Ag
PC

E

φ
φ

Φ
Φ

23R 1 2
1

(, (, , , (,)))
[] :

(, ())
Ag

E AC tAg Ag
AC

E Perform

α φ
α φ

Φ
Φ

Figure 8.3. Tableau rules for commitment formulas

Figure 8.3. Tableau rules for commitment formulas

142

24R
)Φ(,

),Φ(
:

El

lE
<≡> 25R

),,Φ(
),Φ(

:
21

21

φφE

φφE ∧
∧

26R
),Φ(),Φ(

),Φ(
:

21

21

φEφE

φφE ∨
∨ 27R

),Φ(
)?,Φ(

:?
ψE

ψE

28R
),...,,Φ(

),...,,Φ(
:

1

1

φφE

φXφXE
X

n

n

−−
− 29R

),...,,Φ(
),...,,Φ(

:
1

1

φφE

φXφXE
X

n

n

++
+

30R
)(,,Φ(

),Φ(
:

211

21

φφXφE

φφE

∨¬
∴

∧
+

31R
))(,,Φ(),Φ(

),Φ(
:

2112

21

φUφXφEφE

φUφE
−−

−

∨ 32R
))(,,Φ(),Φ(

),Φ(
:

2112

21

φUφXφEφE

φUφE
++

+

∨

Figure 8.4. Tableau rules for state formulas

Figure8.4. Tableau rules for state formulas

Rule R22 of Figure 8.3 indicates that E(φ) is the sub-formula of the formula

E(PC(Ag1, Ag2, t, φ)). Thus, in order to prove that a state satisfies E(PC(Ag1, Ag2, t, φ)), we

have to prove that the accessible state via a transition labeled by "[PCAg1]" satisfies E(φ). In
the same way, we define the rule R23.

Finally, the rules R24 to R32 of Figure 8.4 are defined in the usual way. For example,

according to rule R29, in order to prove that a state satisfies E(X+ϕ), we have to prove that

the next state via the transition labeled by "X+" satisfies the sub-formula E(ϕ).

8.4 Dialogue Game Protocols as Transition Systems

8.4.1 Specification

In this section we define the theoretical model of our model checking procedure. This model
specifies the dialogue game protocols. These protocols are specified as a set of rules
describing the entry condition, the dynamics and the exit condition of the protocol
(Bentahar et al., 2004a) (this aspect will be detailed in Chapter 9). These rules can be
specified in our logic as action formulae (actions on SC, actions on SC contents and
argumentation relations). We define these protocols as transition systems. The purpose of
these transition systems is to describe not only the sequence of the allowed actions (classical
transition systems), but also the semantics of these actions and the semantics of the different
elements used in our commitment and argument-based approach. The states of these
transition systems are sub-transition systems (called semantic transition systems) describing
the semantics of the actions labeling the entry transitions. Defining transition systems in
such a way allows us to verify:
1- The correctness of the protocol (if the model of the protocol satisfies the properties that
the protocol should specify).
2- The compliance to the semantics of the communicative actions (if the specification of the
protocol respects the semantics).

143

In this chapter, we propose a model checking procedure in order to verify both (1) and (2) at
the same time.

The definition of the transition system of dialogue game protocols is given by the following
definitions:

Definition 8.1 A semantic transition system T’ describing the semantics of an action

formula is a 6-tuple <S’, Lab’, F, Ls’, R, →, s’0> where:
S’ is a set of states,

Lab’ : S’ → 2Φp is the labeling state function, where Φp is the set of atomic propositions,

F is a sub-set of the set of formulae from DCTL*CAN (F does not include the action formulae

i.e. Create, Satisfy, Accept-content, etc.),

Ls’ : S’ → F is a function associating to each state a formula from DCTL*CAN,

R ∈ {∧, ∨, ¬, ?, <≡>, X+, X-, PCAg, ACAg} is the set of tableau rule labels (without the rules

for action formulae),

→ ⊆ S’ × R × S’ is the transition relation,

s’0 is the start state.

Intuitively, states s’ contain the sub-formulae of the action formulae, and the transitions are
labeled by operators associated with the formula of the starting state. Semantic transition
systems enable us to describe the semantics of formulae by sub-formulae connected by
logical operators. Thus, there is a transition between states s’i and s’j iff L’(s’j) is a sub-
formula or an semantically equivalent formula of L’(s’i). Following traditional usage we

write s →r s’ instead of <s, r, s’> ∈ → where s, s’ ∈ S’ and r ∈ R.

Definition 8.2 A transition system T for a dialogue game protocol is a 6-tuple

<S, Lab, ℘, L, Act, →, s0> where:
S is a set of states,

Lab : S → 2Φp is the labeling state function, where Φp is the set of atomic propositions,

℘ is a set of semantic transition systems with ε ∈ ℘ is the empty semantic transition

system,

L : S → ℘ is the function associating to a state s ∈ S a semantic transition system T’ ∈ ℘

describing the semantics of the action labeling the entry transition,

Act ∈ {Create, Withdraw, Satisfy, Accept-content, Refuse-content, Challenge-content,
Justify-content, Defend-content, Attack-content} is the set of actions,

→ ⊆ S × Act × S is the transition relation,

s0 is the start state with L(s0) = ε (i.e. there is no semantic transition system in s0).

The transitions are labeled by the actions applied to SC and to SC contents and the

argumentation actions. We write s → s’ instead of <s, •, s’> ∈ → where s, s’ ∈ S and

• ∈ Act. Figure 8.5 illustrates a part of a transition system for a dialogue game protocol.

144

s2 s3s1
a1 a2 a3

S1.0 S1.1

SCAg 1

s1

S2.0 S2.1 S2.2

s2
SCAg 2 ?

S3.0 S3.3S3.2S3.1

s3
SCAg1 ∧

S3.4
<≡> X

+

a1

Figure 8.5. A part of a transition system for a dialogue game protocol

a1: Create(Ag1, PC(Ag1, Ag2, t0, φ))

a2: Challenge-content(Ag2, PC(Ag1, Ag2, t1, φ))

a3: Justif-content(Ag1, PC(Ag1, Ag2, t2, φ), φ’)

 s1.0: PC(Ag1, Ag2, t0, φ))

s1.1: φ

 s2.0: PC(Ag2, Ag1, t1, ?φ))

s2.1: ?φ

s2.2: φ

s3.0: PC(Ag1, Ag2, t2, φ’ ∴ φ))

s3.1: φ' ∴ φ

s3.2: φ' ∧ X+(¬φ’ ∨ φ)

s3.3: φ'

s3.4: ¬φ’ ∨ φ

Figure 8.5. A part of a transition system for a dialogue game protocol

8.4.2 Logical Properties

The properties to be verified in the dialogue game protocols specified by DCTL*CAN are
action and temporal properties. For example, we can verify if a model of dialogue game
protocol satisfies the following property:

AG+
(Challenge-content(Ag2, PC(Ag1, Ag2, t, φ)) ⇒

F+
Justify-content(Ag1, PC(Ag1, Ag2, t, φ)))

This property indicates that if an agent Ag2 challenges the content of an Ag1’s propositional
commitment (PC), then Ag1 will justify this content.

Another property capturing the deontic notion of SC is given by the following formula:

AG+
(Attack-content(Ag2, PC(Ag1, Ag2, t, φ), φ’)) ⇒

 (F+
Defend-content(Ag1, PC(Ag1, Ag2, t, φ))

∨ F+
Attack-content(Ag1, PC(Ag2, Ag1, t’, φ’)))

∨ F+
Accept-content(Ag1, PC(Ag2, Ag1, t’, φ’)))

Thus, we can verify if a model of a dialogue game protocol satisfies the fact that if an agent
Ag2 attacks the content of an agent Ag1’s propositional commitment PC, then Ag1 will
defend its propositional commitment content, attack the Ag2’s argument or accept it.

8.5 Verification of Dialogue Game Protocols

In this section, we use a combination of an automata-theoretic approach and a tableau-based
approach to model-checking for our commitment and argument logic.

145

8.5.1 Alternating Büchi Tableau Automata for DCTL*CAN

As a kind of Büchi automata, ABTAs (Bhat, 1998), (Bhat and Cleaveland, 2001) are used in
order to prove properties of infinite behavior. These automata can be used as an
intermediate representation for system properties. Let £ be the set of atomic propositions

and let ℜ be a set of tableau rule labels defined as follows:

ℜ = {∧, ∨, ¬, ?} ∪ ℜAct ∪ ℜ¬Act ∪ ℜSC ∪ ℜSet where ℜAct, ℜSC and ℜSet are defined as
follows:

ℜAct = {<αϕ>, <αSC>, <C>, <W>, < S
Ag
PC >, < S

Ag
AC >, <V

Ag
PC >, <V

Ag
AC >, <Rea>, <Ch>, <Acc>,

<Ref>, <Jus>, <Att>, <Def>}.

ℜSC = {[PCAg], [ACAg]}.

ℜSet = {<≡>, X+, X−}.
The associated tableau rules are given in Figures 8.1, 8.2, 8.3 and 8.4.

Formally, we define ABTAs for our DCTL*CAN logic as follows:

Definition 8.3 An ABTA for DCTL*CAN is a 5-tuple <Q, l, →, q0, F >, where:

Q is a finite set of states,

l: Q → £ ∪ ℜ is the state labeling,

→ ⊆ Q × Q is the transition relation,

q0 is the start state,

F ⊆ 2Q is the acceptance condition.

ABTAs allow us to encode “top-down proofs” for temporal formulae. Indeed, an ABTA
encodes a proof schema in order to prove, in a goal-directed manner, that a transition system
satisfies a temporal formula. Let us consider the following example. We would like to prove

that a state s in a transition system satisfies a temporal formula of the form F1 ∧ F2, where
F1 and F2 are two formulae. Regardless of the structure of the system, there would be two
sub-goals if we want to prove this in a top-down, goal-directed manner. The first would be
to prove that s satisfies F1, and the second would be to prove that s satisfies F2. Intuitively,

an ABTA for F1 ∧ F2 would encode this "proof structure" using states for the formulae F1

∧ F2, F1, and F2. A transition from F1 ∧ F2 to each of F1 and F2 should be added to the

ABTA and the labeling of the state for F1 ∧ F2 being "∧" which is the label of a certain
rule. Indeed, in an ABTA, we can consider that: 1) states correspond to "formulae", 2) the
labeling of a state is the "logical operator" used to construct the formula, and 3) the
transition relation represents a "sub-goal" relationship.

In order to decide about the satisfaction of formulae, we use the notion of the accepting runs
of an ABTA on a transition system. These runs are not considered to be finite, but rather
infinite, while cycling infinitely many times through acceptance states. In order to define
this notion of the ABTA’s run, we need to introduce three types of nodes: positive, negative
and neutral (neither positive nor negative). Intuitively, nodes classified positive are nodes

that correspond to a formula without negation (for example Create(Ag1, PC(Ag1, Ag2, t, φ))),
and negative nodes are nodes that correspond to a formula with negation (for example

¬Justify-content(Ag1, PC(Ag1, Ag2, t, φ))). Neutral nodes are used in order to verify the

146

semantics of an action formula (act ∈ Act) written in the formula to be verified under the

form ¬act. From the syntax point of view, ¬act means that the action act is not performed.
For example, if in the formula to be verified appears the sub-formula:

"¬Justify-content(Ag1, PC(Ag1, Ag2, t, φ), φ’)",
we use in the ABTA neutral nodes in order to verify the semantics of:

"Justify-content(Ag1, PC(Ag1, Ag2, t, φ), φ’)".
The reason is that in transition systems, and consequently in the sub-transition systems, we
have only action formulae without negation, whereas in the formula to be verified, we can
have action formulae with negation. We note that we can not use here negative nodes
because we do not interested in the formula in itself (i.e. in the example

"¬Justify-content(Ag1, PC(Ag1, Ag2, t, φ), φ’)") but in the semantics of the underlying action

(i.e. "Justify-content(Ag1, PC(Ag1, Ag2, t, φ), φ’)"). In other words, we are not interested in
the semantics of the negation action, but in the semantics of the action itself. Section 8.5.5
presents an example (Example 2) illustrating this case. We note here that in order to verify

that an action formula ¬act is satisfied, we have to verify that from a given state there is no
transition in the transition system labeled by act. Definition 8.4 gives the definition of this
notion of run. In this definition, elements of the set S of states are denoted si or ti. The
explanation of the different closes is given after the definition and a detailed example of this
notion of run is given in Figure 8.11 at the end of this chapter.

Definition 8.4 A run of an ABTA B = <Q, l, →, qo, F> on a transition system

T = <S, Lab, ℘, L, Act, →, s0> is a graph in which the nodes are classified as positive,

negative or neutral and are labeled by elements of Q × S as follows:

1. The root of the graph is a positive node and is labeled by <q0, s0> .

2. If ϕ is a positive node with label <q, si> such that l(q) = ¬ and q → q’, then ϕ has one

negative successor labeled <q’, si> and vice versa.

• Otherwise, for a positive node ϕ labeled by <q, si>:

3. If l(q) ∈ £ then ϕ is a leaf.

4. If l(q) ∈ {∧, <≡>} and {q’ | q → q’} = {q1, …, qm}, then ϕ has positive successors

ϕ1, …, ϕm with ϕj labeled by <qj, si> (1 ≤ j ≤ m).

5. If l(q) = ∨ then ϕ has one positive successor ϕ’ labeled by <q’, si> for some

q’ ∈ {q’ | q → q’ }.

6. If l(q) = X+ and q → q’ and {s’| si →• s’} = {t1, …, tm} where • ∈ Act, then ϕ has

positive successors ϕ1, …, ϕm with ϕj labeled by <q’, tj> (1 ≤ j ≤ m).

7. If l(q) = X− and q → q’ and {s’| s’ →• si} = {t1, …, tm} where • ∈ Act, then ϕ has

positive successors ϕ1, …, ϕm with ϕj labeled by <q’, tj> (1 ≤ j ≤ m).

8. If l(q) = <•> where • ∈ Act and q → q’, and si →• si+1 then ϕ has one positive

successor ϕ’ labeled by <q’, si+1,0> where si+1,0 is the initial state of the semantic

transition system of si+1.

9. If l(q) = <•> where • ∈ ¬Act and q → q’, and si →¬• si+1 then ϕ has one neutral

successor ϕ’ labeled by <q’, si+1,0> where si+1,0 is the initial state of the semantic

transition system of si+1.

10. If l(q) = <•> where • ∈ ¬Act and q → q’, and si →•’ si+1 where • ≠ •’ and •’ ∈ Act,

then ϕ has one positive successor ϕ’ labeled by <q’, si+1>.

147

• Otherwise, for a negative node ϕ labeled by <q, si>:

11. If l(q) ∈ £ then ϕ is a leaf.

12. If l(q) ∈ {∨, <≡>} and {q’ | q → q’} = {q1, …, qm}, then ϕ has negative successors

ϕ1, …, ϕm with ϕj labeled by <qj, si> (1 ≤ j ≤ m).

13. If l(q) = ∧ then ϕ has one negative successor ϕ’ labeled by <q’, si> for some

q’ ∈ {q’ | q → q’ }.

14. If l(q) = X+
 and q → q’ and {s’| si →• s’} = {t1, …, tm} where • ∈ Act, then ϕ has

negative successors ϕ1, …, ϕm with ϕj labeled by <q’, tj> (1 ≤ j ≤ m).

15. If l(q) = X− and q → q’ and {s’| s’ →• si} = {t1, …, tm} where • ∈ Act, then ϕ has

negative successors ϕ1, …, ϕm with ϕj labeled by <q’, tj> (1 ≤ j ≤ m).

16. If l(q) = <•> where • ∈ Act and q → q’, and si →• si+1 then ϕ has one negative

successor ϕ’ labeled by <q’, si+1,0> where si+1,0 is the initial state of the semantic

transition system of si+1.

17. If l(q) = <•> where • ∈ ¬Act and q → q’, and si →¬• si+1 then ϕ has one neutral

successor ϕ’ labeled by <q’, si+1,0> where si+1,0 is the initial state of the semantic

transition system of si+1.

18. If l(q) = <•> where • ∈ ¬Act and q → q’, and si →•’ si+1 where • ≠ •’ and •’ ∈ Act,

then ϕ has one negative successor ϕ’ labeled by <q’, si+1>.

• Otherwise, for a neutral node ϕ labeled by <q, si,j>:

19. If l(q) = <≡> and {q’ | q → q’} = {q1, q2} such that q1 is a leaf, and si,j has a

successor si,j+1, then ϕ has one positive leaf successor ϕ’ labeled by <q1, si,j> and

one neutral successor ϕ’’ labeled by <q2, si, j+1>.

20. If l(q) = <≡> and {q’ | q → q’} = {q1, q2} such that q1 is a leaf, and si,j has no

successor, then ϕ has one positive leaf successor labeled by <q1, si,j>.

• Otherwise, for a positive (negative) node ϕ labeled by <q, si,j>:

21. If l(q) = <≡> and {q’ | q → q’} = {q1, q2} such that q1 is a leaf, and si,j has a

successor si,j+1, then ϕ has one positive leaf successorϕ’ labeled by <q1, si,j> and one

positive (negative) successor ϕ’’ labeled by <q2, si, j+1>.

22. If l(q) = <≡> and {q’ | q → q’} = {q1, q2} such that q1 is a leaf, and si,j has no

successor, then ϕ has one positive leaf successorϕ’ labeled by <q1, si,j> and one

positive (negative) successor ϕ’’ labeled by <q2, si>.

• Otherwise, for a positive (negative, neutral) node ϕ labeled by <q, si,j>:

23. If l(q) ∈ {∧, ∨, ?, X+, X−, [SCAg]} where SC ∈ {PC, AC} and {q’ | q → q’} = {q1},

and si,j →r si,j+1 such that r = l(q), then ϕ has one positive (negative, neutral)

successor ϕ’ labeled by <q1, si,j+1>.

The notion of run of an ABTA on a transition system is a non-synchronized product graph
of the ABTA and the transition system. This run uses the label of nodes in the ABTA (l(q)),

the transitions in the ABTA (q → q’), and the transitions in the transition system (si → sj).
The product is not synchronized in the sense that it is possible to use transitions in the
ABTA while staying in the same state in the transition system (this is the case for example
of the closes 2, 4, and 5).

148

The second close in the definition says that if we have a positive node ϕ in the product

graph such that the corresponding state in the ABTA is labelled with ¬ and we have a

transition q → q’ in this ABTA, then ϕ has one negative successor labelled with <q’, si>. In
this case we use a transition from the ABTA and we stay in the same state of the transition
system. In the case of a positive node and if the current state of the ABTA is labelled with

∧, all the transitions of this current state of the ABTA are used (close 4). However, if the

current state of the ABTA is labelled with ∨, only one arbitrary transition from the ABTA is

used (close 5). The intuitive idea is that in the case of ∧, all the sub-formulae must be true in

order to decide about the formula of the current node of the ABTA, and in the case of ∨
only one sub-formula must be true.

The cases in which a transition of the transition system is used are:
1. The current node of the ABTA is labelled with X+ (which means a next state in the

transition system) or X− (which means a previous state in the transition system). This is the
case of the closes 6, 7, 14, and 15. In this case we use all the transitions from the current
state si to next or previous states of the transition system.
2. The current state of the ABTA and a transition from the current state of the transition
system are labelled with the same action. This is the case of the closes 8 and 16. In this case,
the current transition of the ABTA and the transition from the current state si of the
transition system to a state si+1, 0 of the associated semantic transition system are used. The
idea is to start the parsing of the formula coded in the semantic transition system.
3. The current state of the ABTA and a transition from the current state of the transition

system are labelled with the same action which is preceded by ¬ in the ABTA. This is the
case of the closes 9 and 17. In this case, the current transition of the ABTA and the
transition from the current state si of the transition system to a state si+1, 0 of the associated
semantic transition system are used. The successor node is classified neutral. This allows us
to verify the structure of the formula coded in the transition system.
4. The current state of the ABTA and a transition from the current state of the transition
system are labelled with different actions where the state of the ABTA is labelled with a
negative formula. This is the case of the closes 10 and 18. In this case, the formula is
satisfied, but its structure cannot be verified. Consequently, the current transition of the
ABTA and the transition from the current state si of the transition system to a next state si+1
are used. This means that, we do not visit the associated semantic transition system.

Finally, the closes 19, 20, 21, 22, and 23 deal with the case of verifying the structure of the
commitment formulae in the sub-transition systems. In these closes, transitions

si, j → si, j + 1 are used. We note here that when si,j has no successor, the formula contained in
this state is an atomic formula or a boolean formula whose all the sub-formulae are atomic

(for example p ∧ q where p and q are atomic).

We also need to define the notion of success of a run for the correctness of the model
checking. To define this notion, we first introduce the following terminology:

In an ABTA, every infinite path has a suffix that contains either positive or negative nodes,
but not both. Such a path is referred to as positive in the former case and negative in the
latter.

149

Let p p∈ Φ and let si be a state in a transition system T. Then Ti ps iff ()ip Lab s∈ and

Ti ps ¬ iff ().ip Lab s∉

Let si, j be a state in a semantic transition system of a transition system T. Then , Ti j ps

iff ,'()i jp Lab s∈ and , Ti j ps ¬ iff ,'().i jp Lab s∉

Definition 8.5 Let r be a run of ABTA B = <Q, l, →, q0, F> on a transition system

T = <S, Lab, ℘, L, Act, →, s0>. The run r is successful iff every leaf and every infinite path

in r is successful. A successful leaf is defined as follows:

1- A positive leaf labeled by <q, si> is successful iff si T l(q) or l(q) = <•> where • ∈ Act

and there is no sj such that si →• sj.
2- A positive leaf labeled by <q, si, j> is successful iff si, j T l(q)

3- A negative leaf labeled by <q, si> is successful iff si T ¬l(q) or l(q) = <•> where • ∈ Act

and there is no sj such that si →• sj.

4- A negative leaf labeled by <q, si, j> is successful iff si, j T ¬l(q)
5- All neutral leaves are not successful.

A successful infinite path is defined as follows:

1- A positive path is successful iff ∀f ∈ F, ∃q ∈ f such that q occurs infinitely often in the

path. This condition is called the Büchi condition.

2- A negative path is successful iff ∃f ∈ F, ∀q ∈ f, q does not occur infinitely often in the

path. This condition is called the co-Büchi condition.

We note here that a positive or negative leaf labeled by <q, s> such that l(q) = <•> where

• ∈ Act and there is no s’ such that s →• s’ is considered a successful leaf because we can

not consider it unsuccessful. The reason is that it is possible to find a transition labeled by •
and starting from another state s’’ in the transition system. This is the case of the leaf
labeled by (<Ch>, s0) in the Example 2, Section 8.5.5 (see Figure 8.11, Section 8.5.6). If we
consider such a leaf unsuccessful, then even if we find a successful infinite path, the run
will be considered unsuccessful. However this is false.

An ABTA B accepts a transition system T iff there exists a successful run of B on T.

8.5.2 Translating DCTL*CAN into ABTA

The procedure for translating a DCTL*CAN formula p = Eφ to an ABTA B uses goal-
directed rules in order to build a tableau from this formula. Indeed, these proof rules are
conducted in a top-down fashion in order to determine whether states satisfy properties or
not. The tableau is constructed by exhaustively applying the rules contained in Figures 8.1,
8.2, 8.3 and 8.4 to p. Then, B can be extracted from this tableau as follows. First, we
generate the states and the transitions. Intuitively, states will correspond to state formulae,
with the start state being p. To generate new states from an existing state for a formula p’,
we determine which rule is applicable to p’, starting with R1, by comparing the form of p’
to the formula appearing in the “goal position” of each rule. Let rule(q) denote the rule
applied at node q. The labeling function l of states is defined as follows. If q does not have

150

any successor, then l(q) ∈ £. Otherwise, the successors of q are given by rule(q). The label
of the rule becomes the label of the state q, and the sub-goals of the rule are then added as
states related to q by transitions.

A tableau for a DCTL*CAN formula p is a maximal proof tree having p as its root and
constructed using R1-R32. If p’ results from the application of a rule to p, then we say that
p’ is a child of p in the tableau. The height of a tableau is defined as the length of the
longest sequence <p0, p1, …>, where pi+1 is the child of pi (Cleaveland, 1990). Finally, in
order to compute the successful run of the generating ABTA, we should compute the
acceptance states F. For this purpose we use the following definition.

Definition 8.6 Let q be a state in an ABTA B and Q the set of all states. Suppose

φ = φ1 U
+ φ2 ∈ q7. We define the set Fφ as follows:

Fφ = {q’∈ Q | (φ ∉ q’ and X+φ ∉ q’) or φ2 ∈ q’}.
The acceptance set F is defined as follows:

F = {Fφ | φ = φ1 U
+ φ2 and ∃q ∈ B, φ ∈ q}.

According to this definition, a state that contains the formula φ or the formula X+φ is not an
acceptance state. The reason is that according to Definition 8.4, there is a transition from a

state containing φ to a state containing X+φ and vice versa. Therefore, according to
Definition 8.5, there is a successful run in the ABTA B. However, we can not decide about
the satisfaction of a formula using this run. The reason is that in an infinite cycle including a

state containing φ and a state containing X+φ, we can not be sure that a state containing φ2 is

reachable. However, according to the semantics of U+, the satisfaction of φ needs that a state

containing φ2 is reachable while passing by states containing φ1.

8.5.3 Termination

In this section we prove the termination of the translation procedure. Since
this procedure is based on tableau rules, we need to prove the finiteness
of the tableau. The methodology that we follow is inspired by (Cleaveland, 1990), (Adi et
al., 2003).

If σ2 is a DCTL*CAN formula resulting from the application of a rule to a DCTL*CAN

formula σ1, then we say that σ2 is a child of σ1 in the tableau and σ1 is the parent of σ2. The
height of a tableau (Cleaveland, 1990) is defined as the length of the longest sequence

<σ0, σ1, …>, where σi is the parent of σi+1. To prove the finiteness of a tableau, we will
establish that each formula has a maximum height tableau.

Intuitively, to show the finiteness of the tableau, we will define a strict ordering relation ≺

between DCTL*CAN formulae and then show that:

1- if σ1 is the parent of σ2 , then σ1 ≺ σ2.

7 Here we consider the until formula because is the formula that allows paths to be infinite.

151

2- the strict ordering relation ≺ has no infinite ascending chains.

The ordering relation ≺ should reflect the fact that applying tableau rules results in shorter

formulae or recursive formulae. The idea is to prove that the number of nodes of the ABTA
is finite. Therefore, the definition of this ordering is based either on the fact that formulae
are recursive or on the length of formulae. We notice that in the case of recursive formulae,
we obtain cycles which are infinite paths on a finite number of nodes. The length of a
formula is defined inductively as follows:

Definition 8.7 The length of a formula ψ denoted by |ψ| is the number of variables and

operators in ψ i.e.

|ψ| = 1 if ψ is an atomic formula

|¬ψ| = 1 + |ψ|

|ψ1 ∧ ψ2| = 1+ |ψ1| + |ψ2|

|ψ1 ∨ ψ2| = 1+ |ψ1| + |ψ2|

|?ψ| = 1 + |ψ|

|ψ1 ∴ψ2| = 1+ |ψ1| + |X+(¬ψ1 ∨ ψ2)|

|Xψ| = 1 + |ψ| where X ∈ {X+, X−}

|ψ1 U ψ2| = 1+ |ψ1| + |ψ2| where (U, X) ∈ {(U+, X+), (U−, X−)}

|PC(Ag1, Ag2, t, ψ)| = 1 + |ψ|

|AC(Ag1, Ag2, t, (α)ψ)| = 1 + |ψ|

|Perform(α)ψ| = 1 + |ψ|

|Perform(α)SC(Ag1, Ag2, t, ψ)| = 1 + |SC(Ag1, Ag2, t, ψ)|

|Create(Ag1, SC(Ag1, Ag2, t, ψ))| = 1 + |SC(Ag1, Ag2, t, ψ)|

|Withdraw(Ag1, SC(Ag1, Ag2, t, ψ))| = 1 + |¬SC(Ag1, Ag2, t, ψ)|

|Satisfy(Ag1, PC(Ag1, Ag2, t, ψ))| = 1 + |ψ|

|Satisfy(Ag1, AC(Ag1, Ag2, t, (α, ψ)))| = 1 + |Perform(α)ψ|

|Violate(Ag1, PC(Ag1, Ag2, t, ψ))| = 1 + |¬ψ|

|Violate(Ag1, AC(Ag1, Ag2, t, (α, ψ)))| = 1 + |¬Perform(α)ψ|

|Reactivate(Ag1, SC(Ag1, Ag2, t, ψ))| = 1 + |SC(Ag1, Ag2, t, ψ)|

|Challenge-content(Ag2, PC(Ag1, Ag2, t, ψ))| = 1 + |PC(Ag2, Ag1, t’, ?ψ)|

|Accept-content(Ag2, SC(Ag1, Ag2, t, ψ))| = 1 + |SC(Ag2, Ag1, t’, ψ)|

|Refuse-content(Ag2, SC(Ag1, Ag2, t, ψ))| = 1 + |SC(Ag2, Ag1, t’, ¬ψ)|

|Justify-content(Ag1, PC(Ag1, Ag2, t, ψ), ψ’)| = 1 + |PC(Ag1, Ag2, t’, ψ’ ∴ ψ)|

|Attack-content(Ag2, PC(Ag1, Ag2, t, ψ), ψ’)| = 1 + |PC(Ag2, Ag1, t’, ψ’ ∴ ¬ψ)|

|Defend-content(Ag1, PC(Ag1, Ag2, t, ψ), ψ’)| = 1 + |PC(Ag1, Ag2, t’, ψ’ ∴ ψ)|

The ordering relation ≺ is defined as follows:

Definition 8.8 Let σ1 = E(ψ1) and σ2 = E(ψ2) be two DCTL*CAN formulae. Then, σ1 ≺ σ2

holds if

1- σ1 σ2

152

2- σ1 σ2 and |ψ1| > |ψ2|.

where σ1 σ2 iff Xψ1 appears in ψ2

The first close is used when we have a recursive formula (this means that an until formula).

≺ is irreflexive, asymmetric and transitive. The proof is straightforward from the definition

since > and are strict ordering relations.

In what follows, the notation σ1 →R σ2 means that σ1 is the parent of σ2 using a tableau rule
R. Now, let us prove the following lemma.

Lemma 8.9 Let σ1 = E(ψ1) and σ2 = E(ψ2) be two DCTL*CAN formulae. Then:

σ1 →R σ2 ⇒ σ1 ≺ σ2.

Proof

The proof is based on the analysis of the different cases of our tableau rules. Most cases are
straightforward. Here we only consider rules R7, R9, R30, and R32.

R = R7:

 σ1 →R σ2

 ⇒ σ1 = E(Φ, Perform(α)ψ), σ2 = E(Φ, ψ)

⇒ σ1 ≺ σ2 (from the definition of ≺ (Definition 8.8) and the fact that

|Perform(α)ψ| = 1 + |ψ| > |ψ|)
R = R9:

 σ1 →R σ2

 ⇒ σ1 = E(Φ, Create(Ag1, SC(Ag1, Ag2, t, ψ), σ2 = E(Φ, SC(Ag1, Ag2, t, ψ))

⇒ σ1 ≺ σ2 (from the definition of ≺ and the fact that

|Create(SC(Ag1, Ag2, t, ψ)| = 1 + |SC(Ag1, Ag2, t, ψ)|

> |SC(Ag1, Ag2, t, ψ)|)

R = R30:

 σ1 →R σ2

 ⇒ σ1 = E(Φ, ψ1 ∴ψ2), σ2 = E(Φ, ψ1, X
+(¬ψ1 ∨ ψ2))

⇒ σ1 ≺ σ2 (from the definition of≺ and the fact that

|ψ1 ∴ψ2| = 1+ |ψ1| + |X+(¬ψ1 ∨ ψ2)|

R = R32:

 σ1 →R σ2

 ⇒ σ1 = E(Φ, ψ1 U
+ψ2), σ2 = E(Φ, ψ2) or E(Φ, ψ1, X

+(ψ1 U
+ ψ2))

⇒ σ1 ≺ σ2 (from the definition of ≺ and the fact that σ1 σ2

153

To show that the ordering relation has no infinite ascending chains, we use the notion of

Fischer-Ladner closure of a formula ψ (CL(ψ)) (Emerson et al., 1993). The idea underlying

the definition of this notion is to prove that if a tableau has a root ψ, then all formulae ψ’ of

this tableau have a formula in CL(ψ) (i.e. ψ’ ∈ CL(ψ)). Furthermore, if we prove that CL(ψ)
is a finite set, then we conclude that each formula appearing in a given tableau belongs to a

finite set. This result will be very helpful to prove that the ordering relation ≺ has no infinite

ascending chains.

Definition 8.10 Let ψ be a DCTL*CAN formula. The Fischer-Ladner closure of ψ, CL(ψ) is

the smallest set such that the following hold:

If ψ is an atomic formula then {ψ} ⊆ CL(ψ)

If ψ = ¬ψ1 then CL(ψ1) ⊆ CL(ψ) and {¬ψ1} ⊆ CL(ψ)

If ψ = ψ1 ∧ ψ2 then CL(ψ1) ⊆ CL(ψ) and CL(ψ2) ⊆ CL(ψ) and {ψ1 ∧ ψ2} ⊆ CL(ψ)

If ψ = ψ1 ∨ ψ2 then CL(ψ1) ⊆ CL(ψ) and CL(ψ2) ⊆ CL(ψ) and {ψ1 ∨ ψ2} ⊆ CL(ψ)

If ψ = ?ψ1 then CL(ψ1) ⊆ CL(ψ) and {?ψ1} ⊆ CL(ψ)

If ψ = ψ1 ∴ψ2 then

CL(ψ1) ⊆ CL(ψ) and CL(X+(¬ψ1 ∨ ψ2)) ⊆ CL(ψ) and {ψ1 ∴ψ2} ⊆ CL(ψ)

If ψ = Xψ1 then CL(ψ1) ⊆ CL(ψ) and {Xψ1} ⊆ CL(ψ) where X ∈ {X+, X−}

If ψ = ψ1 Uψ2 then

CL(ψ1) ⊆ CL(ψ) and CL(ψ2) ⊆ CL(ψ) and CL(X(ψ1 U ψ2)) ⊆ CL(ψ)

and {ψ1 Uψ2} ⊆ CL(ψ) where (U, X) ∈ {(U+, X+), (U−, X−)}

If ψ = SC(Ag1, Ag2, t, ψ1) then CL(ψ1) ⊆ CL(ψ) and {SC(Ag1, Ag2, t, ψ1)} ⊆ CL(ψ)

If ψ = AC(Ag1, Ag2, t, (α, ψ1)) then

CL(ψ1) ⊆ CL(ψ) and {AC(Ag1, Ag2, t, (α, ψ1))} ⊆ CL(ψ)

If ψ = Perform(α)ψ1 then CL(ψ1) ⊆ CL(ψ) and {Perform(α)ψ1} ⊆ CL(ψ)

If ψ = Perform(α)SC(Ag1, Ag2, t, ψ1) then

CL(SC(Ag1, Ag2, t, ψ1)) ⊆ CL(ψ) and {Perform(α)SC(Ag1, Ag2, t, ψ1)} ⊆ CL(ψ)

If ψ = Create(Ag1, SC(Ag1, Ag2, t, ψ1)) then

CL(SC(Ag1, Ag2, t, ψ1)) ⊆ CL(ψ) and {Create(Ag1, SC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ)

If ψ = Withdraw(Ag1, SC(Ag1, Ag2, t, ψ1)) then

CL(¬SC(Ag1, Ag2, t, ψ1)) ⊆ CL(ψ) and {Withdraw(Ag1, SC(Ag1, Ag2, t, ψ1))}⊆ CL(ψ)

If ψ = Satisfy(Ag1, PC(Ag1, Ag2, t, ψ1)) then

CL(ψ1) ⊆ CL(ψ) and {Satisfy(Ag1, PC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ)

If ψ = Satisfy(Ag1, AC(Ag1, Ag2, t, (α, ψ1))) then

CL(Perform(α)ψ1) ⊆ CL(ψ) and {Satisfy(Ag1, AC(Ag1, Ag2, t, (α, ψ1)))} ⊆ CL(ψ)

If ψ = Violate(Ag1, PC(Ag1, Ag2, t, ψ1)) then

CL(¬ψ1) ⊆ CL(ψ) and {Violate(Ag1, PC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ)

If ψ = Violate(Ag1, AC(Ag1, Ag2, t, (α, ψ1))) then

CL(¬Perform(α)ψ1) ⊆ CL(ψ) and {Violate(Ag1, AC(Ag1, Ag2, t, (α, ψ1)))} ⊆ CL(ψ)

If ψ = Reactivate(Ag1, SC(Ag1, Ag2, t, ψ1)) then

CL(SC(Ag1, Ag2, t, ψ1)) ⊆ CL(ψ) and {Reactivate(Ag1, SC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ)

If ψ = Challenge-content(Ag1, PC(Ag1, Ag2, t, ψ1)) then

CL(PC(Ag1, Ag2, t’, ?ψ1)) ⊆ CL(ψ)

154

and {Challenge-content(Ag1, PC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ)

If ψ = Accept-content(Ag1, SC(Ag1, Ag2, t, ψ1)) then

CL(SC(Ag1, Ag2, t’, ψ1)) ⊆ CL(ψ)

and {Accept-content(Ag1, SC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ)

If ψ = Refuse-content(Ag1, SC(Ag1, Ag2, t, ψ1)) then

CL(SC(Ag1, Ag2, t’, ¬ψ1)) ⊆ CL(ψ)

and {Refuse-content(Ag1, SC(Ag1, Ag2, t, ψ1))} ⊆ CL(ψ)

If ψ = Justify-content(Ag1, PC(Ag1, Ag2, t, ψ1), ψ2) then

CL(PC(Ag1, Ag2, t’, ψ2 ∴ ψ1)) ⊆ CL(ψ)

and {Justify-content(Ag1, PC(Ag1, Ag2, t, ψ1), ψ2)} ⊆ CL(ψ)

If ψ = Attack-content(Ag2, PC(Ag1, Ag2, t, ψ1), ψ2) then

CL(PC(Ag2, Ag1, t’, ψ2 ∴ ¬ψ1)) ⊆ CL(ψ)

and {Attack-content(Ag2, PC(Ag1, Ag2, t, ψ1), ψ2)} ⊆ CL(ψ)

If ψ = Defend-content(Ag1, PC(Ag1, Ag2, t, ψ1), ψ2) then

CL(PC(Ag1, Ag2, t’, ψ2 ∴ ψ1)) ⊆ CL(ψ)

and {Defend-content(Ag1, PC(Ag1, Ag2, t, ψ1), ψ2)} ⊆ CL(ψ)

Lemma 8.11 Let ψ be a formula, then CL(ψ) is finite and bounded in size by 2|ψ|.

Proof

The proof is based on the induction of the structure of ψ. Most cases are straightforward.
Here we only consider the four following cases:

1- ψ = Xψ1, where X ∈ {X+, X−}.
We have:

CL(Xψ1) = {Xψ1} ∪ CL(ψ1)
Therefore:

|CL(Xψ1)| = 1 + |CL(ψ1)|
Then, by using the induction hypothesis, we conclude that:

|CL(Xψ1)| ≤ 1 + 2|ψ1| ≤ 2(1 + |ψ1|)
Then, by using Definition 8.7 we obtain:

|CL(Xψ1)| ≤ 2|Xψ1|

2- ψ = ψ1 U ψ2, where U ∈ {U+, U−}.

We have:

CL(ψ1 U ψ2) = {ψ1 U ψ2} ∪ CL(ψ1) ∪ CL(ψ2) ∪ CL(X(ψ1 U ψ2))

= {ψ1 U ψ2} ∪ CL(ψ1) ∪ CL(ψ2) ∪ {X(ψ1 U ψ2)}
Therefore:

|CL(ψ1 U ψ2)| = 2+ |CL(ψ1)| + |CL(ψ2)|
Then, by using the induction hypothesis and the previous case, we conclude that:

|CL(ψ1 U ψ2)| ≤ 2 + 2|ψ1| + 2|ψ2| + |X(ψ1 U ψ2)|
Then, by using Definition 8.7 we obtain:

|CL(ψ1 U ψ2)| ≤ 2|ψ1 U ψ2|

155

3- ψ = SC(Ag1, Ag2, t, ψ1)

We have:

CL(SC(Ag1, Ag2, t, ψ1)) = {SC(Ag1, Ag2, t, ψ1)} ∪ CL(ψ1)
Therefore:

|CL(SC(Ag1, Ag2, t, ψ1))| = 1+ |CL(ψ1)|
Then, by using the induction hypothesis, we conclude that:

|CL(SC(Ag1, Ag2, t, ψ1))| ≤ 1 + 2|ψ1|
Then, by using Definition 8.7 we obtain:

|CL(SC(Ag1, Ag2, t, ψ1))| ≤ 2|SC(Ag1, Ag2, t, ψ1)|

4- ψ = Create(Ag1, SC(Ag1, Ag2, t, ψ1))

We have:

CL(Create(Ag1, SC(Ag1, Ag2, t, ψ1))) = {Create(SC(Ag1, Ag2, t, ψ1))}

∪ CL(SC(Ag1, Ag2, t, ψ1))
Therefore:

|CL(Create(Ag1, SC(Ag1, Ag2, t, ψ1)))| = 1+ 2|CL(SC(Ag1, Ag2, t, ψ1))|
Then, by using the previous case, we conclude that:

|CL(Create(Ag1, SC(Ag1, Ag2, t, ψ1))| ≤ 1 + 2|SC(Ag1, Ag2, t, ψ1)|
Then, by using Definition 8.7 we obtain:

|CL(Create(Ag1, SC(Ag1, Ag2, t, ψ1)))| ≤ 2|Create(Ag1, SC(Ag1, Ag2, t, ψ1))|

The next lemma establishes the link between tableau rules and Fischer-Ladner closure of
formulae.

Lemma 8.12 Let σ1 = E(Φ, ψ1) and σ2 = E(Φ, ψ2) be two DCTL*CAN formulae. Then:

σ1 →R σ2 ⇒ CL(ψ2) ⊆ CL(ψ1).

Proof

The proof is based on the case analysis of the rule R. Most cases are straightforward. Here
we consider the rules R7, R9, R30, and R32.

R = R7:

 σ1 →R σ2

 ⇒ ψ1 = Perform(α)ψ2

⇒ (Definition of CL(Perform(α)ψ))

CL(ψ2) ⊆ CL(ψ1)

R = R9:

 σ1 →R σ2

 ⇒ ψ1 = Create(ψ2)

⇒ (Definition of CL(Create(ψ2))

CL(ψ2) ⊆ CL(ψ1)

156

R = R30:

 σ1 →R σ2

 ⇒ E(Φ, ψ1) = E(Φ, ψ ∴ψ’), E(Φ, ψ2) = E(Φ, ψ, X+(¬ψ ∨ ψ’))

⇒ CL(ψ1) = {ψ ∴ψ’} ∪ CL(ψ) ∪ CL(X+(¬ψ ∨ ψ’))

⇒ CL(ψ2) ⊆ CL(ψ1)

R = R32:

 σ1 →R σ2

 ⇒ E(ψ1) = E(ψ U+ψ’), E(ψ2) = E(ψ’) or E(ψ, X+(ψ U+ ψ’))

⇒ CL(ψ1) ={ψ U+ ψ’} ∪ CL(ψ) ∪ CL(ψ’) ∪ CL(X+(ψ U+ ψ’))

⇒ CL(ψ2) ⊆ CL(ψ1)

Intuitively, σi ≺ σj holds if σi is an ancestor of σj in some tableau, i.e. if there are rules Ri,

..., Rj such that: σi →Ri σi+1... →Rj σj

Lemma 8.13 The ordering relation ≺ has no infinite ascending chains.

Proof

Suppose that there exists an infinite chain: σ1 ≺ σ2 ≺ ...

From Lemma 8.12, it follows that CL(ψi) ⊆ CL(ψi-1) ⊆ ... CL(ψ1)

Since CL(ψ1) is finite (from Lemma 8.11), it follows that:

∃j, ∀k ≥ j, CL(ψk) = CL(ψj) with σj ≺ σj+1 ≺ ... σk ≺ ...

However, this is contradictory (from Lemma 8.12).

Now, we can easily prove the finiteness theorem as shown below.

Theorem 8.14 For any DCTL*CAN formula σ1, there is a maximum height tableau has σ1 as

a root.

Proof

Suppose that there exists a tableau with root σ1 having an infinite path:

σ1 →Ri σ2 →Rj σ3...

where Ri, Rj, ... ∈ {R1, ..., R32}. Then, from Lemma 8.9 and from the fact that the ordering

relation ≺ is transitive (since < is transitive), it follows that there exists an infinite chain:

σ1 ≺ σ2 ≺ ...

However this is contradictory from Lemma 8.13.

8.5.4 Soundness and Completeness

157

Soundness and completeness of our method are stated by the following theorem.

Theorem 8.15 Let ψ be a DCTL*CAN formula and Bψ the ABTA obtained by the translation

procedure described above, and let Τ = <S, ℘, L, Act, →, s0> be a transition system that

represents a dialogue game protocol. Then s0 T ψ iff T is accepted by Bψ.

Proof

This theorem is a consequence of Proposition 8.16 and Lemmas 8.19, 8.20 and 8.21.

Proposition 8.16 Let r a run of an ABTA B on a transition system T. In all infinite paths of

r, the semantics of the action formulae appearing in these paths is verified.

Proof

The proof follows from Definitions 8.4 and 8.5. Indeed, the only case in which the
semantics of an action formula is not respected is the case of a positive leaf <q, si,j> such

that si,j T ¬l(q). Because infinite paths do not encounter any leaf, the semantics of these

formulae is verified in these paths.

Now, we introduce the following definitions:

Definition 8.17 Let ϕi a node in the run r of Bψ labeled by <q, s> and let σ = <ϕ0, …> be

an infinite path in the run r. Let q0, q1,… be the corresponding sequence of Bψ states. σ is

said to be successful iff for every formula φ ≡ φ1 U+ φ2 ∈ qi there exists j ≥ i such that

φ2 ∈ qj.

Definition 8.18 Let σT = <s0, s1,…> be a path in T, such that <si, sj> ∈ σT iff

<(ql, si), (qm, sj)> ∈ σ or <(ql, si), (qm, sj,0)> ∈ σ for some l and m. In addition, let

σT’ = <si,0, si,1,…> be a path in a semantic transition system T’ of T. If

<(ql, si), (qm, sj,0)> ∈ σ then <sj,j’, sj,j’+1> ∈ σT’ iff <(ql, sj,j’), (qm, sj.j’+1)> ∈ σ.

We note that if we have a run r in which a leaf <q, si,j> is unsuccessful, then we conclude
that the semantics is not respected and consequently the property to be verified is not
satisfied. However, if r contains an unsuccessful leaf <q, si>, we conclude only that the
property is not satisfied (there is no need to verify the semantics).

Lemma 8.19 Let ψ be a DCTL*CAN state formula and Τ = <S, ℘, L, Act, →, s0> be a

transition system such that s0 .T ψ Also let Bψ the corresponding ABTA. Then T is

accepted by Bψ.

Proof

To prove that T is accepted by Bψ, we have to prove that there exists a run r of Bψ on T such
that all leaves and all infinite paths in the run are successful.

158

Let us assume that s0 T ψ. First, let us suppose that there exists a leaf <q, s> in r such that

s ¬l(q). Since the application of tableau rules does not change the satisfaction of

formulae, it follows from the definition of r that s0 T ¬ψ which contradicts our

assumption.

Now, we will prove that all infinite paths are successful. The proof proceeds by

contradiction. ψ is a state formula that we can write under the form EΦ, where Φ is a set of

path formulae. Let us assume that there exists an unsuccessful infinite path σ in r and prove

that σT T ¬Φ. The fact that σ is infinite implies that R32 occurs at infinitely many

position in σ and that φ1 U+ φ2 ⊆ Φ. Since σ is unsuccessful, there is a formula

φ1 U
+ φ2 ∈ qi such that for all j ≥ i we have φ2 ∉ qj. When this formula appears in the ABTA

at the position qi, we have l(qi) = ∨. Thus, according to the definition of r and the form of

R32, the current node ϕ1 of r labeled by <qi, s> has one successor ϕ2 labeled by <qi+1, s>

with φ1 U+ φ2 ∈ qi and {φ1, X+(φ1 U+ φ2)} ⊆ qi+1. Therefore, l(qi+1) = ∧, and ϕ2 has a

successor ϕ3 labeled by <qi+2, s> with X+(φ1 U+ φ2) ∈ qi+2. Using R29 and the fact that

l(qi+2) = X+, the successor ϕ4 of ϕ3 is labeled by <qi+3, s’> with φ1 U
+ φ2 ∈ qi+3 and s → s’.

This process will be repeated infinitely since the path is unsuccessful. It follows that there is

no s in T such that s T φ2. Thus, according to the semantics of φ1 U
+ φ2, there is no s in T

such that s T φ1 U
+ φ2. Therefore, σT T ¬Φ.

Lemma 8.20 Let ψ be a DCTL*CAN state formula and Bψ the corresponding ABTA, and let

Τ = <S, ℘, L, Act, →, s0> be a transition system such that T is accepted by Bψ. Then

s0 .T ψ

Proof

The proof proceeds by contradiction. We assume that s0 T ¬ψ and we prove that r

contains a failed path such that one of the following holds: either σ (a path in the run r of

Bψ on T) is finite and the leaf is unsuccessful or σ is infinite and unsuccessful. Since

s0 T ¬ψ there is a path ΠT in T such that ΠT T ¬φ for φ ∈ Φ or there is a path ΠT’ in a

semantic transition system T’ of T such that ΠT’ T ¬φ for φ ∈ Φ. The idea is to show that r

contains a failed path σ such that:

1. σT is a prefix of ΠT or σT’ is a prefix of ΠT’ and

2. if σT = <sϕ0, …, sϕi>, then for all φ ∈ ϕi, we have ΠT (sϕi) T ¬φ or there is a sub-state

s’ϕi of sϕi such that ΠT’ (s’ϕi) T ¬φ where σT (σT’) is a path in T (in T’) constructed from σ

as explained in Definition 8.18 and sϕi is the state that correspond to the node ϕi.

We proceed by an inductive construction of σ. For |σ| = 1, we have σ = <ϕ0> and σT = <s0>.

Thus, σT is a prefix of ΠT and ΠT (0) T ¬φ since ΠT (0) = ΠT. First, we suppose that σ is

finite. Using the construction process of a run, we can construct such a path from

ΠT = <s0, …, sn> and eventually from ΠT’ = <sn,0, …, sn,n’> such that

σ = <(s0, q0) …, (sn, qm)> or σ = <(s0, q0) …, (sn,n’, qm)>. Since l(qm) is a sub formula of φ

obtained by using some tableau rules, and ΠT T ¬φ or ΠT’ T ¬φ, it follows that

159

sn T ¬l(qm) or sn,n’ T ¬l(qm). Therefore, σ is a failed path. Now, we assume that we have

constructed σ so that |σ| = i+1, for some i ≥ 0, and we prove that σ could be extended to be

of length i+2. Since σ is infinite, there is a tableau rule R that appear at position i in σ. The

goal position of this rule has the form EΦ. The proof is thus proceeds by an analysis of R.

• R = R6. In this case we have φ ∈ ϕi with ϕi is a positive (negative) node. ϕi has one

negative (positive) node ϕj with ¬φ ∈ ϕj. σ can be extended by adding ϕj.

• R = R7. Here we have φ = Perform(α)φ1 for some φ1 and some action α. The node ϕi

has one successor ϕj labeled by <q’, s0ϕj> such that φ1 ∈ ϕj, sϕi →α sϕj and s0ϕj is the

first sub-state of sϕj. According to the semantics of the perform operator and since

ΠT' (sϕi) T ¬φ it follows that ΠT’ (s0ϕj) T ¬φ1. Thus, we can choose σ(i+1) = ϕj. It

is clear that σT’ is a prefix of ΠT’.

• R = R8. This case is similar to the last case (R = R7) by substituting φ1 by

SC(Ag1, Ag2, t, ϕ).

• R = R9. In this case we have φ = Create(Ag1, SC(Ag1, Ag2, t, ϕ)). The current node ϕi

has one successor ϕj labeled by <q’, s0ϕj> such that SC(Ag1, Ag2, t, ϕ) ∈ ϕj,

sϕi →C sϕj and s0ϕj is the first sub-state of sϕj. It follows from the semantics of the

create operator and from the fact that ΠT(sϕi) T ¬φ that

ΠT(s0ϕj) T ¬SC(Ag1, Ag2, ϕ). Thus, it is possible to extend σ such that 1 and 2 are

always verified.

• R = R10. This case is similar to the last one by substituting the semantics of the
Create operator by the semantics of the Withdraw operator.

• R = R11. Here we have φ = Satisfy(Ag1, PC(Ag1, Ag2, t, ϕ)). The current node ϕi has

one successor ϕj labeled by <q’, s0ϕj> such that ϕ ∈ ϕj, sϕi →Spc
sϕj and s0ϕj is the first

sub-state of sϕj. It follows from the semantics of the Satisfy operator and from the

fact that ΠT(sϕi) T ¬φ that ΠT’(s0ϕj) T ¬ϕ. In other words, this means that if an

agent does not satisfy a propositional commitment, then the content of this

commitment is false. Thus, it is possible to extend σ such that 1 and 2 are always
verified.

• R = R12. This case is similar to the previous case. If an agent does not satisfy an

action commitment about α, then Perform(α)p is not satisfied in the path ΠT’(s0ϕj).

• R = R13. Here we have φ = Violate(Ag1, PC(Ag1, Ag2, t, ϕ)). The current node ϕi has

one successor ϕj labeled by <q’, s0ϕj> such that ¬ϕ ∈ ϕj, sϕi →Vpc
sϕj and s0ϕj is the

first sub-state of sϕj. It follows from the semantics of the Violate operator and from

the fact that ΠT(sϕi) T ¬φ that ΠT’(s0ϕj) T ¬(¬ϕ). In other words, this means that

if an agent does not violate a propositional commitment, then the content of this

commitment is true. Thus, it is possible to extend σ such that 1 and 2 are always
verified.

• R = R14. This case is similar to the case of R13.

• R = R15. In this case we have φ = Reactivate(Ag1, SC(Ag1, Ag2, t, ϕ)). The current

node ϕi has one successor ϕj labeled by <q’, s0ϕj> such that

SC(Ag1, Ag2, t, ϕ) ∈ ϕj, sϕi →R
sϕj and s0ϕj is the first sub-state of sϕj. It follows from

the semantics of the Reactivate operator and from the fact that ΠT(sϕi) T ¬φ that

160

ΠT’(s0ϕj) T ¬(SC(Ag1, Ag2, t, ϕ)). In other words, this means that if an agent does

not reactivate a SC in a model, then this commitment is not satisfied in this model.

Thus, it is possible to extend σ such that 1 and 2 are always verified.

• R = R16. This rule deals with the challenge action. Thus we have

PC(Ag2, Ag1, t, ?ϕ) ∈ ϕj with ϕj is the only successor of ϕi. Since the fact that an

agent does not challenge a SC implies that this agent does not commit about ?ϕ, it

follows that ΠT’(s0ϕj) T ¬(PC(Ag2, Ag1, t, ?ϕ)). Therefore, we can choose

σ(i+1) = ϕj.

• R = Rx 17≤x≤18. In this case we can choose σ(i+1) = ϕj with ϕj is the successor of ϕi

in r and SC(Ag2, Ag1, ϕ’) ∈ ϕj (ϕ’∈ {ϕ, ¬ϕ}). In this case we have

ΠT’(s0ϕj) T ¬(SC(Ag2, Ag1, t, ϕ’)). The informal explanation is as follows: if an

agent does not accept (respectively refuse) the content ϕ of a SC, this agent does not

commit about ϕ (respectively ¬ϕ).

• R = Rx 19≤x≤21. These cases are similar. We deal with only the justification one. For

this action we have φ = Justify-content(Ag1, PC(Ag1, Ag2, t, ϕ), ϕ’). The current node

ϕi has one successor ϕj labeled by <q’, s0ϕj> such that PC(Ag1, Ag2, t, ϕ’∴ϕ) ∈ ϕj,

sϕi →Jus
sϕj and s0ϕj is the first sub-state of sϕj. It follows from the semantics of the

Justify-content operator and from the fact that ΠT (sϕi) T ¬φ that

ΠT’ (s0ϕj) T ¬(PC(Ag1, Ag2, t, ϕ’∴ϕ)). In other words, this means that if an agent

does not justify a SC in a model, then this agent does not commit about ϕ’∴ϕ. Thus,

it is possible to extend σ by ϕj such that 1 and 2 are always verified.

• R = Rx 22≤x≤23. These two cases are straightforward using the semantics of PC and
AC.

• R = R24. this case is similar to the case of R25.

• R = R25. In this case we have φ = φ1 ∧ φ2 for some φ ∈ ϕi. Therefore, ϕi has two

successors in r ϕj and ϕk with φ1 ∈ ϕj and φ2 ∈ ϕk. Since ΠT (sϕi) T ¬φ it follows

that ΠT(sϕj) T ¬φ1 or ΠT(sϕj) T ¬φ2. Thus, σ can be extended by ϕj or by ϕk. It is

clear that 1 and 2 are maintained.

• R = R26. In this case we have φ = φ1 ∨ φ2 for some φ ∈ ϕi. Therefore, ϕi has one

successor ϕj or ϕk with φ1 ∈ ϕj and φ2 ∈ ϕk. Since ΠT(sϕi) T ¬φ it follows that

ΠT (sϕj) T ¬φ1 and ΠT (sϕj) T ¬φ2. Thus, we can extend σ by adding ϕj or ϕk.

Constraints 1 and 2 are maintained.

• R = R27. In this case we have φ = ?φ1 for some φ ∈ ϕi. Therefore, ϕi has one

successor ϕj with φ1 ∈ ϕj. Since ΠT’(sϕi) T ¬φ it follows that ΠT’(sϕj) T ¬φ1.

Thus, we can extend σ by adding ϕj. Constraints 1 and 2 are maintained.

• R = R28. Here we have φ = {X−φ1, …, X−φn) for some φ1, …,φn. ϕi labeled by

(q, sϕi) has one successor ϕj in r labeled by <q’, sϕj> such that q→q’ and sϕj→sϕi

(notice that X− is a past operator). Since ΠT(sϕi) T ¬X−φk for 1 ≤ k ≤ n, it follows

that ΠT(sϕj) T φk. Thus, σ (i+1) = ϕj.

• R = R29. This rule is applied when φ = {X+φ1, …, X+φn) for some φ1, …,φn. ϕi

labeled by (q, sϕi) has one successor ϕj in r labeled by <q’, sϕj> such that sϕi→sϕj.

Since ΠT(sϕi) T ¬X+φk for 1 ≤ k ≤ n, it follows that ΠT(sϕj) T ¬φk. Thus,

σ (i+1) = ϕj.

161

• R = R30. Here there is a φ ∈ ϕi such that φ = φ1 ∴φ2 for some φ ∈ ϕi. Therefore, ϕi

has one successor ϕj with φ1 ∧ X+(¬φ1 ∨ φ2) ∈ ϕj. Since ΠT’(s’ϕi) T ¬φ it follows

from the semantics of ∴ that ΠT’(s’ϕj) T ¬(φ1 ∧ X+(¬φ1 ∨ φ2)). We choose

σ (i+1) = ϕj. It is clear that σT’ is a prefix of ΠT’.

• R = R31. In this case we have φ = φ1 U− φ2. The node ϕi has one successor in

r: ϕj (φ2 ∈ ϕj) or ϕk ({φ1, X
−φ} ∈ ϕk). According to the semantics of U− and since

ΠT(sϕi) T ¬φ it follows that either ΠT(sϕj) T ¬(φ1 ∨ φ2) or ΠT(sϕk) T φ1 ∧¬φ2 but

ΠT(sϕk) T ¬X−φ. In the two cases, σ can be extended such that 1 and 2 are

maintained.

• R = R32. This rule is used when φ = φ1 U
+ φ2. The node ϕi has one successor in

r: ϕj (φ2 ∈ ϕj) or ϕk ({φ1, X
+φ} ∈ ϕk). According to the semantics of U+ and since

ΠT (sϕi)╞T ¬φ it follows that either ΠT(sϕj) T ¬(φ1 ∨ φ2) or ΠT(sϕk) T φ1 ∧¬φ2 but

ΠT (sϕk) T ¬X+φ. In the two cases, σ can be extended such that 1 and 2 are

maintained.

The last point in the proof of this lemma is to show that the path σ is unsuccessful. Let i ≥ 0

be such that φ1 U
+ φ2 ∈ σ(i) for some φ1 and φ2. According to Definition 8.17, we must

show that is no j ≥ i such that φ2 ∈ σ(j).

φ1 U
+ φ2 ∈ ϕi ϕi =σ(i)

⇒ (The constraint 2 is verified by the way σ is constructed)

 ΠT (sϕi) T ¬(φ1 U
+ φ2)

⇒ ΠT (sϕi) T ¬φ1 ∧ ¬φ2 or ΠT (sϕi) T φ1 ∧ ¬φ2 ∧ ¬X+(φ1 U
+ φ2)

⇒ ∀i ≥ j ΠT (sϕj) T ¬φ2

⇒ φ2 ∈ ϕj.

Now, we prove the third element of the correctness theorem that deals with the acceptance
condition.

Lemma 8.21 An infinite path σ in a run r of Bψ is successful iff it satisfies the generalized

Büchi condition.

Proof

The proof follows from the definition of Fφ1 U+ φ2.

1) “⇒” Assume that σ is successful. Suppose that φ1 U+ φ2 ∈ pi. Since the path is

successful, there exists a pj, j ≥ i such that φ2 ∈ pj. Hence, for any i we can find a j ≥ i such

that pj ∈ Fφ1 U+ φ2. It follows that ϕj is an accepting state that occurs infinitely often.

2) “⇐” Assume that σ satisfies the generalized Büchi condition. Suppose that φ1 U
+ φ2 ∈ pi

for some i. Since the path satisfies the Büchi condition, there exists a j ≥ i such that

pj ∈ Fφ1 U+ φ2. Two cases can be distinguished:

a. if φ2 ∈ pj, then σ is successful.

b. if φ2 ∉ pj, then according to the semantics of U+ and the rule R32, there exists a i ≤ k ≤ j

such that φ2 ∈ pk. Therefore, σ is successful.

162

8.5.5 Examples

In this section we illustrate the construction of an ABTA for two formulae. The first
formula is a propositional one. The second formula is an action one.
a. Example 1

Let us consider the following propositional formula:).(pFGE ++ The tableau of this

formula is illustrated by Figure 8.6. The first rule we can apply is R32 labeled by "∨" for the
until formula (G+ is an abbreviation defined from U+). The second rule is also R32 for F+

p
(F+ is also an abbreviation defined from U+). Thereafter rules R24 and R29 can be applied,
etc.

The ABTA obtained from this tableau is illustrated in Figure 8.7. In this ABTA, states (1),

(3), (5) and (6) are the acceptance states according to Definition 8.6. The formula φ we

consider is the following: φ = True U+ p ≡ F+
p. Notice that φ and X+φ do not appear in these

states. State (5) is the acceptance state in the finite case. On the other hand, φ appears in

states (2) and (7), and X+φ appears in state (4). Therefore, these states are not in Fφ. The

path Π = (1, (2, 4, 7)*) is not a valid proof of E(G+F+
p). However, a path that visits

infinitely often the states (1), (3) and (6) is a valid (infinite) proof. The reason is that in such
a path there is always a chance to meet the proposition p (state (3)). Therefore, this path

satisfies the Büchi condition. The Büchi condition is not satisfied in the path Π since there
is no chance to visit infinitely often a state containing p.

)(: pFGE ++∨ (1)

),(: pFGXpFE ++++∨ (2)

),(: pFGXpE +++<≡> (3)),(: pFGXpFXEX
++++++ (4)

p (5))(: pFGXEX
++++ (6)),(: pFGpFE +++∨ (7)

)(pFGE ++),(pFGXpFE ++++

Figure 8.6. The tableau for E(G+F+p)

Figure 8.6. The tableau for E(G+F+p)

163

(1)

(2)

(4)(3)

(5)(6) (7)

∨

<≡> X
+

X
+

p

∨

∨

Figure 8.7. The ABTA of the formula E(G+F+p)

Figure 8.7. The ABTA of the formula E(G+F+p)

b. Example 2

In this section we consider the following action formula from DCTL*CAN:

AG+
(Challenge-content(Ag2, PC(Ag1, Ag2, t, φ)) ⇒

 F+
Justify-content(Ag1, PC(Ag1, Ag2, t, φ), φ’)).

In order to simplify this formula, we use Ch for Challenge-content and Jus for Justify-

content. The tableau of this formula is illustrated by Figure 8.8. The associated ABTA of
this formula is given by Figure 8.9. This formula is equivalent to the formula:

AG+
(¬Ch(Ag2, PC(Ag1, Ag2, t, φ)) ∨ F+

Jus(Ag1, PC(Ag1, Ag2, t, φ), φ’)).

164

2 1 2 1 1 2: ((, (, , ,)) (, (, , ,), '))A Ch PC t Jus PC tAg Ag Ag Ag Ag AgG Fφ φ φ+ +¬ ¬ ∨ (1)

2 1 2 1 1 2: ((, (, , ,)) ((, (, , ,), ')))E Ch PC t Jus PC tAg Ag Ag Ag Ag AgGF φ φ φ++∨ ∧ ¬ (2)

2 1 2

1 1 2

: ((, (, , ,))

((, (, , ,), ')))

Ch E Ch PC tAg Ag Ag

Jus PC tAg Ag AgG

φ

φ φ+

< > ∧

¬
 (3) 2 1 2

1 1 2

: (((, (, , ,))

((, (, , ,), '))))

E Ch PC tAg Ag AgX X F

Jus PC tAg Ag AgG

φ

φ φ

+ + +

+

< > ∧

¬
(4)

2 2 1

1 1 2

[] : ((, , ,?)

((, (, , ,), ')))

Ag E PC tAg AgPC

Jus PC tAg Ag AgG

φ

φ φ+

∧

¬
 (5)

2 1 2

1 1 2

((, (, , ,))

((, (, , ,), ')))

E Ch PC tAg Ag AgF

Jus PC tAg Ag AgG

φ

φ φ

+

+

∧

¬
(2)

1 1 2? : ((?) ((, (, , ,), ')))E Jus PC tAg Ag AgGφ φ φ+∧ ¬ (6)

1 1 2: (((, (, , ,), ')))E Jus PC tAg Ag AgGφ φ φ+<≡> ∧ ¬ (7)

φ (8) 1 1 2: (((, (, , ,), ')))E Jus PC tAg Ag AgG φ φ+∨ ¬ (9)

1 1 2 1 1 2: ((, (, , ,), '), ((, (, , ,), ')))Jus E Jus PC t Jus PC tAg Ag Ag Ag Ag AgGXφ φ φ φ++< ¬ > ¬ ¬ (10)

1 1 2 1 1 2[] : ((, , , '), ((, (, , ,), ')))Ag E PC t Jus PC tAg Ag Ag Ag AgPC GXφ φ φ φ++∴ ¬ (11)

1 1 2: (' , ((, (, , ,), ')))E Jus PC tAg Ag AgGXφ φ φ φ++∧ ∴ ¬ (12)

1 1 2: (', ('), ((, (, , ,), ')))E Jus PC tAg Ag AgGX Xφ φ φ φ φ++ +<≡> ¬ ∨ ¬ (13)

'φ (14)
1 1 2: (('), ((, (, , ,), ')))E Jus PC tAg Ag AgGX X Xφ φ φ φ++ + +¬ ∨ ¬ (15)

 1 1 2: (('), ((, (, , ,), ')))E Jus PC tAg Ag AgGXφ φ φ φ++<≡> ¬ ∨ ¬ (16)

 φφ∨¬ ' (17) 1 1 2: (((, (, , ,), ')))E Jus PC tAg Ag AgGX X φ φ++ + ¬ (18)

 1 1 2(((, (, , ,), ')))E Jus PC tAg Ag AgG φ φ+ ¬ (9)

Figure 8.8. The tableau for

AG+(Ch(Ag2, PC(Ag1, Ag2, t, φ)) ⇒ F+Jus(Ag1, PC(Ag1, Ag2, t, φ), φ’))
Figure 8.8. The tableau for

AG+(Ch(Ag2, PC(Ag1, Ag2, t, φ)) ⇒ F+Jus(Ag1, PC(Ag1, Ag2, t, φ), φ’))

165

)1(

)9(

)2(

)4(

)7(

)6(

)13(

)15(

)10(

)11(

<≡>

>¬< Jus

][1PC Ag

∨

¬

>< Ch X
+

][2PC Ag

?

<≡>

X
+

<≡>

∨

∧

X
+

)3(

)5(

)12(

)16(

)18(

Figure 8.9. The ABTA for The formula
AG

+
(Ch(Ag2, PC(Ag1, Ag2, t,)) F

+
Jus(Ag1, PC(Ag1, Ag2,),))⇒φ φ

)8(

)14(

)17(

φ

'φ

'φ φ¬ ∨

'φ

Figure 8.9. The ABTA for the formula

AG+(Ch(Ag2, PC(Ag1, Ag2, t, φ)) ⇒ F+Jus(Ag1, PC(Ag1, Ag2, t, φ), φ’))

The first rule we can apply is R6 labeled by "¬". We obtain then the formula (2) of Figure

8.8. From this formula we obtain the formula φ that we consider in order to compute the
acceptance states:

Φ = F+(Ch(Ag2, PC(Ag1, Ag2, t, φ)) ∧ G+(¬Jus(Ag1, PC(Ag1, Ag2, t, φ), φ’))).

166

In the ABTA of Figure 8.9 state (1) and states from (3) to (18) are the acceptance states
according to Definition 8.6. States (2) and (4) are not acceptance states. Because only the

first state is labeled by¬, all finite and infinite paths are negative paths. Consequently, the

only infinite path that is a valid proof of the formula Φ is (1, (2, 4)*). In this path there is no
acceptance state that occurs infinitely often. Therefore, this path satisfies the Büchi
condition. The path visiting the state (3) and infinitely often the state (9) does not satisfy the
formula because there is a challenge action (state (3)), and globally no justification action of
the content of the challenged propositional commitment (state (9)).

8.5.6 Model Checking Algorithm

Our model checking algorithm for verifying that a dialogue game protocol satisfies a given
property and checks that it respects the semantics of the underlying communicative acts is
based on the procedure proposed by (Bhat and Cleaveland, 1996). Like the algorithm
proposed by (Courcoubetis et al., 1992), our algorithm explores the product graph of an
ABTA for DCLT*CAN and a transition system for a dialogue game. This algorithm is on-
the-fly (or local) algorithm that consists of checking if a transition system is accepted by an
ABTA. This ABTA model checking is reduced to the emptiness of the Büchi automata
(Vardi and Wolper, 1986).

Let T = <S, Lab, ℘, L, Act, →, s0> be a transition system for a dialogue game and let

B = <Q, l, →, q0, F> be an ABTA for DCTL*CAN. The procedure consists of building the

ABTA product B⊗ of T and B while checking if there is a successful run in B⊗. The

existence of such a run means that the language of B⊗ is non-empty. The automaton B⊗ is

defined as follows: B⊗ = <Q × S, →B⊗, q0B⊗, FB⊗>. There is a transition between two nodes
<q, s> and <q’, s’> iff there is a transition between these two nodes in some run of B on T.

Intuitively, B⊗ simulates all the runs of the ABTA. The set of accepting states FB⊗ is

defined as follows: q0B⊗ ∈ FB⊗ iff q ∈ F.

Unlike the algorithms proposed in (Courcoubetis et al., 1992) and (Bhat and Cleaveland,
1996), our algorithm uses only one depth-first search (DFS) instead of two. This is due to
the fact that our algorithm explores directly the product graph using the sign of the nodes
(positive, negative or neutral). In addition, unlike the algorithm proposed in (Bhat and
Cleaveland, 1996), our algorithm does not distinguish between recursive and non-recursive
nodes. Therefore, we do not take into account the strongly-connected components in the
ABTA, but we use a marking algorithm that works on the product graph.

The pseudo-code of this algorithm is given in Figure 8.10. The idea is to construct the
product graph while exploring it. However, in order to make it easy to understand, we omit
the instructions relative to the addition of nodes in the product graph. The construction
procedure is directly obtained from Definition 8.4. The algorithm uses the label of nodes in
the ABTA, and the transitions in the product graph obtained from the transition system and
the ABTA as explained in Definition 8.4.

167

DFS(v = (q, s)): boolean {
if v marked visited {

if (sign(v) = "+" and not accepting(v)) or (sign(v) = "-" and accepting(v))
return false

} // end of if v marked visited
else {

mark v visited
switch(l(q)) {

case (p ∈ Φp):
switch(sign(v)) {

case("+"): if s is a sub-state and l(q) ∉L’(s) return false

case("-"): if s is a sub-state and ¬l(q)) ∉L’(s) return false
case("neutral"): return false

} // end of switch(sign(v))

case(∧):
if s is a leaf return false
else

switch(sign(v)) {

case(neutral): for all v’’ ∈ {v’ / v →B⊗ v’} if not DFS(v’’) return false

case("+"): for all v’’ ∈ {v’ / v →B⊗ v’} if not DFS(v’’) return false

case("-"): for all v’’ ∈ {v’ / v →B⊗ v’} if DFS(v’’) return true
 return false

} // end of switch(sign (v))

case(∨):
if s is a leaf return false
else

switch(sign(v)) {

case(neutral): for all v’’ ∈ {v’ / v →B⊗ v’} if DFS(v’’) return true
return false

case("+"): for all v’’ ∈ {v’ / v →B⊗ v’} if DFS(v’’) return true
 return false

case("-"): for all v’’ ∈ {v’ / v →B⊗ v’} if not DFS(v’’) return false
} // end of switch(sign (v))

case(<•>):
if s is a leaf return true

else for the v’’ ∈ {v’ / v →B⊗ v’} if not DFS(v’’) return false

case(X+, PCAg, ACAg, <≡>, ?):
if s is a leaf return false

else for the v’’ ∈ {v’ / v →B⊗ v’} if not DFS(v’’) return false
} // end of switch(l(q))

} // end of else
return true }

Figure 8.10. Exploring product graph algorithm

Figure 8. 10. Exploring product graph algorithm

168

In order to decide if the ABTA contains an infinite successful run, all the explored nodes are
marked "visited". Thus, when the algorithm explores a visited node, it returns false if the
infinite path is not successful. If the node is not already visited, the algorithm tests if it is a
leaf. In this case, it returns false if the node is a non-successful leaf. If the explored node is
not a leaf, the algorithm calls recursively the function DFS in order to explore the

successors of this node. If this node is labeled by "∧", and signed neutrally or positively,
then DFS returns false if one of the successors is false. However, if the node is signed
negatively, DFS returns false if all the successors are false. A dual treatment is applied

when the node is labeled by "∨". We note that if the DFS does not explore a false node (i.e.
it does not return false), then it returns true.

Theorem 8.22 (correctness) Let B an ABTA and T a transition system. DFS(q0, s0) returns

true if and only if T is accepted by B.

Proof

This theorem follows from Theorem 8.15 and Definition 8.5. Indeed, DFS returns true if
and only if all the leaves are successful, and all the infinite paths are successful. The reason
is that DFS returns true if and only if it does not find any unsuccessful leaf and any
unsuccessful infinite path.

Figure 8.11 illustrates the automaton B⊗ resulting from the product of the transition system
of Figure 8.5 (TS[8.5]) and the ABTA of Figure 8.9 (ABTA[8.9]). In order to check if the
language of this automaton is empty, we check if there is a successful run. The idea is to

verify if B⊗ contains an infinite path visiting the state (3) and infinitely often the state (9) of
ABTA[8.9]. If such a path exists, then we conclude that the formula is not satisfied by

TS[8.5]. Indeed, the only infinite path of B⊗ is successful because it does not touch any
accepted state and all leaves are also successful. For instance, the leaf labeled by (<Ch>,s0)

is successful since there is no state si such that s0 →Ch si. The leaf labeled by ('φ φ¬ ∨ , s3,4) is

successful because it is a positive leaf and s3,4 'φ φ¬ ∨ . Therefore, TS[8.5] is accepted by

ABTA[8.9]. Consequently, TS[8.5] satisfies the formula and respects the semantics of
challenge and justification actions.

We conclude this section by discussing the worst-case time complexity of our model
checking technique.

Lemma 8.23 Let ψ be a DCTL*CAN formula, ant let Bψ = <Q, l, →, q0, F > be the ABTA

obtained by the translation procedure. Then |Bψ| < 2|ψ|.

Proof

From the transition procedure, each formula ψ’ in the tableau is a sub-formula of ψ. The

formula ψ is decomposed into a set of sub-formulae using the tableau rules. The nodes in
the ABTA are labeled by the operators from the sub-formulae and there is a transition from

a node ϕ to a node ϕ’ if the formula corresponding to ϕ’ is a sub-formula of the one

169

corresponding to ϕ. Since for every sub-formula ψ’ of ψ we have ψ’ ⊆ CL(ψ) and

|CL(ψ)| < |ψ| (from Lemma 8.11), it follows that |Bψ| < 2|ψ|.

The complexity of the transition procedure is thus exponential in the size of the formula

(Ο(2|ψ|)). However, if ψ is a DCTLCAN formula, |Bψ| is bounded by |ψ|. The complexity is
then linear in the size of the formula. This result follows from the fact that in DCTLCAN we
have only state formulae.

+

−

− −

−

−

−

s0,∨

sCh 0,>< sX 0,+

s1,∨

s0,¬

sCh 1,>< sX 1,+

sPC Ag 0,22],[

s 1,2?,

2,2, s<≡>

s2,∨ −

−

−

sJus 2,>¬<

−

s2,∨

−

−

sCh 2,>< sX 2,+− −

s3,∨−

sCh 3,>< sX 3,+−−

sPC Ag 0,31],[

s 1,3,∧

sX 3,3,+

3,2, s<≡>

3,4, s<≡>

2,2, sφ +

+

+

3,2', sφ

3,4' , sφ φ¬ ∨

Figure 8.11. The ABTA product of the TS of Figure 8.5 and the ABTA of Figure 8.9

Figure 8.11. The ABTA product of the TS of Figure 8.5 and the ABTA of Figure 8.9

170

Lemma 8.24 Let T = <S, Lab, ℘, L, Act, →, s0> be a transition system for a dialogue

game, and let Bψ = <Q, l, →, q0, F > be an ABTA for ψ. The time complexity of the model

checking algorithm is bounded by |T| × |Bψ| where |T| = |S| + |℘|+ |→| and |℘| is the number

of sub-states in all semantic transition systems of T.

Proof

The algorithm is based on a product graph of the ABTA Bψ and the transition system T. The

size of this product is bounded by |T| × |Bψ|. Like the algorithms proposed in (Courcoubetis
et al., 1992) and (Bhat and Cleaveland, 2001), our algorithm marks nodes and determines if
an accepting state is reachable from itself. This algorithm visits each state once and there

are |S| × |Q| recursive calls to a depth-first search algorithm. We note also that the ABTA we
use is an and-restricted one. In an and-restricted ABTA only one of the children of a node

labeled by ∧ can have his truth values determined by recursive calls to search algorithm
(Bhat and Cleaveland, 2001). The run time of the algorithm is thus proportional to the size

of the product graph, i.e. Ο(|T| × |Bψ|).

The worst-case time complexity of our model-checking technique is therefore linear in the
size of the model and exponential in the size of the formula to be checked.

8.6 Related Work

The verification problem has recently begun to find a significant audience in the MAS
community. Rao and Georgeff (1993) defined three variants of propositional BDI (beliefs,
desires and intention) logics for MAS and they proposed basic model checking algorithms
for these logics. These algorithms are an adaptation of the algorithms for CTL and CTL*.
van der Hoek and Wooldridge (2002) proposed some techniques for model checking
temporal epistemic properties of MAS using an epistemic logic (logic of knowledge). They

proposed a technique in order to reduce the model checking of this logic to the model
checking of linear temporal logic (LTL). Benerecetti and Cimatti (2002) proposed a general
approach for model-checking MAS based on CTL together with modalities for BDI
attitudes. Wooldridge and his colleagues (2002) presented the MABLE language for the
specification and the verification of MAS. Agents specified in this language have data
structures corresponding to BDI. MABLE is automatically translated into Promela, the
language of SPIN model checker of LTL (Holzman, 1997). Bordini et al. (2003a) addressed
the verification problem of MAS specified using AgentSpeak (Rao, 1996). They used a
finite state version of this language and they showed how programs written in it can be
automatically transformed into Promela. In order to specify the properties to be verified, the
authors used a simplified form of BDI Logic. These specifications are then translated to
LTL formulae. Propositional attitudes are modeled as Promela data structures. Bordini et al.
(2003b) proposed another alternative for model checking AgentSpeak by translating this
language to Java in order to apply JPF2, a Java model checker (Visser et al., 2000). Penczek
and Lomuscio (2003) proposed a framework for verifying temporal and epistemic properties
of MAS. They proposed a bounded model checking algorithm for branching time logic for
knowledge (CTLK). The basic idea of bounded model checking is to search for a
counterexample in executions whose length is bounded by some integer k. If no bug is

171

found then one increases k until either a bug is found, the problem becomes intractable, or
some pre-known upper bound is reached (this bound is called the Completeness Threshold

of the design. In a similar way, Raimondi and Lomuscio (2004) implemented an algorithm
to verify epistemic CTL properties of MAS via ordered binary decision diagrams (Clarke et
al., 1999). Kacprzak and her colleagues (2004b) also investigated the problem of verifying
epistemic properties using CTLK by means of an unbounded model checking algorithm
based on the technique proposed by McMillan (2002). Kacprzak and Penczek (2004a)
addressed the problem of verification of game-like structures by means of unbounded model
checking using alternating-time temporal logic (Alur et al., 1997). There are many
differences between all these proposals and the work presented in this chapter that we can
summarize as follows:
1- These proposals are based on BDI and epistemic logics that stress the agents’ private
mental states, whereas our work uses a logic highlighting the public states reflecting the
agents’ interactions expressed in terms of social commitments and argumentation relations.

2- Our model checking algorithm allows us to verify not only the system’s temporal
properties but also the action properties specified using dynamic logic.

3- The technique that we use is based on the tableau method and is different from the
techniques used for LTL, CTL and CTL*.

Complementarily, the verification of agent communication protocols has been addressed by
some research work. Endriss and his colleagues (2003) dealt with the problem of checking
and possibly enforcing conformance to agent communication protocols. They proposed
abductive logic-based agents and some means of determining whether or not these agents
behave in conformance to the defined protocols. Baldoni et al. (2004) addressed the
problem of verifying that a given protocol implementation conforms to its specification.
They studied a special case in which protocols are implemented using a logical language
and specified using AUML. These approaches are different from our proposal in the sense
that they are not based on model checking techniques and they do not address the problem
of verifying whether or not a protocol satisfies a given property.

In (Huget and Wooldridge, 2004), the problem of checking that agents correctly implement
the semantics of an agent communication language is addressed. Huget and Wooldridge
used a variation of the MABLE programming language to define a pre/post conditions
semantics of ACL performatives and showed that the compliance to ACL semantics can be
reduced to a conventional model checking problem. Walton (2004) applied model checking
techniques in order to verify the correctness of protocol communication. The author defined
a protocol language and used the SPIN model checker to verify LTL properties of this
language. The model checking technique used by these two proposals are based on LTL
whereas our technique is based on CTL* and dynamic logic. In addition, our approach is
based on a new algorithm and not on the translation of the specification language to existing
model checker language.

Recently, Giordano et al. (2004) addressed the problem of specifying and verifying agent
interaction protocols using a Dynamic Linear Time Temporal Logic (DLTL) (Henriksen

172

and Thiagarajan, 1999). These protocols are specified using temporal constraints
representing permissions and SC. The authors addressed three kinds of verification
problems: 1) the compliance of an execution history of a protocol to its specification, 2) the
satisfaction of a property in the protocol, 3) the compliance of agents to the protocol. They
showed that these problems can be solved by model checking in DLTL. This model
checking technique uses a tableau-based algorithm for obtaining a Büchi automaton from a
formula in DLTL (Giordano and Martelli, 2004). Although this work is close to our
proposal, the model and the automata associated to the checked formulae used in the two
techniques are different. Indeed, there are four main differences between these two
approaches:

1- The protocols (the models) we dealt with are dialogue game protocols described as a
combination of dialogue games (Bentahar et al, 2004a, 2004d) (see Chapter 9) and specified
using actions that agents apply on SC. However, the protocols used in (Giordano et al.,
2004) are abstract protocols specified in terms of the effects of communicative actions,
some precondition laws, and some causal law.

2- The model checking technique proposed in (Giordano and Martelli, 2004) uses classical
Büchi automaton that is constructed using a tableau-like procedure. This procedure is based
on propositional rules and exploits two axioms defining the semantics of the indexing until
operator. Our technique is different because it is based on ABTA and not on traditional
Büchi automaton. In addition, the construction of this automaton uses proof rules that define
the tableau semantics of the different formulae and not propositional rules.

3- Our approach is based not only on SC like (Giordano et al., 2004), but also on an
argumentation theory. Consequently, our protocols are more suitable for autonomous
agents. The reason is that agents can make decisions using their argumentation systems.

4- The dynamic part in our logic is reflected by an action theory, i.e. by the actions that
agents perform. In our logic we deal with action formulae, whereas in DLTL, the dynamic
part is represented by regular programs and by indexing the until operator with these
programs.

8.7 Conclusion

In this chapter, we have addressed the verification problem of dialogue game protocols. We
proposed a new model checking technique allowing us to verify both the correctness of the
protocols and the agents’ compliance to the semantics of the communicative acts. This
technique uses a combination of an automata-based and a tableau-based algorithm to verify
temporal and action specification. The formal properties to be verified are expressed in
DCTL*CAN logic and translated to ABTA using tableau rules. Our model checking
algorithm that works on a product graph is an efficient on-the-fly procedure.

The semantics that we used in this chapter is a simplified version of the semantics defined
in Chapter 7. This simplified semantics does not express the satisfaction of formulae in a
given theoretical model, but expresses the decomposition of these formulae to sub-

173

formulae. Consequently, what we can verify is the fact that a given protocol satisfies or not
a given property and the fact that agents use the same decomposition of formulae. For
example, in terms of the semantics of a social commitment, we can only verify if for the
debtor there is a state in which the commitment content is true. This supposes that the
content is a state formula, and not a path formula as defined in Chapter 7. Improving this
simplified version of semantics is in our future work.

Chapter 9
*

Application: Specifying and Implementing

a Persuasion Dialogue Game Protocol

In this chapter, we present an application of our pragmatic approach. We propose a new

persuasion dialogue game protocol for agent communication specified using this approach.

We show how this protocol is modeled by the CAN framework. Our dialogue game protocol

is specified by indicating its entry conditions, its dynamics and its exit conditions. In order

to solve the problem of the acceptance of arguments, the protocol integrates the concept of

agents’ trustworthiness in its specification. The chapter proposes a set of algorithms for the

implementation of the persuasion protocol and discusses their termination, complexity and

correctness. The chapter addresses also the implementation issues of our protocol using

logic programming and an agent-oriented platform.

9.1 Introduction

Research in agent communication protocols has received much attention during the last
years. Protocols are means of achieving meaningful interactions. In multi-agent systems
(MAS), agents use protocols to guide their interactions with each other. Protocols describe
the allowed communicative acts that agents can perform when conversing. These protocols
specify the rules governing a dialogue between agents in MAS.

Protocols for multi-agent interaction need to be flexible because of the open and dynamic
nature of MAS. Traditionally, these protocols are specified as finite state machines or Petri
nets without taking into account the agents’ autonomy. Therefore, these protocols are not
flexible enough to be used in open MAS (Maudet and Chaib-draa, 2002). To solve this
problem, several researchers proposed protocols using dialogue games (Dastani et al., 2000)
(Dignum et al., 2001) (Maudet and Chaib-draa, 2002) (McBurney and Parsons, 2002) (see
Chapter 3 for more details). Dialogue games are interactions between players, in which each
player moves by performing utterances according to a pre-defined set of roles (McBurney
and Parsons, 2002). The flexibility is achieved by combining different games to construct
complete and more complex protocols.

* We would like to thank John-Jules Ch. Meyer from Utrecht University, Intelligent Systems Group, Claude
Bélisle from Laval University, Department of Mathematics and Statistics and Iyad Rahwan from the
University of Melbourne for their interesting comments about the matter presented in this chapter. The
computational model introduced in this chapter is published in (Bentahar et al., 2004a, 2004d).

175

In this chapter, we propose a persuasion protocol specified using a set of dialogue games.
We formalize these dialogue games as a set of conversation policies. Conversation policies
are declarative specifications that govern communication between autonomous agents
(Greaves et al., 2000). Indeed, protocols specified using, for example, finite state machines
are not flexible in the sense that agents must respect the whole protocol from the beginning
to the end without reasoning about them. Thus, we propose to specify these protocols by
small conversation policies that can be logically put together using a combination of
dialogue games.

On the other hand, the protocols described in the literature are often specified by pre/post
conditions. These protocols often neglect the decision-making process that allows agents to
accept or to refuse an utterance. The protocols based on formal dialectics (Elvang-
Goransson et al., 1993), (Prakken, 2001), (Amgoud et al., 2000a, 2000b) use the
argumentation as a way of expressing decision-making. However, the sole use of
argumentation does not make it possible to solve a decision-making problem well. We think
that other social elements such as agents’ trustworthiness must also be taken into account.

The contribution of this chapter is the proposition of a new approach for specifying
protocols for agent communication. A new persuasion dialogue game protocol is specified
and implemented following this approach. This protocol is modeled using our pragmatic
approach based on commitments and arguments. It is flexible in the sense that it is specified
by small conversation policies that can be combined and in the sense that agents can reason
about this protocol using their argumentation systems and the trustworthiness notion. The
algorithms implementing this protocol are specified using the CAN framework. This
protocol is characterized by the fact that it integrates the agents’ trustworthiness as a
component of the decision-making process. Indeed, this chapter presents three main results:
1- A new formal language for specifying a persuasion dialogue game protocol as a
combination of conversation policies.
2- A termination proof of the protocol based on the tableau method described in Chapter 8.
3- An implementation of the specification using an agent-oriented and logic programming
framework.

The rest of this chapter is organized as follows. In Section 9.2, we address the specification
of our persuasion protocol. We present the protocol form, the specification of each dialogue
game and the protocol dynamics. We also present the different algorithms implementing
these dialogue games, develop a termination proof, and discuss the correctness and
complexity analysis. In Section 9.3, we highlight the importance of agents’ trustworthiness
and present our model of this trustworthiness. In Section 9.4, we describe some issues in the
implementation of the trustworthiness model and dialogue games. In Sections 9.5, 9.6, and
9.7, we compare our protocol to related work, we discuss the flexibility of this protocol, and
we conclude.

176

9.2 Specification of Dialogue Games

9.2.1 Philosophical Foundations

According to the classification proposed by Walton and Krabbe (1995), each type of
dialogue has an initial situation and the goal of the dialogue is to change this situation in a
particular way. Figure 9.1 illustrates the initial situation as well as the goal of the persuasion
dialogue.

In the same context, Vanderveken (2001) proposed a logic of discourse in which there are
only four possible discursive goals that speakers can attempt to achieve by conversing.
These goals are: descriptive, deliberative, declaratory and expressive goals. Persuasion
dialogue is a sub-type of the dialogue types having a descriptive goal. In his typology,
Vanderveken argued that each dialogue type with a discursive goal has a mode of
achievement of the discursive goal and preparatory conditions. The mode of achievement
imposes a certain sequence of speech acts. For a persuasion dialogue, a certain sequence of
defense utterances, questions and answers is needed for the successful implementation of
such a dialogue. Preparatory conditions determine a structured set of presuppositions related
to the discursive goal. The persuasion dialogue has the preparatory conditions that there is a
conflict between the agents’ points of view and that each agent has the capacity to defend its
point of view.

Figure 9.1. Goal and initial situation of the persuasion dialogue

In addition, in the domain of artificial intelligence and law, many computational and logical
models of argument and debate, and of reasoning with conflicting information have been
proposed (Prakken, 1997), (Prakken and Sartor, 1998), (Bench-Capon et al., 2003). Prakken
and Sartor (1998) introduced a dialectical proof theory for an argumentation framework. A
proof of a formula takes the form of a dialogue tree, in which each branch of the tree is a
dialogue and the root of the tree is an argument for the formula. The idea is that every move
in a dialogue consists of an argument based on the input theory, where each stated argument
attacks the last move of the opponent in a way that meets the player’s burden of proof.

Our persuasion protocol is defined by specifying its entry conditions, its exit conditions, and
its dynamics. Entry conditions correspond to the initial situation of the dialogue and to the

No

Is there a conflict ?
(The initial situation)

Yes No

Yes

Is resolving the conflict do we aim at?
(The goal of the dialogue)

Persuasion

Figure 9.1. Goal and initial situation of the persuasion dialogue

177

preparatory conditions. Exit conditions correspond to the final situation that makes it
possible to determine if the dialogue goal is achieved or not. The dynamics specifies the
different types of actions that can be performed by agents so that each agent can achieve its
goal. The dynamics correspond to the mode of achievement of the discursive goal. It also
corresponds to the dialectical proof theory where the root is the persuasion subject. The
dynamics is specified by a set of initiative / reactive dialogue games. An initiative game
involves creating a new commitment. A reactive game consists in taking position on an
existing commitment (acceptance, refusal, challenge, defense, etc.).

9.2.2 CAN and the Persuasion Protocol

A Entry Conditions

As illustrated by Figure 9.1, the entry condition of the persuasion protocol is a conflict of
point of view. This is translated in the CAN formalism by the creation of a commitment
SC(Idx, Ag1, Ag2, p) by an agent Ag1 and the refusal of this commitment by an agent Ag2.
Formally, the initial situation is reflected as follows:

FΩ(Ag1, SC(Ag1, Ag2, tx, p)) = {(Create, ti)}

FΩ(Ag2 SC(Ag1, Ag2, tx, p)) = {(Refuse-content, ti+1)}

FΩ(Ag2, SC(Ag2, Ag1, tx+1, ¬p)) = {(Create, ti+1)}

B Dynamics

Generally, the persuasion dialogue takes the form of a sequence of attacks and defenses
where each agent tries to defend its point of view or attack the point of view of its partner.
This dialogue can also contain questions and answers (dialogue game of information
seeking). In the CAN formalism, this results in the creation of commitments that defend or
attack the initial commitment and other commitments and argumentation relations. The
dialogue games of information seeking can be represented by challenge actions and
argumentation relations. Formally, the dialogue dynamics can be expressed by a
combination of the following functions:

FΩ(Ag1, SC(Ag1, Ag2, ty, q)) = {(Create, tj)}

FEΣ(SC(Ag1, Ag2, ty, q), SC(Ag1, Ag2, tx, p)) = (Defend-content, tj)

FΩ(Ag2, SC(Ag2, Ag1, tz, r)) = {(Create, tk)}

FEΣ(SC(Ag2, Ag1, tz, r), SC(Ag1, Ag2, tx, p)) = (Attack-content, tk)

where p, q, r are propositional formulae.

Information seeking can be, for example, represented by:

FΩ(Ag2, SC(Ag1, Ag2, ty, q)) = {(Challenge-content, tl)}

FΩ(Ag1, SC(Ag1, Ag2, tz, r)) = {(Create, tl+1)}

FEΣ(SC(Ag1, Ag2, tz, r), SC(Ag1, Ag2, ty, q)) = (Justify-content, tl+1)

178

C Exit Conditions

The persuasion dialogue terminates either if the conflict is resolved, or with a situation in
which each agent does not accept the argument of the other. In this case the protocol
terminates with an unresolved conflict. The conflict is resolved when one of the two agents
adopts the point of view of its partner. In the CAN formalism, this results in the acceptance

of the initial commitment SC(Ag1, Ag2, tx, p) (respectively SC(Ag2, Ag1, tx+1, ¬p)) by Ag2
(respectively Ag1). This implies the cancellation of all commitments attacked

SC(Ag1, Ag2, tx, p) (respectively SC(Ag2, Ag1, tx+1, ¬p)). Formally, if Ag2 accepts
SC(Idx, Ag1, Ag2, p), the final situation is described as follows:

(Accept-content, tm) ∈ FΩ(Ag2, SC(Ag1, Ag2, tx, p)) ∧

(∀ty, q, tl: FEΣ(SC(Ag2, Ag1, ty, q), SC(Ag1, Ag2, tx, p)) = (Attack-content, tl) ⇒

(Withdraw, tm) ∈ FΩ(Ag2, SC(Ag2, Ag1, ty, q)))

Agents must also update their knowledge bases by removing the attacked and non-defended
arguments and adding the new accepted arguments. When the two agents mutually refuse
the argument of the other, the protocol stops because the conflict cannot be resolved.

9.2.3 Protocol Form

Our persuasion protocol is specified as a set of initiative / reactive dialogue games that are
specified as a combination of conversation policies. In accordance with our pragmatic
approach (see Chapters 5 and 6), the game moves are considered as actions that agents
apply to commitments, to their contents and to arguments. A conversation policy is
specified as follows:

This specification indicates that if an agent Ag1 performs the action Action_Ag1, and that the
condition Cond is satisfied, then the interlocutor Ag2 will perform the action Action_Ag2
afterwords. The condition Cond is expressed in terms of the possibility of generating an
argument from the agent’s argumentation system and in terms of the interlocutor’s
trustworthiness.

Before introducing some formal notation we use in our specification, we notice that we
distinguish between arguments that an agent has (private arguments) and arguments that this
agent uses in the conversation (public arguments). We introduce the following sets:

Support(Ag, p) = {p’/ p’ ∴p}

Create_Support(Ag1, SC(Ag1, Ag2, t, p)) = {SC(Ag1, Ag2, tx, px) / px ∴p}

Support(Ag, p) is the set of Ags’ private arguments supporting p.
Create_Support(Ag1, SC(Ag1, Ag2, t, p)) is the set of commitments created by agent Ag1 to
support the content of SC(Ag1, Ag2, t, p). This set is closed under the support relation i.e.:

Action_Ag1 Action_Ag2
Cond

179

(SC(Ag1, Ag2, t2, p2) ∈ Create_Support(Ag1, SC(Ag1, Ag2, t1, p1))

∧ SC(Ag1, Ag2, t1, p1) ∈ Create_Support(Ag1, SC(Ag1, Ag2, t0, p0)))

⇒ SC(Ag1, Ag2, t2, p2) ∈ Create_Support(Ag1, SC(Ag1, Ag2, t0, p0))

We use the notation: p ⌂ Arg_Sys(Ag1) to denote the fact that a propositional formula p can
be generated from the argumentation system of Ag1 denoted Arg_Sys(Ag1). The formula

¬(p ⌂ Arg_Sys(Ag1)) indicates the fact that p cannot be generated from Ag1’s argumentation
system. A propositional formula p can be generated from an agent’s argumentation system,
if this agent can find an argument that supports p. To simplify the formalism, we use the
notation Act’(Agx, SC(Agi, Agj, t0, p)) to indicate the action that agent Agx performs on the

commitment SC(Agi, Agj, t0, p) or on its content (Act’∈{Create, Withdraw, Accept-content,
Challenge-content, Refuse-content}). For the actions related to the argumentation relations,
we write Act-Arg(Agx, [SC(Agn, Agm, t1, q)], SC(Agi, Agj, t0, p)). This notation indicates that
Agx defends (resp. attacks or justifies) the content of SC(Agi, Agj, t0, p) by the content of

SC(Agn, Agm, t1, q) (Act-Arg∈{Defend-content, Attack-content, Justify-content}). The
commitment that is written between square brackets [] is the support of the argument. In a
general way, we use the notation Act’(Agx, S) to indicate the action that Agx performs on the
set of commitments S or on the contents of these commitments, and the notation
Act-Arg(Agx, [S], SC(Agi, Agj, t0, p)) to indicate the argumentation-related action that Agx
performs on the content of SC(Agi, Agj, t0, p) using the contents of S as support. We also
introduce the notation Act-Arg(Agx, [S], S’) to indicate that Agx performs an argumentation-
related action on the contents of a set of commitments S’ using the contents of S as supports.

We distinguish two types of dialogue games: entry game and chaining games. The entry
game allows the two agents to open the persuasion dialogue. It corresponds to the entry
conditions. The chaining games make it possible to continue the conversation. The protocol
terminates when the exit conditions are satisfied (Figure 9.2).

Figure 9.2. The general form of the protocol

9.2.4 Dialogue Games

A Entry Game

The entry game that describes the entry conditions in our persuasion protocol about a
propositional formula p is described by the entry conversation policies as follows
(Specification 1):

Chaining games
Entry game Exit conditions (Termination)

Figure 9.2. The general form of the protocol

 Refuse-content(Ag2, SC(Ag1, Ag2, tx, p)) Persuasion Dialogue

Create(Ag1, SC(Ag1, Ag2, tx, p))

a1

b1

c1

Accept-content(Ag2, SC(Ag1, Ag2, tx, p)) Termination

Challenge-content(Ag2, SC(Ag1, Ag2, tx, p)) Information-

seeking Dialogue

180

where a1, b1 and c1 are three conditions specified as follows:
a1 = p ⌂ Arg_Sys(Ag2)

b1 = ¬(p ⌂ Arg_Sys(Ag2)) ∧ ¬(¬p ⌂ Arg_Sys(Ag2))

c1 = ¬p ⌂ Arg_Sys(Ag2)

If Ag2 has an argument for p then it accepts p (the content of SC(Ag1, Ag2, tx, p)) and the
conversation terminates as soon as it begins (Condition a1). If Ag2 has neither an argument

for p nor for ¬p, then it challenges p and the two agents open an information-seeking
dialogue (condition b1). The persuasion dialogue starts when Ag2 refuses p because it has an
argument against p (condition c1).

B Defense Game

Once the two agents opened a persuasion dialogue, the initiator must defend its point of
view. Thus, it must play a defense game. Our protocol is specified in such a way that the
persuasion dynamics starts by playing a defense game. We have (Specification 2):

where:

{ }1 2, , ,() / 0,...,i i
pS SC Ag Ag i nt= = , pi are commitment-free formulae.

SSi i ==∪3
1 , i jS S = ∅∩ , jiji ≠= &3,...,1,

By definition, Defend-content(Ag1, [S], SC(Ag1, Ag2, tx, p)) means that Ag1 creates S in order
to defend the content of SC(Ag1, Ag2, tx, p). Formally:

Defend-content(Ag1, [S], SC(Ag1, Ag2, tx, p)) =def (Create(Ag1, S)

 ∧ S = Create_Support(Ag1, SC(Ag1, Ag2, tx, p)))

We consider this definition as an assertional description of the Defend action.

This specification indicates that according to the three conditions (a2, b2 and c2), Ag2 can
accept a subset S1 of S, challenge a subset S2 and attack a third subset S3. Sets S1, S2, and S3
are mutually disjoint because Ag2 cannot, for example, both accept and challenge the same
commitment content. Accept, Challenge and Attack a set of commitment contents are
defined as follows by the following formulae:

Accept-content(Ag2, S1) =def (∀i, SC(Ag1, Ag2, ti, pi) ∈ S1

⇒ Accept-content(Ag2, SC(Ag1, Ag2, ti, pi)))

Challenge-content(Ag2, S2) =def (∀i, SC(Ag1, Ag2, ti, pi) ∈ S2

⇒ Challenge-content(Ag2, SC(Ag1, Ag2, ti, pi)))

Defend-content(Ag1, [S], SC(Ag1, Ag2, tx, p))

Attack-content(Ag2, [S’], S3)

a2

b2

c2

Accept-content(Ag2, S1)

Challenge-content(Ag2, S2)Entry game

181

Attack-content(Ag2, [S’], S3) =def ∀i, SC(Ag1, Ag2, ti, pi) ∈ S3 ⇒ ∃S’j ⊆ S’:
 Attack-content(Ag2, [S’j], SC(Ag1, Ag2, ti, pi))

where: ∪m

j 0= S’j = S’.

This indication means that any element of S’ is used to attack one or more elements of S3.

The conditions a2, b2 and c2 are specified as follows:

a2 = ∀i, SC(Ag1, Ag2, ti, pi) ∈ S1 ⇒ pi ⌂ Arg_Sys(Ag2)

b2 = ∀i, SC(Ag1, Ag2, ti, pi) ∈ S2 ⇒ (¬(pi ⌂ Arg_Sys(Ag2)) ∧ ¬(¬pi ⌂ Arg_Sys(Ag2)))

c2 = ∀i, SC(Ag1, Ag2, ti, pi) ∈ S3 ⇒ ∃S’j ⊆ S’, Content(S’j) = Support(Ag2, ¬pi)
where Content(S’j) indicates the set of contents of the commitments S’j.

C Challenge Game

The challenge game is specified as follows (Specification 3):

where the condition a3 is specified as follows:

a3 = (Content(S) = Support(Ag2, p))

In this game, the condition a3 is always true. The reason is that in accordance with the
commitment semantics, an agent must always be able to defend the commitment it created
(see Chapter 7).

D Justification Game

For this game we distinguish two cases:

Case1. SC(Ag1, Ag2, tx, p) ∉ S

In this case, Ag1 justifies the content of its commitment SC(Ag1, Ag2, tx, p) by creating a set
of commitments S. As for the Defend action, Ag2 can accept, challenge and/or attack a
subset of S. The specification of this case is given by the following conversation policies
(Specification 4):

where:

{ }1 2(, ,) / 0,...,,i i
S SC i npAg Ag t= = , pi are propositional formulae.

Challenge-content(Ag1, SC(Ag2, Ag1, tx, p)) Justify-content(Ag2, [S], SC(Ag2, Ag1, tx, p))
a3

Justify-content(Ag1, [S], SC(Ag1, Ag2, tx, p))

Attack-content(Ag2, [S’], S3)

a4

b4

c4

Accept-content(Ag2, S1)

Challenge-content(Ag2, S2)

182

3
1 , , , 1,...3&i i ji S S i j i jS S= = = ∅ = ≠∩∪

a4 = a2, b4 = b2, c4 = c2

Case2. {SC(Ag1, Ag2, tx, p)} = S

In this case, the justification game has the following specification (Specification 5):

where:

a4’ = Ag1 ∈ Trust(Ag2, D)

b4’ = Ag1 ∉ Trust(Ag2, D)
Trust(Ag, D) is the set of the trustworthy agents for Ag relative to a domain D. Here we
assume that p is in the domain D. This aspect will be discussed later.

Ag1 justifies the content of its commitment SC(Ag1, Ag2, tx, p) by itself (i.e. by p). This
means that p is part of Ag1’s knowledge. Only two moves are possible for Ag2: 1) accept the
content of SC(Idx, Ag1, Ag2, p) if Ag1 is a trustworthy agent for Ag2 (a’4), 2) if not, refuse
this content (b’4). Ag2 cannot attack this content because it does not have an argument
against p. The reason is that Ag1 plays a justification game because Ag2 played a challenge
game.
Like the definition of the Defend action, we define the Justify action as follows:

 Justify-content(Ag1, [S], SC(Ag1, Ag2, tx, p)) =def (Create(Ag1, S)

∧ S = Create_Support(Ag1, SC(Ag1, Ag2, tx, p)))

This means that Ag1 creates the set S of commitments to support the commitment
SC(Ag1, Ag2, tx, p).

E Attack Game

The attack game is specified by the following conversation policies (Specification 6):

where:

{ }1 2, , ,() / 0,...,i i
pS SC Ag Ag i nt= = , pi are propositional formulae.

Justify-content(Ag1, [S], SC(Ag1, Ag2, tx, p))

Refuse-content(Ag2, SC(Ag1, Ag2, tx, p))

a’4

b’4

Accept-content(Ag2, SC(Ag1, Ag2, tx, p))

Attack-content(Ag2, [S’], S4)

Attack-content(Ag1, [S], SC(Ag2, Ag1, tx, p))

a5

b5

c5

d5

Refuse-content(Ag2, S1)

Accept-content(Ag2, S2)

Challenge-content(Ag2, S3)

183

4
11 , () 1, , , 1,..., 4 &i i ji S S Card i j i jS S S= = = = ∅ = ≠∩∪

Formally, the Attack action is defined as follows:

Attack-content(Ag1, [S], SC(Ag2, Ag1, tx, p)) =def ∃ ty, (Create(Ag1, SC(Ag1, Ag2, ty, ¬p))

∧ Create(Ag1, S)

∧ S = Create_Support(Ag1, SC(Ag1, Ag2, ty, ¬p)))

This means that by attacking SC(Ag2, Ag1, ty, p), Ag1 creates the commitment

SC(Ag1, Ag2, ty, ¬p) and the set S to support this commitment.

The conditions a5, b5, c5 and d5 are specified as follows:

a5 =∃i, tz: SC(Ag2, Ag1, ti, pi) ∈ Create_Support(Ag2, SC(Ag2, Ag1, tz, ¬q))
where S1 = {SC(Ag1, Ag2, tz’, q)}

b5 = ∀i, SC(Ag1, Ag2, ti, pi) ∈ S2 ⇒ pi ⌂ Arg_Sys(Ag2)

c5 = ∀i, SC(Ag1, Ag2, ti, pi) ∈ S3 ⇒ (¬(pi ⌂ Arg_Sys(Ag2)) ∧¬(¬pi ⌂ Arg_Sys(Ag2)))

d5 = ∀i, SC(Ag1, Ag2, ti, pi) ∈ S4 ⇒ ∃S’j ⊆ S’: Content(S’j) = Support(Ag2, ¬pi)

∧ ∃ tz, k: SC(Ag2, Ag1, tk, pk) ∈ Create_Support(Ag2, SC(Ag2, Ag1, tz, ¬pi))

Ag2 refuses Ag1’s argument if Ag2 already attacked this argument. In other words, Ag2
refuses Ag1’s argument if Ag2 cannot attack this argument since it already attacked it, and it
cannot accept it or challenge it since it has an argument against this argument. We have only
one element in S1 because we consider a refusal move as an exit condition. The acceptance
and the challenge actions of this game are the same as the acceptance and the challenge
actions of the defense game. Finally, Ag2 attacks Ag1’s argument if Ag2 has an argument
against Ag1’s argument, and if Ag2 did not attack Ag1’s argument before. In d5, the universal
quantifier means that Ag2 attacks all Ag1’s arguments for which it has an against-argument.
The reason is that Ag2 must act on all commitments created by Ag1. The temporal aspect

(the past) of a5 and d5 is implicitly integrated in Create_Support(Ag2, SC(Ag2, Ag1, tz, ¬q))

and Create_Support(Ag2, SC(Ag2, Ag1, ti, ¬pi)).

F Termination Game

The protocol terminates either by a final acceptance or by a refusal. There is a final
acceptance when Ag2 accepts the content of the initial commitment SC(Ag1, Ag2, tx, p) or

when Ag1 accepts the content of SC(Idy, Ag2, Ag1, ¬p). Ag2 accepts the content of
SC(Ag1, Ag2, tx, p) iff it accepts all the supports of SC(Ag2, Ag1, tx, p). Formally:

Accept-content(Ag2, SC(Ag1, Ag2, tx, p)) ⇔

(∀i, SC(Ag1, Ag2, ti, pi) ∈ Create_Support(Ag1, SC(Ag1, Ag2, tx, p))

⇒ Accept-content(Ag2, SC(Ag1, Ag2, ti, pi)))

The acceptance of the supports of SC(Ag1, Ag2, tx, p) by Ag2 does not mean that they are
accepted directly after their creation by Ag1, but it can be accepted after a number of

184

challenge, justification and attack games. When Ag2 accepts definitively, then it withdraws
all commitments whose content was attacked by Ag1. Formally:

Accept-content(Ag2, SC(Ag1, Ag2, tx, p)) ⇒

(∀i, ∀S, Attack-content(Ag1, [S], SC(Ag2, Ag1, ti, pi))

⇒ Withdraw(Ag2, SC(Ag2, Ag1, ti, pi)))

On the other hand, Ag2 refuses the content of SC(Ag1, Ag2, tx, p) iff it refuses one of the
supports of SC(Idx, Ag1, Ag2, p). Formally:

Refuse-content(Ag2, SC(Ag1, Ag2, tx, p)) ⇔

(∃i: SC(Ag1, Ag2, ti, pi) ∈ Create_Support(Ag1, SC(Ag1, Ag2, tx, p))

∧ Refuse-content(Ag2, SC(Ag1, Ag2, ti, pi)))

9.2.5 Protocol Dynamics

The persuasion dynamics is described by the chaining of a finite set of dialogue games:
acceptance move, refusal move, defense, challenge, attack and justification games. These
games can be combined in a sequential and parallel way (Figure 9.3).

After Ag1’s defense game at moment t1, Ag2 can, at moment t2, accept a part of the
arguments presented by Ag1, challenge another part, and/or attack a third part. These games
are played in parallel. At moment t3, Ag1 answers the challenge game by playing a
justification game and answers the attack game by playing an acceptance move, a challenge
game, another attack game, and/or a final refusal move. The persuasion dynamics continues
until the exit conditions become satisfied (final acceptance or a refusal). From our
specifications, it follows that our protocol plays the role of the dialectical proof theory of
the argumentation system.

Figure 9.3. The persuasion dialogue dynamics

Indeed, our persuasion protocol can be described by BNF grammar. To do this, we first
introduce the following definitions:

Let G1, G2, and G3 three dialogue games.

G1 //≥1 G2 = G1 | G2 | G1 // G2

Defense game

Attack game

Justification game

t1 t2 t3 t4

Acceptance

Challenge game
Acceptance
Challenge game

Attack game

Refusal Termination

Figure 9.3. The persuasion dialogue dynamics

Entry game

t0

185

G1 //opt G2 = ε | G1 //≥1 G2

//(G1, G2, G3) = (G1 //≥1 G2) //opt G3

| (G1 //opt G2) //≥1 G3

where: ε is the empty dialogue game, and “//” is the parallelization symbol. G1 // G2 means
that an agent can play the two games in parallel.

The persuasion protocol can be defined as follows:

Persuasion protocol = Entry game ; Defense game ; Dialogue games

Dialogue games = //(Acceptance move ; Ch ; Att)
Ch = Challenge game ; Justification game ; (Dialogue games | Refusal)
Att = Attack game ; (Dialogue games | Refusal)

where “;” is the sequencing symbol.

Example

In this section we present a simple example dialogue that illustrates some notions presented
in this chapter.

This example was also studied in (Amgoud and Maudet, 2002) in a context of strategical
considerations for argumentative agents. The letters on the left of the utterances are the
propositional formulae that represent the propositional contents. Agent Ag1’s KB contains:

([q, r], p), ([s, t], q) and ([u], u). Agent Ag2’s KB contains: ([¬t], ¬p), ([u, v], ¬t), ([u], u)
and ([v], v). The combination of the dialogue games that allows us to describe the
persuasion dialogue dynamics is as follows:

Entry Game

SC(Ag1, Ag2, t0, p)

SC(Ag2, Ag1, t1, ¬p)

Defense Game

([SC(Ag1, Ag2, t2, q), SC(Ag1, Ag2, t3, r)],

SC(Ag1, Ag2, t0, p))

Acceptance Move

 SC(Ag1, Ag2, t3, r)

Challenge Game

 SC(Ag1, Ag2, t2, q)

a2

b2 a3

Ag1: Newspapers can publish information I (p).
Ag2: I don’t agree with you.
Ag1: They can publish information I because it is not private (q), and any public information
can be published (r).
Ag2: Why is information I public?
Ag1: Because it concerns a Minister (s), and information concerning a Minister is public (t).
Ag2: Information concerning a Minister is not necessarily public, because information I is
about the health of Minister (u), and information about the health remains private (v).
Ag1: I accept your argument.

186

Ag1 creates SC(Ag1, Ag2, t0, p) to achieve the goal of persuading Ag2 that p is true. Ag1 can
create this commitment because it has an argument for p. Ag2 refuses SC(Ag1, Ag2, t0, p)
because it has an argument against p. Thus, the entry game is played and the persuasion
dialogue is opened. Ag1 defends SC(Ag1, Ag2, t0, p) by creating SC(Ag1, Ag2, t2, q) and
SC(Ag1, Ag2, t3, r). Ag2 accepts SC(Ag1, Ag2, t3, r) because it has an argument for r and
challenges SC(Ag1, Ag2, t2, q) because it has no argument for q or against q. Ag1 plays a
justification game to justify SC(Ag1, Ag2, t2, q) by creating SC(Ag1, Ag2, t4, s) and
SC(Ag1, Ag2, t5, t). Ag2 accepts the content of SC(Ag1, Ag2, t4, s) and attacks the content of
SC(Ag1, Ag2, t5, t) by creating SC(Ag2, Ag1, t6, u) and SC(Ag2, Ag1, t7, v). Finally, Ag1 plays
acceptance moves because it has an argument for u and it does not have arguments against v
and the dialogue terminates. Indeed, before accepting v, Ag1 challenges it and Ag2 defends it
by itself (i.e. ([SC(Ag2, Ag1, t7, v), SC(Ag2, Ag1, t7, v)])). Then, Ag1 accepts this argument
because it considers Ag2 trustworthy (see Figure 9.9 Section 9.4). Ag1 updates its KB by
removing the attacked argument and including the new argument. Figure 9.12 (Section 9.4)
illustrates the screen shot of this example generated by our prototype. In this figure
commitments are described only by their contents and the identifiers of the two agents are
the two first arguments of the exchanged communicative actions. The contents are specified
using a predicate language that the two agents share (the ontology).

9.2.6 Algorithms

The general algorithm representing our persuasion dialogue game protocol is given by
Algorithm 9.1. Part A of Algorithm 9.1 specifies the entry conditions. Part B indicates the
exit conditions. The persuasion dynamics (i.e. the sequence of utterances) is given by the
function Dynamics. The specification of this function is given by Algorithms 9.2, 9.3, 9.4,
9.5 and 9.6. To simplify these algorithms, we suppose that the support of an argument is
composed only by one commitment. In these algorithms SAg1 indicates the set of arguments
of agent Ag1 (i.e. its knowledge base). S’Ag1 indicates the set of arguments that Ag1 used in
the current dialogue. The set S’Ag1 allows us to avoid the use of same arguments several
times. These algorithms specify the different dialogue games of our protocol as if then rules.

Justification Game
([SC(Ag1, Ag2, t4, s),
SC(Ag1, Ag2, t5, t)],
SC(Ag1, Ag2, t2, q))

Acceptance move

 SC(Ag1, Ag2, t4, s)

Attack Game

 ([SC(Ag2, Ag1, t6, u),
SC(Ag2, Ag1, t7, v)],
SC(Ag1, Ag2, t5, t))

Acceptance moves
SC(Ag2, Ag1, t6, u), SC(Ag2, Ag1, t7, v)

+ Final acceptance move

SC(Ag2, Ag1, t1, ¬p)

a4

c4
b5

187

Algorithm 9.2 deals with the acceptance (Termination game) and the refusal (Entry game)
cases. The acceptance of SC(Idx, Ag1, Ag2, p) makes it possible to solve the conflict and to
stop the algorithm. In the refusal case, if Ag1 finds an argument (r, q) not yet used for its
commitment SC(Idy, Ag1, Ag2, q), then this agent creates a new commitment SC(Idz, Ag1,
Ag2, r) to defend SC(Idy, Ag1, Ag2, q). Ag1 updates the set S’Ag1 by adding the argument (r,
q). Ag1 informs Ag2 about its action using the Send primitive. The Send primitive has the
form Send(Destination, Action). If Ag1 does not have arguments to defend its commitment,
then the conflict cannot be solved because each agent refuses the arguments of the other and
the algorithm stops.

{ If FΩ(Ag1, SC(Idx, Ag1, Ag2, p)) = {(Create, ti)}

And FΩ(Ag2, SC(Idx, Ag1, Ag2, p)) = {(Refuse-content, ti+1)}
Then
 { Conflict := 1;

 Dynamics;
 If Conflict = 0 Then

 “ The conflict is resolved “
Else “ The conflict is not resolved “

 }

}

Part A

Part B

Algorithm 9.1

If (Accept-content, tj) ∈ FΩ(Ag2, SC(Ag1, Ag2, tx, p)) Then {
Conflict := 0;
Return Conflict;

 }

If FΩ(Ag2, SC(Ag1, Ag2, ty, q)) = {(Refuse-content, tj)} Then {

If ∃(r, q) ∈ SAg1 / S’Ag1 Then {

FΩ(Ag1, SC(Ag1, Ag2, tz, r)) := {(Create, tj+1);

FEΣ(SC(Ag1, Ag2, tz, r), SC(Ag1, Ag2, ty, q)) := (Defend-content, tj+1) ;

S’Ag1 := S’Ag1 ∪ {(r, q)};
Send(Ag2, Defend(SC(Ag1, Ag2, tz, r), SC(Ag1, Ag2, ty, q)));

 }
Else {

Conflict : = -1;
Return Conflict;

}

 }

Algorithm 9.2

188

Algorithm 9.3 deals with the Challenge game. Ag1 justifies its commitment if it finds an
argument not yet used. As for the refusal case, Ag1 updates S’Ag1 and informs Ag2 about its
action. If Ag1 does not find such an argument, then it indicates to Ag2 that the content of the
challenged commitment is knowledge that Ag1 believes true by justifying it by itself. The
formal definition of the justification relation is the same as the defense relation.

Algorithm 9.4 deals with the case of Ag1 reaction if Ag2 justifies the content of its
commitment by itself (case 2 of Justification game). Trustworthy(Ag2, q) is a boolean
function that enables Ag1 to determine if Ag2 is trustworthy or not. If according to Ag1, Ag2
is trustworthy, then Ag1 accepts Ag2’s commitment. If not, Ag1 refuses Ag2’s commitment.
In the next section (Section 9.3) we propose a probabilistic model of trustworthiness to
determine the value of Trustworthy(Ag2, q) function.

Algorithm 9.5 deals with the case where Ag2 attacks the support of Ag1’s argument (Attack
game). Ag1 attacks Ag2’s argument if Ag1 has an against-argument not already used. If not
Ag1 refuses this argument. If Ag1 cannot attack or refuse Ag2’s argument, then Ag1 accepts

If FΩ(Ag2, SC(Ag1, Ag2, ty, q)) = {(Challenge-content, tj)} Then {

If ∃(r, q) ∈ SAg1 / S’Ag1 Then {

FΩ(Ag1, SC(Ag1, Ag2, tz, r)) : = {(Create, tj+1)};

FEΣ(SC(Ag1, Ag2, tz, r), SC(Ag1, Ag2, ty, q)) := (Justify-content, tj+1);

S’Ag1 = S’Ag1 ∪ {(r, q)};
Send(Ag2, Justify(SC(Ag1, Ag2, tz, r), SC(Ag1, Ag2, ty, q)));

}

Else {

FEΣ(SC(Ag1, Ag2, ty, q), SC(Ag1, Ag2, ty, q)) := (Justify-content, tj+1);
Send(Ag2, Justify(SC(Ag1, Ag2, ty, q), SC(Ag1, Ag2, ty, q)));

}

}

Algorithm 9.3

If FEΣ(SC(Ag2, Ag1, ty, q), SC(Ag2, Ag1, ty, q)) = (Justify-content, tj) Then {

If Trustworthy(Ag2, q)

Then FΩ(Ag1, SC(Ag2, Ag1, ty, q)) := {(Accept-content, tj+1)}

Else FΩ(Ag1, SC(Ag2, Ag1, ty, q)) := {(Refuse-content, tj+1)}
Send(Ag2, Refuse(Ag1, SC(Ag2, Ag1, ty, q)));

 }

Algorithm 9.4

189

Ag2’s argument if Ag1 has an argument. If not Ag1 challenges Ag2’s argument if Ag1 has no
arguments nor against-arguments.

Algorithm 9.6 deals with the case in which the reactive game of Ag2 is a defense of its
argument (Defense game) or a justification of its commitment (case 1 of Justification
game). Thus, Ag1 can attack the support of the Ag2’s argument or its conclusion according
to Ag1’s arguments. As in Algorithm 9.5, Ag1 accepts or challenges the support of Ag2’s
argument in the opposite case.

9.2.7 Termination Proof

In this section we discuss the termination of our protocol (i.e. the termination of Algorithm
9.1). Informally, to prove the termination of Algorithm 9.1, it is enough to prove that the
protocol dynamics always converges to a final acceptance or a final refusal.

According to the Algorithms 9.2, 9.3, 9.4, 9.5 and 9.6, the protocol chaining can have one
of the following possibilities:

1- Agent Ag2 accepts all the supports of the initial commitment SC(Ag1, Ag2, tx, p).

Therefore, we have: (Accept-content, ti) ∈ FΩ(Ag2, SC(Ag1, Ag2, tx, p)).

2- Agent Ag2 refuses one of the supports of SC(Idx, Ag1, Ag2, p), and Ag1 does not find an

argument to defend this support. Thus, we have: FΩ(Ag2, SC(Idx, Ag1, Ag2, p)) = {…,
(Refuse-content, ti)}.

If FEΣ(SC(Ag2, Ag1, ty, q), SC(Ag1, Ag2, tz, r)) = (Attack-content, tj) Then {

If ∃(s, ¬q) ∈ SAg1 / S’Ag1 Then {

FΩ(Ag1, SC(Ag1, Ag2, tz’, s)) := {(Create, tj+1)};

FEΣ (SC(Ag1, Ag2, tz’, s), SC(Ag2, Ag1, ty, q)) := (Attack-content, tj+1);

S’Ag1 := S’Ag1 ∪ {(s, ¬q)};
Send(Ag2, Attack(SC(Ag1, Ag2, tz’, s), SC(Ag2, Ag1, ty, q)));

}
Else

 If ∃(s, ¬q) ∈ S’Ag1 then

FΩ(Ag1, SC(Ag2, Ag1, ty, q)) = {(Refuse-content, tj)}
Else {

If (s, q) ∈ SAg1 / S’Ag1 Then

FΩ(Ag1, SC(Ag2, Ag1, ty, q)) := {(Accept-content, tj+1)}

Else FΩ(Ag1, SC(Ag2, Ag1, ty, q)) := {(Challenge-content, tj+1)};
Send(Ag2, Challenge(Ag1, SC(Idy, Ag2, Ag1, q)));

}

 }

Algorithm 9.5

190

3- The two agents attack each other about a part of the last arguments.

4- Agent Ag2 challenges a part of the arguments presented by Ag1.

Possibilities 1 and 2 converge to a final acceptance and a final refusal. Possibility 3
converges to a situation where an agent finds an argument (H, h) to attack the support of the

interlocutor’s argument, but this argument was already used ((H, h) ∈ S’Ag). The reason is
that the agents’ knowledge bases are finite. In this case, this agent refuses the interlocutor’s
argument (Algorithm 9.2). Thus, possibility 3 converges to a final refusal. For the same
reason, possibility 4 converges to the situation in which Ag1 justifies a support by itself. In
this situation, Ag2 can play only an acceptance move if Ag1 is trustworthy or a refusal move
if not (Algorithm 9.4). Thus, possibility 4 converges to a final acceptance or a final refusal.

Formally, the termination of our dialogue game protocol is stated by the following theorem.

Theorem 9.1 The protocol dynamics always terminates.

If FEΣ(SC(Ag2, Ag1, ty, q), SC(Ag2, Ag1, tz, r)) = (Defend-content, tj) or

 FEΣ(SC(Ag2, Ag1, ty, q), SC(Ag2, Ag1, tz, r)) = (Justify-content, tj) Then {

If ∃(s, ¬q) ∈ SAg1 / S’Ag1 Then {

FΩ(Ag1, SC(Ag1, Ag2, tz’, s)) := {(Create, tj+1)};

FEΣ(SC(Ag1, Ag2, tz’, s), SC(Ag2, Ag1, ty, q)) := (Attack-content, tj+1);

S’Ag1 := S’Ag1 ∪ {(s, ¬q)};
Send(Ag2, Atack(SC(Ag1, Ag2, tz’, s), SC(Ag2, Ag1, ty, q)));

}
Else

If ∃(s, ¬r) ∈ SAg1 / S’Ag1 Then {

FΩ(Ag1, SC(Ag1, Ag2, tz’, s)) := {(Create, tj+1)};

FEΣ(SC(Ag1, Ag2, tz’, s), SC(Ag2, Ag1, tz, r)) := (Attack-content, tj+1);

S’Ag1 := S’Ag1 ∪ {(s, ¬r)};
Send(Ag2, Attack(SC(Ag1, Ag2, tz’, s), SC(Ag2, Ag1, tz, r)));

}
Else {

If ∃(s, q) ∈ SAg1 / S’Ag1 Then

FΩ(Ag1, SC(Ag2, Ag1, ty, q)) := {(Accept, tj+1)};

Else FΩ(Ag1, SC(Ag2, Ag1, ty, q)) := {(Challenge, tj+1)};
Send(Ag2, Challenge(Ag1, SC(Ag2, Ag1, ty, q)));

}

 }

Algorithm 9.6

191

Proof

To prove this theorem, we use a tableau method (Cleaveland, 1990). The idea is to
formalize our specifications (Section 9.2.4) as tableau rules and then to prove the finiteness
of the tableau. Tableau rules are written in such a way that premises appear above
conclusions. Using a tableau method means that the specifications are conducted in a top-
down fashion. For example, specification 2 (defense game) can be expressed by the
following rules:

1:R 1

12

(,[], ())

(,)

Ag

Ag S

Defend S SC p

Accept

2 :R 1

12

(,[], ())

(,)

Ag

Ag S

Defend S SC p

Challenge

3:R 1

12

(,[], ())

(,[],)

Ag

Ag S

Defend S SC p

Attack S'

We denote the formulae of our specifications by σ, and we define Eσ the set of σ. We

define an ordering ≺ on Eσ and we prove that ≺ has no infinite ascending chains.

Intuitively, this relation is to hold between σ1 and σ2 if it is possible that σ1 is an ancestor of

σ2 in some tableau. Before defining this ordering, we introduce some notations:

Act*(Ag, [S], S’) with Act* ∈ {Act’, Act-Arg} is a formula. We notice that formulae in

which there is no support [S], can be written as follows: Act*(Ag, [∅], S’). σ[S] →R σ[S’]

indicates that the tableau rule R has the formula σ[S] as premise and the formula σ[S’] as

conclusion, with σ[S] = Act*(Ag, [S], S’). The size |S| is the number of commitments in S.

Definition 9.2 Let σ[Si] be a formula and Eσ the set of σ[Si]. The ordering ≺ on Eσ is

defined as follows. We have σ[S0] ≺ σ[S1] if:

|S1| < |S0| or

For all rules Ri such that σ[S0] →R0 σ[S1] →R1 σ[S2]… →Rn σ[Sn] we have |Sn| = 0.

Intuitively, in order to prove that a tableau system is finite, we need to prove the following:

1- if σ[S0] →R σ[S1] then σ[S0] ≺ σ[S1].

2- ≺ has no infinite ascending chains (i.e. the inverse of ≺ is well-founded).

Property 1 reflects the fact that applying tableau rules results in shorter formulae, and
property 2 means that this process has a limit. The proof of 1 proceeds by a case analysis on
R. Most cases are straightforward. We consider here the case of R3. For this rule we have

two cases. If |S1| < |S0|, then σ[S0] ≺ σ[S1]. If |S1| ≥ |S0|, we can apply the rules

corresponding to the Attack game specification. The three first rules are straightforward
since S2 = ∅ . For the last rule, we have the same situation that R3. Suppose that there is no

path in the tableau σ[S0] →R0 σ [S1] →R1 σ[S2]… →Rn σ[Sn] such that |Sn| = 0. This means

192

that i) the number of arguments that agents have is infinite or that ii) one or several
arguments are used several times. However, situation i is not possible because the agents’
knowledge bases SAg are finite sets, and situation ii is not allowed in our protocol because
agents cannot use arguments already used (i.e. arguments already in in S’Ag). We note here
that the agents’ knowledge bases are updated after each conversation by removing the
attacked arguments that cannot be defended and adding the new accepted arguments.

Because the definition of ≺ is based on the size of formulae and since |S0| ∈ N (< ∞) and <

is well-founded in , it follows that there is no infinite ascending chains of the form

σ[S0] ≺ σ[S1]…

We notice that what we proved here is the termination of the protocol run and not the
termination of the dialogue. For this reason, this proof uses the protocol specification in
terms of the dialogue rules. It is clear that the termination of the protocol run results in the
termination of the dialogue.

9.2.8 Correctness and Complexity

Correctness. We can formalize the correctness problem of our algorithms as follows:
Algorithm 9.1 is correct iff the protocol description based on this algorithm satisfies the
protocol specification (i.e. what the protocol must do). The specification can be formalized
as a set of claims or properties that must be predefined. The idea is to describe the protocol
as a transition system T for a dialogue game protocol as defined in Chapter 8 (Definition

8.2), and to express the specification as logical formulae ψ using our DCTL*CAN logic (see
Chapter 7). This formalization enables us to deal with the correctness problem as a model-
checking problem, i.e. whether T ψ or not. For this purpose we can use our model

checking technique that we proposed in Chapter 8.

Because our persuasion dialogue game protocol is specified using our pragmatic approach
(Chapters 5 and 6), and dialogue game specifications are described as if then rules, it is easy
to translate this protocol to a transition system T for a dialogue game. Transitions are
labeled by the different actions that we use in our specifications of dialogue games (i.e.
Action_Agi). The syntax of these actions can be easily translated to the syntax of
DCTL*CAN. For example the action:

Defend-content(Ag1, [S], SC(Idx, Ag1, Ag2, p))

can be translated to:

Defend-content(Ag1, SC(Idx, Ag1, Ag2, p), p’)

where:

{ }21, ,,() / 0,...,i i
pAg AgS SC i nid= = and 0 1' ... np p pp = ∧ ∧ .

193

Each dialogue game can be described by a fragment of the transition system T as follows:
each conversation policy of the form :

can be described by two states s1 and s2 and a transition s1 →Action_Ag2
 s2. Action_Ag1 is the

label of a transition whose s1 is the target state. We notice that the condition Cond is
omitted. This does not affect the correctness of the protocol, because the conditions are used
by agents as a reasoning mechanism about the protocol and do not belong to the protocol
itself. Using this procedure, we can describe our persuasion protocol by a transition system
for dialogue game protocol with 11 states and 16 transitions. The initial state s0 is the source
state of one transition labeled by the creation action. This transition system has two final
states correspond respectively to the acceptance and the refusal states. Finally, the
properties to be verified are derived from the specifications. The properties described in
Chapter 8 (Section 8.4.2) are examples of the properties that our protocol must satisfied.

Complexity. The purpose of Algorithm 9.1 is to resolve the initial conflict or to decide after
a finite number of moves that the conflict can not be resolved. Every move is based on the
state of SAg and S’Ag because agents must seek arguments or counter-arguments in SAg and
S’Ag. If we do not take into account the trustworthiness part of the algorithm, and since

|SAg| < |S’Ag|, the time complexity of Algorithm 9.1 is: Ο(max(|SAg1|, |SAg2|)). The complexity
of the trustworthiness part will be discussed in Section 9.3.3.

9.3 Trustworthiness Model

9.3.1 Formulation

Several models of trustworthiness have been developed in the context of MAS (Sabater and
Sierra, 2002), (Yu and Singh, 2002), (Ramchurn et al., 2003). However, their formulations
do not take into account the elements we use in our approach (accepted and refused
arguments, satisfied and violated commitments). For this reason, we propose a model that is
more appropriate for our protocol. This model has the advantage of being simple and
rigorous.

In our model, an agent’s trustworthiness is a probability function defined as follows:

[],: 0 1TRUST A A D× →×

This function associates to each agent a probability measure representing its trustworthiness
in the domain D according to another agent. Let X be a random variable representing an
agent’s trustworthiness. To evaluate the trustworthiness of an agent Agb, an agent Aga uses
the records of its interactions with Agb. Equation 9.1 indicates how to calculate this
trustworthiness as a probability measure (number of successful outcomes / total number of
possible outcomes).

Action_Ag1 Action_Ag2
Cond

194

Nb_arg(Agb)Aga is the number of Agbs’ arguments that are accepted by Aga.
Nb_SC(Agb)Aga is the number of satisfied commitments whose Agb is the debtor and Aga is
the creditor.
T_Nb_arg(Agb)Aga is the total number of Agbs’ arguments towards Aga.

T_Nb_SC(Agb)Aga is the total number of commitments whose Agb is the debtor and Aga is
the creditor.

All these commitments and arguments are related to the domain D. The basic idea is that the
trust degree of an agent can be induced according to how much information acquired from it
has been accepted as belief in the past. Because all the factors of Equation 9.1 are related to
the past, this information number is finite.

TRUST(Agb)Aga is the trustworthiness of Agb according to Aga’s point of view. This
trustworthiness is a dynamic value that changes according to the interactions taking place
between Aga and Agb. This supposes that Aga knows Agb. If not, or if the number of
interactions is not sufficient to determine this trustworthiness, the consultation of other
agents becomes necessary.

As proposed in (Abdul-Rahman and Hailes, 2000) (Yu and Singh, 2002), each agent has
two kinds of beliefs when evaluating the trustworthiness of another agent: local beliefs and
total beliefs. Local beliefs are based on the direct interactions between agents. Total beliefs
are based on the combination of the different testimonies of other agents called witnesses. In
our model, local beliefs are given by Equation 9.1. Total beliefs require studying how
different probability measures offered by witnesses can be combined. We deal with this
aspect in the following section.

9.3.2 Estimating Agent’s Trustworthiness

Let us suppose that an agent Aga wants to evaluate the trustworthiness of an agent Agb with
which it never (or not enough) interacted before. This agent must consult agents that it
knows to be trustworthy (confidence agents). A trustworthiness threshold w must be fixed.
Thus, Agb will be considered trustworthy by Aga iff TRUST(Agb)Aga is higher or equal to w.
Aga attributes a trustworthiness measure to each confidence agent Agi. When it is consulted
by Aga, each confidence agent Agi provides a trustworthiness value for Agb if Agi knows
Agb. Confidence agents use their local beliefs to calculate this value (Equation 9.1). Thus,
the problem consists in evaluating Agb’s trustworthiness using the trustworthiness values
transmitted by confidence agents. Figure 9.4 illustrates this problem.

arg

arg

b bAga Aga

b Aga

b bAga Aga

Ag Ag
Ag

Ag Ag

Nb_ () Nb_SC()
TRUST()

T_Nb_ () T_Nb_SC()

+
=

+
 (9.1)

195

Figure 9.4. Problem of measuring Agb’s trustworthiness by Aga

We notice that this problem cannot be formulated as a problem of conditional probability.
Consequently, it is not possible to use Bayes’ theorem or total probability theorem. The
reason is that events in our problem are not mutually exclusive, whereas this condition is
necessary for these two theorems. Probability values offered by confidence agents are not
mutually exclusive since they are provided simultaneously.

To solve this problem we must study the distribution of the random variable X representing
the trustworthiness of Agb. Since X takes only two values: 0 (the agent is not trustworthy) or
1 (the agent is trustworthy), variable X follows a Bernoulli distribution ß(1, p). According to
this distribution, we have:

()E X p= (9.2)

where E(X) is the expectation of the random variable X and p is the probability that the
agent is trustworthy. Thus, p is the probability that we seek. Therefore, it is enough to

calculate the expectation E(X) to find TRUST(Agb)Aga. However, this expectation is a
theoretical mean that we must estimate. To this end, we can use the Central Limit Theorem
(CLT) and the law of large numbers. The CLT states that whenever a random sample of

size n (X1,…Xn) is taken from any distribution with mean µ, then the sample mean

(X1 + … +Xn)/n will be approximately normally distributed with mean µ. As an application
of this theorem, the arithmetic mean (average) (X1+…+ Xn)/n approaches a normal

distribution of mean µ, the expectation and standard deviation nσ .Generally, and

according to the law of large numbers, the expectation can be estimated by the weighted
arithmetic mean.

Our random variable X is the weighted average of n independent random variables Xi that
correspond to Agb’s trustworthiness according to the point of view of confidence agents Agi.
These random variables follow the same distribution: the Bernoulli distribution. They are
also independent because the probability that Agb is trustworthy according to an agent Agt is

Aga

Agb

Ag3 Ag2Ag1

Trust(Ag1)
Trust(Ag2)

Trust(Agb) Trust(Agb)

Trust(Ag3)

Trust(Agb)

Trust(Agb) ?

Figure 9.4. Problem of measuring Agb’s trustworthiness by Aga

196

independent of the probability that this agent (Agb) is trustworthy according to another agent
Agr. Consequently, the random variable X follows a normal distribution whose average is
the weighted average of the expectations of the independent random variables Xi. The
estimation of expectation E(X) can be given by Equation 9.3.

1

0

1

() ()

()
a i

n
i i bAg Ag

n
i i Aga

Ag Ag

Ag

TRUST TRUST
M

TRUST

=

=

∑

∑
= (9.3)

The value 0M represents an estimation of TRUST(Agb)Aga.

Equation 9.3 does not take into account the number of interactions between confidence
agents and Agb. This number is an important factor because it makes it possible to favor
information coming from agents knowing more Agb. Equation 9.4 gives us an estimation of
TRUST(Agb)Aga if we take into account this factor and we suppose that all confidence agents
have the same trustworthiness.

1

1

1

() ()

()
i

Agb

n
i i bAgb Ag

n
i i

Ag Ag

Ag

N TRUST
M

N

=

=

∑

∑
= (9.4)

where N(Agi)Agb indicates the number of interactions between a confidence agent Agi and
Agb. This number can be identified by the total number of Agb’s commitments and
arguments.

The combination of Equations 9.3 and 9.4 gives us a good estimation of TRUST(Agb)Aga
(Equation 9.5) that takes into account the three most important factors: (1) the
trustworthiness of confidence agents according to the point of view of Aga (2) the Agb’s
trustworthiness according to the point of view of confidence agents (3) the number of
interactions between confidence agents and Agb. This number is an important factor because
it makes it possible to favor information coming from agents knowing more Agb.

1

2

1

() () ()

() ()
a i

n
i i i bAg Agb Ag

n
i i i AgbAga

Ag Ag Ag

Ag Ag

TRUST N TRUST
M

TRUST N

=

=

∑

∑
= (9.5)

This Equation shows how trust can be obtained by merging the trustworthiness values
transmitted by some mediators. This merging method takes into account the proportional

197

relevance of each trustworthiness value, rather than treating them equally. The function
Trustworthy(Ag2) of Algorithm 9.4 can be specified as follows:

If M > w Then Return true Else return false.

According to Equation 9.5, we have:

1

1

a

n
i i iAg Agb

b Agi n
i i i AgbAga

Ag Ag
)Ag

Ag Ag

TRUST() N()
i,TRUST(w M w.

TRUST() N()

=

=

∑

∑
∀ < ⇒ <

 M w⇒ <

Consequently, the well-known lottery paradox of Kyburg can never happen. If all
trustworthiness values transmitted by the mediators are below the threshold w, then Aga will
not trust Agb.

To calculate M, we need the trustworthiness of other agents. A practical solution consists in
building a trust graph like the TrustNet proposed by Yu and Singh (2002).

9.3.3 Trust Graph

In previous section (Section 9.3.2)) we offered a solution to the trustworthiness
combination problem to evaluate the trustworthiness of a new agent (Agb). To simplify the
problem we supposed that each consulted agent (a confidence agent) offers a
trustworthiness value of Agb if it knows it. If a confidence agent does not offer any
trustworthiness value, it will not be taken into account at the moment of the evaluation of
Agb’s trustworthiness by Aga. However, as outlined in (Yu and singh, 2002), a confidence
agent can, if it does not know Agb, offer to Aga a set of agents which eventually know Agb.
In this case, Aga will consult the proposed agents. These agents also have a trustworthiness
value according to the point of view of the agent that proposed them. For this reason, Aga
applies Equation 9.5 to assess the trustworthiness values of these agents. These new values
will be used to evaluate the Agb’s trustworthiness. We can build a trust graph in order to
deal with this situation. Such a graph is defined as follows:

Definition 9.8 A trust graph is a directed and weighted graph. The nodes are agents and an

edge (Agi, Agj) means that agent Agi knows agent Agj. The weight of the edge (Agi, Agj) is a

pair (x, y) where x is the Agj’s trustworthiness according to the point of view of Agi and y is

the interaction number between Agi and Agj. The weight of a node is the agent’s

trustworthiness according to the point of view of the source agent.

According to this definition, in order to determine the trustworthiness of the target agent
Agb, it is necessary to find the weight of the node representing this agent in the graph. The
graph is constructed while Aga receives answers from the consulted agents. The evaluation
process of the nodes starts when all the graph is built. This means that this process only
starts when Aga has received all the answers from the consulted agents. The process
terminates when the node representing Agb is evaluated. The graph construction and the
node evaluation algorithms are given respectively by Algorithms 9.7 and 9.8.

198

Construct-Graph(Aga, Agb, Limit_Nbr_Visited_Agents, Limit_Nbr_Witnesses)

{

Graph := ∅
Nbr_Witnesses := 0
Nbr_Visited_Agents := 0
Nbr_Additional_Agents :=

Max(0, Limit_Nbr_Visited_Agents – Size(Confidence(Aga)))
Potential_Witnesses := Confidence(Aga)
Add Node(Agb) to Graph

While (Potential_Witnesses ≠ ∅) and
(Nbr_Witnesses < Limit_Nbr_Witnesses) and
(Nbr_Visited_Agents < Limit_Nbr_Visited_Agents) {

n := Limit_Nbr_Visited_Agents - Nbr_Visited_Agents
m := Limit_Nbr_Witnesses - Nbr_Witnesses

For (i =1, i ≤ min(n, m), i++) {
Ag1 := Potential_Witnesses(i)

If Node(Ag1) ∉ Graph Then Add Node(Ag1) to Graph

If Ag1 ∈ Confidence(Aga) Then Weight(Node(Ag1)) := Trust(Ag1)Aga
Send(Ag1, Investigation(Agb))
Nbr_Visited_Agents := Nbr_Visited_Agents +1 }

For (i =1, i ≤ min(n, m), i++) {
Ag1 := Potential_Witnesses(1)
Str := Receive(Ag1)
Potential_Witnesses := Potential_Witnesses / {Ag1}

While (Str.Agents ≠ ∅) and (Nbr_Additional_Agents > 0) {
If Str.Agents = {Agb} Then {

Nbr_Witnesses := Nbr_Witnesses + 1
Add Arc(Ag1, Agb)
Weight1(Arc(Ag1, Agb)) := Str.TRUST(Agb)Ag1
Weight2(Arc(Ag1, Agb)) := Str.n(Agb)Ag1

Str.Agents := ∅ }
Else {

Nbr_Additional_Agents := Nbr_Additional_Agents – 1
Ag2 := Str.Agents(1)
Str.Agents := Str.Agents / {Ag2}

If Node(Ag2) ∉ Graph then Add Ag2 to Graph
Weight1(Arc(Ag1, Ag2)) := Str.TRUST(Ag2)Ag1
Weight2(Arc(Ag1, Ag2)) := Str.n(Ag2)Ag1

Potential_Witnesses := Potential_Witnesses ∪ {Ag2} } } } }
}

Algorithm 9.7

199

Algorithm 9.7: The construction of the trust graph is described as follows:

1- Agent Aga sends a request about the Agb’s trustworthiness to all the confidence agents
Agi. The nodes representing these agents (denoted Node(Agi)) are added to the graph. Since
the trustworthiness values of these agents are known, the weights of these nodes (denoted
Weight(Node(Agi))) can be evaluated. These weights are represented by TRUST(Agi)Aga (i.e
by Agi’s trustworthiness according to the point of view of Aga).

2- Aga uses the primitive Send(Agi, Investigation(Agb)) in order to ask Agi to offer a
trustworthiness value for Agb. The Agis’ answers are recovered when they are offered in a
variable denoted Str by Str = Receive(Agi). Str.Agents represents the set of agents referred
by Agi. Str.TRUST(Agj)Agi is the trustworthiness value of an agent Agj (belonging to the set
Str.Agents) from the point of view of the agent which referred it (i,e, Agi).

3- When a consulted agent answers by indicating a set of agents, these agents will also be
consulted. They can be regarded as potential witnesses. These witnesses are added to a set
called: Potonial_Witnesses. When a potential witness is consulted, it is removed from the
set.

4- To ensure that the evaluation process terminates, two limits are used: the maximum
number of agents to be consulted (Limit_Nbr_Visited_Agents) and the maximum number of
witnesses who must offer an answer (Limit_Nbr_Witnesses). The variable
Nbr_Additional_Agents is used to be sure that the first limit is respected when Aga starts to
receive the answers of the consulted agents.

Algorithm 9.8: The evaluation of a graph node is based on the trustworthiness combination
formula (Equation 9.5). The weight of each node that represents the trustworthiness value of
the agent represented by the node is evaluated on the basis of the weights of the adjacent
nodes. For example, let Arc(Agx, Agy) an arc in the graph, before evaluating Agy it is
necessary to evaluate Agx. Consequently, the evaluation algorithm is a recursive one. The

Evaluate-Node(Agy) {

∀Arc(Agx, Agy)
If Node(Agx) is note evaluated Then

Evaluate-Node(Agx)

m1 := 0, m2 := 0

∀Arc(Agx, Agy) {
m1 = m1 + Weight(Node(Agx)) * Weight(Arc(Agx, Agy))
m2 = m2 + Weight(Node(Agx))

}

Weight(Node(Agy)) = m1 / m2

}

Algorithm 9.8

200

algorithm terminates because the nodes of the set Confidence(Aga) are already evaluated by
Algorithm 9.7. Since the evaluation is done recursively, the call of this algorithm in the
main program has as parameter the agent Agb.

Complexity. Our trustworthiness model is based on the construction of a trust graph and on
a recursive call to the function Evaluate-Node(Agy) to assess the weight of all the nodes.
Since each node is visited exactly once, there are n recursive calls, where n is the number of
nodes in the graph. To assess the weight of a node we need the weights of its neighboring

nodes and the weights of the input edges. Thus, the algorithm takes a time in Ο(n) for the

recursive calls and a time in Ο(a) to assess the agents’ trustworthiness where a is the

number of edges. The run time of the trustworthiness algorithm is therefore in Ο(max(a, n))
i.e. linear in the size of the graph.

In total, Algorithm 9.1 of our persuasion dialogue game protocol takes a time in:

Ο(max(|SAg1|, |SAg2|) + max(a, n)) = Ο(max(|SAg1|, |SAg2|, a, n)).

9.4 Implementation

In this section we describe the implementation of our persuasion dialogue game protocol
(the different dialogue games and the trustworthiness model) using the JackTM platform
(The Agent Oriented Software Group, 2004). We chose this language for three main
reasons:

1- It is an agent-oriented language offering a framework for multi-agent system
development. This framework can support different agent models.
2- It is built on top of and fully integrated with the Java programming language. It includes
all components of Java and it offers specific extensions to implement agents’ behaviors.
3- It supports logical variables and cursors. A cursor is a representation of the results of a
query. It is an enumerator which provides query result enumeration by means of re-binding
the logical variables used in the query. These features are particularly helpful when
querying the state of an agent’s beliefs. Their semantics is mid-way between logic
programming languages with the addition of type checking Java style and embedded SQL.

9.4.1 General Architecture

Our system consists of two types of agents: conversational agents and trust model agents.
These agents are implemented as JackTM agents, i.e. they inherit from the basic class JackTM

Agent. Conversational agents are agents that take part in the persuasion protocol. Trust
model agents are agents that can inform an agent about the trustworthiness of another agent
(Figure 9.5).

According to the specification of the Justification game (Section 9.2.4 (D)), an agent Ag2
can play an acceptance or a refusal move according to whether it considers that its
interlocutor Ag1 is trustworthy or not. If Ag1 is unknown for Ag2, Ag2 can ask agents that it
considers trustworthy for it to offer a trustworthiness assessment of Ag1. From the received

201

answers, Ag2 builds a trust graph and assesses the Ag1’s trustworthiness as explained in
Section 9.3.3.

Figure 9.5. The general architecture of the system

To take part in our persuasion protocol, agents must have knowledge and argumentation
systems. Agents’ knowledge are implemented using JackTM data structures called beliefsets.
The argumentation systems are implemented as Java modules using a logical programming
paradigm. These modules use agents’ beliefsets to build arguments for or against certain
propositional formulae. The actions that agents perform on commitments or on their
contents are programmed as events. When an agent receives such an event, it seeks a plan to
handle it. These plans are the algorithms 9.2, 9.3, 9.4, 9.5, and 9.6 presented in this chapter.

The trustworthiness model is implemented using the same principle (events + plans). The
requests sent by an agent about the trustworthiness of another agent are events and the
evaluations of agents’ trustworthiness are programmed in plans. The trust graph is
implemented as a Java data structure (oriented graph).

As Java classes, conversational agents and trust model agents have private data called Belief

Data. For example, the different commitments and arguments that are created and
manipulated are given by a data structure called CAN implemented using tables and the
different actions expected by an agent in the context of a particular game are given by a data
structure (table) called data_expected_actions. The different agents’ trustworthiness values
that an agent has are recorded in a data structure (table) called data_trust. These data and
their types are given in Figures 9.6 and 9.7.

Jack Agent Type: Conversational_Agent Jack Agent Type: Trust_Model_Agent

Ag1 Ag2 Trust_AgnTrust_Ag1 …

 Persuasion protocol

 Interactions for determining Ag1’s trustworthiness

Figure 9.5. The general architecture of the system

202

Figure 9.6. Belief Data used in our prototype

9.4.2 Implementation of the Trustworthiness Model

The trustworthiness model is implemented by agents of type: trust model agent. Each agent
of this type has a knowledge base implemented using JackTM

 beliefsets. This knowledge
base called table_trust has the following structure: Agent_name, Agent_trust, and
Interaction_number. Thus, each agent has information on other agents about their
trustworthiness and the number of times that it interacted with them. The visited agents
during the evaluation process and the agents added in the trust graph are recorded in two
JackTM

 beliefsets called: table_visited_agents and table_graph_trust. The two limits used in
Algorithm 9.7 (Limit_Nbr_Visited_Agents and Limit_Nbr_Witnesses) and the
trustworthiness threshold w are passed as parameters to the JackTM constructor of the
original agent Aga that seeks to know if its interlocutor Agb is trustworthy or not. This
original agent is a conversational agent.

Figure 9.6. Belief Data used in our prototype

203

Figure 9.7. Beliefsets used in our prototype

The main steps of the evaluation process of Agb’s trustworthiness are implemented as
follows:

1- By respecting the two limits and the threshold w , Aga consults its knowledge base
data_trust of type table_trust and sends a request to its confidence agents Agi (i = 1,.., n)
about Agb’s trustworthiness. The JackTM primitive Send makes it possible to send the
request as a JackTM message that we call Ask_Trust of MessageEvent type. Aga sends this
request starting by confidence agents whose trustworthiness value is highest.

2- In order to answer to the Aga’s request, each agent Agi executes a JackTM plan instance
that we call Plan_ev_Ask_Trust. Thus, each agent Agi consults its knowledge base and
offers to Aga an Agb’s trustworthiness value if Agb is known by Agi. If not, Agi proposes a
set of confidence agents from its point of view, with their trustworthiness values and the
number of times that it interacted with them. In the first case, Agi sends to Aga a JackTM
message that we call Trust_Value. In the second case, Agi sends a message that we call
Confidence_Agent. These two messages are of type MessageEvent.

Figure 9.7. Beliefsets used in our prototype

204

3- When Aga receives the Trust_Value message, it executes a plan: Plan_ev_Trust_Value.
According to this plan, Aga adds to a graph structure called graph_data_trust two
information: 1) the agent Agi and its trustworthiness value as graph node, 2) The
trustworthiness value that Agi offers for Agb and the number of times that Agi interacted with
Agb as arc relating the node Agi and the node Agb. This first part of the trust graph is
recorded until the end of the evaluation process of Agb’s trustworthiness. When Aga receives
the Confidence_Agent message, it executes another plan: Plan_ev_Confidence_Agent.
According to this plan, Aga adds to another graph structure: graph_data_trust_sub_level
three information for each Agi agent: 1) the agent Agi and its trustworthiness value as a sub-
graph node, 2) the nodes Agj representing the agents proposed by Agi, 3) For each agent Agj,
the trustworthiness value that Agi assigns to Agj and the number of times that Agi interacted
with Agj as arc between Agi and Agj. This information that constitutes a sub-graph of the
trust graph will be used to evaluate Agj’s trustworthiness values using Equation 9.5. These
values are recorded in a new structure: new_data_trust. Thus, the structure
graph_data_trust_sub_level releases the memory once Agj’s trustworthiness values are
evaluated. This technique allows us to decrease the space complexity of our algorithm.

4- Steps 1, 2 and 3 are applied again by substituting data_trust by new_data_trust, until all
the consulted agents offer a trustworthiness value for Agb or until one of the two limits
(Limit_Nbr_Visited_Agents or Limit_Nbr_Witnesses) is reached.

5- Evaluate the Agb’s trustworthiness value using the information recorded in the structure
graph_data_trust by applying Equation 9.5.

The different events and plans implementing our trustworthiness model and the
conversational agent constructor are illustrated by Figure 9.8. Figure 9.9 illustrates an
example generated by our prototype of the process allowing an agent Ag1 to assess the
trustworthiness of another agent Ag2 in a domain related to the example given in Section
9.4.3. In this example, Ag2 is considered trustworthy by Ag1 because its trustworthiness
value (0.79) is higher than the threshold (0.7).

9.4.3 Implementation of the Dialogue Games

In our system, agents’ knowledge bases contain propositional formulae and arguments.
These knowledge bases are implemented as JackTM

 beliefsets. Beliefsets are used to
maintain an agent’s beliefs about the world. These beliefs are represented in a first order
logic and tuple-based relational model. The logical consistency of the beliefs contained in a
beliefset is automatically maintained. The advantage of using beliefsets over normal Java
data structures is that beliefsets have been specifically designed to work within the agent-
oriented paradigm.

Our knowledge bases (KBs) contain two types of information: arguments and beliefs.
Arguments have the form ([Support], Conclusion), where Support is a set of propositional
formulae and Conclusion is a propositional formula. Beliefs have the form ([Belief], Belief)
i.e. Support and Conclusion are identical. The meaning of the propositional formulae (i.e.
the ontology) is recorded in a beliefset called table_ontology whose access is shared
between the two agents. This beliefset has two fields: Proposition and Meaning.

205

 Figure 9.8. Events, plans and the conversational agent constructor implementing the

trustworthiness model

To open a dialogue game, an agent uses its argumentation system. The argumentation
system allows this agent to seek in its knowledge base an argument for a given conclusion
or for its negation (“against argument”). For example, before creating a commitment
SC(Id0, Ag1, Ag2, p), agent Ag1 must find an argument for p. This enables us to respect the
commitment semantics by making sure that agents can always defend the content of their
commitments. The argumentation system of an agent is implemented using logical

statements, logical members and cursors. Logical statements follow Open World semantics
that models real world knowledge. It allows for three truth states: true, false and unknown.
Logical members bring elements of logic programming to JackTM. They follow the semantic
behavior of variables from logic programming languages such as prolog. That is, they are
not place-holders for assigned values like normal Java variables. Rather, they represent a
specific, but possibly unknown, value. Conclusions and supports of arguments are logical
members, and statements using these conclusions and supports are logical statements.
Cursors allow agents to seek an argument for supporting a given conclusion, using the
query method of a knowledge base.

Figure 9.8. Events, plans and the conversational agent constructor implementing the trustworthiness
model

206

Figure 9.9. The screen shot of a trustworthiness evaluation process

Agent communication is done by sending and receiving messages. These messages are

events that extend the basic JackTM
 event: MessageEvent class. MessageEvents represent

events that are used to communicate with other agents. Whenever an agent needs to send a
message to another agent, this information is packaged and sent as a MessageEvent. A
MessageEvent can be sent using the primitive: Send(Destination, Message). In our protocol,
Message represents the action that an agent applies to a commitment or to its content, for
example: Create(Ag1, SC(Id0, Ag1, Ag2, p)), etc.

Our dialogue games are implemented as a set of events (MessageEvents) and plans. A plan
describes a sequence of actions that an agent can perform when an event occurs. Whenever
an event is posted and an agent chooses a task to handle it, the first thing the agent does is to
try to find a plan to handle the event. Plans are reasoning methods describing what an agent
should do when a given event occurs.

Each dialogue game corresponds to an event and a plan. These games are not implemented
within the agents’ program, but as event classes and plan classes that are external to agents.
Thus, each conversational agent can instantiate these classes. An agent Ag1 starts a dialogue

Figure 9.9. The screen shot of a trustworthiness evaluation process

207

game by generating an event and by sending it to its interlocutor Ag2. Ag2 executes the plan
corresponding to the received event and answers by generating another event and by
sending it to Ag1. Consequently, the two agents can communicate by using the same
protocol since they can instantiate the same classes representing the events and the plans.
For example, the event Event_Attack_Commitment and the plan
Plan_ev_Attack_commitment implement the defense game. The architecture of our
conversational agents is illustrated in Figure 9.10.The different events and plans
implementing our dialogue games are given in Figure 9.11. Figure 9.12 illustrates the screen
shot of the example presented in Section 9.2.5.

Figure 9.10. The architecture of the conversational agents

To start the entry game, an agent (initiator) chooses a goal that it tries to achieve. This goal
is to persuade its interlocutor that a given propositional formula is true. For this reason, we
use a particular event: BDI Event (Belief-Desire-Intention). BDI events model goal-directed
behavior in agents, rather than plan-directed behavior. What is important is the desired
outcome, not the method chosen to achieve it. This type of events allows an agent to pursue
long term goals.

Ag1 (Jack Agent) Ag2 (Jack Agent)

Knowledge
base (Jack
Beliefset)

Knowledge
base (Jack
Beliefset)

Jack Event → Jack Plan

Jack Event → Jack Plan
…

Jack Event → Jack Plan

Dialogue games

Argumentation system
(Java + Logical programming)

Argumentation system
(Java + Logical programming)

Figure 9.10. The architecture of the conversational agents

Ontology (Jack

Beliefset)

208

Figure 9.11. Events and plans implementing the dialogue games

9.5 Related Work

In this section, we compare our protocol with some proposals that have been put forward in
two domains: dialogue modeling and commitment based protocols.

1- Dialogue modeling. In (Amgoud et al., 2000a, 2000b) and (Parsons et al., 2003)
Amgoud, Parsons and their colleagues studied argumentation-based dialogues. They
proposed a set of atomic protocols which can be combined. These protocols are described as
a set of dialogue moves using Walton and Krabbe’s classification and formal dialectics. In
these protocols, agents can argue about the truth of propositions. Agents can communicate
both propositional statements and arguments about these statements. These protocols have
the advantage of taking into account the capacity of agents to reason as well as their
attitudes (confident, careful, etc.). In addition, Prakken (2001) proposed a framework for
protocols for dynamic disputes, i.e., disputes in which the available information can change
during the conversation. This framework is based on a logic of defeasible argumentation
and is formulated for dialectical proof theories. Soundness and completeness of these

Figure 9.11. Events and plans implementing the dialogue games

209

protocols have also been studied. In the same direction, Brewka (2001) developed a formal
model for argumentation processes that combines nonmonotonic logic with protocols for
dispute. Brewka pays more attention to the speech act aspects of disputes and he formalizes
dispositional protocols in situation calculus. Such a logical formalization of protocols
allows him to define protocols in which the legality of a move can be disputed.
Semantically, Amgoud, Parsons, Prakken and Brewkas’ approaches use a defeasible logic.
Therefore, it is difficult, if not impossible, to formally verify the proposed protocols.

Figure 9.12. The example screen shot

There are many differences between our protocol and the protocols proposed in the domain
of dialogue modeling:

1. Our protocol uses not only an argumentative approach, but also a public one. The effects
of utterances are formalized not in terms of agents’ private attitudes (beliefs, intentions,

Figure 9.12. The example screen shot

210

etc.), but in terms of social commitments. In opposition of private mental attitudes, social
commitments can be verified.

2. Our protocol is based on a combination of dialogue games instead of simple dialogue
moves. Using our dialogue game specifications enables us to specify the entry and the exit
conditions more clearly. In addition, computationally speaking, dialogue games provide a
good balance between large protocols that are very rigid and atomic protocols that are very
detailed.

3. From a theoretical point of view, Amgoud, Parsons, Prakken and Brewkas’ protocols use
moves from formal dialectics, whereas our protocol uses actions that agents apply on
commitments. These actions capture the speech acts that agents perform when conversing.
The advantage of using these actions is that they enable us to better represent the persuasion
dynamics considering that their semantics is defined in an unambiguous way in a temporal
and dynamic logic (see Chapter 7). Specifying protocols in this logic allows us to formally
verify these protocols using model checking techniques (see Chapter 8).

4. Amgoud, Parsons and Prakkens’ protocols use only assertion, acceptance, refusal and
challenge moves, whereas our protocol uses not only creation, acceptance, refusal and
challenge actions, but also justify, attack and defense actions in an explicit way. These
argumentation relations allow us to directly illustrate the concept of dispute in this type of
protocols.

5. Amgoud, Parsons, Prakken and Brewka use an acceptance criterion directly related to the
argumentation system, whereas we use an acceptance criteria for conversational agents
(supports of arguments and trustworthiness). This makes it possible to decrease the
computational complexity of the protocol for agent communication. The reason is that in the
approach proposed by Amgoud, Parsons, Prakken and Brewka, to decide about the
acceptance of each argument, we need to find a least fixpoint of a given function. This task
is computationally complex. In addition, in the literature there is no implementation of
argumentative-based protocols.

2- Commitment-based protocols. Yolum and Singh (2002) developed an approach for
specifying protocols in which actions’ content is captured through agents’ commitments.
They provide operations and reasoning rules to capture the evolution of commitments. In a
similar way, Fornara and Colombetti (2003) proposed a method to define interaction
protocols. This method is based on the specification of an interaction diagram (ID)
specifying which actions can be performed under given conditions. These approaches allow
them to represent the interaction dynamics through the allowed operations. Our protocol is
comparable to these protocols because it is also based on commitments. However, it is
different in the following respects. The choice of the various operations is explicitly dealt
with in our protocol by using argumentation and trustworthiness. In commitment-based
protocols, there is no indication about the combination of different protocols. However, this
notion is essential in our protocol using dialogue games. Unlike commitment-based
protocols, our protocol plays the role of the dialectical proof theory of an argumentation
system. This enables us to represent different dialogue types as studied in the philosophy of
language. Finally, we provide a termination proof of our protocol and a complexity analysis

211

of our implementation whereas these properties are not yet studied in classical commitment-
based protocols.

9.6 Discussion

The protocol that we proposed in this chapter is more flexible than the traditional protocols
of agent communication for the following reasons:

1- Our protocol is not specified in a static way, but results from the combination of different
dialogue games. How these dialogue games can be combined is not fixed in advance, but
depends on the evolution of the communication. Consequently, the protocol automaton is
non-deterministic.

2- Agents can reason about the protocol using their argumentation systems and the
trustworthiness model. The agents’ choices depend on the current state of the dialogue in
terms of the states of the different commitments and arguments (i.e. the current state of the
CAN). Therefore, which games agents can play are determined on the fly.

3- Our protocol specifies the combination rules of different dialogue games and how agents
can use these rules in a logical way. An interesting consequence of this specification is that
the protocol does not have the problem of managing exceptions (messages not specified by
the protocol). The reason is that the protocol does not specify a fixed number of
possibilities, but only the logical rules that agents can use and reason about in any
situations.

9.7 Conclusion

The contribution of this chapter is the proposition of a logical language for specifying
persuasion protocols between autonomous agents using our commitment and argument
approach. This language has the advantage of expressing the public elements and the
reasoning process that allows agents to choose an action among several possible actions.
Because our protocol is defined as a set of dialogue games, this protocol is more flexible
than the traditional protocols such as those used in FIPA-ACL. This flexibility results from
the fact that these games can be combined to produce complete and more complex protocols
and from the fact that agents can reason about the protocol. We formalized these games as a
set of conversation policies, and we described the persuasion dynamics by the combination
of five dialogue games. Another contribution of this chapter is the tableau-based termination
proof of the protocol. We also implemented this protocol using an agent-oriented language
and a logical programming paradigm and we analyzed its computational complexity.
Finally, we presented an example to illustrate the persuasion dynamics by the combination
of different dialogue games.

Chapter 10

Conclusion

10.1 General Discussion

In this thesis we proposed a unified framework for the pragmatics and the semantics of
agent communication. Our framework has the advantage of being based on solid
philosophical foundations and equipped with a logical formalization. The philosophical
foundations are supplied by the philosophical definition of social commitments, Speech Act
Theory and formal dialectics (the philosophy of arguments). The logical formalization is
defined in terms of a combination of branching time logic (CTL*) and dynamic logic.

Another advantage of this framework lies in the fact that it captures both the pragmatics and
semantics of agent interactions. We discuss these two aspects in this section.

Pragmatics: The interactions between autonomous agents are reflected by the actions that
they perform on commitments and on their contents. These actions can be supported by
arguments. The dynamics of the interactions is reflected by the creation of commitments, by
the agents’ positioning on these commitments (acceptance, refusal, challenge, attack, etc.),
and by the evolution of commitment states in time (satisfied, withdrawn, etc). All the
commitments and arguments handled in an interaction can be represented using our
commitment and argument networks (CAN). This formalism allows us to model the
dynamics of conversations and offers an external representation of the conversational
activity. This notion of external representation is very useful because it provides participants
with a common understanding of the current state of the conversation and its advancement.
The formalism also allows us to ensure conversational consistency when considering the
actions performed by the agents. It relies on our approach combining commitments and
arguments. This approach has the advantage of capturing both the social and public aspects
of a conversation, and the reasoning aspect required in order to take part in conversations.
Thus, the formalism can clearly illustrate the creation phases of new commitments and the
positioning phases on these commitments, as well as the argumentation and justification
phases.

Semantics: All the elements captured by the pragmatic aspects of our framework are
semantically defined in a logical formalism combining temporal and dynamic logics
(DCTL*CAN). The concept of social commitment, the different types of commitments and
the concept of argument are defined as modal operators logic. The actions that agents apply
to commitments and on their contents as well as the argumentation relations are defined
using the Perform operator that reflects the performance of actions. The important link

213

between commitments and arguments that we established in the pragmatic level is formally
captured by the semantics in the form of properties using the other elements of the logical
model. Our semantics offers a clear and unambiguous means to introduce the different
elements and the various operations that we described in the pragmatic level of agent
communication. It can also be used for verification purposes. A direct application is to
check if a particular protocol (for example a negotiation or a persuasion protocol) respects
the introduced specifications.

Our pragmatic approach presented in Chapter 5 is different from the social approach
proposed by Singh (1998, 2000) and Colombetti (2000) in the sense that social
commitments in our approach are not only public states but also deontic notions. Agents
must justify and defend their commitments if necessary. Thanks to the link we established
between commitments and arguments, agents can reason about their commitments and
consequently can communicate in a flexible way. In addition, there are many differences
between our approach and the argumentative approach proposed by Amgoud and her
colleagues (2002a, 2000b). The main difference is that Amgoud et al.’s proposal is based
upon dialectical systems, and the evolution of agent conversations is captured using the
commitment stores that only record what is uttered during the conversation (MacKenzie,
1979). However, in our approach, the evolution is captured by the notion of commitment
and commitment content states that evolve as a result of the actions that agents perform
when conversing (creation, withdrawal, reactivation, violation and satisfaction). The main
idea of our approach is that agent communication is considered as actions that agents
perform on social commitments and arguments. Thus, different speech act types can be
expressed using these actions.

The CAN formalism presented in Chapter 6 as the basis of our pragmatic approach allows
us to represent the dynamics of agent communication in a formal way. This new formalism
for agent communication is different from all other agent communication formalisms
proposed in (Pitt and Mamdani, 2000), (FIPA-ACL, 2001), (Yolum and Singh, 2002) and
(Fornara and Colombetti, 2003). Unlike these formalisms, the CAN formalism can be used
as a means to help agents to participate in conversations. In addition, this formalism enables
agents to reason about their communicative acts and about the current state of the
conversation in order to decide about the next actions to be performed. This reasoning
aspect is tied to the agents’ argumentation systems.

Semantically speaking, our logical model presented in Chapter 7 is different from the
semantics defined by Singh (2000) and by Verdicchio and Colombetti (2003). Our
semantics is based not only on a temporal logic, but also on a dynamic logic and it captures
different commitment types, different commitment states and different actions performed on
commitments. Our semantics is defined as a model-theoretic semantics that can be
successfully used to capture the semantics of defeasible arguments. It is therefore different
from the semantics defined in (Amgoud et al., 2002) which is based on an informal logic.
Another difference is that our semantic framework can be used to express the meaning of
different speech act types.

In addition, in Chapter 8, we proposed a new model checking algorithm for the verification
of dialogue game protocols whose complexity matches that of the best existing algorithms.

214

Our model-checking technique allows us not only to verify if the dialogue game protocol
satisfies a given property expressed in our DCTL*CAN, but also if this protocol respects a
simplified version of the tableau semantics of the communicative acts. To our knowledge,
this model-checking technique is the first proposal in the domain of dialogue game
verification.

Finally, there are many differences between our dialogue game protocol presented in
Chapter 9 and the other dialogue game protocols discussed in Chapter 3. The main
differences are:
1- Our proposal is based on a social and argument approach. Consequently, agents can
reason about their actions in order to decide about the dialogue game to be played.
2- The decision making process is based not only on the agents’ argumentation systems, but
also on the agents’ trustworthiness.
In addition, we provided a termination proof of our protocol, and we discussed its
computational complexity.

10.2 Contributions

The main contributions of this thesis are:

1- A formal pragmatic approach capturing the conversations’ public elements and the
agents’ reasoning mechanisms using their private states for modeling agent communication.
This approach was published in (Bentahar et al., 2003).

2- A formalism called Commitment and Argument Network representing the dynamics of
agent communication and helping agents to participate in conversations in a flexible way.
This main contribution resulted in two publications: (Bentahar et al., 2004b, 2004c).
Together, contributions 1 and 2 allowed us to achieve our first and second objectives stated
in Chapter 1.

3- A model-theoretic semantics for the pragmatic approach defining the meaning of the
different communicative acts that we use in our pragmatic approach, especially the ones
commonly used in multi-agent interactions, and capturing the semantics of defeasible
arguments. This semantics resulted in two publications (Bentahar et al., 2004e, 2004f). This
contribution matches the third objective of this thesis.

4- A tableau-based model checking technique for the verification of dialogue game
protocols specified in our framework. This contribution is published in an internal report
(Bentahar and Moulin, 2004), and it is the subject of a submitted paper (Bentahar et al.,
2005). This verification method is the fourth objective that we set in Chapter 1.

5- A new persuasion dialogue game protocol specified in our framework using a logical
language, and implemented using an agent-oriented programming language. This
contribution that matches the fifth objective of this thesis is published in (Bentahar et al.,
2004d). The algorithmic specification of this protocol in the context of the CAN framework
was the subject of another publication (Bentahar et al., 2004a).

215

Thus, all the objectives of this thesis are reached. In addition, contributions 1, 2, and 5
answer the first research question stated in Chapter 1: “How may autonomous agents

participate in conversations in a flexible way?” Contribution 3 answers the second research
question: “How can we unify pragmatic and semantic approaches and how can the link

between pragmatics and semantics be established in such an approach?” Finally,
contributions 4 and 5 answer the third research question: “How can we formally specify and

verify the agent communication mechanisms?”

10.3 Future Work

As future work we intend:

1- To use our unified framework to specify other sophisticated protocols according to
Walton and Krabbe’s classification. Because this framework is based on a commitment and
argument approach, the dialogue types in this dialectical-based classification can be
supported. An important result of this work is to explain and formalize the shift between
these different dialogue types during a conversation. The idea is to define a general
dialogue-game protocol combining the different protocols (the combined protocol). The
rules defining the dialectical shifts can be expressed in a logical language extending the one
we proposed in Chapter 8. The implementation of such a protocol can be done using the
same logic-programming and agent-oriented paradigm that we used for the persuasion
dialogue game.

2- To define an operational and a denotational semantics for the different protocols and for
the combined protocol. The operational semantics constitutes a means to formally derive the
computation steps of the protocols. The denotational semantics provides a tool for
specifying the compositionality of these protocols.

3- To implement and evaluate the model checking technique proposed in Chapter 8. The
ABTA for DCTL*CAN will be implemented in the Concurrency WorkBench of the New
Century CWB-NC verification tool (Cleaveland and Sims, 1996). The ABTA manipulation
procedure will be implemented in Standard ML. This work will be done in collaboration
with Rance Cleaveland from State University of New York at Stony Brook.

4- To define a model checking technique for all the logic proposed in Chapter 7. The
tableau technique proposed in Chapter 8 can be improved to support the complete version of
the logic.

5- To explore other argumentation models, particularly Toulmin’s model (1958) that is
widely cited in the philosophy of argumentation, but still unexplored in the domain of agent
communication.

Bibliography

Abdul-Rahman, A. and Hailes. S. Supporting trust in virtual communities. In Proc. Of the
33rd Hawaii Int. Conf. On Systems Science, 2000.

Adi, K., Debbabi, M., and Mejri, M. A new logic for electronic commerce protocols. In
Theoretical Computer Science, vol. 291, 2003, pp. 223-283.

Allen, J.F., and Perrault, C.R. Analysing intention utterances. In Artificial Intelligence, vol.
15, 1980, pp. 143-178.

Alur, R., Henzinger, T.A., and Kupferman, O. Alternating time temporal logic. In Proc. Of
the 38th IEEE Symp. On Foundations of Computer Science, 1997, pp. 100-109.

Amgoud, L. and Parsons, S. Agent dialogues with conflicting preferences. In Proc. of the 8th
Int. Workshop on Agent Theories, Architectures, and Languages, Meyer, J-J. Ch. and
Tambe, M. (eds.), 2001, pp. 1-14.

Amgoud, L. Contribution à l’intégration des préférences dans le raisonnement argumentatif.
PhD. Thesis of Université Paul Sabatier-Toulouse, France, 1999.

Amgoud, L., and Maudet, N. Strategical considerations for argumentative agents. In Proc.
of 10th Int. Workshop on Non-Monotonic Reasoning, 2002, pp. 409-417.

Amgoud, L., Maudet, N. and Parsons, S. An argumentation-based semantics for agent
communication languages. In Proc. of 15th European Conf. on Artificial Intelligence, 2002,
pp. 38-42.

Amgoud, L., Maudet, N., and Parsons, S. Modelling dialogues using argumentation. In
Proc. of the 4th Int. Conf. On Multi-Agent Systems, 2000a, pp. 31-38.

Amgoud, L., Parsons, S. and Maudet, N. Arguments, dialogue, and negotiation. In Proc. of
the 14th European Conf. On Artificial Intelligence, 2000b, pp. 338-342.

Aristotle. Rhetorica. 350 B.C. Tr. Freese, J.H. Leob, London, 1926.

Aristotle. Topics. 350 B.C. Clarendon Press, Oxford, UK, 1928. (W.D. Ross, Editor).

Austin, J.L. How to do things with words. Oxford University Press, England, 1962.

Baldoni, M., Baroglio, C., Martelli, A., Patti, V., and Schifanella, C. Verifying protocol
conformance for logic-based communicating agents. In Proc. of the 5th Int. Workshop on
Computational Logic in Multi-Agent Systems, 2004, pp. 82-97.

217

Barbuceanu, M. and Fox, M. COOL: a language for describing coordination in multi-agent
systems, In Proc. of the 1st Int. Conf. on Multi-Agent Systems, 1995, pp. 17-25.

Belnap, N. and Perloff, M. The way of the agent. In Studia Logica, Kluwer, vol. 51, 1992,
pp. 463-484.

Belnap, N. Backwards and towards in the modal logic of Agency. In Philosophy and

Phenomenological Research, vol. 51, 1991, pp. 777-807.

Ben-Ari, M., Pnueli, A. and Manna, Z. The temporal logic of branching time. In Proc. of 8th
Annual Sym. on Principles of Programming Languages, pp. 164-176. Journal Version, Acta

Informatica, vol. 20, 1983, pp. 207-226.

Bench-Capon, T.J.M., Freeman J.B., Hohmann, H., and Prakken, H. Computational models,
argumentation theories and legal practice. In Argumentation Machines. New Frontiers in

Argument and Computation Reed, C. and Norman, T.J. (eds.), Kluwer Argumentation
Library, 2003, pp. 85-120.

Benerecetti, M. and Cimatti, A. Symbolic model checking for multi-agent systems. In proc
of the Int. Workshop on Model Checking and Artificial Intelligence, 2002, pp. 1-8.

Bentahar, J. and Moulin, B. On the verification of dialogue game protocols for
communicating agents (a model checking approach). Internal Rapport of Research,
Université Laval, Faculté des Sciences et de Génie, DIUL-RR-0403, 2004, pp. 1-34.

Bentahar, J. Moulin, B., and Chaib-draa, B. Specifying and implementing a persuasion
dialogue game using commitment and argument network. In Rahwan, I., Moraitis, P., and
Reed, C. (eds.), Int. Workshop on Argumentation in Multi-Agent Sysytems, AAMAS’04,
LNAI, Springer, 2004a (in press).

Bentahar, J., Moulin, B. and Chaib-draa, B. Commitment and argument network: A new
formalism for agent communication. In Advances in Agent Communication, Dignum, F.
(ed.), Int. Workshop on Agent Communication Languages, AAMAS’03, LNAI 2922,
Springer, 2004b, pp. 146-165.

Bentahar, J., Moulin, B. and Chaib-draa, B. Vers une approche pour la modélisation du
dialogue basée sur les engagements et les arguments. In Actes des Secondes Journées
Francophones Modèles Formels de l'Interaction, 2003, pp. 19-28.

Bentahar, J., Moulin, B., and Chaib-draa, B. Commitment and argument network: a formal
framework for representing conversation dynamics. In Logic and Dialogue, Caelen, J.,
Vanderveken, D. and Vernant, D. (eds.), the Netherlands, Dordrecht, Kluwer, 2004c (in
press).

Bentahar, J., Moulin, B., Meyer, J-J.Ch. and Chaib-draa, B. A computational model for
conversation policies for agent communication. In Proc. of the 5th Int. Workshop on
Computational Logic in Multi-Agent Systems, 2004d, pp. 66-81.

218

Bentahar, J., Moulin, B., Meyer, J-J.Ch. and Chaib-draa, B. A logical model for
commitment and argument network for agent communication. In Proc. of 3rd Int. Joint Conf.
on Autonomous Agents and Multi Agent Systems, ACM Press, 2004e, pp.19-23.

Bentahar, J., Moulin, B., Meyer, J-J.Ch. and Chaib-draa, B. A modal semantics for an
argumentation-based pragmatics for agent communication. In Rahwan, I., Moraitis, P. and
Reed, C. (eds.), LNAI, Springer, 2004f (in press).

Bernholtz, O., Vardi, M.Y., and Wolper, P. An automata-theoretic approach to branching-
time model checking. In Computer Aided Verification, Dill, D.L. (ed.), LNCS 818,
Springer, 1994, pp. 142-155.

Bhat, G. and Cleaveland, R. Efficient model checking via the equational µ-calculus. In the
11th Annual Sym. on Logic in Computer Science, IEEE Computer Society Press, 1996, pp.
304-312.

Bhat, G. Tableau-based approaches to model-checking. PhD Thesis of North Carolina State
University, USA, 1998.

Bhat, G., Cleaveland, R., and Groce, A. Efficient model checking via Büchi tableau
automata. In Computer-Aided Verification Berry, G., Comon, H. and Finkel, A. (eds.),
LNCS 2102, Springer, 2001, pp. 38-52.

Bordini, R.H., Fisher, M., Pardavila, C. and Wooldridge, M. Model checking AgentSpeak.
In Proc. of the 2nd Int. Joint Conf. On Autonomous Agents and Multi Agent Systems,
2003a, pp. 409-416.

Bordini, R.H., Visser, W., Fisher, M., Pardavila, C., and Wooldridge, M. Model checking
multi-agent programs with CASP. In Computer-Aided Verification, Hunt, W.A. and
Somenzi, F. (eds.), LNCS 2725, Springer, 2003b, pp.110-113.

Bouzouba, K. and Moulin, B. Connaissances implicites et sociales : dialogisme des
interactions discursives. In Analyse et Simulation de Conversation : De la Théorie des

Actes de Discours aux Systèmes Multi-Agents, Moulin, B., Delisle, S., and Chaib-draa, B.
(eds.), L'interdisciplinaire informatique, 1999, pp. 203-241.

Bouzouba, K., Bentahar, J., and Moulin, B. Dialogization and implicit information in an
agent communicational model. In Developments in Agent Communication, van Eijk, R.,
Huget, M.P. and Dignum, F. (eds.), Int. Workshop on Agent Communication, AAMAS’04,
LNAI 3396, Springer, 2004, pp. 211-226.

Bouzouba, K., Moulin, B. KQML+: An extension of KQML in order to deal with implicit
information and social relationships. In Proc. of FLAIRS, 1998, pp. 289-293.

Bouzouba, K., Moulin, B., and Kabbaj, A. CG-KQML+: an agent communication language
and its use in a multi-agent system. In Proc. of the 9th Int. Conf. on Conceptual Structures,
2001, pp. 1-14.

219

Bratman, M.E. Intentions, plans and practical Reason. Harvard University Press,
Cambridge, 1987.

Brewka, G. Dynamic argument systems: A formal model of argumentation processes based
on situation calculus. In Journal of Logic and Computation, vol. 11(2), 2001, pp. 257-282.

Broersen, J., Dastani, M., Huang, Z., Hulstijn, J., and van der Torre, L. The BOID
architecture: conflicts between beliefs, obligations, intentions and desires. In Proc. of the 5th
Int. Conf. On Autonomous Agents (AA), ACM Press, 2001, pp. 9-16.

Bylander, E. Complexity results for planning. In Proc. of the 12th Int. Conf. on Artificial
Intelligence, 1991, pp. 274-279.

Castelfranchi, C. Commitments: from individual intentions to groups and organizations. In
Proc. of the 1st Int. Conf. On Multi-Agent Systems, 1995, pp. 41-48.

Chaib-draa, B and Dignum, F. Trends in agent communication language. In Computational

Intelligence, vol. 18(2), 2002, pp. 89-101.

Chaib-draa, B. Industrial applications of distributed artificial intelligence. Communications

of the ACM, vol. 38(11), 1995, pp. 47-53.

Chaib-draa, B., Labrie, M.A., Bergeron, M., and Pasquier, P. DIAGAL: an agent
communication language based on dialogue games and sustained by social commitments.
Submitted to the Journal of Autonomous Agents and Multi-Agent Systems, 2005.

Chellas, B.F. Modal Logic: an Introduction. Cambridge University Press, New York, 1980.

Chellas, B.F. Time and modality in the logic of agency. In Studia Logica, Kluwer, vol. 51,
1992, pp. 485-518.

Chopra, A., Singh, M.P. Nonmonotonic commitment machines. In Advances in Agent

Communication, Dignum, F. (ed.), Int. Workshop on Agent Communication Languages,
AAMAS’03, LNAI 2922, Springer, 2004, pp. 183-200.

Clark, H.H. and Haviland, S.E. Psychological processes in linguistic explanation. In
Explaining Linguistic Phenomena, Cohen, D. (ed.)., 1974, 91-124.

Clark, H.H. Using Language. Cambridge University Press, 1996.

Clarke, E.M., Emerson, E.A. and Sistla, A.P. Automatic verification of finite-state
concurrent systems using temporal logic specifications. In ACM Transactions on

Programming Languages and Systems, vol. 8(2), 1986, pp. 244-263.

Clarke, E.M., Grumberg, O. and Peled, D.A. Model Checking. The MIT Press: Cambridge,
MA, 2000.

Cleaveland, R. Tableau-based model checking in the propositional mu-calculus. In Acta

Informatica, vol. 27(8), 1990, pp.725-747.

220

Cohen, P.R. and Levesque, H.J. Persistence, intentions and commitment. In Intentions in

Communication, Cohen, P.R., Morgan, J., and Pollack, M.E. (eds.), MIT Press, Cambridge,
1990, pp. 33-69.

Cohen, P.R. and Perrault, C.R. Elements of a plan-based theory of speech acts. In Cognitive

Science, vol. 3, 1979, pp. 177-212.

Colombetti, M. A commitment-based approach to agent speech acts and conversations. In
Proc. of the Autonomous Agent Workshop on Conversational Policies, 4th Int. Conf. On
Autonomous Agent, 2000, pp. 21-29.

Cost, R.S., Chen, Y., Finin, T., Labrou, Y. and Peng, Y. Using colored Petri nets for
conversation modeling. In Issues in Agent Communication, Dignum, F., and Greaves, M.
(eds.), LNAI 1916, Springer, 2000, pp. 178-192.

Courcoubetis, C., Vardi, M.Y., Wolper, P. and Yannakakis, M. Memory efficient
algorithms for verification of temporal properties. In Formal Methods in System Design,
vol. 1, 1992, pp. 275-288.

Cox, B., Tygar, J. and Sirbu, M. Netbill security and transaction protocol. In Proc. of the 1st
USENIX Workshop on Electronic Commerce, 1995, pp. 77-88.

Dastani, M., Hulstijn, J. and der Torre, L. V. Negotiation protocols and dialogue games. In
Proc. of the Belgium/Dutch AI Conf., 2000, pp. 13-20.

De Giacomo, G., Lespérance, Y. and Levesque, H. ConGolog, a concurent programming
language based on the situation calculus. In Artificial Intelligence, vol. 121, 2000.

Dignum, F. and Greaves, M. Issues in agent communication: an introduction. In Issues in

Agent Communication, Dignum, F. and Greaves, M. (eds.), LNAI 1916, Springer, 2000, pp.
1-16.

Dignum, F., Dunin-Keplicz, B. and Verbugge, R., Agent theory for team formation by
dialogue. In Proc. of the 7th Int. Workshop on Agent Theories, Architectures, and
Languages, Castelfranchi, C. and Lespérence Y. (eds.), LNAI 1986, Springer, 2000, pp.
150-166

Dignum, F., Dunin-Keplicz, B., and Verbugge, R., Creation collective intention through
dialogue. In Logic Journal of the IGPL, vol. 9(2), 2001, pp. 305-319.

Dignum, V., Meyer, J.-J.Ch., Dignum, F. and Weigand, H. Formal specification of
interaction in agent societies. Formal Approaches to Agent-based Systems. In Proc. of
FAABS 2002, Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C., and Gordon-
Spears, D. (eds.), Springer, 2003, pp. 37-52.

Dung, P.M. On the acceptability of arguments and its fundamental role in non-monotonic
reasoning, logic programming and n-person games. In Artificial Intelligence, vol. 77, 1995,
pp. 321-357.

221

Elvang-Goransson, M., Fox, J. and Krause, P. Dialectic reasoning with inconsistent
information. In Proc. of the 9th Conf. on Uncertainty in Artificial Intelligence, 1993, pp.
114-121.

Emerson, A.E. Temporal and modal logic. In Handbook of Theoretical Computer Science,
vol. B, 1990, pp. 995-1072.

Emerson, E.A. and Halpern, J.Y. Sometimes and not never, revisited: on branching versus
linear time temporal logic. In Journal ACM, vol. 33(1), 1986, pp. 151-178.

Emerson, E.A. and Lei C.-L. Efficient model checking in fragments of the propositional
mu-calculus. In Proc. of the 1st Annual Sym. on Logic in Computer Science, 1986, pp. 267-
278.

Emerson, E.A. and Sistla, A.P. Deciding full branching time logic. In Information and

Control, vol. 61, 1984, pp. 175-201.

Emerson, E.A. Temporal and modal logic. In Handbook of Theoretical Computer Science,
van Leeuwen, J. (ed.), vol. B, 1990, pp. 995-1072.

Emerson, E.A., Jutla, C. and Sistla, A.P. On model-checking for fragments of µ-calculus. In
Computer Aided Verification, Courcoubetis, C. (ed.), LNCS 697, 1993, pp. 385-396.

Endriss, U., Maudet, N., Sadri, F., and Toni, F. Protocol conformance for logic-based
agents. In Proc. of the 18th Int. Joint Conf. on Artificial Intelligence, 2003, pp. 679-684.

Finin, T., Labrou, Y. and Mayfield, J. KQML as an agent communication language. In
Software Agent, Bradshaw, J.M. (ed.), AAAI Press / The MIT Press, 1995, pp. 291-315.

FIPA (1997, 1999, 2001a, 2002). Fipa-acl specifications: Foundation for intelligent physical
agents. http://www.fipa.org/repository/aclspecs.php3.

FIPA-ACL. Communicative act library specification. Technical Report XC00037H, .
Foundation for Intelligent Physical Agents, 2001b.

FIPA Interaction Protocols (2001, 2002). http://www.fipa.org/repository/ips.php3.

Fitting, M. Bilattices and the semantics of logic programming. In Journal of Logic

Programming, vol. 11, 1991, pp. 91-116.

Flores, R.A., Pasquier P., and Chaib-draa, B. Conversational semantics with social
commitments. In Developments in Agent Communication, van Eijk, R., Huget, M.P. and
Dignum, F. (eds.), Int. Workshop on Agent Communication, AAMAS’04, LNAI 3396,
Springer, 2004, pp. 19-36. Also in the Journal of Autonomous Agents and Multi-Agent

Systems (to appear).

Flores, R.F. and Kremer, R.C. A formal theory for agent conversations for actions. In
Computational Intelligence, 2002, (in press).

222

Fornara, N. and Colombetti, M. Defining protocols using a commitment-based agent
communication language. In Proc. Of the 2nd Int. J. Conf. On Autonomous Agent and
Multi-Agent Systems (AAMAS 03), ACM Press, 2003, pp. 520-527.

Fornara, N. and Colombetti, M. Operational specification of a commitment-based agent
communication language. In Proc. Of the 1st Int. Joint Conf. on Autonomous Agent and
Multi-Agent Systems (AAMAS 02), ACM Press, 2002, pp. 535-542.

Fornara, N. and Colombetti, M. Protocol specification using a commitment based ACL. In
Dignum, F. (ed.). Advances in Agent Communication. Int. Workshop on Agent
Communication Languages, LNAI 2922, Springer, 2004, pp. 108-127.

Fox, J., Krause, P., and Ambler, S. Arguments, contradictions, and practical reasoning. In
Proc. of the 10th European Conf. On Artificial Intelligence, 1992, pp. 623-626.

Giordano, L., and Martelli, A., On-the-fly automata construction for dynamic linear time
temporal logic. In Proc. of 11th Int. Sym. On Temporal Representation and Reasoning
(Time’04), 2004, pp. 133-139.

Giordano, L., Martelli, A., and Schwind, C. Verifying communicating agents by model
checking in a temporal action logic. In Logics in Artificial Intelligence (JELIA’04), LNAI
3229, Springer, 2004, pp. 57-69.

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., and Turner, H. Nonmonotonic Causal
theories. In Artificial Intelligence, 2003 (in press).

Grasso, F. A mental model for a rhetorical arguer. In Proc. of the European Cognitive
Science Society Conf. Schmalhofer, F., Young, R., and Katz, G. (eds.), LEA, 2003.

Grasso, F. Towards a framework for rhetorical argumentation. In Proc. of the 6th Workshop
on the Semantics and Pragmatics of Dialogue (EDILOG’02), 2002, pp. 53-60.

Greaves, M., Holmback, H., and Bradshaw, J. What is a conversation policy? In Issues in

Agent Communication. Dignum. F. and Greaves. M. (eds.), LNAI 1916, Springer, 2000, pp.
118-131.

Grice, H.P. Logic and Conversation. In Speech Acts: Syntax and Semantics, Cole, P. and
Morgan, J. (eds.), vol. 11. New York: Academic Press, 1975, pp. 41-58.

Grice, H.P. Meaning. In Basic Topics in the Philosophy of Language. Harnish, R.M. (ed.),
Harvester Wheatsheaf, 1957, pp. 21-29.

Grosz, B.G. and Sidner, C.L. Plans for discourse. In Intentions in Communication, Cohen,
P.R., Morgan, J., and Pollack, M.E. (eds.), MIT Press, Cambridge, 1990, pp. 417-444.

Grosz, B.J. and Kraus, S. Collaborative plans for complex group action. In Artificial

Intelligence, vol. 86(2), 1996, pp. 269-357.

223

Guerin, F. and Pitt, J. Denotational semantics for agent communication languages. In Proc.
of the 5th Int. Conf. on Autonomous Agents, Müller, J.P., Andre, E., Sen, S. and Frasson, C.
(eds.), ACM Press, 2001, pp. 497-504.

Günter, A. Some ways of representing dialogues. In Cognitive Constraints on

Communication, Vatina, L. and Hintikka, J. (eds.), 1984, pp. 241-250.

Habermas, J. The Theory of Communicative Action, vol. 1 and 2, Polity Press, Cambredge,
UK, 1984.

Hafer, T. and Thomas, W. Computation tree logic CTL* and path quantifiers in the monadic
theory of the binary tree. In Proc. of 14th Int. Collogue on Automata, Languages and
Programming, LNCS 267, Springer, 1987, pp. 269-279.

Hamblin, C.L. Fallacies. Methuen, 1970.

Hamblin, C.L. Mathematical models of dialogue. In Theoria, vol.37, 1971, pp. 130-155.

Harel, D. Dynamic logic. In Handbook of Philosophical Logic, Gabbay, D.M. and
Guenther, F. (eds.), vol. 2, 1984, pp. 497-604.

Harel, D. Dynamic logic: axiomatics and expressive power. Ph.D. Thesis, MIT, LNCS 68,
1979.

Henriksen, J.G. and Thiagarajan. Dynamic linear temporal time logic. In Annals of Pure

and Applied Logic, vol. 96, 1999, pp. 187-207.

Herrestad, H. and Krogh, C. Obligations directed from bearers to counterparties. In Proc. of
5th Int. Conf. on Artificial Intelligence and Law, 1995, pp. 210-218.

Hindriks, K.V., de Boer, F.S., van der Hoek, W., and Meyer, J.-J.Ch. Semantics of
communication agents based on deduction and abduction. In Issues in Agent

Communication, Dignum, F. and Greaves, M. (eds.), LNAI 1916, Springer, 2000, pp. 63-
79.

Hintikka, J. Knowledge and Belief. Cornell Univesity Press, 1962.

Hintikka, J. The modes of modality. Acta Philosophica Fennica, vol.16, 1963, pp. 65-81.

Holzman, G.J. The model checker Spin. IEEE Transaction on Software Engineering, vol.
23(5), 1997, pp. 279-295.

Huber, M.J., Kumar, S., and McGee, D. Toward a suite of performatives based upon joint
intention theory. In In Developments in Agent Communication, van Eijk, R., Huget, M.P.
and Dignum, F. (eds.), Int. Workshop on Agent Communication, AAMAS’04, LNAI 3396,
Springer, 2004, pp. 245-260.

224

Huber, M.J., Kumar, S., Cohen, P.R., and McGee, D. A formal semantics for proxy
communicative acts. In Proc. of Agent Theories, Architectures, and Languages (ATAL 01),
2001, pp. 221-234.

Huget, M.-P., Wooldridge, M. Model checking for ACL compliance verification. In
Advances in Agent Communication, Dignum, F. (ed.), Int. Workshop on Agent
Communication Languages, LNAI 2922, Springer, 2004, pp. 75-90.

Huhns, M.N and Singh, M.P. Readings in Agents. Morgan Kaufmann, San Francisco,
California, 1998.

Hulstijn, J. Dialogue games are recipe for joint action. In Proc. of the 4th Workshop on
Formal Semantics and Pragmatics of Dialogue, 2000b.

Hulstijn, J. Dialogue Models for Inquiry and Transaction. PhD Thesis, University Twente,
Enschede, The Netherlands, 2000a.

Huth, M.R.A. and Ryan, M.D. Logic in Computer Science. Modeling and Reasoning about

Systems. Cambridge University Press, 2000.

Kacprzak, M. and Penczek, W. Unbounded model checking for alternating-time temporal
logic. In Proc. of the 3rd Int. Joint Conf. on Autonomous Agents and Multi Agent Systems,
2004a, pp. 646-653.

Kacprzak, M., Lomuscio, A., and Penczek, W. Verification of multiagent systems via
unbounded model checking. In Proc. of the 3rd Int. Joint Conf. on Autonomous Agents and
Multi Agent Systems, 2004b, pp. 638-645.

Khan, S. and Lespérance, Y., A model of rational agency for communicating agents. In
Developments in Agent Communication, van Eijk, R., Huget, M.P. and Dignum, F. (eds.),
Int. Workshop on Agent Communication, AAMAS’04, LNAI 3396, Springer, 2004, pp.
261-280.

Kone, M.T., Shimazu, A., and Nakajima, T. The state of the art in agent communication
languages. In Knowledge and Information Systems, 2000, pp. 259-284.

Kowalski, R. and Sergot, A. A logical-based calculus of events. In New Generation

Computing, vol. 4(1), 1986, pp. 67-95.

Krause, P., Ambler, S., Elvang-Gorannson, M., and Fox, J. A logic for argumentation for
reasoning under uncertainty. In Computational Intelligence, vol. 11(1), 1995, pp. 113-131.

Kripke, S. Semantical analysis of modal logic. Zeitschrift für Mathematische Logik und

Grundlagen der Mathematik, vol. 9, 1963, pp. 67-96.

Kumar, S., Huber, M.J., McGee, D.R., Cohen, P.R., Levesque, H.J. Semantics of agent
communication languages for group interaction. In Proc. of the 16th Nat. Conf. on Artificial
Intelligence, pp. 42-47, 2000.

225

Labrie, M.A., Chaib-draa, B., and Maudet, N. DIAGAL: a tool for analyzing and modelling
commitment-based dialogues between agents. In Proc. of 16th Canadian Conference on
Artificial Intelligence, Xiang, Y. and Chaib-draa, B. (eds.), LNAI 2671, Springer, 2003, pp.
353-369.

Labrou, Y. and Finin, T. Semantics and conversation for an agent communication language.
In Readings in Agents, Huhns, M. and Singh, M.P (eds.), Morgan Kaufman, 1998, pp. 235-
242.

Labrou, Y. Semantics for an agent communication language. Ph.D. Thesis, University of
Maryland, USA, 1997.

Labrou, Y., Finin, T., and Peng, Y. Agent communication languages: the current landscape.
In IEEE Intelligent Systems, 1999, pp.45-52.

Lebbink, H-J., Witteman, C.L.M., and Meyer, J-J. Ch. Dialogue games for inconsistent and
biased information. In Electronic Notes in Theoretical Computer Science, vol. 85(2), 2004.

Lespérence, Y. On the epistemic feasibility of plans in multi-agent systems specifications.
In Intelligent Agents VIII, Meyer, J-J.Ch. and Tambe, M. (eds.). Proc. of the Workshop on
Agent Theories, Architectures, and Languages (ATAL-2001), LNAI 2333, Springer, 2002,
pp. 69-85.

Lichtenstein, O. and Pnueli, A. Checking that finite state concurrent programs satisfy their
linear specification. In 12th Annual ACM Sym. On Principles of Programming Languages,
1985, pp. 97-107.

Litman, D.J and Allen, J.F. Discourse processing and commonsense plans. In Intentions in

Communication, Cohen, P.R, Morgan, J., and Pollack, M.E. (eds.), MIT Press, Cambridge,
1990, pp. 365-388.

Lorenzen, P. Logik und agon. In Atti del XII Congresso Internazionale di Folosophia. IV:
Logica, Linguaggio e Communicazione, 1960, pp. 187-194.

MacKenzie, J.D. Four dialogue systems. In Studia, vol.49(4), 1990, 567-583.

MacKenzie, J.D. Question-begging in non-cumulative systems. In Journal Of Philosophical

Logic, vol. 8, 1979, pp. 117-133.

Mallya, A.U., Yolum, P. and Singh, M.P. Resolving Commitments Among Autonomous
Agents. In Advances in Agent Communication, Dignum, F. (ed.), Int. Workshop on Agent
Communication Languages, LNAI 2922, Springer, 2004, pp. 166-182.

Maudet, N. and Chaib-draa, B. Commitment-based and dialogue-game based protocols,
new trends in agent communication languages. In Knowledge Engineering Review, vol.
17(2), Cambridge University Press, 2002, pp. 157-179.

226

Maudet, N. Modéliser les conventions des interactions langagière : la contribution des jeux
de dialogue. PhD Thesis of Université Paul Sabatier-Toulouse, France, 2001.

Maudet, N., Chaib-draa, B., and Labrie, M.A. Request for action reconsidered as dialogue
game based on commitments. In Communication in Multiagent Systems, Huget, M.-P. (ed.),
Int. Workshop on Agent Communication Languages and Conversation Policies, AAMAS
02, LNAI 2650, Springer, 2002, pp. 284-299.

McBurney, P. and Parsons, S. Agent ludens: games for agent dialogues. In Proc. of the
AAAI Spring Sym. on Game Theoretic and Decision Theoretic Agents, 2001, pp. 70-77.

McBurney, P. and Parsons, S. Games that agents play: A formal framework for dialogues
between autonomous agents. In Journal of Logic, Language and Information, vol. 11(3),
2002, pp. 315-334.

McBurney, P. Rational interaction. PhD. Thesis of University of Liverpool, UK, 2002.

McBurney, P., Parsons, S. Risk agoras: Dialectical argumentation for scientific reasoning.
In Proc. of the 16th Conf. On Uncertainty in Artificial Intelligence, Morgan Kaufmann,
2000, pp. 371-379.

McBurney, P., Parsons, S., and Wooldridge, M. Desiderata for agent argumentation
protocols. In Proc. of the 1st Int. Joint Conf. On Autonomous Agent and Multi-Agent
Systems (AAMAS 02), ACM Press, 2002, pp 402-409.

McCartyh, J. and Hayes, P. Some philosophical problems from the standpoint of artificial
intelligence. Machine Intelligence, vol. 4, 1969, pp. 463-502.

McMillan, K.L. Aplying SAT methods in unbounded symbolic model checking.. In
Computer Aided Verification, Brinksma, E., Guldstrand Larsen, K. (eds.), LNCS 2404,
Springer, 2002, pp. 250-264.

Meyer, J-J. Ch., van der Hoek, W. and van Linder, B. A logical Approach to the dynamics
of commitments. In Artificial Intelligence Journal, vol. 113 (1-2), 1999, pp. 1-40.

Moore, R.C. Reasoning about knowledge and action. Technical report 191, SRI
International, 1980.

Morgenstern, L. A first order theory of planning, knowledge, and action. In Proc. of the the
1st Conf. On Theoretical Aspects of Reasoning about Knowledge (TARK 86), Halpern, J.Y.
(ed.), Morgan Kaufmann, 1986, pp. 99-114.

Morgenstern, L. Knowledge preconditions of actions and plans. In Proc. of the 10th Int.
Joint Conf. On Artificial Intelligence (IJCAI 87), 1987, pp. 867-874.

Morris, C.W. Foundations of the theory of signs. In Int. Encyclopedia of Unified Science,
Neurath, O., Carnap, R., and Morris, C.W. (eds.).Chicago University Press, 1938, pp. 77-
138.

227

Moulin, B. The social dimension of interactions in multi-agent systems. In Wobcke, W.,
Pagnucco, M. and Zhang, W. (eds.). Agent and Multi-Agent Systems, Formalisms,

Methodologies and Applications, Artificial Intelligence 1441, 1998, pp. 109-122.

Moulin, B., and Chaib-draa, B. Distributed artificial intelligence: an overview. In
Foundations of Distributed Artificial Intelligence, Jennings, N. and O’Hare, G. (eds.),
Wiley, 1996, pp. 3-55.

Muller, D.E. and Schupp, P.E. Alternating automaton on infinite trees. In Theoretical

Computer Science, vol. 54, 1987, pp. 267-276.

Muller, D.E., Saoudi, A. and Schupp, P.E. Weak alternating automata gives a simple
explanation of why most temporal and dynamic logics are decidable in exponential time. In
Proc. of the 3rd IEEE Sym. on Logic in Computer Science, 1988, pp. 422-427.

Parsons, S. Normative argumentation and qualitative probability. In. Proc. Of the 1st Int.
Joint Conf. On Qualitative and Quantitative Practical Reasoning. Gabay, D.M., Kruse, R.,
Nonnengart, A., and Ohlbach, H.J. (eds.), LNAI 1244, Springer, 1997.

Parsons, S., Jennings, N.R. Negotiation through argumentation-a preliminary report. In
Proc. of the 2nd Int. Conf. On Multi Agent Systems, 1996, pp. 267-274.

Parsons, S., Wooldridge, M. and Amgoud, L. An analysis of formal inter-agent dialogues.
In Proc. of the 1st Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems
(AAMAS 02), ACM Press, 2002, pp. 394-401.

Parsons, S., Wooldridge, M. and Amgoud, L. On the outcomes of formal inter-agent
dialogues. In Proc. of the 2nd Int. Joint Conf. on Autonomous Agents and Multi-Agent
Systems (AAMAS 03), ACM Press, 2003, pp. 616-623.

Pasquier, P. and Chaib-draa, B. The cognitive coherence approach for agent communication
pragmatic. In Proc. of the 2nd Int. Joint Conf. on Autonomous Agents and Multi-Agent
Systems (AAMAS 03), ACM Press, 2003, pp. 544-551.

Pasquier, P., Andrillon, N., Chaib-draa, B., and Labrie, M.A. An exploration in using
cognitive coherence theory to automate BDI agents’ communicational behavior. In
Advances in Agent Communication, Dignum, F. (ed.), Int. Workshop on Agent
Communication Languages, LNAI 2922, Springer, 2003, pp. 37-58.

Penczek, W. and Lomuscio, A. Verifying epistemic properties of multi-agent systems via
model checking. In Fundamenta Informaticae, vol. 55(2), 2003, pp. 167-185.

Perelman, C. and Olbrechts-Tyteca, L. La Nouvelle Rhétorique : Traité de l’Argumentation.
Presses Universitaire de France, 1958. Translated on The New Rhetoric: a Treatise on

Argumentation. University of Notre Dame Press, Indiana, 1969.

Perrault, C.R. and Allen, J.F. A plan-based analysis of indirect speech acts. In American

Journal of Computational Linguistics, vol. 6(3-4), 1980, pp. 167-182.

228

Pitt, J. and Mamdani, A. Communication protocols In multi-agent systems: a development
method and reference architecture. In Issues in Agent Communication, Dignum, F. and
Greaves, M. (eds.), LNAI 1916, Springer, 2000, pp. 160-177.

Pnueli, A. Application of temporal logic to the specification and verification of reactive
systems: a survey of current trends. In Current Trends in Concurrency: Overviews and

Tutorials, de Bakker, J.W. de Roever, W.P. and Rozenberg, G. (eds.), LNCS 224, Springer,
1986.

Pollack, M.E. Plans as complex mental attitudes. In Intentions in Communication. Cohen,
P.R., Morgan, J., and Pollack, M.E. (eds.), MIT Press, Cambridge, 1990, pp. 77-104.

Pollock, J.L. A theory of defeasible reasoning. In Int. Journal of Intelligent Systems, vol.6,
1991, pp. 33-54.

Pollock, J.L. How to reason defeasibly. In Artificial Intelligence, vol. 57, 1992, pp 1-42.

Prakken, H. and Sartor, G. A dialectical model of assessing conflicting arguments in legal
reasoning. In Artificial Intelligence and Law, vol. 4, 1996, pp 331-368.

Prakken, H. and Sartor, G. Modelling reasoning with precedents in a formal dialogue game.
In Artificial Intelligence and Law, vol.6, 1998, pp. 231-287.

Prakken, H. and Vreeswijk, G. Logics for defeasible argumentation. In Handbook of

Philosophical Logic, Gabbay, D. (ed.), Second Edition, Kluwer, 2000.

Prakken, H. Logical Tools for Modelling legal argument. A study of defeasible reasoning in
law, Kluwer Law and Philosophy Library, 1997.

Prakken, H. Relating protocols for dynamic dispute with logics for defeasible
argumentation. In Synthese (127), 2001, pp. 187-219.

Prakken, H., Reed, C.A., and Walton, D.N. Argumentation schemes and generalisations in
reasoning about evidence. In Proc. of the 9th Int. Conf. On Artificial Intelligence and Law,
ACM Press, 2003, pp. 32-41.

Pulman, S.G. Conversational games, belief revision and bayesian networks. In Proc. of 7th
Computational Linguistics in the Netherlands Meeting, 1996, pp. 1-25.

Queille, J.P. and Sifakis, J. Specification and verification of concurrent systems in Cesar. In
Proc. of 5th Int. Sysm. on Programming, LNCS 137, Springer, 1981, pp. 337-351.

Rahwan, I., Ramchurn, S.D., Jennings, N.R., McBurney, P., Parsons, S., and Sonenberg, L.
Argumentation-based negotiation. In Knowledge Engineering Review, 2004, pp. 343-375.

Raimondi, F. and Lomuscio, A. Verification of multiagent systems via ordered binary
decision diagrams: an algorithm and its implementation. In Proc. of the 3rd Int. Joint Conf.

229

on Autonomous Agents and Multi Agent Systems (AAMAS 04), ACM Press, 2004, pp.
630-637.

Ramchurn, S.D., Sierra, C., Jennings, N.R., and Godo L. A computational trust model for
multi-agent interactions based on confidence and reputation. In Proc. of 6th Int. Workshop
of Deception, Fraud and Trust in Agent Societies, 2003, pp. 69-75.

Rao, A.S. AgentSpeak(L): BDI agents speak out in a logical computable language. In Proc.
of the 7th European Workshop on Modeling Autonomous Agents in a Multi-Agent World,
Van de Velde, W. and Perram, J.W. (eds.), LNAI 1038, Springer, 1996, pp. 42-55.

Rao, A.S. and Georgeff, M.P. A model-theoretic approach to the verification of situated
reasoning systems. In Proc. of the 13th Int. Joint Conf. on Artificial Intelligence (IJCAI-93),
1993, pp. 318-324.

Rao, A.S. and Georgeff, M.P. BDI agents: from theory to practice. In Proc. of the 1st Int.
Conf. on Multi-Agent Systems (ICMAS 95), 1995, pp. 312-319.

Rao, A.S. and Georgeff, M.P. Modeling rational agents within a BDI-architecture. In Proc.
of the 2nd Int. Conf. On Principles of Knowledge Representation and Reasoning (KR’91),
Morgan Kaufmann, Cambridge, 1991, pp. 473-484.

Reed, C. Dialogue frames in agent communication. In Proc. of the 3rd Int. Conf. on Multi-
Agent Systems, 1998, pp. 246-253.

Reed, C.A. and Rowe, G.W.A. Araucaria: software for puzzles in argument diagramming
and XML. Department of Applied Computing, University of Dundee. Technical Report,
2001.

Reed, C.A. and Walton, D.N. Argumentation schemes in argument-as-process and
argument-as-product. In Proc. of the Conf. Celebrating Informal Logic @25, Canada, 2003.

Rousseau, D., Moulin, B., and Lapalme, G. Interpreting communicative acts and building a
conversation model. In Journal of Natural Language Engineering, Cambridge, vol. 2(3),
1996, pp. 253-276.

Sabater, J. and Sierra, C. Reputation and social network analysis in multi-agent systems. In
Proc. Of the 1st Int. J. Conf. On Autonomous Agents and MultiAgent Systems (AAMAS
02), ACM Press, 2002. pp. 475-482.

Sadek, M.D. Attitudes mentales et interaction rationnelle : vers une théorie formelle de la
communication. Thesis of Université de Rennes I, France, 1991.

Sadek, M.D., Bretier, P., and Panaget, F. ARTIMIS: natural dialogue meets rational agency.
In Proc. of the 14th Int. J. Conf. on Artificial Intelligence (IJCAI-97), Morgan, P., Publisher,
1997, pp. 1030-1035.

230

Sadri, F., Toni, F., and Torroni, P., Logic agents, dialogues and negotiation: an abductive
approach. In Proc. of the Sym. on Information agents for E-Commerce., Artificial
Intelligence and the Simulation of Behaviour Conf., 2001.

Searle, J.R. and Vanderveken, D. The Foundations of Illocutionary Logic. Cambridge
University Press, 1985.

Searle, J.R. Intentionality: an Essay in the Philosophy of Mind. Cambridge University
Press, Cambridge, England, 1983.

Searle, J.R. Speech Acts: an Essay in the Philosophy of Language. Cambridge University
Press: Cambridge, England, 1969.

Shanahan, M. An abductive event calculus planner. In Journal of Logic Programming, vol.
44, 2000, pp. 207-239.

Shapiro, S. and Lespérance, Y. Modeling multi-agent systems with the cognitive agents
specification language - A feature interaction resolution application. In Intelligent Agents

Volume VII, Castelfranchi, C. and Lespérance, Y. (eds.), Proc. of the Workshop on Agent
Theories, Architectures, and Languages (ATAL-2000), LNAI 1986, Springer, 2001, pp.
244-259.

Shapiro, S., Lespérance, Y. and Levesque, H.J. Specifying communicative multi-agent
Systems. In Agents and Multi-Agent Systems - Formalisms, Methodologies, and

Applications, Wobcke, W., Pagnucco, M. and Zhang, C. (eds.), LNAI 1441, Springer, 1998,
pp. 1-14.

Shapiro, S., Lespérance, Y. and Levesque, H.J. The cognitive agents specification language
and verification environment for multi-agent systems. In Proc. of the 1st Int. Joint Conf. on
Autonomous Agents and Multi-Agent Systems (AAMAS-02), ACM Press, 2002, pp. 19-26.

Sierra, C. Jennings, N.R., Noriega, P., and Parsons, S. A framework for argumentation-
based negotiation. In Intelligent Agents IV, Singh, M.P, Rao, A., Wooldridge, M. (eds.),
LNAI 1365, Springer, 1998, pp. 177-192.

Simari, G.R. and Loui, R.P. A mathematical treatment of defeasible reasoning and its
implementation, In Artificial Intelligence, vol. 53, 1992, pp 125-157.

Singh, M.P. A social semantics for agent communication language. In Issues in Agent

Communication, Dignum, F. and Greaves, M. (eds.), LNAI 1916, Springer, 2000, pp. 31-45.

Singh, M.P. Agent communication languages: rethinking the principles. In IEEE Computer,
1998, pp. 40-47.

Singh, M.P. An ontology for commitments in multi-agent systems: toward a unification of
normative concepts. In Artificial Intelligence and Law, vol. 7, 1999, pp. 97-113.

231

Singh, M.P., Rao, A.S. and Georgeff, M.P. Formal methods in DAI: logic-based
representation and reasoning. In Multiagent Systems: A Modern Approach to Distributed

Artificial Intelligence, Weiss, G. (ed.), MIT Press, 1999, pp. 331-376.

Smith, R.G. The contract net protocol: High-level communication and control in a
distributed problem solver. In IEEE Transactions on Computers, vol. 29, 1980, pp. 1104-
1113.

Sowa, J.F. Conceptual Structures: Information Processing in Mind and Machines. Addison-
Wesley, Reading, MA, 1984.

Spade, P.V., Recent research on medieval logic. In Synthese, vol.40, 1979, pp. 3-18.

Stirling, C. and Walker, D. Local model checking in the modal mu-calculus. In Theoretical

Computer Science, vol. 89(1), 1991, pp. 161-177.

Sycara, K. Multiagent Systems. In AI Magazine, American Association for Artificial
Intelligence, vol. 19(2), 1998, pp. 79-92.

Sycara, K. Persuasion argumentation in negotiation. In Theory and Decision, vol. 28, 1990,
pp. 203-242.

The Agent Oriented Software Group. Jack 4.1, 2004. www.agent-software.com/

Tohmé, F. Negotiation and defeasible reasons for choice. In Proc. of the Stanford Spring
Sym. On Qualitative Preferences in Deliberation and Practical Reasoning, 1997, pp. 95-102.

Toulmin, S. The Uses of Argument. Cambridge University Press, Cambridge, England,
1958.

Traum, D. A reactive-deliberative model of dialogue agency. In Proc. of Intelligent agents
iii, Agent Theories, Architectures, and Languages, 1996, pp. 157-172.

van der Hoek, W. and Wooldridge, M. Model checking knowledge and time. In Model

Checking Software, LNCS 2318, Springer, 2002, pp. 95-111.

van der Hoek, W. and Wooldridge, M. Towards a logic of rational agency. In Logic Journal

of the IGPL, vol. 11(2), 2003, pp. 133-157.

van Eemeren, F.H., Grootendorst, R., Henkemans, F.S., Blair, J.A., Johnson, R.H., Krabbe,
E.C.W., Plantin, C., Watton, D.N., Willard, C.A., Woods, J., and Zarefsky, D. Fundamental

of Argumentation Theory. Lawrence Erlbaum Associates, Mahwah, USA, 1996.

van Eijk, R.M., de Boer, F.S., van der Hoek, W., and Meyer, J.-J.Ch. A verification
framework for agent communication. In the Journal of Autonomous Agents and Multi-Agent

Systems, vol. 6, 2003, pp. 185-219.

232

van Eijk, R.M., der Boer, F.S., van der Hoek, W., and Meyer, J.-J.Ch. On dynamically
generated ontology translators in agent communication. In International Journal of

Intelligent Systems, vol.16(5), 2001, pp.587 .607.

van Eijk, R.M., de Boer, F.S., van der Hoek, W., and Meyer, J.-J.Ch. Operational semantics
for agent communication languages. In Issues in Agent Communication, Dignum, F. and
Greaves, M. (eds.), LNAI 1916, Springer, 2000, pp. 80-95.

van Linder, B. van der Hoek, W. and Meyer, J.-J.Ch. Formalizing abilities and opportunities
of agents. In Fundamenta Informaticae, vol. 34(1, 2), 1998, pp. 53-101.

Vanderveken, D. Illocutionary logic and discourse typology. In Special Issue 216 Searle
with his Replies of Revue Internationale de Philosophie, Vanderveken, D. (ed.), 2001, pp.
243-255.

Vardi, M. and Wolper, P. An automata-theoretic approach to automatic program
verification. In Sym. on Logic in Computer Science, 1986, pp. 332-344.

Verdicchio, M. and Colombetti, M. A logical model of social commitment for agent
communication. In Proc. of The Second Int. Joint Conf. on Autonomous Agents and Multi-
Agent Systems (AAMAS 03), ACM Press, 2003, pp. 528-535.

Verdicchio, M. and Colombetti, M. Commitment for agent-based supply chain
management. In ACM SIGecom Exchanges, vol. 3(1), 2002, pp. 13-23.

Visser, W., Havelund, K., Brat, G., and Park, S. model checking programs. In Proc. of the
5th Int. Conf. on Automated Software Engineering, IEEE Computer Society, 2000, pp. 3-12.

Vongkasem, L. and Chaib-draa, B. ACL as a joint project between participants: a
preliminary report. In Issues in Agent Communication, Dignum. F., and Greaves. M. (eds.),
LNAI 1916, Springer, 2000, pp. 31-45.

Vreeswijk, G.A.W. Abstract argumentation systems. In Artificial Intelligence, vol. 90,
1997, pp. 225-279.

Walton, D.C. Model Checking Agent Dialogues. In Proc. of 2nd Int. Workshop on
Declarative Agent Languages and Technologies, 2004.

Walton, D.N and Reed, C.A. Diagramming, argumentation schemes, and critical questions.
In Anyone Who Has a View: Theoretical Contributions to the Study of Argumentation. Van
Eemeren, F.H., Blair, J.A., Willard, C.A., and Snoek Henkemans, A.F. (eds.), Kluwer,
Dordrecht, 2003, pp. 195-211.

Walton, D.N. and Krabbe, E.C.W. Commitment in Dialogue: Basic Concepts of

Interpersonal Reasoning. State University of New York Press, NY, 1995.

Winograd, T. and Flores, F. Understanding computers and cognition: A new foundation for
design. Albex Publishing Co., Norwood, USA, 1986.

233

Wittgenstein, L. Philosophical Investigations. Oxford: Basil Blackwell, 1958.

Wolper, P. On the relation of programs and computations to models of temporal logic. In
Proc. of the Temporal Logic in Specification, Banieqbal, B., Barringer, H. and Pneuli, A.
(eds.), LNCS 1989, Springer, pp. 75-123.

Wooldridge, M. and Jennings, N.R. Intelligent agents: theory and practice. In The

Knowledge Engineering Review, vol. 10(2), 1995, pp. 115-152.

Wooldridge, M. Fisher, M., Huget, M.P. and Parsons, S. Model checking multi-agent
systems with MABLE. In Proc. of the 1st Int. Joint Conf. on Autonomous Agents and Multi-
Agent Systems (AAMAS 02), ACM Press, 2002, pp. 952-959.

Wooldridge, M. Reasoning about Rational Agents. The MIT Press: Cambridge, MA, 2000.

Wooldridge, M. Semantic issues in the verification of agent communication languages. In
Journal of Autonomous Agents and Multi-Agent Systems, vol. 3(1), Kluwer, 2000, pp. 9-31.

Yolum, P., Singh, M.P. Flexible protocol specification and execution: applying event
calculus planning using commitments. In Proc. of the 1st Int. J. Conf on Autonomous
Agents and Multi-Agent Systems (AAMAS 02), ACM Press, 2002, pp. 527-534.

Yu, B. and Singh, M. An evidential model of distributed reputation management. In Proc.
Of the 1st Int. J. Conf. On Autonomous Agents and Multi-Agent Systems (AAMAS 02),
ACM Press, 2002, pp. 294-301.

