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The status of lymph node (LN) metastases plays a decisive role in the selection of

surgical procedures and post-operative treatment. Several histopathologic features,

known as predictors of LN metastasis, are commonly available post-operatively. Medical

imaging improved pre-operative diagnosis, but the results are not fully satisfactory due

to substantial false positives. Thus, a reliable and robust method for pre-operative

assessment of LN status is urgently required. We developed a prediction model in a

training set from the TCGA-BLCA cohort including 196 bladder urothelial carcinoma

samples with confirmed LN metastasis status. Least absolute shrinkage and selection

operator (LASSO) regression was harnessed for dimension reduction, feature selection,

and LNM signature building. Multivariable logistic regression was used to develop the

prognostic model, incorporating the LNM signature, and a genomic mutation of MLL2,

and was presented with a LNM nomogram. The performance of the nomogram was

assessed with respect to its calibration, discrimination, and clinical usefulness. Internal

validation was evaluated by the testing set from the TCGA cohort and independent

validation was assessed by two independent cohorts. The LNM signature, which

consisted of 48 selected features, was significantly associated with LN status (p < 0.005

for both the training and testing sets of the TCGA cohort). Predictors contained in the

individualized prediction nomogram included the LNM signature and MLL2 mutation

status. The model demonstrated good discrimination, with an area under the curve (AUC)

of 98.7% (85.3% for testing set) and good calibration with p= 0.973 (0.485 for testing set)

in the Hosmer-Lemeshow goodness of fit test. Decision curve analysis demonstrated that

the LNM nomogram was clinically useful. This study presents a pre-operative nomogram

incorporating a LNM signature and a genomic mutation, which can be conveniently

utilized to facilitate pre-operative individualized prediction of LN metastasis in patients

with bladder urothelial carcinoma.

Keywords: bladder cancer, lymph node metastasis, LNM signature, MLL2 mutation, pre-operative nomogram

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2019.00488
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2019.00488&domain=pdf&date_stamp=2019-06-21
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zhangbing_nanjing@vip.163.com
mailto:f.r.yan@163.com
https://doi.org/10.3389/fonc.2019.00488
https://www.frontiersin.org/articles/10.3389/fonc.2019.00488/full
http://loop.frontiersin.org/people/727577/overview
http://loop.frontiersin.org/people/732378/overview
http://loop.frontiersin.org/people/445012/overview
http://loop.frontiersin.org/people/707579/overview


Lu et al. Bladder Cancer LN Metastasis Prediction

INTRODUCTION

Bladder cancer is the 9th most prevalent cause of
cancer worldwide and the 2nd most common genitourinary
malignancy, with transitional cell carcinomas comprising about
90% of primary bladder tumors (1). In 2019, ∼80,470 new cases
and 17,670 deaths of bladder cancer were estimated to occur
in the United States (2). Previous research has revealed that
Lymph node (LN) involvement—which is frequently found
in bladder cancer—possesses prognostic implications, and
both the pathological stage of primary bladder tumor and the
presence of LN metastasis are considered the most important
determinants of survival in bladder cancer patients undergoing
radical cystectomy (3). Early and accurate identification of
LN metastasis holds significance in improving patient triage
and management (4) and may suggest potential alteration
of the lymphadenectomy template in patients who undergo
surgery. In cases where local staging is equivocal, it also
expedites care for patients, particularly when nodal disease
can be definitively identified (5–7). Pre-operative knowledge
of LN metastasis provides valuable information about the
necessity of adjuvant therapy and the adequacy of surgical
resection, thereby aiding pretreatment decision-making, but
unfortunately, most histopathologic findings identified as
predictors of LN metastasis cannot be observed pre-operatively.
That is to say, the status of LN metastases plays a decisive
role in the selection of surgical procedures and post-operative
treatment. Reliable and robust methods for pre-operative
assessment of LN status (8) have been continuously explored.
Fine-needle aspiration lymphangiography has been evaluated
in several investigations but failed to show reliability due
to a high false negative rate (9). Only a few studies have
appraised positron emission tomography (PET) and its
ability to detect LN metastases in bladder cancer, but the
conclusions have been largely disappointing (10). Additionally,
computed tomography (CT) revealed a high false negative
rate of 21% (11). Next-generation sequencing technology
has brought massively high throughput sequencing data to
bear on research questions with low cost, which enables us to
decipher the difference of bladder cancer in terms of status
of LN metastasis in a genomic level. Currently, the analysis
strategy for multiple biomarkers has evolved from individual
analyses to combined analysis of a panel of biomarkers
that constitute a signature, which appears to be a most
promising approach and powerful enough to innovate clinical
management (12, 13). Therefore, this study aims to develop
and validate a pre-operative nomogram that incorporates a LN-
metastasis signature and genomic mutations for individualized
pre-operative prediction of LN metastasis in patients with
bladder cancer.

Abbreviations: LN, lymph node; LNM, lymph node metastasis; TPM,

transcripts per kilobase million; FDR, false discovery rate; GSEA, gene set

enrichment analysis; LASSO, Least absolute shrinkage and selection operator;

OS, overall survival; PFS, progression-free survival; HR, hazard ratio; CI,

confidence interval; ROC, operating characteristic curve; AUC, area under

the curve.

MATERIALS AND METHODS

Patients and Samples
Molecular data were obtained from The Cancer Genome Atlas
Project (TCGA) patients diagnosed with bladder urothelial
carcinoma. Transcriptome HTSeq-counts data of TCGA-BLCA
project was obtained from the Genomic Data Commons (https://
portal.gdc.cancr.gov/) using the R package “TCGAbiolinks” (14).
Somatic mutation profiling and detailed clinicopathological
information were downloaded from cBioPortal (http://www.
cbioportal.org/datasets). For the purpose of the present study,
196 samples were selected as the TCGA cohort including 49
samples with LN metastasis only (LN+) and 147 without
any metastasis (LN–). Two independent cohorts were gathered
for validation including one obtained from Gene Expression
Omnibus (https://www/ncbi.nlm.nih.gov/geo/) (GEO cohort) by
using R package “GEOquery” with a query of GSE106534 and
another that is publicly available through the Memorial Sloan-
Kettering Cancer Center (MSKCC cohort) cBioPortal for Cancer
Genomics. The GEO cohort contains five LN+ and five LN–
bladder tissues, of which RNA was extracted and hybridized
on an Illumina Hiseq 2500 (13). The MSKCC cohort contains
58 tumor samples with Agilent microarray mRNA expression
profiling (15). Survival information of the MSKCC cohort was
obtained from the cBioPortal.

Data Preprocessing for Transcriptome
HTSeq-Counts
Ensembl ID for genes (protein-coding mRNAs) was annotated
in GENCODE27 to generate Gene Symbol name. Gene type
of protein-coding was selected for mRNAs. We calculated the
number of fragments per kilobase of non-overlapped exons
per million fragments mapped (FPKM) first and subsequently
transferred FPKM into transcripts per kilobase million (TPM)
values, which are more similar to those resulting from
microarrays and more comparable between samples (16). To
reduce noise, only mRNAs with TPM value equal to or above one
in at least 10% of the samples were kept for downstream analysis.

Differential Expression and Functional
Enrichment Analysis
Differential expression analysis was performed by R package
“DESeq2” with the standard comparison mode between the two
experimental conditions (17). P-values were adjusted formultiple
testing with an embedded Benjamini-Hochberg procedure in the
package. Gene set enrichment analysis (GSEA) was performed
by R package “clusterProfiler” (18, 19) to impute functional
pathway enrichment for the LN+ and LN– groups by mRNA
expression profile.

Genetic Analysis on Somatic Mutation
We used MutSigCV_v1.41 (20) (www.broadinstitute.org) to
infer significant cancer mutated genes (q < 0.05) across the
two classes currently identified with default parameters. Tumor
mutation burden was computed by summing all kinds of non-
silent mutation. Mutation landscape oncoprint was drawn by R
package “ComplexHeatmap” (21). Significant frequent non-silent
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TABLE 1 | Demographic and clinicopathological characteristics of patients with

bladder urothelial carcinoma (TCGA cohort, n = 196) based on LN metastasis

status.

Clinicopathogical

parameters

Frequency

(%)

TCGA-BLCA P-value

LN+ (n = 49) LN– (n = 147)

Gender 0.3615

Female 54 (28) 16 38

Male 142 (72) 33 109

Age (years) 1.0000

>69 92 (47) 23 69

≤69 104 (53) 26 78

BMI 0.4678

<18.5 6 (3) 0 6

18.5–24 46 (23) 11 35

>24 133 (68) 35 98

Missing 11 (6) 3 8

Pack-year of

smoking

0.6761

>29 59 (30) 17 42

≤29 59 (30) 14 45

Missing 78 (40) 18 60

Race 0.0107*

Not white 30 (15) 2 28

White 163 (83) 47 116

Missing 3 (2) 0 3

Histologic

subtype

0.2858

Non-Papillary 132 (67) 37 95

Papillary 61 (31) 12 49

Missing 3 (2) 0 3

Histologic grade 0.1948

High 187 (95) 49 138

Low 7 (4) 0 7

Missing 2 (1) 0 2

Tumor stage 0.0005*

T1 + T2 59 (30) 6 53

T3 + T4 122 (62) 42 80

Missing 15 (8) 1 14

Lymph node

stage

1.30e–13*

N0 + N1 140 (71) 17 123

N2 + N3 45 (23) 32 13

Missing 11 (6) 0 11

Metastasis stage 0.0350*

M0 108 (55) 89 19

M1 2 (1) 0 2

Missing 86 (44) 58 28

Pathologic tumor

stage

7.04e–11*

I + II 65 (33) 0 65

III + IV 130 (66) 49 81

Missing 1 (1) 0 1

(Continued)

TABLE 1 | Continued

Clinicopathogical

parameters

Frequency

(%)

TCGA-BLCA P-value

LN+ (n = 49) LN– (n = 147)

Examined lymph

nodes

0.0393*

>27 77 (39) 29 48

≤27 85 (43) 19 66

Tumor status 0.0004*

Tumor free 121 (62) 19 102

With tumor 61 (31) 25 36

Missing 14 (7) 5 9

*Fisher’s exact test p < 0.05.

mutations were identified by independent test between the LN+
and LN– groups with a p < 0.05.

Feature Selection
The TCGA cohort of 196 samples was randomized into two
sets based on 10-fold stratified sampling, where the training set
included 9 folds of LN+ samples and LN− samples and the
testing set included the rest, 1 fold with 5 LN+ samples and 15
LN− samples. Least absolute shrinkage and selection operator
(LASSO) regression, which is often applied as a dimensionally
reduction technique, was performed on the training set to
select primary predicative features. Ten-fold cross validation
was performed to tune the optimal value of lambda (λ) that
gives the minimum mean cross-validated error. A score was
calculated for each sample via a linear combination of the
selected features, namely LNM signature, weighted by the
corresponding coefficients. The potential association of the LNM
signature with LN status was first assessed in the training
set and then validated in the testing set by using the Mann-
Whitney U-test.

Development of an Individualized
Prediction Model
Multivariable logistic regression analysis on the training
set began with the following candidate predictors: LNM
signature and significant frequent mutations. Those with
respective p < 0.05 were retained in the prognostic model.
A LNM nomogram was built by R package “regplot” as a
quantitative tool for clinicians for individualized prediction of LN
metastasis probability.

Validation of the LNM Nomogram and LNM
Signature
Internal validation was performed using the testing set of the
TCGA cohort with 20 samples. The logistic regression formula
formed in the training set was applied to all samples in the
testing set, with total points for each sample calculated. Logistic
regression in the testing cohort was then performed by using
the total points as a factor. Finally, the receiver operating
characteristic curve (ROC) with area under the curve (AUC)
and calibration curve were derived based on the regression
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analysis by using R packages “pROC” and “rms”. Independent
validation for LNM-score was tested in the GEO and MSKCC
cohorts. Since the mutation data were absent and several genes
of the LNM signature failed to be mapped in independent
cohorts, we harnessed unsupervised clustering to determine if
LNM signature could help distinguish LN metastasis status in
the GEO cohort and whether it was associated with overall
survival (OS) or progression-free survival (PFS) in the MKSCC
cohort. Supervised hierarchical clustering based on mapped
LNM signature was performed by using R function hclust() via
the Ward.D clustering method 1-Pearson’s correlation distance,
with k = 2 as the number of clusters. Expression profiling of
mRNAs was transformed by log2(x+1) and median-centered
before clustering.

Statistical Analysis
All statistical tests were executed by R/3.5.2, with a χ2 or
Fisher’s exact test for categorical data when appropriate, a two-
sample student’s t-Test or Mann-Whitney U-test for continuous
data when appropriate, a log-rank test Kaplan-Meier curve (22)
and Cox regression (23) for survival analysis performed by R
package “survival.” Survival of patients belonging to different
defined groups was compared by the Kaplan-Meier Method,
with p-value determined by the log-rank (Mantel-Cox) test.
Fisher’s exact test of independence was used to statistically test
the association between categorical clinical information and LN
metastasis status. For all statistical analysis, a two-sided p < 0.05
was considered statistically significant. Decision curve analysis
was conducted to determine the clinical usefulness of the LNM
nomogram by quantifying the net benefits at different threshold
probabilities by using R package “rmda” (24, 25).

RESULTS

Demographic Characteristics
The distributions of gender, age (dichotomized by median
age of 69), BMI (trichotomized by WHO body mass index

cut-off), pack-year of smoking history (dichotomized by median
pack of 29), papillary type and histological grade were not
different between LN+ and LN– samples. Race (p = 0.031),
LN category (p = 1.30–13), metastasis category (p = 0.035),
pathological stage (p = 7.04–11), lymph node examined
number (dichotomized by median number of 27, p = 0.039),
and tumor status (p = 0.0004) were significantly associated
with LN metastasis status (Table 1). As expected, tumors
with LN+ demonstrated poorer prognosis than LN– (p =

0.002, HR = 1.95, 95% CI = [1.18–3.23], Figure 1A) and a
tendency could be observed where LN+ tumors presented a
higher recurrence rate (p = 0.083, HR = 1.58, 95% CI =

[0.88–2.82], Figure 1B).

Overview of Differential Expression Results
From LN+ and LN– Tumors
Supervised differential expression analysis using LN metastasis
status as the group variable identified 180 differentially
expressed genes (p < 0.05, false discovery rate (FDR) <

0.05, Figure 2A; Supplementary Table S1). GSEA manifested
a universal down-regulation of immune-related pathways
in LN+ tumors as compared to LN– tumors (Figure 2B;
Supplementary Table S2).

Somatic Mutation Landscape Between
LN+ and LN– Tumors
After filtering out non-silent mutation, tumors with LN+
exhibited a significant lower burden of mutation load
as compared to LN– tumors (p = 0.008) (Figure 2C).
MutSigCV identified 16 significantly mutated genes
(SMGs, q < 0.05) for the present 193 samples with
available mutation data (Supplementary Table S3), all
of which were reported from previous research (26)
(Figure 2D). We identified 716 genes with a mutation
rate >5%, among which 26 genes were found to be
differentially mutated between LN+ and LN– tumors by

FIGURE 1 | Association between LN metastasis status and patients’ outcomes in TCGA cohort (A) for overall survival and (B) for progression-free survival. Tumors

with LN+ demonstrated poor prognosis compared to LN– and a tendency could be observed where LN+ tumors presented higher recurrence rates. LN– was

regarded as the reference for the calculation of HR.
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FIGURE 2 | Overview of the molecular differences between LN+ and LN− tumors in the TCGA cohort. (A) Volcano plot for differentially expressed genes. (B) GSEA

demonstrated down-regulated immune-related pathways in LN+ tumors. (C) Boxplot showed significantly lower TMB in LN+ tumors as compared to LN- tumors.

Oncoprint for SMGs identified by MutSigCV shown in (D) and (E) depicted significantly differentially mutated genes based on LN metastasis status.

independent test (Figure 2E; Supplementary Table S4). By
intersecting with SMGs, mutation of MLL2 (also known
as KMT2D) and PSIP1 were identified for constructing a
predictive model.

Feature Selection and LNM Signature
Building
Of 180 differentially expressed genes, 48 features were selected on
the basis of the training set of the TCGA cohort (see Materials
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and methods for more details), including 22 up-regulated
genes and 26 down-regulated genes, as they were features with
non-zero coefficients in the LASSO logistic regression model
(Figures 3A,B; Table 2). These features are presented in LNM
signature calculation formula (Supplementary Table S5). LNM
signature was significantly higher in LN+ tumors as compared
to LN– tumors both in the training (p < 2.2–16) and testing sets
(p = 0.005) of the TCGA cohort (Figures 3C,D) and appeared
to be an independent predictor for OS (p = 0.0264, HR = 1.13,
95%CI= [1.01–1.27]) bymultivariate Cox regression integrating
LNM signature, gender, age and histological grade of the entire
TCGA cohort.

Supervised Clustering by Using LNM
Signature in Two Independent Cohorts
Independent validation for LNM signature was performed in
the GEO (Figure 4A) and MSKCC cohorts (Figure 4B) by
supervised hierarchical clustering where samples in the GEO
cohort could be distinguished according to LN metastasis status
(p = 0.048), and a tendency could be observed that LNM

signature was associated with OS (p = 0.075) (Figure 4C) and
PFS (p= 0.098) (Figure 4D) in the MSKCC cohort.

Development of an Individualized
Prognostic Model
Logistic regression analysis identified the pre-operative features
of LNM signature and MLL2 mutation as independent
predictors (Table 3). We also considered other pre-operative
clinical variables when designing the prognostic model, and
interestingly, only LNM signature and MLL2 mutation survived
in the full model with p < 0.05 in the logistic regression
(Supplementary Table S6). Thus, we further removed these
variables in this study not only due to the insignificance of other
variables, but also because we hope that patients could accept
the acquisition of these measurements relatively easily. For this
reason, we considered that in most cases, pathologic stage and
detailed TNM classification should be detected by biopsy, an
invasive procedure that may be much less acceptable than pre-
designed multi-gene assay that may only need a small amount
of blood. Hence, a model incorporating these two features
was developed and presented as a LNM nomogram (Figure 5).

FIGURE 3 | Feature selection using LASSO binary logistic regression model. (A) Tuning parameter λ (lambda) selection in the LASSO model used 10-fold

cross-validation by minimum criteria. The misclassification error was plotted vs. log(λ). Dotted vertical lines were drawn at the optimal values by using the minimum

criteria. A λ of 0.021 with log(λ) of −3.881 was chosen according to 10-fold cross-validation. (B) LASSO coefficient profiles of the 180 genes. A coefficient profile plot

was produced against the log(λ) sequence. A vertical line was drawn at the value selecting by 10-fold cross-validation, where the optimal λ resulted in 48 non-zero

coefficients. Distribution of calculated LNM signature vs. LN metastasis status for both training set and testing set were plotted by boxplot in (C) and (D), respectively.
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FIGURE 4 | Validation of LNM signature via supervised clustering. (A) Dendrogram created by supervised hierarchical clustering using the GEO cohort significantly

distinguished LN metastasis status (p = 0.048) and a dendrogram created for the MSKCC cohort in (B) identified two clusters with a tendency whereby LNM

signature was associated with (C) OS (p = 0.075) and (D) PFS (p = 0.098). Cluster C2 was regarded as reference when calculating HR.

Predictions made by calibration curve of the nomogram for LN
metastasis conformed well to observations in the training set,
with a Hosmer-Lemeshow test suggesting no departure from
perfect fit (p= 0.973).

Validation of the LNM Nomogram and Its
Clinical Usefulness
Total points calculated by LNM nomogram for each sample in
the testing set was determined to be a significant predictor when
performing logistic regression (p = 0.032), and no departure
from perfect fit was identified (p = 0.485) (Figure 6A, see
Supplementary Figures S1A–T for total point of each testing
sample). Internal validation obtained AUCs of 98.7 and 85.3%
when deploying the LNM nomogram to the training set and the
testing set (Figure 6B). The decision curve analysis showed that
the LNM nomogram offered a net benefit over the “treat-all” or
“treat-none” strategies at a really small threshold probability of
a patient or doctor, which indicated that the LNM nomogram
was clinically useful. For example, if the personal threshold
probability of a patient is 60% (i.e., the patient would opt for
treatment if his probability of LNM was >60%), then using
the LNM nomogram to predict LN metastases could provide

an added net benefit of 0.7386 compared to the “treat-all” or
“treat-none” strategies (Figure 6C).

DISCUSSION

Bladder cancer ranks fourth in men and eighth in women among
the most common malignancies in terms of frequency (27).
However, little progress was made in the past decades toward
prolonged survival of high-grade bladder cancer, leaving it still
a lethal disease (28). Since a considerable amount of research
has recognized LN involvement as the strongest independent
prognostic variable for patient outcomes, proper identification of
LN metastasis is of paramount importance (29). To date, several
histopathologic findings that are known to be predictors of
LN metastasis are commonly available post-operatively. Medical
imaging has made great strides in pre-operative diagnosis, but
the results are not fully satisfactory due to substantial false
positives. Therefore, we sought here to develop and validate a
diagnostic, LNM signature-based nomogram for pre-operative
individualized prediction of LN metastasis in patients with
bladder cancer. The nomogram offers an easy-to-use tool for
pre-operative individualized prediction of LN metastasis and
incorporates only two pre-operative items, LNM signature which
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TABLE 2 | Details of LASSO-selected genes in differential expression analysis.

Gene symbol Description log2FC P-value FDR

SFTPA2 Surfactant protein A2 3.827 < 0.0001 < 0.0001

CES1 Carboxylesterase 1 2.571 < 0.0001 < 0.0001

NOS2 Nitric oxide synthase 2 −1.889 < 0.0001 < 0.0001

SCGB3A1 Secretoglobin family 3A member 1 1.835 < 0.0001 0.0002

MMP1 Matrix metallopeptidase 1 −1.824 < 0.0001 0.0003

AKR1B1 Aldo-keto reductase family 1 member B 1.123 < 0.0001 0.0004

VNN2 Vanin 2 −1.509 < 0.0001 0.0006

SPRR2F Small proline rich protein 2F −2.846 < 0.0001 0.0006

SLC39A2 Solute carrier family 39 member 2 1.881 < 0.0001 0.0009

UGT2B15 UDP glucuronosyltransferase family 2 member B15 −2.392 < 0.0001 0.0009

SUSD2 Sushi domain containing 2 1.187 < 0.0001 0.0009

ANPEP Alanyl aminopeptidase, membrane 1.500 < 0.0001 0.0009

GALR2 Galanin receptor 2 1.468 < 0.0001 0.0009

GPAT2 Glycerol-3-phosphate acyltransferase 2, mitochondrial −1.577 < 0.0001 0.0032

ID4 Inhibitor of DNA binding 4, HLH protein −1.208 < 0.0001 0.0038

SLC10A4 Solute carrier family 10 member 4 −1.538 < 0.0001 0.0050

KISS1 KiSS-1 metastasis suppressor 1.486 < 0.0001 0.0050

LARP7 La ribonucleoprotein domain family member 7 −0.250 < 0.0001 0.0050

ALDH3A1 Aldehyde dehydrogenase 3 family member A1 1.775 < 0.0001 0.0051

ERVMER34-1 Endogenous retrovirus group MER34 member 1, envelope −1.037 < 0.0001 0.0058

HBB Hemoglobin subunit beta −1.313 < 0.0001 0.0064

OSGIN1 Oxidative stress induced growth inhibitor 1 1.112 < 0.0001 0.0067

GUF1 GUF1 homolog, GTPase −0.344 < 0.0001 0.0067

EFCAB1 EF-hand calcium binding domain 1 −1.409 < 0.0001 0.0075

METTL7B Methyltransferase like 7B 1.319 < 0.0001 0.0087

ATP6V0A1 ATPase H+ transporting V0 subunit a1 0.370 0.0001 0.0111

AP002990.1 UNCHARACTERIZED Protein* 0.463 0.0001 0.014

KLHDC9 Kelch domain containing 9 0.917 0.0001 0.0141

GAS6 Growth arrest specific 6 0.965 0.0001 0.0164

HS3ST1 21eparin sulfate-glucosamine 3-sulfotransferase 1 −0.818 0.0001 0.0173

FAM219A Family with sequence similarity 219 member A 0.396 0.0001 0.0185

CD177 CD177 molecule −1.352 0.0002 0.0256

KLRF1 Killer cell lectin like receptor F1 −1.008 0.0002 0.0274

FOXL2 Forkhead box L2 1.413 0.0002 0.0274

FMNL2 Formin like 2 −0.700 0.0002 0.0278

TGS1 Trimethylguanosine synthase 1 −0.344 0.0002 0.0278

SKIL SKI like proto-oncogene 0.546 0.0002 0.0284

RPRM Reprimo, TP53 dependent G2 arrest mediator homolog −1.179 0.0002 0.0288

MED28 Mediator complex subunit 28 −0.253 0.0003 0.0312

KRT23 Keratin 23 1.461 0.0003 0.0318

EDEM1 ER degradation enhancing alpha-mannosidase like protein 1 0.417 0.0003 0.0322

GRAMD2A GRAM domain containing 2A −1.054 0.0004 0.0366

SMOC1 SPARC related modular calcium binding 1 −1.346 0.0005 0.0408

KPNA7 Karyopherin subunit alpha 7 1.022 0.0005 0.0421

NOP14 NOP14 nucleolar protein −0.271 0.0005 0.0431

ATG4C Autophagy related 4C cysteine peptidase −0.252 0.0006 0.0471

CRH Corticotropin releasing hormone −2.369 0.0006 0.0491

C2orf88 Chromosome 2 open reading frame 88 −0.805 0.0006 0.0492

*Novel transcript annotated by GeneCards.
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FIGURE 5 | The developed pre-operative nomogram. The LNM nomogram was built in the training set of the TCGA cohort, with the LNM signature and genomic

mutation of MLL2 incorporated.

TABLE 3 | Summary of logistic regression model integrating LNM signature and genomic mutations.

Intercept and variables Baseline model Final model

β Odds ratio (95% CI) P-value β Odds ratio (95% CI) P-value

(Intercept) 2.0623 – 0.004 2.0690 – 0.004

LNM signature 3.2557 18.29 (6.16–54.28) <0.001 3.2753 18.29 (6.16–54.28) <0.001

MLL2 mutation −2.4800 0.32 (0.12, 0.8) 0.03 −2.4870 0.32 (0.12, 0.8) 0.030

PSIP1 mutation −13.3239 0 (0, Inf) 0.99 NA NA NA

β is the estimate coefficient and NA means the corresponding variable was removed from the model fitting.

stratifies patients by their risk of LN metastasis, and mutation
status of MLL2. For the construction of the LNM signature,
180 candidate genes were reduced to 48 potential predictors by
examining the predictor–outcome association by shrinking the
regression coefficients with the LASSO algorithm. Compared to
predictor selection based on strength of univariable association
between predictor and outcome, this method further enables the
combination of all selected features and creates a single signature,
i.e., marker panels. Marker panels have been embraced in recent
studies for multi-marker analysis (30, 31), such as a novel 6-
microRNA-based model that was proposed to improve prognosis
prediction of breast cancer (32), and a 6-DNA methylation
signature that was recognized as a novel prognostic biomarker
in ovarian serous cystadenocarcinoma (32). Moreover, the
Oncotype DX is a 21-gene assay that represents the first clinically
validated multi-gene assay which can quantify the likelihood
of breast cancer recurrence (33, 34). Another 70-gene assay,
MammaPrint, was developed by theNetherlands Cancer Institute

and was used to predict the risk of developing metastasis within
5 years for breast cancer (35). Similarly, the LNM signature that
combined multiple genes demonstrated adequate discrimination
in the training set of TCGA cohort (AUC = 98.7%) and was
satisfactory in the testing set (AUC= 85.3%). LNM signature was
also presented as an independent predictor for overall survival
in the TCGA cohort. In addition, supervised clustering using
LNM signature enabled us to distinguish LN metastasis status
in an independent GEO cohort (p = 0.048) and associated with
patients’ outcomes to some extent (p < 0.1). Thus, the non-
invasive LNM signature allows for more convenient prediction
of LN metastasis.

Note that mutation ofMLL2, which was differentially mutated
between LN+ and LN– tumors (7:46, p = 0.0166), was also
a significant variable in the predictive model (p = 0.012).
MLL2, also known as KMT2D (Lysine Methyltransferase 2D), of
which mutation is a driver in numerous different cancer types
resulting in transcription stress and genome instability (36), and
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FIGURE 6 | Model performance and clinical usefulness of the LNM-nomogram. (A) Calibration curve with Hosmer-Lemeshow test of the LNM-nomogram in the

training set of TCGA-cohort. Calibration curve depicts the calibration of the fitted model in terms of the agreement between the predicted risk of LN metastasis and

real observed outcomes. The x-axis represents the predicted LN metastasis risk and y-axis represents the actual LN metastasis rate. The pink solid line represents the

performance of the LNM-nomogram, of which a closer fit to the diagonal dotted blue line represents an ideal prediction. The calibration curve was drawn by plotting P̂

on the x-axis and Pc =
[

1+ exp
(

−γ0 + γ1L
)]−1

on the y-axis, where Pc is the actual probability, L = logit
(

P̂
)

, P̂ is predicted probability, γ0 is corrected intercept,

and γ1 is slope estimates. (B) ROCs are created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings with

corresponding AUCs labeled around the curves. (C) Decision curve analysis for the LNM-nomogram. The y-axis measures the net benefit. The yellow line represents

the LNM-nomogram, the blue line represents the assumption that all patients have LN metastases and the black line on the bottom represents the assumption that no

patients have LN metastases. The net benefit was calculated by subtracting the proportion of all patients who are false positive from the proportion who are true

positive, weighting by the relative harm of forgoing treatment compared with the negative consequences of an unnecessary treatment. The relative harm was

computed by Pt/ (1− Pt). The threshold probability Pt is where the expected benefit of treatment is equal to the expected benefit of avoiding treatment; at which time

a patient will opt for treatment informs us of how a patient weighs the relative harms of false positive results and false negative results ([a–c]/[b–d]=[1–Pt ]/Pt ) where

[a–c] is the harm from a false negative result and [b–d] is the harm from a false positive result. Parameters of a, b, c, and d give the value of true positive, false positive,

false negative, and true negative, respectively. The decision curve indicated that even if the threshold probability of a patient or doctor is really small, using the

LNM-nomogram in the present study to predict LN metastases brings more benefit than treating either all or no patients.

a recent study demonstrated that MLL2 could sustain prostate
carcinogenesis and metastasis (37). Because the LNM signature
and the mutation of MLL2 are available pre-operatively, our
nomogram which generates individual probability by integrating
the two factors provides clinicians and patients with a pre-
operative individualized prediction of the LN metastasis risk,
which is in line with the current trend toward personalized
medicine (38).

Finally, and most importantly, the nomogram was designed
to interpret individualized patient need for additional treatment
or care. While the clinical consequences of a particular level
of discrimination or degree of miscalibration could hardly be
captured by risk prediction, discrimination, or calibration, a
decision curve analysis assessing whether nomogram-assisted
decision making improves patient outcomes was performed
to justify the clinical usefulness of the LNM nomogram.
This novel method offers insights into clinical consequences
on the basis of threshold probability by deriving the net
benefit (defined as the proportion of true positives minus
the proportion of false positives weighted by relative harm
of false-positive and false-negative results) (38, 39). Results
showed that decisions based on the LNM nomogram yielded
more favorable clinical consequences than the treat-all-
patient scheme and the treat-none scheme, even given an
extremely small threshold probability. However, our study
harbored limitations, including the fact that radiomics

characteristics and other pre-operative clinical features
(e.g., hematuresis or not) were not considered under the
existing framework. There has been tremendous growth
in radiomics research in the past few years for assisting
clinical diagnosis and improving predictive accuracy.
An emerging field that is closely related to radiomics is
radiogenomics, which integrates imaging and genomics
data with the goal of improving patient stratification for
precision medicine.

In short, this study presents a LNM nomogram
incorporating a LNM signature and a genomic mutation,
which can be conveniently used to facilitate pre-operative
individualized prediction of LN metastasis in patients with
bladder cancer.
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