
Mobile Networks and Applications 5 (2000) 311–321 311

A pre-serialization transaction management technique for mobile
multidatabases

Ravi A. Dirckze and Le Gruenwald

School of Computer Science, University of Oklahoma, Norman, OK 73019, USA

Rapid advances in hardware and wireless communication technology have made the concept of mobile computing a reality. Thus,
evolving database technology needs to address the requirements of the future mobile user. The frequent disconnection and migration of
the mobile user violate underlying presumptions about connectivity that exist in wired database systems and introduce new issues that
affect transaction management. In this paper, we present the Pre-Serialization (PS) transaction management technique for the mobile
multidatabase environment. This technique addresses disconnection and migration and enforces a range of atomicity and isolation criteria.
We also develop an analytical model to compare the performance of the PS technique to that of the Kangaroo model.

1. Introduction

A Multidatabase System (MDBS) is a federation of pre-
existing database systems, and is the natural result of shift-
ing priorities and the need of an organization to be part
of a greater information system [7]. In the Asilomar re-
port [1], the authors state that “in the future, billions of web
clients will be accessing millions of databases, and that the
world wide web will be one large federated system”. The
rapid advances in wireless communication technology dic-
tates that these static database systems extend their services
to the mobile user.

Transaction management in the Mobile Multidatabase
(MMDB) environment has been the focus of many pub-
lications [3,6,12,14]. However, existing techniques do not
address two key issues. First, the techniques do not address
the Isolation property of global transactions. Second, they
fail to address disconnection that represents catastrophic
failures. In this paper, we propose a Pre-Serialization (PS)
transaction management technique for the MMDB environ-
ment that addresses the deficiencies that exist in the current
literature. We develop an analytical model of a Mobile
Multidatabase System (MMDBS) that is used to evaluate
the performance of the PS techniques and to compare its
performance to that of the Kangaroo model [6]. The Kan-
garoo model is chosen as it is the most recent of the existing
techniques and is the only model to capture the movement
behavior of the user.

This paper is organized as follows. Section 2 provides a
brief introduction to the MMDB environment and a discus-
sion on the responsibilities of the transaction management
process. The PS techniques is presented in section 3. The
literature review is presented in section 4 followed by the
performance evaluation study in section 5. Concluding re-
marks are presented in section 6.

2. MMDB transaction management

2.1. MMDB architecture

The mobile computing model consists of two distinct
sets of entities: a fixed network system and a continuously
changing set of mobile clients (figure 1). Some units on
the static network have the capability of communicating
with mobile units through some wireless medium and are
called Mobile Support Stations (MSS). The wireless com-
munication medium includes cellular architecture, satellite
services, wireless LAN, etc. The typical mobile hosts are
portable computers that have limited resources compared
to their desktop counterparts [12]. Due to the unreliability
of the wireless communication medium as well as limited
resources available, the mobile user will be characterized
by frequent disconnection. However, this disconnection is
predictable [11].

The MMDBS consists of a set of autonomous databases
and a set of software modules residing on the fixed network
that are collectively referred to as the Mobile Multidatabase
Management System (MMDBMS) (figure 2). The respec-
tive local database systems (LDBSs) retain complete con-
trol over their databases. Each LDBS provides a service

Figure 1. The mobile computing architecture.

 Baltzer Science Publishers BV



312 R.A. Dirckze, L. Gruenwald / A pre-serialization transaction management technique

Figure 2. The mobile multidatabase system.

interface that specifies the operations accepted from and
the services provided to the MMDBMS. The MMDBMS
cooperates with the service interfaces to provide extended
transaction services to users. All local transaction process-
ing remains transparent to the MMDBMS. Global users –
users connected to the MMDBMS – are capable of access-
ing multiple databases by submitting global transactions to
the MMDBMS. Global users can be either static users with
fixed connections to the network or mobile users.

A global transaction consists of a set of operations, each
of which is a legal operation accepted by some service
interface. Any subset of operations of a global transac-
tion that access the same site may be executed as a single
local transaction and will form a logical unit called a site-
transaction. As mobile users migrate from one MSS to
another, operations of global transactions may be submit-
ted from different MSSs. Such transactions are referred to
as migrating transactions.

2.2. Responsibilities of the GTM

The Global Transaction Manager (GTM) is responsible
for providing consistent and reliable units of computing,
i.e., (transactions) to the data within its domain. Gener-
ally, this can be achieved by enforcing the ACID (Atom-
icity, Consistency, Isolation, and Durability) properties [9].
However, the applicability of ACID in the MMDB envi-
ronment has been questioned. First, as a consequence of
autonomy, we can assume that there are no integrity con-
straints defined across different LDBSs [5]. As each LDBS
will ensure that site-transactions do not violate any local in-
tegrity constraints, global transactions will, by default, sat-
isfy the global consistency property. Similarly, the GTM
can rely on the durability property of the local LDBS to
ensure durability of committed global transactions. Thus,
the GTM needs only enforce the Atomicity and Isolation
(A/I) properties. Second, in [6], the authors make a com-
pelling argument for providing unrestricted access to data
in the MMDB environment: “Returning dirty data tagged
with appropriate warnings is much more useful than re-
turning an ABORT message . . . ”. Thus, the GTM needs to
support a spectrum of A/I correctness criterion.

In addition to the A/I properties, the GTM needs to ad-
dress disconnection and migrating transactions. Unlike in

the static environment, disconnection in the mobile envi-
ronment cannot always be treated as failures that result in
aborted transactions. In some cases, however, disconnec-
tion will be caused by a catastrophic failure. Halted trans-
actions will not be resumed after a catastrophic failure. As
the MMDBMS can only predict catastrophic failures, abort-
ing disconnected transactions is likely to result in some un-
timely terminations. The GTM needs to take appropriate
steps to minimize such untimely terminations.

Disconnection and migration of the mobile user prolong
the execution time of mobile transactions, which conse-
quently affects the Isolation property [4]. In order to main-
tain a notion of fairness, the concurrency control mecha-
nism of the GTM must not penalize mobile transactions for
this prolonged execution. In addition, to tolerate long-lived
transactions (LLT) without disruption to local transaction
processing, site-transactions must be allowed to commit
early so that (local) resources may be released in a timely
fashion.

Furthermore, the GTM must also conform to multidata-
base design restrictions, i.e., the autonomy of the LDBSs
cannot be violated.

3. A pre-serialization transaction management
technique

In this section, we present the Pre-Serialization (PS)
transaction management technique for the MMDB environ-
ment. This technique allows LLTs to establish their serial-
ization order prior to completing their execution. It supports
disconnection and migration and addresses catastrophic fail-
ures that may occur. We also, introduce a PGSG algorithm
that enforces a range of A/I correctness criteria.

3.1. The model

Global transactions are based on the multi-level transac-
tion model [9] in which the global transaction consists of
a set of compensatable sub-transactions. A compensatable
transaction is a transaction whose effects can be undone
after it has committed by executing a compensating trans-
action [10]. In the proposed model, all operations of a
global transaction that access the same site constitute a sin-
gle site-transaction (analogous to a subtransaction) and is
executed as a single (local) transaction. Global transactions
are limited to no more than one site-transaction per site as
site-transactions are executed as independent transactions
by the LDBS and the MMDBS cannot prevent the LDBS
from executing local transactions between site-transactions
(and exposing different states of the database to the global
transaction). As all site-transactions are compensatable,
they are committed at the LDBS prior to the decision to
commit the global transaction, thus releasing resources in
a timely manner.

In addition, all site-transactions will be categorized as
either vital or non-vital [3]. All vital site-transactions of



R.A. Dirckze, L. Gruenwald / A pre-serialization transaction management technique 313

Figure 3. Global Transaction Manager.

a global transaction must succeed in order for the global
transaction to succeed. The abort of a non-vital site-
transaction does not force the global transaction to be
aborted. The A/I properties are enforced only on the set
of vital site-transactions. This gives the PS technique the
flexibility to accommodate the full range of A/I correct-
ness criteria as follows: If all site-transactions of a global
transaction are classified as vital, then strict A/I will be
enforced. On the other hand, if all site-transactions are
classified as non-vital, then the A/I properties are not en-
forced. The time between the submission of the first vital
site-transaction and the completion of the last vital site-
transaction is called the vital phase of a global transaction.
For simplicity, global transactions of mobile users are clas-
sified as LLTs and global transactions of static users are
called non-LLTs.

3.2. The Global Transaction Manager

The GTM consists of two layers: a Global Coordina-
tor (GC) layer and a Site Manager (SM) layer (figure 3).
The GC layer consists of a set of Global Transaction Co-
ordinators (GTCs) such that there exists a GTC at each
MSS and any other static node that supports external users.
Global transactions are initiated at some GTC which will
submit site-transactions to the STMs, handle disconnection
and migration of the mobile user, log responses that cannot
be delivered to the disconnected user, enforce the atomicity
and isolation properties, etc. The SM layer consists of a
set of Site Transaction Managers (STMs) such that there
exists an STM at each participating LDBS. Each global
transaction can be in one of five states:

(1) active – the user is connected and execution continues,

(2) disconnected – the user is disconnected, but the discon-
nection was predicted and re-connection is expected,

(3) suspended – the user is disconnected and is deemed to
have encountered a catastrophic failure,

(4) committed – the transaction committed successfully,
and

(5) aborted – the transaction is aborted.

Note that disconnected and suspended states do not apply to
global transactions of static users. Each global transaction

Table 1
Global data structure.

GTID global transaction identifier
GTType mobile (LLT) or static (non-LLT)
GTStatus current state of global transaction
IsolationVerified isolation verified (yes/no)
SiteList respective site of each site-trans.
STIDList STID of each site-transaction
CriticalList vital/non-vital for each site-trans.
STIDStatusList status of each site-transaction
ResponseList list of undelivered responses

Table 2
Site table structure.

GTID respective GTID
STID assigned STID
MSS ID current MSS of user
STIDStatus current state of site-transaction
CompTransaction compensating site-transaction

is associated with a global (data) structure (table 1) that is
maintained by the associated GTC. This global structure
migrates with the mobile user transaction from GTC to
GTC.

The STM at each site supervises the execution of site-
transactions submitted to that site. Each site-transaction can
be in one of four states:

(1) active – the site-transaction is active,

(2) completed – the site-transaction has committed at the
local database but the global transaction has not com-
mitted,

(3) aborted – the site-transaction is aborted, or

(4) committed – the site-transaction and the respective
global transaction have committed.

Each STM will maintain a site table containing information
on all site-transactions submitted to it (table 2).

The GTC submits all site-transactions and their com-
pensating (site) transactions to the respective STMs. Upon
completion of each site-transaction, the STM will submit a
commit operation to the LDBS and update the STIDStatus
to reflect the outcome of the local commit operation, i.e.,
marked completed or aborted. The outcome will then be
conveyed to the GTC to be recorded in the global structure.

Whenever a user disconnects, the respective GTStatus
is marked as disconnected. The execution of disconnected
transactions is not halted. Upon reconnection, the GTStatus
of disconnected transactions will be set to active and execu-
tion proceeds. All responses received after disconnection
are placed in the ResponseList and delivered to the user
upon re-connection. At any time during a period of dis-
connection, if the MMDBS determines that a catastrophic
failure has occurred, the respective GTStatus is marked as
suspended and the execution is halted, i.e., no new site-
transactions are initiated. In order to minimize erroneous
aborts, suspended global transactions are not aborted until
they obstruct the execution of other global transactions.



314 R.A. Dirckze, L. Gruenwald / A pre-serialization transaction management technique

At the end of execution of a non-LLT, the GTC exe-
cutes the PGSG algorithm to verify the A/I properties. If
A/I have not been violated, the transaction is committed;
else, it is aborted. In the case of an LLT, the GTC exe-
cutes the PGSG algorithm at the end of its vital phase. If
the A/I properties have not been violated, its serialization
order is registered in the global serialization scheme and
the transaction is toggled (i.e., isolation verified is set to
true). Thus, an LLT that has been toggled is guaranteed
not to be aborted due to concurrency conflicts unless it ob-
structs the execution of another global transaction while in
a suspended state. As LLTs are allowed to establish their
serialization order prior to completing their execution, the
prejudicial treatment of mobile global transactions is mini-
mized. An LLT is allowed to continue to initiate non-vital
site-transactions after being toggled and is committed at the
end of its execution.

This paper introduces a Partial Global Serialization
Graph (PGSG) algorithm that verifies the serializability of
a global transaction by constructing only a “partial” global
serialization graph from the local serialization information
collected by each STM. This algorithm (which is executed
by the GTC) is able to determine the subset of local serial-
ization graphs that need to be investigated in order to verify
the serializability of a global transaction. The key to the
algorithm is propagation – global serialization information
that is distributed to selected STMs during its execution.

3.3. The PGSG algorithm

The atomicity property of PGSG is based on Semantic
Atomicity [10]. Semantic Atomicity is satisfied if either,
all site-transactions are committed, or each site-transaction
is aborted or compensated for. The isolation property is
based on serializability. In the multidatabase environment,
serializability requires that any two global transactions that
conflict be serialized in the same order at all sites at which
they conflict. The STM at each LDBS maintains a Site
Serialization Graph (SSG) which is used by the PGSG al-
gorithm to verify the isolation property.

As the serialization order of site-transactions within the
local databases is transparent to the STM, this information
is obtained implicitly by forcing conflicts among the vi-
tal site-transactions using a variation of the ticket method
proposed in [8]. In addition to the operations (queries)
accepted by the site, the service interface specifies which
operations potentially conflict with each other. For each set
of conflicting operations, the LDBS maintains a different
ticket. At the beginning of its execution, each vital site-
transaction reads the respective tickets (of all operations
executed by it), increments each ticket and writes the new
value back to the database. Each ticket value read by the
vital site-transaction indicates its (local) serialization order
with respect to all other vital site-transactions that execute
conflicting operations [2]. Note that, any site-transactions
that violate the local Isolation property will be aborted by
the local LDBS. The ticket values read by each vital site-

Table 3
SSG node.

GTID respective global transaction ID
GTStatus status of global transaction
IsolationVerified commit intent of global transaction
NodeCategory accessed or propagated
SiteID access or propagated SiteID

transaction will be used to determine its serialization order
with respect to other vital site-transactions that execute at
that site.

The SSG at each site is a directed graph whose nodes
represent the GTIDs of the respective vital site-transaction
and edges represent (forced) conflicts between their respec-
tive site-transactions executed at that site. For example, if
T1 → T2 exists in some SSG, then global transactions T1

and T2 access at least one common site where the ticket for
some operation obtained by the site-transaction of T1 is less
than the ticket obtained by the site-transaction of T2. The
information contained within each node is given is table 3.
Each node in the SSG is categorized as either an accessed
node or a propagated node. An accessed node represents
a global transaction that executed a site-transaction at that
site. A propagated node represents a global transaction
whose serialization order was copied to the SSG during the
execution of the PGSG algorithm. Next, certain terms used
in the algorithm are defined.

Definition 1. We say that Tj is reachable from Ti in
graph G if there is a path from Ti to Tj in G, i.e.,
Ti → · · · → Tj .

Definition 2. Reachable(Tj,) is a (directed) subgraph of an
SSG that contains node Tj and all nodes Ti such that Tj is
reachable from Ti in the SSG.

Definition 3. A candidate node is any propagated node
whose GTStatus is not committed.

Definition 4. Let Gi and Gj be two graphs with node sets
Ni and Nj and edge sets Ei and Ej , respectively. The op-
eration G = Merge(Gi,Gj) results in a new graph G(N ,E)
such that N = Ni ∪Nj and E = Ei ∪Ej , where ∪ is the
union operator.

Definition 5. The graph Predecessor(Tj ,Sm) is the sub-
graph Reachable(Tj) of the SSG at site Sm merged with
all Predecessor(Tk,Sn) graphs, where Tk is a candidate
node in Reachable(Tj) and Sn is the respective propa-
gated site of Tk. Formally, Predecessor(Tj ,Sm) = {G =
Reachable(Tj) | Merge(G, Predecessor(Tk,Sn)) ∀candidate
nodes Tk in Reachable(Tj), where Sn is the SiteID of Tk}.

Definition 6. The list PList(Tj ,Sm) is a list of sites main-
tained at site Sm that contains the list of sites from which
the predecessor graphs were obtained in order to construct
Predecessor(Tj ,Sm).



R.A. Dirckze, L. Gruenwald / A pre-serialization transaction management technique 315

The PGSG algorithm executed by the GTC is given be-
low. The request argument specifies whether Tj is to be
toggled or committed. First, this algorithm verifies the
atomicity property. Next, it obtains the predecessor graphs
from all primary sites of Tj . Primary sites are the sites
at which Tj executed vital site-transactions. The STM at
each primary site executes the Request Predecessor algo-
rithm to construct the Predecessor(Tj) graph and submits it

to the GTC executing the PGSG algorithm. The PGSG al-
gorithm will then construct the Partial Global Serialization
(PGS) graph, verify the isolation property, and either toggle
commit or abort the global transaction. If the global trans-
action is to be committed or toggled, the PGS graph is sent
to all participating sites so that the required serialization
information is propagated.

PGSG algorithm (Request, Tj)
/* Verify A/I for global transaction Tj */
/* First, verify Atomicity */
If any critical site-transaction has been aborted

Send Abort (Tj) to all sites in SiteList /* Abort all site-transactions */
Else

/* verify Isolation */
for all site Sm in SiteList where Tj executed its vital site-transactions, obtain Predecessor(Tj ,Sm)

by executing the Request Predecessor(Tj ,Sm) algorithm
Generate PGSG by Merging all Predecessor(Tj ,Sm)
Check for cycles with respect to Tj , Committed nodes and Togged nodes
If cycles are detected

If cycles can be broken by aborting Suspended global transactions
Mark GTStatus of Suspended nodes as Aborted in PGSG

Else /* Isolation violated */
Send Abort (Tj) to all sites in SiteList /* Abort all site-transactions */
Exit Algorithm

End If
End If
/* A/I verified */
Mark IsolationVerified in Global Structure and node Tj in PGS graph as True
/* Propagate success and serialization information */
Send “Success” and PGS graph to sites in SiteList where Tj executed its vital site-transactions
End If
End {PGSG Algorithm}

The Request Predecessor module is executed at each Pri-
mary and Secondary site of Tj . Secondary sites are the sites
deemed necessary to participate in constructing the PGSG
graph for Tj . That is, some site already participating in the
algorithm has an active propagated node containing this
site as its SiteID. The secondary sites will submit the re-
quested Predecessor graph to the Primary sites which will
submit their Predecessor graphs to the GTC. Each site will
wait for the outcome of the PGSG algorithm. If the Tj is
to be committed, all participating sites will copy propaga-
tion information by merging Reachable(Tk) of the returned
PGS graph where Tk is the transaction whose predeces-
sor graph was requested, with Reachable(Tk) of its SSG.
Any suspended transaction that is marked as aborted will
be aborted by the STM.

Request Predecessor(Tj,Sm)
Construct Predecessor(Tj ,Sm), PList(Tj ,Sm)
Submit Predecessor(Tj ,Sm) to requester
Wait for Reply from requestor

If Reply is Abort(Tj) /* site-transaction is to be aborted */
If Ti is Accessed node in SSG /* this is a Primary site */

Abort Tj if Active or compensate Tj if Completed
End If
Send Abort (Tj) to all sites in PList(Tj ,Sm)

/* inform all Secondary sites */
Else /* global transaction is to be toggled */

If Ti is Accessed node in SSG /* this is a Primary site */
Mark IsolationVerified as True

End If
/* propagate serialization information */
SSG = Merge(SSG, Reachable(Tj) of received PGS graph)
Abort all Suspended nodes marked as Aborted in PGS graph
Send ‘Success’ and PGS graph to all sites in PList(Tj ,Sm)

End If
End {Request Predecessor}

Example. In this example, the MMDBS consists of 3 sites
labeled S1 through S3. There are 3 active global transac-
tions labeled T1 through T3 in the system. For simplicity,
we assume that each transaction accesses two sites, all site-
transactions at each site conflict with each other, and that
all transactions have completed their execution but have not



316 R.A. Dirckze, L. Gruenwald / A pre-serialization transaction management technique

Table 4
Sample execution of PGSG algorithm.

S1 S2 S3 PGS graph

Initial SSGs T3 → T1 T1 → T2 T2 → T3

Commit of T1 T3 → T1 T3 → T1 → T2 T3 → T1

[S1] [C]
Commit of T3 T2 → T3 → T1 T2 → T3 T2 → T3

[S3] [C]
Commit of T2 T3 → T1 T3 → T1 T3 T2 → T3 → T1 → T2

[S1] [A]

yet committed. The algorithm is illustrated in table 4. The
initial SSGs are given in row one. Initially, all nodes are
accessed nodes. The next 3 rows reflects the SSGs after the
completion of the PGSG algorithm of the specified transac-
tion (only participating SSGs have new entries). Propagated
nodes will contain their respective SiteIDs in brackets be-
low the node. The last column reflects the PGS graph that
is constructed at each stage. A [C] in the PGS graph states
that the transaction is to be committed and an [A] states
that it is to be aborted.

Assume that T1 executes the PGSG algorithm first, T3

second and T2 third. For the commit of T1, S1 and S2 par-
ticipate as primary sites. (The predecessor graph submitted
by S1 is T3 → T1, and the predecessor graph submitted
by S2 is T1.) As there are no cycles in the PSG graph, T1

commits successfully. After the commit, the PGS graph is
sent to all participating sites (S1 and S2) for information
propagation. Next, T3 commits successfully (node T2 is
propagated to S1). Finally, T2 executes the PGSG algo-
rithm. S2 and S3 participate as primary sites. As the SSG
in S2 has an active propagated node in its SSG with SiteID
S1 (i.e., T3 which when propagated to S2 was active and,
therefore, still deemed to be active), S1 will participate as
a secondary site. As the PSG graph contains a cycle and
T2 is the last transaction in that cycle to attempt to commit,
T2 will be aborted.

3.3.1. Proof of correctness
Lemma 1. Let Ti → Tj be in the SSG at some site Sj .
Then, Ti began its execution at Sj prior to the completion
of Tj’s execution at Sj and, therefore, prior to the (global)
commit of Sj .

Proof. In order for Ti → Tj to exist, Ti must have ob-
tained a ticket that is less than the ticket obtained by Tj .
Therefore, Ti began its execution at Sj prior to Tj com-
pleting its execution at Sj . �

Theorem 1. Let T = {T1,T2, . . . ,Tn} be a set of trans-
actions that cause a cycle. Assume that T2 through Tn
commit successfully and that T1 is the last transaction in T
to attempt to commit. Then T1 will be an accessed node as
well as a candidate node in some Predecessor(T1,Sx) used
to construct the PGSG. Thus, the cycle will be detected.

Proof. For simplicity, let us assume that each transaction
executes at exactly two sites such that the cycle

C ≡ T1 → T2 → · · · → Tn → T1 is produced.

By lemma 1, for all Tq that have completed their execution,
there exists Tp → Tq for some Tp in T in the SSG at
some site Sq at which Tq executed. When Tq executes the
PGSG commit algorithm, Tp is in Predecessor(Tq,Sq) used
to construct the PGSG. Now, either Tp is committed, or not
committed.

If Tp is not committed then Tp will be added as a can-
didate node to all the SSGs at which Tq executed.

If Tp is committed, then, by lemma 1, there exists a
Tm in S such that Tm → Tp at some site Sm at which
Tp executed. Once again, either Tm was committed or
not committed at the time of Tp’s commit. If Tm was not
committed, then Tm was propagated to Sm at the time of
Tp’s commit and, as a result, will be in Predecessor(Tq,
Sq) at the time of Tq’s commit and will be added as a
Candidate node to all SSGs at which Tq executed. If Tm
was committed, we may repeat this argument. As the con-
flicts are cyclic, Predecessor(Tq,Sq) used to construct the
PGSG when Tq attempts to commit will always contain a
non-committed node from T which will then be added as
a candidate node to all SSGs at which Tq executed.

Now let T1 attempt to commit at site S1 and Sn where
T1 → T2 and Tn → T1 exist, respectively. Then, as Tn is
committed, the SSG at Sn will contain a candidate node –
say Tx with respective site Sx – in its Predecessor(T1,Sn).
If Tx committed after its propagation to site Sn, then the
SSG at Sx would, in turn, contain a candidate node. Fi-
nally, as the only node in the cycle that is currently active
is T1, the Predecessor(T1,Sn) constructed at site Sn will
contain T1 as an accessed node as well as a candidate node.
Therefore, Predecessor(T1,Sn) will contain the entire cy-
cle. Thus, the PGSG will contain the cycle. As all nodes
except T1 are committed, the cycle will be detected. �

4. Literature review

In this section, a very brief outline of existing tech-
niques that specifically address transaction management in
the MMDB environment [3,6,12,14] will be provided and
their deficiencies summarized.

The technique proposed in [3] supports two additional
types of transactions, namely, reporting transactions and



R.A. Dirckze, L. Gruenwald / A pre-serialization transaction management technique 317

Table 5
Parameters used for performance analysis.

Parameter Description Default values

STavg avg. service time of a global transaction calculated
GTexe avg. time taken to execute a global transaction calculated
GTcommit avg. time taken to commit a global transaction calculated
Ngrp avg. number of groups in a global transaction 6 (variable)
EXEgrp avg. time taken to execution a group of site-transactions calculated

(includes communication time between the user and MMDBS)
Tthink avg. think time before submitting the next group 0
DCNtm avg. time between a disconnection and re-connection 1 s
DCNdly avg. processing delay caused by a disconnection (includes calculated

DCNtm and processing time taken to address relocation etc.)
RLtm avg. time to address relocation calculated
DLYgpr avg. delay added to EXEgrp due to disconnection calculated
DLYthk avg. delay added to Tthink due to disconnection 0
P grp

dcn probability of a disconnection occurring during EXEgrp calculated
P thk

cn probability of a disconnection occurring during Tthink 0
Ndcn avg. number of disconnection for a global transaction 6 (variable)
Nmgr avg. number of migrations for a global transaction 1 (variable)
T s

msg avg. time to transmit a message on the static (wired) network 0.001
Tw

sg avg. time to transmit a message over the wireless medium 0.7 s
EXElcl avg. local execution time of a site-transaction 0.003 s
Pcnf probability of a site-transaction conflicting with another 0.05 (variable)

co-transactions which allow concurrent global transactions
to share partial results improving concurrency. The Mul-
tidatabase Transaction Processing Manager technique [14]
is based on a Message and Queuing Facility (MQF) that
is used to manage global transactions submitted by mobile
workstations. The technique presented in [12] is based on
an agent-based distributed computing model. Agents may
be submitted from various sites including mobile stations.
The Kangaroo transaction technique [6] is the only model to
capture the movement behavior of the mobile user by view-
ing mobile transactions from a completely new perspective.
A global transaction (a.k.a. Kangaroo transaction) consists
of a set of Joey transactions. Each Joey consists of all op-
erations executed within the boundaries of one MSS and is
committed independently.

To summarize their deficiencies, none of the reviewed
techniques enforce the (global) isolation property. As
the isolation property is not enforced, global transac-
tions are not executed as consistent units of comput-
ing. In addition, disconnection that represents catastrophic
failures is not addressed. It is assumed that discon-
nection will always be followed by a subsequent re-
connection.

5. Performance analysis

In this section, we construct a general MMDB trans-
action model that is used to study the service time of
global transactions in the PS technique and to compare
its performance to that of the Kangaroo model. The
Kangaroo model is chosen as it is the most recent of
the reviewed techniques. Also, this technique supports
unrestricted mobility and does not violate local auton-
omy.

In order to simplify the models, the following assump-
tions will be made about the environment:

• All sites in the MMDB environment are equally likely
to be accessed.

• All messages are of the same size (10 Kb).

• All global transactions are mobile transactions and exe-
cute successfully at all sites.

• All site-transactions are equivalent to those specified in
TPC-C benchmark.

• Site-transactions of a global transaction are submitted to
the MMDBMS in groups. Each group is submitted only
after the results of the previous group is received.

The variable used to construct the model and their de-
fault values are listed in table 5.

As MMDBS research is a relatively new, values for
many of the parameters are not known. For the purpose
of this analysis, we have made educated guesses as to
their default values. The value of Tthink has the same
effect on all algorithms and, therefore, is set to 0. The
value for EXElcl is obtained from the TPC-C Benchmark
[www.tpc.org]. We have averaged the response time
(obtained from throughput from TPC-C) for five popular
databases running on small to medium size servers (IBM
DB2 on IBM AS400e, Informix OnLine 7.3 on Compaq
ProLiant 5000, MS SQL Server 6.5 on Acer AcerAltos
19000Pro4, Oracle 7.3 on Sun UltraEnterprise 6000, and
Sybase SQL Server 11.5 on Compaq ProLiant 6000). Mes-
sage transmission time has been calculated assuming that
the static network is a 10 Mbps Ethernet and the wireless
communication medium is cellular telephony with a band-
width of 14 Kbps [13].



318 R.A. Dirckze, L. Gruenwald / A pre-serialization transaction management technique

5.1. The general MMDB transaction model

First, we develop a set of general formulas used to cal-
culate the average service time for a mobile global trans-
action. The service time (STavg) will be represented us-
ing only the major components, i.e., communication time,
execution time of site-transactions, the disconnection and
relocation time, etc.

STavg is the time taken to execute a global transaction
and the time taken to commit the global transaction. That
is,

STavg = GTexe + GTcommit. (1)

Next, we calculate GTexe. In a static environment

GTexe = Ngrp · EXEgrp + (Ngrp − 1) · Tthink.

That is, the number of groups times the execution time of a
group plus the think time between groups. However, in the
mobile environment, GTexe is influenced by disconnection.
For simplicity, we assume that at most only one discon-
nection will occur during any GTexe. Then, GTexe is given
by

GTexe =Ngrp ·
(
EXEgrp + P

grp
dcn · DLYgrp

)
+ (Ngrp − 1) ·

(
Tthink + P thk

dcn ·DLYthk
)
. (2)

Next, we calculate DCNdly, DLYgrp, DLYthk, P grp
dcn , and

P thk
dcn. DCNdly is DCNtm plus the time to address relocation

if necessary. That is,

DCNdly = DCNtm +
Nmgr

Ndcn
· RLtm. (3)

DLYgrp and DLYthk are influenced by three factors (fig-
ure 3):

1 – the total delay caused by disconnection (DCNdly);

2 – the point within the current groups execution at which
the disconnection occurs (X); and

3 – the length of execution of the current group (EXEgrp).

For example, in figure 4(A) DLYgrp is 0 and in figure 4(B)
DLYgrp is X + DCNdly − EXEgrp.

Note that, a disconnection affects EXEgrp only if X +
DCNdly > EXEgrp. Therefore, DLYgrp is calculated by tak-
ing the probability that X + DCNdly > EXEgrp times the
average delay to EXEgrp given that X + DCNdly > EXEgrp.
Let us consider the cases DCNdly 6 EXEgrp and DCNdly >
EXEgrp separately. When DCNdly 6 EXEgrp, the probability

Figure 4. Relationship between DLYgrp and X.

that X + DCNdly > EXEgrp is DCNdly/EXEgrp and the av-
erage delay given that X + DCNdly > EXEgrp is DCNdly/2
– that is the average of the minimum delay (i.e., 0) and the
maximum delay (i.e., DCNdly). Thus,

DLYgrp =
DCNdly

EXEgrp
· DCNdly

2
. (4a)

When DCNdly > EXEgrp, the probability that X+DCNdly >
EXEgrp is 1 and the average delay given that X+DCNdly >
EXEgrp is (DCNdly − EXEgrp + DCNdly)/2. Thus,

DLYgrp = 1 · DCNdly − EXEgrp + DCNdly

2
. (4b)

Similarly, to formulate DLYthk, let us consider the case
DCNdly 6 Tthink and the case DCNdly > Tthink separately.
When DCNdly 6 Tthink then DLYthk is

DLYthk =
DCNdly

Tthink
· DCNdly

2
. (5a)

When DCNdly > Tthink, DLYthk is

DLYthk = 1 · DCNdly − Tthink + DCNdly

2
. (5b)

The probability of a disconnection occurring during
EXEgrp (P grp

dcn ) is

P grp
dcn =

Ndcn · EXEgrp

Ngrp · EXEgrp + (Ngrp − 1) · Tthink
. (6a)

Similarly, the probability of a disconnection occurring
during Tthink (P grp

thk ) is

P
grp
thk =

Ndcn · Tthink

Ngrp · EXEgrp + (Ngrp − 1) · Tthink
. (6b)

In (4a) and (4b) we have formulated DLYgrp, in (5a)
and (5b) we have formulated DLYthk, and in (6a) and (6b)
we have formulated P grp

dcn , and P thk
dcn. GTexe can now be ob-

tained from choosing the appropriate formulas for DLYgrp

and DLYthk. Given GTcommit and GTexe, we can calculate
STavg from (1). Note that the values for RLtm, EXEgrp, and
GTcommit need to be calculated for each technique sepa-
rately.

5.1.1. The PS technique
In this section, EXEgrp, RLtm, and GTcommit, for the PS

technique will be formulated. First, EXEgrp is calculated.
For each group of site-transactions, the PS technique will
incur two wireless messages to receive a group and sub-
mit its outcome to the user. Each site-transaction will re-
quire two additional wired messages to submit the site-
transactions (and compensating transaction) and receive its
outcome. As the site-transactions can be submitted in par-
allel, EXEgrp is given by

EXEgrp = 2 · T s
msg + 2 · Tw

msg + EXElcl.

In the PS technique, relocation incurs 2 wired messages
– one message requesting the global structure and one to



R.A. Dirckze, L. Gruenwald / A pre-serialization transaction management technique 319

transfer this structure – and one wireless message to re-
connect. Therefore,

RLtm = 2 · T s
msg + Tw

msg.

Next, we calculate the GTcommit. Let GTiso and GTatm

be the average time taken to verify the Isolation property
and enforce the Atomicity property respectively. Then,

GTcommit = GTatm + GTiso.

The atomicity property is enforced by sending two mes-
sage to all sites requesting the status of the site-transactions
and sending either an abort or commit. As these messages
are sent in parallel,

GTatm = 2 · T s
msg.

Next, we formulate GTiso. To verify serializability
of global transaction Tj , the PGSG algorithm requests
Predecessor(Tj) from all sites at which the global trans-
action executed its vital site-transactions. These sites will,
in turn, request Predecessor(Tk) graph for all Candidate
nodes Tk in Predecessor(Tj). This process continues un-
til there is no candidate node in the Predecessor graph. At
each step, for Tk to be a candidate node in Predecessor(Tj),
three conditions must be satisfied. That is, Tk must conflict
with Tj , Tk must have executed prior to Tj at the site at
which they conflict, and Tk must be must be active. At
each step, as Tk executes prior to Tj , the probability that
Tk is active decreases as the time interval since the initia-
tion of Tk increases. Let us assume that, on average, the
PGSG algorithm goes through n steps and that at each step
the probability that Tk is active decreases evenly, that is
1/n. Then, as requests for Predecessor graphs are sent in
parallel for each candidate node, GTiso is

GTiso = 3 · T s
msg · Pcnf ·

n∑
i=1

(n− i)
n

.

As we were unable to obtain values for Pcnf and n, we
assume that the default Pcnf = 0.05 and n = 4.

5.1.2. The Kangaroo model
Here we formulate EXEgrp, RLtm and GTcommit for the

Kangaroo Model introduced in [6] executing under the
Compensating mode as this mode ensures atomicity. We
assume that Joey transactions consist of subtransactions that
are analogous to site-transactions.

First, we calculate EXEgrp. For each group of site-
transactions, the mobile user submits the group to the MSS
which, then submits each site-transaction to the respective
site (in parallel), receives a response from the site and sub-
mits the response to the user. Therefore,

EXEgrp = 2 · T s
msg + 2 · Tw

msg + EXElcl.

In this model, migration is handled by a hand-off process
that requires a HandOff KT (HOKT) record be written
to the original MSS’s log and a ConTinuing KT (CTKT)

record be written to the destination MSS’s log. The com-
munication cost of writing the CTKT record is 0. However,
to write the HOKT record into the original MSS’s log, the
doubly linked list that connects the records maintained at
each MSS needs to be traversed using one message for
each link. For each migration, the average number of links
that need to be traversed is (Nmgr + 1)/2. In addition, one
wireless message is required to re-connect the user. Thus,

RLtm = Tw
msg + T s

msg ·
Nmgr + 1

2
.

To commit a global transaction, the status table entries
for all involved MSSs need to be freed. This requires that
the entire doubly linked list related to that global transaction
be traversed. Therefore,

GTcommit = T s
msg ·Nmgr.

5.2. Comparison results

In this subsection, we use the analytical models to ex-
amine the performance of the PS technique and to com-
pare it to that of the Kangaroo technique. First, we eval-
uate each technique with respect to the average number
of disconnection and migration for a global transaction. In
case 1, we calculate STavg for different values of Ndcn rang-
ing from 1 to 6 using the default values for all other para-
meters (graph 1). In case 2, we calculate STavg for different
values of Nmgr ranging from 1 to 6 (graph 2). Here too,
we use the default values for all other parameters except
Ndcn which is set to 6 as Ndcn needs to be greater than or
equal to Nmgr. In both cases, the evaluation indicates that

Graph 1.

Graph 2.



320 R.A. Dirckze, L. Gruenwald / A pre-serialization transaction management technique

Graph 3.

Graph 4.

there is only an insignificant difference between the STavg

of both techniques.
These results suggest that the communication cost in-

curred by the PS technique in order to enforce the isolation
property is minimal. To verify the validity of this con-
jecture, we need to evaluate the techniques by varying the
average communication time on the static network (T s

msg)
and the probability of conflict for site-transactions (Pcnf).
If the communication cost incurred by the PS technique to
enforce the Isolation property and support LLTs is mini-
mal compared to the Kangaroo technique, then increasing
T s

msg should have the same effect on both techniques. In
case 3, we calculate STavg for different values of T s

msg rang-
ing from the default value of 0.001 to 0.006 (graph 3). This
comparison suggests that T s

msg has the same effects on both
techniques. However, in case 4, when we calculate STavg

for different values of Pcnf ranging from 0.1 to 0.6 (graph 4)
we see that STavg of the PS technique is increasingly higher
than that of the Kangaroo technique, which stays constant.
This suggests two things. First, it suggests that the key
component that affects STavg of the PS technique as op-
posed to the Kangaroo technique is the probability of con-
flicts between site-transactions. This is to be expected as
the PS technique enforces the Isolation property while the
Kangaroo technique does not. Second, it suggests that the
PS technique does not perform well in environments with
high conflict probabilities between site-transactions. As the
enforcement of the Isolation property in the PS technique is
based on an optimistic approach, this conforms to the think-
ing of conventional wisdom where optimistic approaches do
not perform well in high conflict environments.

In conclusion, this analysis suggests that the overhead
incurred by the PS technique in order to enforce the isola-

tion property and to minimize LLTs being chosen as vic-
tims when conflicts do occur, is minimal in MMDB en-
vironments that have a low conflict probability between
site-transactions.

6. Concluding remarks

In this paper, we propose a Pre-Serialization (PS) tech-
nique for the mobile multidatabase systems. This technique
allows site-transactions to commit independently so that re-
sources may be released in a timely manner. Two new
states – disconnected and suspended – are introduced to
fully address disconnection and migration. This technique
minimizes the unnecessary abortions caused by erroneous
decisions made by the MMDBMS, with respect to the con-
nectivity of the mobile user. A toggle operation is used
to minimize the ill-effects of the prolonged execution of
long-lived transactions. A PGSG commit algorithm that
enforces a wide range of correctness criterion with respect
to the atomicity and isolation properties is proposed and its
correctness is proved. This algorithm is ideally suited for
the MMDB environment as it is de-centralized, and does
not require the cooperation of all sites.

We also develop an analytical model to evaluate the per-
formance of the GTM of the MMDBS. We evaluate the per-
formance of the PS technique and compare it to that of the
Kangaroo technique. We conclude that the PS technique
offers substantial benefits, i.e., fully supports disconnection
and verifies Isolation, over existing techniques for very lit-
tle additional overhead.

Acknowledgement

This material is based in part upon work supported
by National Science Foundation under Grant No. EIA-
9973465.

References

[1] P. Bernstein et al., The Asilomar report on database research, SIG-
MOD Record 27(4) (December 1998) 74–80.

[2] Y. Breitbart, H. Garcia-Molina and A. Silberschatz, Overview of
multidatabase transaction management, Technical report TR-92-21,
University of Texas at Austin (1992) pp. 1–41.

[3] P.K. Chrysanthis, Transaction processing in mobile computing envi-
ronments, in: IEEE Workshop on Advances in Parallel and Distance
Systems (October 1993) pp. 77–82.

[4] R. Dirckze and L. Gruenwald, Disconnection and migration in mo-
bile multidatabases, in: The World Conf. on Design and Process
Technology, Germany (July 1998) pp. 371–377.

[5] W. Du and A.K. Elmagarmid, Quasi-serializability: A correctness
criterion for global concurrency control in interbase, in: Proc. of the
15th Internat. Conf. on VLDB, Amsterdam, The Netherlands (August
1989) pp. 347–355.

[6] M. Dunham, A. Helal and S. Balakrishnan, A mobile transaction
model that captures both the data and movement behavior, Mobile
Networks and Applications 2(2) (October 1997) 149–162.



R.A. Dirckze, L. Gruenwald / A pre-serialization transaction management technique 321

[7] A. Elmargarmid, M. Rusinkiewicz and A. Sheth, Management of
Heterogeneous and Autonomous Database Systems (Morgan Kauf-
mann, San Francisco, CA, 1998).

[8] D. Georgakapolous, M. Rusinkiewicz and A. Sheth, On serializabil-
ity of multidatabase transactions through forced local conflicts, in:
Proc. of the 7th Internat. Conf. on Data Engineering, Kobe, Japan
(1991) pp. 314–323.

[9] J. Gray and A. Reuter, Transaction Processing: Concepts and Tech-
niques (Morgan Kaufmann, San Mateo, CA, 1993).

[10] S. Mehrotra, R. Rastogi, A. Silberschatz and H.F. Korth, A transac-
tion model for multidatabase systems, in: Proc. of the 12th Internat.
Conf. on Dist. Comp. Systems, Japan (1992) pp. 56–63.

[11] E. Pitoura and B. Bhargava, Dealing with mobility: Issues and re-
search challenges, Technical report CSD-TR-93-070, Purdue Uni-
versity (1993) pp. 1–18.

[12] E. Pitoura and B. Bhargava, A framework for providing consistent
and recoverable agent-based access to heterogeneous mobile data-
bases, SIGMOD Record (September 1995) 44–49.

[13] E. Pitoura and G. Samars, Data Management for Mobile Computing
(Kluwer Academic, Dordrecht, 1998).

[14] L.H. Yeo and A. Zaslavsky, Submission of transactions from mo-
bile workstations in a cooperative MDB processing environment, in:
14th Internat. Conf. on Distributed Computer Systems, Poland (June
1994) pp. 372–379.

Ravi Dirckze is a Ph.D. candidate in the School of Computer Science
at The University of Oklahoma. Ravi received his BS and MS in com-
puter science from the University of Houston, Clear-Lake. He is currently
working in the Advanced Technology Group at Unisys Corporation, Cal-
ifornia. Ravi’s major research interest are transaction management and
interoperability in heterogeneous databases, mobile databases, and mid-
dleware technology.
E-mail: radirckz@cs.ou.edu

Le Gruenwald is a Presidential Professor and an Associate Professor in
the School of Computer Science at The University of Oklahoma. She re-
ceived her Ph.D. in computer science from Southern Methodist University,
MS in computer science from the University of Houston, and BS in physics
from the University of Saigon. Prior to joining OU, she worked at the
Southern Methodist University as a Lecturer in the Computer Science and
Engineering Department, and at NEC America, Advanced Switching Lab-
oratory as a Member of the Technical Staff in the Database Management
Group. Dr. Gruenwald’s major research interests include multimedia data-
bases, distributed databases, mobile databases, object-oriented databases,
real-time databases, and data warehouses.
E-mail: gruenwal@cs.ou.edu


