
International Journal of Networking and Computing – www.ijnc.org
ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 1, Number 1, pages 21–35, January 2011

A PRAM-NUMA Model of Computation for Addressing Low-TLP Workloads

MARTTI FORSELL
Platform Architectures, VTT, Box 1100

Oulu, FI-90571, Finland

Received: June 30, 2010
Revised: October 27, 2010

Accepted: December 8, 2010
Communicated by Akihiro Fujiwara

Abstract

It is possible to implement the parallel random access machine (PRAM) on a chip multi-
processor (CMP) efficiently with an emulated shared memory (ESM) architecture to gain easy
parallel programmability crucial to wider penetration of CMPs to general purpose computing.
This implementation relies on exploitation of the slack of parallel applications to hide the la-
tency of the memory system instead of caches, sufficient bisection bandwidth to guarantee high
throughput, and hashing to avoid hot spots in intercommunication. Unfortunately this solu-
tion can not handle workloads with low thread-level parallelism (TLP) efficiently because then
there is not enough parallel slackness available for hiding the latency. In this paper we show
that integrating non-uniform memory access (NUMA) support to the PRAM implementation
architecture can solve this problem and provide a natural way for migration of the legacy code
written for a sequential or multi-core NUMA machine. The obtained PRAM-NUMA hybrid
model is defined and architectural implementation of it is outlined on our ECLIPSE ESM CMP
framework. A high-level programming language example is given.

Keywords: Parallel computing, Computational models, Thread-level parallelism, PRAM, NUMA

1 Introduction

The processor manufacturers aim to duplicate the number of chip multiprocessors (CMP) every sec-
ond year to provide speedup now that the speed development of single-core processors has virtually
halted [19][20]. Unfortunately, virtually all software has so far been written using the sequential
computing paradigm and there is no obvious way to execute sequential programs on a CMP with
a high utilization. This raises two questions to limelights of scientific and industrial research and
development: How to program a parallel computers for general purpose functionality? Can an av-
erage programmer do it? Execution models used in current CMPs to address these issues include
―symmetric multiprocessors (SMP), non-uniform memory access (NUMA), its cache coherent vari-
ants, e.g. cache coherent non-uniform memory access (CC-NUMA), and message passing (MP).
SMP consists of a small number of identical processors with local caches that are connected to the
main memory via a bus or crossbar so that access to the memory is equidistant. NUMA consists
of multiple processors (with local memory banks) connected together via an intercommunication
network so that non-local memory accesses have higher distance and traffic situation dependent

21

A PRAM-NUMA Model of Computation for Addressing Low-TLP Workloads

latency than local accesses [32]. CC-NUMA has similar structure to NUMA but adds caches that
are kept coherent also for remote accesses to partially hide the memory access latency [23]. MP
consists of multiple processors with local memories communicating via message passing network
[18][25]. These models are tedious to program because a programmer can not be sure about the
exact state of computation unless he inserts costly barrier synchronizations and takes care of com-
plex low-level communications in MP. Furthermore, the performance scalability of SMP and NUMA
with respect to number of cores per chip is weak, while MP suffers from high software overheads
due to suboptimal implementation of message passing primitives making it non-ideal for exploita-
tion of fine-grained parallelism. In vector computing (VC) [17][33], multiple vector lanes process
multiple vector elements in parallel under the control of a single instruction. It solves part of the
problem by providing a synchronous model of computation but can not be efficiently applied to code
containing control parallelism, heterogeneity, or non-vectorizable portions. Despite of a common
belief the programmability problem has been partially solved in the 70 ’s with the introduction of
the parallel random access machine (PRAM) model of computation [15]. PRAM is a fine-grained
step-synchronous shared memory model consisting of a set of processors connected to the same
clock and shared memory. All operations including parallel memory accesses execute in unit time
implying that execution is lock-step synchronous. The PRAM model provides a simple abstraction
of a parallel computer that is easy to understand and program as a natural extension of the widely
used sequential computational model. This is because of synchronicity of subtask execution, full
control of both data and control operations, high enough abstraction of intercommunication in the
form of uniform shared memory. At programming language level this makes possible to use shared
variables and eliminates the need for lockings and atomic operations unless the program declares
asynchronous tasks at high level in purpose [21][22]. Past attempts to realize a PRAM include the
omega network-based NYU Ultracomputer [31], CEDAR [16] and IBM Research Parallel Processor
Prototype (RP3) [28], butterfly-based Fluent machine [29], 3D torus-based Cray MTA supercom-
puter [2] and its successors MTA2 and XMT provided by Cray, multiport memory-based solution [4],
and butterfly-based SB-PRAM [1, 22]. Unfortunately, these attempts have been mainly unsuccessful
due to sub-optimal solutions, like non-scalable interconnect topologies, inefficient co-exploitation of
multiple levels parallelism, sub-optimal shared memory emulation algorithms, and out-dated proto-
typing technologies. Recently, applying these ideas to architectures designed especially for PRAM
implementation on a CMP with a help of the network-on-chip technology [3] have lead to two very
promising research lines:

• Forsell et al. try to implement multioperation concurrent read concurrent write (MCRCW)
PRAM with the sparse/multimesh-based ECLIPSE CMP architecture [5] [10] [11] [14].

• Vishkin et al. try to implement a PRAM-like machine with a bit more relaxed synchronicity
than in the pure PRAM with the mesh of trees-based XMT CMP architecture [34][35].

Besides the actual CMP implementation architectures, both these research lines are addressing
other necessary infrastructure, including a high-level parallel programming language [7][26], compiler
for such language [8][26], optimizations for the compiler [6], and sample algorithms. Unfortunately
these PRAM implementations can not handle workloads with low thread-level parallelism (TLP)
efficiently because then there would not be enough parallel slackness available for hiding the la-
tency. In our recent work we have proposed the Configurable emulated shared memory (CESM)
architecture for addressing the single threaded workload performance problem by using bunching
of threads [12]. However, that work does not support efficient execution of true NUMA employing
multiple cooperative cores and non-local accesses nor presents the effects of NUMA access to the
model of computation. In this paper we show that integrating full NUMA support to the PRAM
implementation architecture can solve the low-TLP workload performance problem and provide a
natural way for migration of the legacy code written for a sequential or multi-core NUMA machine
without compromising the ability to execute medium and high TLP code efficiently. The obtained
PRAM-NUMA hybrid model is defined and architectural implementation of it is outlined on our
ECLIPSE CMP framework. A high-level programming language example is given. The rest of the
paper is organized so that in Section 2 we describe the idea of the PRAM-NUMA model of compu-
tation, explain why it solves the low-TLP problem and discuss programming issues. In Section 3 we

22

International Journal of Networking and Computing

Common
clock P0 P2TpPTp

Distance-aware network

L 0 L p-1L 2L 1

Word-wise accessible shared memory

Read/write operations from/to the global shared memory
P T-1

P T-Tp

Figure 1: PRAM-NUMA model. P0..PTp−1 are processors and L0..Lp−1 are local memories.

outline the architectural implementation of a CMP using the PRAM-NUMA model. An evaluation
of the architecture is given in Section 4. Finally, in Section 5 we give our conclusions.

2 PRAM-NUMA model of computation

In order to be able to exploit locality and address low parallelism driven problems of current PRAM
implementations and to support simple migration of the sequential or multicore NUMA legacy code,
we take a look at a new model providing full NUMA capabilities. Unlike PRAM, the model needs
to be bounded and provided with the concept of distance metric, reflecting the relative distance of
the processors in our physical 3-dimensional world.

2.1 Model

The PRAM-NUMA model of computation consists of T processors grouped as P Tp-processor groups,
a word-wise accessible global shared memory, P local memory blocks, a metric defining distance be-
tween the processor groups and target memory blocks, and distance-aware interconnection network
(see Figure 1). Each processor is attached to the shared memory like in PRAM and each pro-
cessor group is attached to its own local but interconnected memory block like in NUMA. The
interconnection network connects the local memory access paths of processor groups together and is
distance-aware with respect to the metric in a sense that the latency of routing is proportional to the
distance between the source processor and destination memory block. The bandwidth of a group of
processors to the shared memory and local memory are the same. Each processor can be configured
to either the PRAM mode or the NUMA mode. Along with configuration from the PRAM mode
to the NUMA mode, one can set the state of the processor to point an arbitrary state within the
group it belongs to. With this indirection of states, two or more processors belonging to a group
can be configured to a NUMA bunch so that they execute a common instruction stream and share
their state with each other, i.e. execute code like a single processor.

2.2 Solving the low-TLP problem

The only known PRAM implementation, emulated shared memory machine (ESM), uses parallel
slackness, i.e. grouping the processors and lowering the execution speed of individual processors of
the group, to hide the latency of the physically distributed memory system [30]. The PRAM-NUMA
model solves the low-TLP execution problem by providing a possibility to configure two or more
processors of a group to use a common state like they were a single processor. That way, it can
perform NUMA access to the local memories and remote memories via the distance-aware NUMA
network without suffering from the decreased execution speed of individual processors. In the case

23

A PRAM-NUMA Model of Computation for Addressing Low-TLP Workloads

of a low TLP portion of code, a programmer can just set up Tp processors per group to run the
portion as a NUMA bunch and gain more performance proportionally to the number of processors
in the bunch. This applies both to sequential code portions written for a sequential machine and
parallel code portions written for a multicore NUMA machine.

2.3 Using the hybrid model in programming

In our earlier work we have outlined a development methodology for ESM CMPs [9]. It consists of
a strong model of computation, a c-like TLP programming language e, an multi-level parallelism
optimization algorithm, and application development flow: The model integrates exploitation of
instruction-level parallelism (ILP) seamlessly to TLP execution. The e-language supports explicit
synchronous and asynchronous parallel programming with special primitives. The ILP-TLP opti-
mization algorithm yields to high ILP utilization in TLP execution independently of the degree of
inter-thread dependencies. The detailed application development flow allows a developer to write
parallel applications with a help of supporting theory of parallel algorithms [21][22]. Finally, it al-
lows one to apply parallel programming techniques from fully asynchronous coarse grained threads
(processors in the PRAM-NUMA model terminology) down to synchronous threads interchanging
information with the finest granularity. With this methodology, a PRAM-NUMA CMP can be
programmed like any ESM machine for parallel enough functionality but it allows also efficient ex-
ecution of low-TLP code. To support easy inclusion of sequential portions of code, we add the
sequential(s) construct to the e-language. It bunches all the threads of processor 0, which arrive to
the construct and in which the thread with id 0 is running, and puts the threads running in other
processors waiting until the bunch has executed the statement s but does not effect on execution
of threads not arriving to the construct. After that, it restores the synchronicity of all the threads
with a fast barrier synchronization. To support full NUMA execution among multiple processors, we
add also the numa(s) construct. It sets up a NUMA bunch in each processor (from which threads
are arriving to the construct) to execute the statement s in parallel. The sizes of the bunches are
determined processor-wisely by the number of threads arriving the construct. Other threads are
not affected. Unfortunately, designing programs for this kind of asynchronous NUMA execution
without any latency hiding mechanism is much more difficult than for the PRAM mode. In order
to get good performance one must identify independent portions of code, partition data so that
locality of data references is maximized, and orchestrate execution of asynchronous bunches with
explicit synchronizations where necessary. Easy-to-use PRAM algorithms execute very inefficiently
in the NUMA mode if no above optimizations are applied due to slow synchronization compared
to the PRAM mode, and unfortunately, there is no algorithm to automatically do these optimiza-
tions for an arbitrary functionality. Migrating sequential legacy code to a P -processor T -threaded
PRAM-NUMA CMP happens with joining all the threads of a single processor core to a bunch e.g.
with the sequential() construct and executing the code on the bunch so that the full power of the
core can be used for it. If the legacy code is written and optimized to an L-core NUMA machine
and L < T , one can set up L bunches so that threads divide to all P processor cores as evenly as
possible (P < L) or to as many processors as there is room for (P >= L), and execute the code
with them. Otherwise one needs to port the code to T threads and execute the code in the PRAM
mode with a help of fast synchronizations and other strong properties of the PRAM mode or better
yet, rewrite the functionality as a full PRAM program and execute it in the PRAM mode to get the
best performance out of it.

2.4 Programming example

Consider the computational problem of calculating a prefix sum for an array of N (8192) integers.
Consider solving it in a PRAM-NUMA machine with P (16) Tp (512)-threaded processors (where
the total number of threads is T = TpP (8192) for the PRAM mode and the number of processor
for the NUMA mode is P (16)) sequentially and in parallel on both the PRAM and NUMA modes.
A well-known sequential algorithm to solve this computational problem makes use of a running sum
while iterating from the first to last element of the array (see Figure 2a). This algorithm can be

24

International Journal of Networking and Computing

executed on a single PRAM thread in the PRAM mode e.g. by assigning it to thread 0 and putting
the rest of the threads to wait for synchronization while thread 0 does the computation (see Figure
2b for implementation in the e-language [7]). In the NUMA mode, this algorithm can be executed
with a single bunch joining together all the threads of processor 0 (see Figure 2c for implementation
in the e-language) with a help of a sequential construct. The execution time for both the PRAM
mode and NUMA mode programs is O(N) but due to exploitation of parallel slackness in the PRAM
mode, individual threads operate at the 1/Tp frequency of the processor. As a result, the PRAM
mode program executes Tp times slower than the NUMA version if higher synchronization costs and
memory overheads of the NUMA execution are not taken into account.

A fine-grained parallel PRAM algorithm for solving this problem can be formed e.g. so that
N -1 pairs of adjacent integers are added together in parallel reducing the problem to summing N -2
partial sums. After that those N -2 partial sums are summed with a data element two positions to left
to it and N -4 partial sums are obtained. These iterations are continued for log N rounds in total so
that all the prefix sums have been computed (see Figure 2d). Note that one needs to synchronize the
threads only in the end of the for -loop because as the condition of the inner if-statement becomes
false it will remain false until the exit condition is met. Thus, the unbalanced if-statement forms
a miniature asynchronous programming area inside the synchronous for -loop. If the ordering of
the prefix computation does not matter and the underlying PRAM-NUMA machine supports the
arbitrary ordered multiprefix operations [10], we can further speedup the computation with a brute
force algorithm that produces the result in constant time O(1). This happens with just two machine
instructions that are needed to execute the primitive prefix(p,MPADD,&sum, thread id) computing
an arbitrarily ordered multiprefix with a help of the shared variable sum to local variable p for each
thread (see Figure 2e). The initialization is done implicitly by using the initial values thread id for
each thread and the prefix sum is stored to local variable p for each thread. Note that constant time
execution of a multiprefix does not violate the logarithmic lower bound of multiprefix computation,
since the individual threads of the PRAM-NUMA machine are executing Tp > log P times slower
than the clock of the machine for latency hiding reasons. In the NUMA mode, parallel execution
is asynchronous and barrier synchronizations take far longer time than instruction execution. In
order to solve this computational problem efficiently, processed data must be distributed so that it
is close to processors referring to it (or local if possible), computation must be done sequentially in
all processors (with all processor doing this concurrently), and the number of synchronizations and
amount of data intercommunication should be minimized. Another problem arises from the fact that
the number of processor cores, i.e. available threads, is smaller than in the PRAM mode implying
that a processor should process more than one data element. Matching the number of data elements
to the available processors so that the problem gets solved is not trivial, but still relatively simple,
resulting to a blocking coarse-grained parallel algorithm: One needs to divide the data array into
P blocks, distribute the blocks to the local memories of processors that are going to process them.
Execution happens by computing the blockwise prefix sums locally on each processor, determining
an offset for each block by computing the prefix sum of block sums in a single processor, distributing
the obtained offsets back to the blocks, and adding the offset to the blockwise prefixes sequentially
on each processor. This kind of an algorithm requires only two barriers and intercommunication
happens only during synchronizations and offset computation. Figure 2f shows an implementation
of the algorithm in the e-language. The execution time of this program is O(N/P + P) plus remote
memory access and synchronization delays, because local computations take O(N/P) time and prefix
of block sums takes O(P) time. Note that if N > PTp and one needs an ordered prefix sum, one
must use similar three phase algorithm executing now in time O(N/P+log N) also for the PRAM
mode but without the locality maximization and need to compute offsets sequentially. Finally, if the
implemented NUMA functionality would have been more complex, far more complex programming
structures, including movements of data so that it is close to the processors using it and a lot of
full and partial barrier synchronizations and lockings, would have been needed for efficient NUMA
processing.

25

A PRAM-NUMA Model of Computation for Addressing Low-TLP Workloads

// (A) - Sequential algorithm, Execution time O(N)

#definesize 8192
int source_[size];
int main()
{

int i;
for (i=0; i<size; i++) source_[i] = i; // Initialize the array
for (i=0; i<size; i++)

source_[i]+=source_[i-1];
}

// (B) - Sequential, PRAM thread, Execution time O(Tp * N)

#include "e.h"
#definesize 8192
int source_[size];
int main()
{

int i;

source_[_thread_id] = _thread_id; // Initialize with threads ids

if_ (_thread_id = 0,
for (i=0; i<size; i++)

source_[i]+=source_[i-1];
);

}

// (C) - Sequential, NUMA bunch, Execution time O(N)

#include "e.h"
#definesize 8192
int source_[size];
int main()
{

int i;

source_[_thread_id] = _thread_id; // Initialize with threads ids

sequential(
for (i=0; i<size; i++)

source_[i]+=source_[i-1];
);

}

// (D) - Parallel, PRAM machine, Execution time O(log N)

#include "e.h"
#definesize 8192
int source_[size];
int main()
{

int i;

source_[_thread_id] = _thread_id; // Initialize with threads ids

for_ (i=1 , i<_number_of_threads , i<<=1 , // Logarithmic
if (_thread_id-i>=0) // algorithm

source_[_thread_id] += source_[_thread_id-i];
);

}

// (E) - Brute force parallel, PRAM machine, Execution time O(1)

#include "e+.h"
#definesize 8192
int sum_=0;
int source_[size];
int main()
{

int p;

prefix(p,MPADD,&sum_,_thread_id); // Constant time algorithm
}

// (F) - Parallel, NUMA machine, Execution time O(N/P+P)

#include "e.h"
#definesize 8192
#define procs 16
#define thrds 512
volatile localized int source_[size]; // Localized partitioning

int main()
{

int i, blocksize, start, stop, prev;
int c; // Synchronization counter
int p=_thread_id / thrds; // Number of each processor
int s=p*thrds; // Start address for current bunch

source_[_thread_id] = _thread_id; // Initialize with threads ids

numa(

blocksize=size/procs;
start = s;
stop = start + blocksize - 1;

// Determine block prefixes in parallel sequentially
for (i=start+1; i<=stop; i++)

source_[i]+=source_[i-1];

source_[s]=1; // Synchronize 1
do
{ c=0;

if (s==0)
{ for (i=s; i<procs*thrds; i+=thrds)

c+=source_[i];
}
else

do c=procs; while (source_[s]==1) ;
} while (c<procs);

// Prefix for block sums sequentially in a single processor
if (s==0)
{ for (i=s+thrds+thrds-1; i<procs*thrds; i+=thrds)

source_[i]+=source_[i-thrds];

// Release the other processors as well
for (i=s; i<procs*thrds; i+=thrds)

source_[i]=0;
}

// Add results of prefix sum of block sums to blocks
prev = start - 1;
if (prev>=0)
{ for (i=start+1; i<stop; i++)

source_[i]+=source_[prev];
}

source_[s]=1; // Synchronize 2
do
{ c=0;

if (s==0)
{ for (i=s; i<procs*thrds; i+=thrds)

c+=source_[i];
}
else

do c=procs; while (source_[s]==1) ;
} while (c<procs);

if (s==0)
{

// Release the other processors as well
for (i=s; i<procs*thrds; i+=thrds)

source_[i]=0;
}

);
}

Figure 2: Multiprefix sum of an array of 8192 integers as (a) sequential algorithm, (b) sequential
PRAM program for a single thread, (c) sequential NUMA program for a single bunch, (d) parallel
PRAM program for the whole machine, (e) parallel brute force PRAM program for the whole
machine, and (f) parallel NUMA program for the whole machine.

26

International Journal of Networking and Computing

3 Architectural implementation

The PRAM-NUMA model of computation can partially be implemented with the configurable emu-
lated shared memory machine (CESM) architecture [12] but CESM threads can only refer to mem-
ories local to their processors in the NUMA mode. In order to remove this limitation we outline
architectural solutions needed for full NUMA support on a top of CESM. We will also discuss on
alternative architectural solutions for implementing the PRAM-NUMA model.

3.1 CESM architecture

The CESM architecture is a hybrid architecture implementing a PRAM model and partially sup-
porting the NUMA model. A CESM CMP consists of P Tp-threaded (in total constituting T = PTp

threads) F -functional unit MultiBunched/Threaded Architecture with Chaining (MBTAC) proces-
sor cores [14] connected to a distributed memory system (see Figure 3). The memory system
has P dedicated instruction memory and local data memory modules, P Tp-line step caches and
scratchpads attached to processors, P fast data memory modules with active memory units, and a
high-bandwidth multimesh interconnection network. Step caches, scratchpads and active memory
units are used to support concurrent memory access and multioperations in the PRAM mode [10].
A MBTAC processor features A ALUs, M memory units, compare unit, and sequencer organized as
a chain for the PRAM mode and a single ALU, memory unit, and sequencer organized in parallel
for the NUMA mode. In order to save in hardware costs and to provide as seamless configurabil-
ity between the PRAM and NUMA models as possible, the execution pipelines for the modes are
merged and share some units like fetcher, operand select, and the first ALU (see Figure 4). The
effective length of the pipeline is Tp for the PRAM mode and 4 for the NUMA mode. The CESM
architecture implements support for fast and synchronous switching between the PRAM and NUMA
modes for groups of threads with dedicated machine language instructions JOIN and SPLIT [12].
Synchronous switching is necessary because a NUMA bunch may get switched back to the PRAM
mode in the middle of a PRAM step.

The first realization of CESM is our TOTAL ECLIPSE architecture [14] aimed for universal
general purpose CMP use. TOTAL ECLIPSE supports the arbitrary MCRCW PRAM model and
provides limited support for NUMA execution in a form of processor-wise thread bunching with
local memory access but relying on the PRAM mode for all non-local memory accesses. This makes
execution of low-TLP functionalities as efficient as with standard sequential processors using the
NUMA convention as long as NUMA bunches access only local data.

3.2 Support full NUMA

The high-bandwidth interconnection network used for PRAM emulation can also be used for NUMA
operation. This is because the maximum number of memory system injections per clock cycle stays
the same regardless of the mode and the synchronization wave technique used for the PRAM mode
does not interfere or cause deadlocks with NUMA references. Instead the PRAM mode offers free
synchronizations after the number of threads in the bunch instructions have been executed as long
as referencing happens within a single step. Unfortunately, the virtual ILP optimized pipeline of
the original MBTAC processor does not support a single injection point to the network if both
PRAM mode and NUMA mode threads are executed concurrently (see Figure 4). Furthermore,
concurrent local and remote accesses can not be supported with a normal operation speed of a single
port memory. This suggests that a separate NUMA network, dual speed or dual ported memory
modules, some amount of buffering capacity to handle dual injection conflicts, or revision of the
pipeline structure is needed. For the PRAM-NUMA architecture proposed in this work, we selected
to use fast memories supporting dual access per clock cycle since the current MCRCW support
also requires fast memories. In the future, PRAM-NUMA-aware TOTAL ECLIPSE CMP variants,
however, we will likely trade these fast memories to normal ones attached to fast module-level caches
and therefore we also evaluate the slower buffer-based solution in which simultaneous accesses are
queued. The dual injection point problem does delay non-local accesses if both PRAM mode threads

27

A PRAM-NUMA Model of Computation for Addressing Low-TLP Workloads

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

PM

cL

a

t

I

Figure 3: Block diagram of the CESM architecture (P=processor, M=shared data memory, L=local
data memory, I=instruction memory, a=active memory unit, c=step cache, and t=scratchpad).

Instruction fetch

Operand select

ALU1+Local MU+Local SEQ

ALU2 Write back

ALU3

MU1

MU1

ALU4

ALU5

Compare

SEQ

PRAM mode NUMA mode

IP1

IP2

Figure 4: Block diagram of the MBTAC pipeline with 5 ALUs and a single memory unit
(MU=Memory Unit, SEQ=Sequencer, IP=Injection Point).

28

International Journal of Networking and Computing

and NUMA mode bunches are executed simultaneously. The throughput will, however, remain the
same since the maximum number of injections per step stays the same assuming that the local
memory access latency will be hidden with extra pipeline stages. In any case, it should be noted
that need to use full NUMA support may not be as frequent and efficient as one might think at
the first glance, since in the case of a sequential functionality it is possible to maximize the locality
of computation by placing all the data needed in that computation into the local data memory of
the processor group. Furthermore, remote accesses are often faster in the PRAM mode than in
the NUMA mode due to missing latency hiding in the latter (a memory read instruction blocks
the processor pipeline until the read reply is received) and slow synchronization. Finally, there is
evidence that large amounts of parallelism is available for almost any kind of problems if a strong
enough model of computation (e.g. PRAM) is implemented [24] [22] [36]. This leaves a seamless
support for the legacy code the most important motivation for including the full NUMA support for
future ESM CMPs.

3.3 Alternative solutions

It is possible to provide NUMA support to ESM machines also with more traditional techniques,
e.g. with dedicated scalar units and a dedicated intercommunication network between them. This
does not however support seamless configurability between PRAM mode and NUMA modes like
the PRAM-NUMA architecture does but rather concurrent operation of the PRAM and NUMA
hardware. As a result, programming such a machine could be tricky and some of the advantages
gained with the simplicity of the plain PRAM model would be lost. An alternative approach for
low-TLP code support in the CESM architecture would be to use global memory units and certain
global memory locations to send and receive messages between the low-TLP functionality threads.
While we predict that the plain CESM architecture with its high-throughput interconnection network
would make the software overhead of a low-level message passing library implementation very low,
potentially yielding to very efficient locality-aware execution and easy exploitation path for message
passing legacy code, the details of such a solution are out of the scope of this paper.

4 Evaluation

In order to illustrate the improvements achievable with the proposed (dual-access) PRAM-NUMA
architecture on a realistic CMP, we mapped parallel and sequential versions of seven parallel com-
putational problems (see Table 1) to three CMP configurations. The configurations are E4, E16 and
E64 having 4, 16 and 64 eleven-FU 512-threaded processors with 4-way set associative step caches
connected to fast (single cycle access/cycle time SRAM) on-chip memory via a network utilizing
switches with 16-element FIFOs (see Table 2). Three of the problems are fixed size and others
depend on the number of threads in a processor core. For comparison purposes, the programs were
mapped to both PRAM threads (processors in the model terminology) and NUMA bunches. We
compiled, optimized (ecc -O2 -ilp -fast) and loaded the programs to the CMP configurations and
executed them with our CMP simulator modified for the PRAM-NUMA model. The mapping of
functionality in the PRAM mode was done in a straight-forward way assigning the elements of
repetitive data structures like arrays to threads in a natural order, i.e. data element 0 is assigned to
thread 0, data element 1 is assigned to thread 1 on so on. For the NUMA programs, we maximized
the locality of processing and references by partitioning the data to local memories so that accessing
remote modules is needed only in the cases of synchronizations and combining the results of the
subtasks.

In order to determine the PRAM mode execution performance, we executed the parallel versions
of the programs in the PRAM-NUMA CMPs in the PRAM mode. The results as execution time
overhead with respect to PRAM with the same configuration but with an ideal memory system
are shown in Figure 5a. We can observe that the PRAM mode execution speed of the PRAM-
NUMA architecture is very close to that of ideal PRAM, mean overheads being only 0.8%, 1.7%,
and 1.4% for E4, E16, and E64, respectively. These PRAM mode results are identical to the
CESM architecture [12] since the PRAM-NUMA architecture is a direct extension of CESM and no

29

A PRAM-NUMA Model of Computation for Addressing Low-TLP Workloads

Table 1: Evaluated computational problems and features of their sequential and parallel imple-
mentations (E=execution time, M=size of the key string, N=size of the problem, P=number of
processors, T=number of threads, W=work). Note that fft, mmul, and sort are fixed size problems,
while others depend on T . In order to determine the performance of non-local accesses in the NUMA
mode of the PRAM-NUMA architecture, 4-, 16- , and 64-thread versions of aprefix, max, spread,
and sum are also used.

SEQ PAR
Name N E P W E P = W Explanation
aprefix T N 1 N 1 N Determine a multiprefix of an array of N integers
fft 64 N log N 1 N log N 1 N2 Perform a 64-point complex Fourier transform
max T N 1 N 1 N Find the maximum of a table of N integers
mmul 16 N3 1 N3 1 N3 Compute the product of two 16-element matrixes
sort 64 N log N 1 N log N 1 N2 Sort a table of 64 integers
spread T N 1 N 1 N Spread an integer to all N threads
sum T N 1 N 1 N Compute the sum of an array of N integers

Table 2: Evaluated configurations (c=processor clock cycles). Notations En-p and En-n stand for
En in the PRAM mode and En in the NUMA mode, respectively.

Symbol E4 E16 E64
Model of computation Mtlp PRAM-NUMA PRAM-NUMA PRAM-NUMA
ILP model PRAM mode Milp Chained VLIW Chained VLIW Chained VLIW
ILP model NUMA mode Milp VLIW VLIW VLIW
Processors P 4 16 64
Threads per processor Tp 512 512 512
Total number of threads T 2048 8192 32768
Functional units (PRAM mode) Fp 10 10 10
Functional units (NUMA mode) Fn 3 3 3
On-chip shared data memory Msd 2 MB 8 MB 32 MB
On-chip local data memory Mld 2 MB 8 MB 32 MB
On-chip bank access time Ab 1 c 1 c 1 c
On-chip bank cycle time Cb 1 c 1 c 1 c
Length of FIFOs Q 16 16 16
Step cache associativity Ac 4 4 4

30

International Journal of Networking and Computing

slowdown is happening while executing in the PRAM mode. The reason why the overhead is higher
in E16 than in E64 may be random effects caused by the used memory hashing function, since the
differences are small.

The NUMA mode performance was measured by executing the sequential versions of the pro-
grams in a single thread in the PRAM mode and in the same program in the NUMA mode with a
single NUMA bunch unifying all the threads of a single processor. The results of these simulations
as execution time are illustrated in Figure 5b. We see that the NUMA mode indeed provides radi-
cally better performance for sequential programs, but is not able to exploit virtual ILP up to degree
possible in the PRAM mode. The mean speedups of using NUMA mode are 13200%, 13196%, and
13995% for E4, E16, and E64, respectively. This does not, however, mean that these NUMA bunches
can solve these computational problems faster than the ESM architecture or this PRAM-NUMA ar-
chitecture in the PRAM mode if parallel algorithms are used. Namely, the parallel versions are
1421%, 3111%, and 6889% faster than the best sequential ones for E4, E16, and E64, respectively.
The speedup is not linear with respect to the number of processors here, since 3 out of 7 benchmarks
are fixed size computational problems. These single-threaded NUMA mode results are identical to
the CESM architecture since the PRAM-NUMA architecture is an extension of CESM and in these
tests no remote accesses were required in the NUMA mode.

To illustrate seamless configurability between the NUMA and PRAM modes in the PRAM-
NUMA architecture, we measured the NUMA mode execution time for the sort algorithm for a bunch
with different number of threads ranging from 1 to 512 threads per bunch in the E4 configuration.
The results are shown in Figure 5c. We can see linear performance increase as the number of threads
per the bunch increases (taking the exponential thread scale into account).

We compared also the NUMA mode performance of PRAM-NUMA CMPs with a single bunch
occupying all thread slots for each processor to that of the PRAM mode and single processor (NUMA
bunch) performance. This was done by executing 4-, 16- and 64-threaded full NUMA, PRAM and
single processor versions of aprefix, max, spread, and sum assuming appropriate blocking, hashing,
and single module memory allocations, respectively (see Figure 5d and 5e). We can observe that
the PRAM mode versions are 679%, 809%, and 1843% faster than the full NUMA versions and
that the full NUMA versions are 291%, 974%, and 1683% faster than the single processor NUMA
mode versions for E4, E16, and E64, respectively, showing good NUMA speedups. The buffer-based
variant of PRAM-NUMA architecture turned out to be 29.3%, 23.7% and 6.7% slower than dual
access version in the full NUMA test for E4, E16, and E64, respectively. Figure 5f shows the sizes
of source code files in lines for PRAM, NUMA, and sequential versions serving as a rough measure
of complexity of programming. We can observe that the PRAM versions are a bit shorter than
sequential versions and the NUMA versions are more than twice the size of the PRAM versions.
It should be noted that the length difference of actual algorithms is much higher than indicated
by the total length of the source files since all versions contain similar headers and comments and
measurement primitives although we used explicit synchronization algorithms for the NUMA mode.

Finally, we estimated the silicon area, power consumption, and maximum clock frequency figures
for E4, E16, and E64 targeted to a high-performance 65 nm silicon process, although implementation
of full NUMA does not require extra hardware except some extra ports and multiplexers over the
CESM architecture. We assumed that each processor core has 1 MB memory that is divided evenly
between global shared memory and local memory (see Table 2). The estimations are based on
models presented [27], ITRS 2007, and careful counting of architectural elements broken down to
gate counts applied e.g. in [11]. The wire delay model gives maximum clock frequency 1.29 GHz
for all CMPs assuming minimum width global interconnect wiring. The area and power results are
shown in Figure 6.

5 Conclusions

We have shown that integrating full NUMA support to a PRAM implementation architecture can
solve the inefficiency problem of current PRAM realizations in the case of low-TLP functionalities at
the cost of more difficult NUMA programming. We described the corresponding model of computa-

31

A PRAM-NUMA Model of Computation for Addressing Low-TLP Workloads

0

0,25

0,50

0,75

1,00

1,25

aprefix fft max mmul sort spread sum

0,75

1,00

1,25

0

0,25

0,50

efixapr ftf max mmul sort eadspread sum

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

aprefix fft max mmul sort spread sum

100000

1000000

10000000

100000000

1000000000

1

10

100

1000

10000

100000

efixapr ftf max mmul sort spreadspr sum

0

1500000

3000000

4500000

6000000

1 2 4 8 16 32 64 128 256 512

4500000

6000000

0

1500000

3000000

1 2 4 8 16 32 64 128128 256 512

0

10,00

20,00

30,00

40,00

aprefix max spread sum

30,00

40,00

0

10,00

20,00

efixapr max eadspr sum

0

7,50

15,00

22,50

30,00

aprefix max spread sum

22,50

30,00

0

7,50

15,00

efixapr max eadspr sum

0

25

50

75

100

aprefix max spread sum

75

100

0

25

50

efixapr max eadspr sum

E4-p E16-p E64-p

E4-p E4-n E16-p E16-n E64-p E64-n

E4-n E16-n E64-n

E4-n E16-n E64-n

sort Number of threads per bunch

PRAM NUMA SEQUENTIAL

(a)

(b)

(c)

(d)

(e)

(f)

So
ur

ce
 c

od
e

si
ze

 (
co

de
 li

ne
s)

R
el

at
iv

e
pe

rf
or

m
an

ce

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

Ex
ec

ut
io

n
tim

e
(c

lo
ck

 c
yc

le
s)

Ex
ec

ut
io

n
tim

e
(c

lo
ck

 c
yc

le
s)

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

Figure 5: The relative execution time of PRAM-NUMA CMPs compared to ideal PRAMs with
similar configuration (PRAM=1.0, shorter is better) (a), the execution time of sequential solutions
of the computational problems on a single thread of a single CESM processor core and on a 512
thread NUMA bunch in a single MBTAC processor core (the time scale is logarithmic due to big
differences in execution time) (b), execution time of as a function of number of threads in the bunch
for E4 PRAM-NUMA configuration (c), the relative execution time of 4, 16, and 64 NUMA bunches
with respect to PRAM mode threads (PRAM=1.0, shorter is better) (d), the relative performance
time of 4, 16, and 64 NUMA bunches with respect to a single NUMA bunch in a single processor
(single processor=1.0, longer is better) (e), source code size of the benchmarks in lines for PRAM,
NUMA, and sequential versions (f).

32

International Journal of Networking and Computing

0

100

200

300

400

500

600

700

800

900

1000

E4 E16 E64

S
ili

co
n

ar
ea

 (m
m

^
2)

Com

Mem

Proc

0

200

400

600

800

1000

1200

E4 E16 E64

P
ow

er
 c

on
cu

m
p

tio
n

(W
)

Com

Mem

Proc

Figure 6: Silicon area and power consumption estimates for E4, E16, and E64 at 1.29 GHz
on high-performance 65 nm technology (Com=communication network, Mem=memories, and
Proc=processors).

tion, gave a programming example and outlined an architectural implementation for it with a help of
our CESM architecture. According to the performance evaluation, the PRAM-NUMA architecture
indeed provides good NUMA performance figures in low-TLP situations and extends the NUMA
mode to multi-threaded workloads employing non-local memory accesses while not compromising
the performance in medium and high-TLP cases. Surprisingly, the architectural implementation of
the PRAM-NUMA model does not take virtually any more silicon or power than the CESM archi-
tecture making it a promising candidate for future general purpose parallel computers especially if
low-TLP legacy code is expected to be executed efficiently along with new PRAM code. In our future
work, we aim to realize the proposed hardware on FPGA and continue our studies on the optimal
model for general purpose parallel computing and realization of it as a scalable CMP architecture.

6 Acknowledgment

This work was supported by the grants 107177 and 122426 of the Academy of Finland.

References

[1] F. Abolhassan, R. Drefenstedt, J. Keller, W. Paul, D. Scheerer, On the Physical Design of
PRAMs, Computer Journal 36, 8 (1993), 756-762.

[2] R. Alverson, D. Callahan, D. Cummings, B. Kolblenz, A. Porterfield, B. Smith, The Tera
Computer System, Proceedings of the International Conference on Supercomputing, Association
for Computing Machinery, New York, 1990, 1-6.

[3] L. Benini and G. De Micheli, Networks on chips: A new SoC paradigm,Computer, 35(1), 2002,
pp. 70-78.

[4] M. Forsell, Are Multiport Memories Physically Feasible?, Computer Architecture News 22, 4
(September 1994), 47-54.

[5] M. Forsell, A Scalable High-Performance Computing Solution for Network on Chips, IEEE
Micro 22, 5 (September-October 2002), 46-55.

33

A PRAM-NUMA Model of Computation for Addressing Low-TLP Workloads

[6] M. Forsell, Using Parallel Slackness for Extracting ILP from Sequential Threads, In the Pro-
ceedings of the SSGRR-2003s, International Conference on Advances in Infrastructure for Elec-
tronic Business, Education, Science, Medicine, and Mobile Technologies on the Internet, July
28 - August 3, 2003, L ’Aquila, Italy.

[7] M. Forsell, E – A Language for Thread-Level Parallel Programming on Synchronous Shared
Memory NOCs, WSEAS Transactions on Computers 3, 3 (July 2004), 807-812.

[8] M.Forsell, Compiling Thread-Level Parallel Programs with a C-Compiler, In the Proceedings
of the IV Jornadas sobre Programacion y Lenguajes (PROLE ’04), November 11-12, 2004,
Malaga, Spain, 215-226.

[9] M. Forsell, Parallel Application Development Scheme for General Purpose NOCs, In the pro-
ceedings of the 2005 ECTI International Conference (ECTI-CON 2005), May 12-13, 2005, Pat-
taya, Thailand, 819-822.

[10] M. Forsell, Realizing Multioperations for Step Cached MP-SOCs, In the Proceedings of the
International Symposium on System-on-Chip 2006 (SOC’06), November 14-16, 2006, Tampere,
Finland.

[11] M. Forsell and J. Roivainen, Performance, Area and Power Trade-Offs in Mesh-based Emulated
Shared Memory MP-SOC Architectures, submitted to Computing Frontiers 2008 conference.

[12] M. Forsell, Configurable Emulated Shared Memory Architecture for general purpose MP-SOCs
and NOC regions, In the Proceedings of the 3rd ACM/IEEE International Symposium on
Networks-on-Chip, May 10-13, 2009, San Diego, USA, 163-172.

[13] M. Forsell, P. Hofstee, A. Jerraya, C. Jesshope, U. Vishkin and J. Träff, HPPC 2009 Panel: Are
Many-Core Computer Vendors on Track?, Lecture Notes in Computer Science 6043, (2010),
9-15.

[14] M. Forsell, TOTAL ECLIPSE – An Efficient Architectural Realization of the Parallel Random
Access Machine, In Parallel and Distributed Computing Edited by Alberto Ros, IN-TECH,
Vienna, 2010, 39-64.

[15] S. Fortune and J. Wyllie, Parallelism in Random Access Machines, Proceedings of 10th ACM
STOC, Association for Computing Machinery, New York, 1978, 114-118.

[16] D. Gajski, D. Kuck, D. Lawrie and A. Sameh, CEDAR―A Large Scale Multiprocessor, Pro-
ceedings of International Conference on Parallel Processing,1983, 524-529.

[17] R. Hintz and D. Tate, Control data STAR-100 processor design, COMPCON, February 1972,
1-4.

[18] C. Hoare, Communicating Seguential Process, Prentice Hall, New York, 1985.

[19] Research at Intel From a Few Cores to Many: A Tera-scale Computing Research Overview,
White Paper, Intel, 2006.

[20] International Technology Roadmap for Semiconductors, Semiconductor Industry Association,
2009; http://www.itrs.net.

[21] J. Jaja, Introduction to Parallel Algorithms, Addison-Wesley, Reading, 1992.

[22] J. Keller, C. Keßler, and J. Träff, Practical PRAM Programming, Wiley, New York, 2001.

[23] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta,J. Hennessy, M. Horowitz, and
M. Lam, The Stanford Dash Multiprocessor, IEEE Computer 25, (March 1992), 63-79.

[24] L. Mak. Parallelism always helps. SIAM Journal of Computing 26, 1(February 1997) 153–172.

34

International Journal of Networking and Computing

[25] Message Passing Interface Forum, MPI-2: Extensions to the Message-Passing Interface, 1997
(http://www.mpi-forum.org).

[26] D. Naishlos, J. Nuzman, C-W. Tseng, and U. Vishkin, Towards a First Vertical Prototyping of
an Extremely Fine-Grained Parallel Programming Approach, In Proc. 13th ACM Symposium
on Parallel Algorithms and Architectures (SPAA-01), July 2001.

[27] D. Pamunuwa, L-R. Zheng and H. Tenhunen, Maximizing Throughput Over Parallel Wire Struc-
tures in the Deep Submicrometer Regime, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 11, 2 (April 2003), 224-243.

[28] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P. McAuliffe,
E.A. Melton, V. A. Norton and J. Weiss, The IBM Research Parallel Processor Prototype (RP3):
Introduction and Architecture, Proceedings of International Conference on Parallel Processing
(1985), 764-771.

[29] A. G. Ranade, S. N. Bhatt, S. L. Johnson, The Fluent Abstract Machine, Technical Report
Series BA87-3, Thinking Machines Corporation, Bedford, 1987.

[30] A. Ranade, How to emulate shared memory, Journal of Computer and System Sciences 42,
(1991), 307-326.

[31] J. T. Schwarz, Ultracomputers, ACM Transactions on Programming Languages and Systems
2, 4 (1980) 484-521.

[32] R. Swan, S. Fuller and D. Siewiorek, Cm*―A Modular Multiprocessor, In the Proceedings of
NCC, 645-655, 1977.

[33] W. Watson, The TI ASC―A highly modular and flexible super computer architecture, Pro-
ceedings of the 1972 AFIPS Fall Joint Computer Conference, 221-228.

[34] U. Vishkin, S. Dascal, E. Berkovich and J. Nuzman, Explicit Multi-Threading (XMT) Bridging
Models for Instruction Parallelism (Extended Abstract), In the Proceedings of the SPAA ’88,
1998.

[35] U. Vishkin, Towards Realizing a PRAM-On-Chip Vision, Workshop on Highly Parallel
Processing on a Chip (HPPC), August 28, 2007, Rennes, France (see http://www.hppc-
workshop.org/HPPC07/talks.html).

[36] U. Vishkin, G. Caragea, A and B. Lee, Models for Advancing PRAM and Other Algorithms
into Parallel Programs for a PRAM-On-Chip Platform, In Handbook of Parallel Computing
―Models, Algorithms and Applications (editors S. Rajasekaran and J. Reif), Chapman and
Hall/CRC, Boca Raton, 2008, 5-1―5-60.

35

