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A Precise Calculation of Power System Frequency
Jun-Zhe Yang and Chih-Wen Liu, Member, IEEE

Abstract—A precise digital algorithm based on Discrete Fourier
Transforms (DFT) to estimate the frequency of a sinusoid with
harmonics in real-time is proposed. This algorithm that we called
the Smart Discrete Fourier Transforms (SDFT) smartly avoids
the errors that arise when frequency deviates from the nominal
frequency, and keeps all the advantages of the DFT e.g., immune
to harmonics and the recursive computing can be used in SDFT.
These make the SDFT more accurate than conventional DFT
based techniques. In addition, this method is recursive and very
easy to implement, so it is very suitable for use in real-time. We
provide the simulation results compared with a conventional DFT
method and second-order Prony method to validate the claimed
benefits of SDFT.

Index Terms—Discrete Fourier Transforms (DFT), frequency es-
timation, phasor measurement.

I. INTRODUCTION

FREQUENCY is one of the most important quantities
in power system operation because it can reflect the

dynamic energy balance between load and generating power.
So frequency is always regarded as an index of the operating
practices, and utilities can know the system energy balance
situations by observing frequency variations. Frequency may
vary very fast in the transient events such that it is difficult to
track it accurately. In addition, there are many devices, such as
power electronic equipments and arc furnaces, etc. generating
lots of harmonics and noise in modern power systems. It is
therefore essential for utilities to seek and develop a reliable
method that can measure frequency in presence of harmonics
and noise.

With the advent of the microprocessor, more and more
microprocessor-based equipments have been extensively used
in power systems. Using such equipments is known to provide
accurate, fast responding, economic, and flexible solutions to
measurement problems [1]. Therefore, all we have to do is to
find the best algorithm and implement it. There have been many
digital algorithms applied to estimating frequency during recent
years, for example Modified Zero Crossing Technique [2],
Level Crossing Technique [3], Least Squares Error Technique
[4]–[6], Newton method [7], Kalman Filter [8]–[10], Prony
Method [11], and Discrete Fourier Transform (DFT) [12], etc.
For real-time use, most of the aforementioned methods have
trade-off between accuracy and speed [13]. A precise digital
algorithm, namely Smart Discrete Fourier Transform (SDFT)
is presented and tries to meet the real-time use. SDFT has the
advantages that it can obtain exact solution when frequency
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deviates from nominal frequency, its speed is even faster than
DFT, and it can get exact solution in the presence of harmonics.

The organization of this paper is as follows: We describe in
very detail the SDFT in Section II. DFT, Prony method and
SDFT are tested by three examples in Section III. Finally, we
give a conclusion in Section IV.

II. THE PROPOSEDDIGITAL ALGORITHM

This section presents the algorithm of the SDFT that calcu-
lates the frequency from a voltage/current signal. Consider a si-
nusoidal input signal of frequency with th harmonic
given by:

(1)

where
: the amplitude,

: the phase angle.
Suppose that is sampled with a sampling rate ( ) Hz
waveform to produce the sample set

(2)
The signal is conventionally represented by a phasor (a
complex number)

(3)

Then can be expressed as

(4)

where denotes complex conjugate. Moreover, the fundamental
frequency (60 Hz) component of DFT of is given by

(5)

Combing (4) and (5) and taking frequency deviation
[ ] into consideration, we obtain:

0885–8977/01$10.00 © 2001 IEEE

Authorized licensed use limited to: National Taiwan University. Downloaded on March 9, 2009 at 04:33 from IEEE Xplore.  Restrictions apply.



362 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 16, NO. 3, JULY 2001

(6)

We rearrange (6) as the following

(7)

We use the following identity to simplify (7)

(8)

Then (7) can be expressed as

(9)

where

and

Rearranging (9) further, we obtain

(10)
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If we define , , and as

(11)

(12)

(13)

(14)

Then (9) can be expressed as

(15)

Except the parts of th harmonic, so far the development of
the algorithm of SDFT are the same as the conventional DFT
method. So the SDFT can keep all advantages of DFT such as
recursive computing manner. But in the DFT, it assumes that
the frequency deviation is small enough to be ignored, and it
always considers , so traditional DFT based methods
incur error in estimating frequency and phasor when frequency
deviates from nominal frequency (60 Hz). If we want to get
exact solution, we must take , and into consideration.
So we define

(16)

And from (10), we will find the following relations

(17)

(18)

(19)

(20)

Then

(21)

(22)

If we multiply “ ” on both sides of (21) and (22), respectively,
then we get

(23)

(24)

Subtracting (15) from (23) and subtracting (21) from (24), re-
spectively, we can erase and obtain

(25)

(26)

Repeat similar operation to erase theand , then the equa-
tions will become

(27)

(28)

where , .
Dividing (28) by (27), we get

(29)

Then expand (29), and use numerical method to find the solution
of “ .” And from the definition of “ ” in (16), we can get the
exact solution of the frequency

Re (30)

From (29), it is observed that SDFT can provide exact frequency
using , , , and in the presence of har-
monics. Moreover, we can estimate phasor after getting exact
“ ” by the following equations:

(31)

(32)

(33)

It appears that SDFT can take integral order harmonics into
consideration. To distinguish easily, SDFT means calculating
frequency for and we add suffix to the others, for ex-
ample SDFT and SDFT calculate frequency for and

, respectively. And here we offer the polynomial equa-
tion of SDFT ( ):
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Fig. 1. Comparison of frequency calculations among DFT, Prony, SDFT, and
SDFT . [Test signal:x(t) = cos(wt), f = 61 Hz].

where

Actually, if we assume that
from the beginning of development of the

algorithm, we will derive a polynomial equation similar to (29)
that provide exact frequency in the presence of nonintegral har-
monic. We add suffix “ ” to SDFT means that has taken nonin-
tegral harmonics into consideration. Although we can take all of
the harmonics into consideration, we still need a digital filter to
decay noise and high order harmonics. Since, in SDFT, the more
harmonics taken into consideration, the more CPU time needed
in computing. The advantages of digital filtering are no voltage
drop, no temperature drift, no noise addition, and don’t have any
analog filter element features, like aging. Besides these, dig-
ital filter can be implemented in microprocessor-based equip-
ment. These make us choose a digital filter to filter noise and
high order harmonics. There are many digital filters that we can
choose e.g., Hanning, Hamming and Blackman windows. In our
simulations we will use the Blackman window for filtering.

III. SIMULATION RESULTS

Simulation results presented in this section were all simu-
lated from Matlab and showed a fair comparison to both the
DFT method and Prony method. In Fig. 1, we showed that
SDFT could obtain an exact solution identical to the Prony
method under frequency deviation in a pure sinusoidal wave-
form. Fig. 1 also shows the performance of SDFTmethod
and conventional DFT method. It is observed that conventional
DFT method gives the wrong frequency calculations.

In Fig. 2(a), SDFT and SDFT are observed to obtain
the exact solution. While the SDFT and Prony methods test the
same signal without filtering, we find that Prony is worse than
SDFT in the presence of harmonics, but if the test signal is fil-
tered by a Blackman window (window size = 16) for estimation,

(a)

(b)

(c)

Fig. 2. (a) Comparison of frequency calculations among SDFT, Prony,
SDFT , SDFT . [Test signal:x(t) = cos(wt) + 0:05 cos(3wt) +
0:02 cos(5wt), f = 60:5 Hz]. (b) Comparison of frequency calculations
among SDFT, Prony, SDFT with Blackman window. (c) Comparison of
frequency calculations among SDFT, Prony, SDFT, SDFT with Blackman
window. [Test signal:x(t) = cos(wt) + 0:05cos(3wt) + 0:02cos(2� �

380 � t), f = 60:5 Hz].

we find that the SDFT and Prony methods have similar perfor-
mance. Since the SDFT can deal with 3rd harmonic and a
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(a) (b)

(c) (d)

Fig. 3. (a) Frequency variation of test signal,x(t) = cos(wt), f = 60 + 0:5 sin(2�t) Hz. (b) Comparison of error of frequency calculations between SDFT
and Prony. (c) Comparison of error of frequency calculations between SDFTand SDFT . (d) Comparison of error of frequency calculations between SDFT
and SDFT .

nonintegral harmonic, in Fig. 2(c), only the SDFTgets the
exact solution.

In Fig. 3(a), the frequency is changed as a sine wave and
3rd, 5th harmonics is also added in test signal during 1 second.
We can observe the errors of SDFT and Prony with Blackman
window in Fig. 3(b), and the errors of SDFTand SDFT
without filter in Fig. 3(c). Although SDFT and SDFT can
resist the effect of the 3rd, 5th harmonics, the effect of frequency
variation makes them get some small errors. In Fig. 3(d), we
change 5th harmonic to a nonintegral harmonic, and of course
SDFT has better performance than SDFT. However, this
is a special case for SDFT. In fact, SDFT spends more
time in computing than SDFT, and sometimes it has conver-
gence problem when there are more than two harmonics in the
signal. Anyway, from Fig. 3 we can conclude that SDFT-family
algorithms (SDFT, SDFT and SDFT ) are better than DFT
method and Prony method for frequency calculation.

By comparison of computation speed, Table I shows the
AMD K6-200 CPU time of each method. There are 960 data

TABLE I
COMPUTATION TIME

per second computed by each method [the test signal is the
same as in Fig. 3(a)] without a Blackman window to calculate
the frequency, while adding a Blackman window will add
0.91 second to the computation. We find that SDFT is the
fastest method in these computations, even faster than DFT,
because SDFT counts frequencies directly, but DFT has to
count the phase first and then use the phase difference to count
frequencies. The faster speed of SDFT over the Prony method
is because recursion can be used in SDFT.

IV. CONCLUSION

In this paper we introduce the SDFT-family methods
and demonstrate their performance. SDFT both keeps
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the advantages of DFT and also deals with the cause of
frequency deviation errors, while taking harmonics into con-
sideration. These aspects make SDFT a fast, accurate and
harmonic-resisting method. But we do not suggest taking all
the harmonics into consideration, since that would require
too much computation time. Alternatively, using a smoothing
window to decay the high order harmonics and just taking the
low order harmonics into consideration will be more efficient
and suitable for power systems under real-time demands.
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