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A Precise Calculation of Power System
Frequency and Phasor

Jun-Zhe Yang and Chih-Wen Liu

Abstract—A series of precise digital algorithms based on
Discrete Fourier Transforms (DFT) to calculate the frequency and
phasor in real-time are proposed. These algorithms that we called
the Smart Discrete Fourier Transforms (SDFT) family not only
keep all of the advantages of DFT but also smartly take frequency
deviation, and harmonics into consideration. These make the
SDFT family more accurate than the other methods. Besides,
SDFT family is recursive and very easy to implement, so it is very
suitable for use in real-time. We provide the simulation results
compared with conventional DFT method and second-order Prony
method to validate the claimed benefits of SDFT.

Index Terms—Discrete Fourier Transforms (DFT), Frequency
estimation, phasor measurement.

I. INTRODUCTION

FREQUENCY and phasor are the most important quanti-
ties in power system operation because they can reflect

the whole power system situation. Frequency can show the dy-
namic energy balance between load and generating power, while
phasor can constitute the state of system. So frequency and
phasor are regarded as indices for the operating power systems
in practice.

However, utilities have difficulty in calculating those quanti-
ties precisely. There are many devices, such as power electronic
equipment and arc furnaces, etc. generating lots of harmonics
and noise in modem power systems. It is therefore essential for
utilities to seek and develop a reliable method that can measure
frequency and phasor in presence of harmonics and noise.

With the advent of the microprocessor, more and more
microprocessor-based equipments have been extensively used
in power systems. Using such equipment is known to provide
accurate, fast responding, economic, and flexible solutions to
measurement problems [1]. Therefore, all we have to do is to
find the best algorithm and implement it. There have been many
digital algorithms applied to calculating frequency or phasor
during recent years, for example Modified Zero Crossing
Technique [2], Level Crossing Technique [3], Least Squares
Error Technique [4]–[6], Newton method [7], Kalman Filter
[8], [9], Prony Method [10], and Discrete Fourier Transform
(DFT) [11], etc. For real-time use, most of the aforementioned
methods have trade-off between accuracy and speed [12].
Unlike other methods, a series of precise digital algorithms,
namely Smart Discrete Fourier Transform (SDFT) family, are
presented and tries to meet the real-time use. SDFT family has
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the advantages that it can obtain exact solution in the presence
of harmonics and frequency deviation from nominal frequency.

The organization of this paper is as follows: We describe basic
principle of SDFT in section II. DFT, Prony method and SDFT
are tested by four examples in section III. Finally, we give a
conclusion in section IV.

II. THE PROPOSEDDIGITAL ALGORITHM

This section presents the algorithm of the basic SDFT that es-
timates the frequency and phasor from a voltage/current signal.
Consider a sinusoidal input signal of frequency! = 2�f as fol-
lows:

x(t) = X cos(!t+ �) (1)

where
X : the amplitude of the voltage/current signal,
�: the phase angle of the voltage/current signal

Suppose thatx(t) is sampled with a sampling rate (60�N ) Hz
waveform to produce the sample setfx(k)g

x(k) = X cos

�
!

k

60N
+ �

�
k = 0; 1; 2; � � � ; N � 1:

(2)
The signalx(t) is conventionally represented by a phasor (a
complex number)x

x = Xej� = X cos �+ jX sin �: (3)

Thenx(t) can be expressed as

x(t) =
xej!t + x�e�j!t

2
(4)

where� denotes complex conjugate.
Moreover, the fundamental frequency (60Hz) component of

DFT of fx(k)g is given by

x̂r =
2

N

N�1X
k=0

x(k + r)e�j
2�k

N : (5)

Combing Eq. (4) and Eq. (5) and taking frequency deviation
(! = 2�(60 +�f )) into consideration, at last, we obtain:

x̂r =
x

N

sin
N�1

2

sin
�1

2

ej
�

60N
(�f(2r+N�1)+120r)

+
x�

N

sin
N�2

2

sin
�2

2

e�j
�

60N
(�f(2r+N�1)+120(r+N�1))

(6)

0885–8977/00$10.00 © 2000 IEEE

Authorized licensed use limited to: National Taiwan University. Downloaded on March 9, 2009 at 04:14 from IEEE Xplore.  Restrictions apply.



YANG AND LIU: A PRECISE CALCULATION OF POWER SYSTEM FREQUENCY AND PHASOR 495

where

�1 =
2��f

60N
; and �2 =

2�

�
2 +

�f

60

�

N
:

If we defineAr andBr as

Ar =
x

N

sin
N�1
2

sin
�1
2

ej
�

60N
(�f(2r+N�1)+120r) (7)

Br =
x�

N

sin
N�2
2

sin
�2
2

e�j
�

60N
(�f(2r+N�1)+120(r+N�1)): (8)

Then Eq. (6) can be expressed as

x̂r = Ar +Br : (9)

Actually, the first half development of the algorithm of
SDFT is the same as the conventional DFT method. So the
SDFT can keep all advantages of DFT such as recursive
computing manner. In the conventional DFT, it assumes that
the frequency deviation is small enough to be ignored, and
x̂r � Ar . Therefore,

�r =arctan(imag(x̂r)=real(x̂r)) (10)

f =60 +
�r � �r�1

2�
� 60N: (11)

Conventional DFT methods incur error in estimating fre-
quency and phasor when frequency deviates from nominal
frequency (60Hz). However, in the SDFT we takeBr into
consideration. So we define

a = ej(
�

60N
(2�f+120)): (12)

And from Eq. (7) and Eq. (8), we will find the following rela-
tions

Ar+1 =Ar � a (13)

Br+1 =Br � a
�1: (14)

Then

x̂r+1 = Ar+1 + Br+1 = Ar � a+Br � a
�1 (15)

x̂r+2 =Ar+2 +Br+2 = Ar+1 � a+ Br+1 � a
�1

=Ar � a
2 +Br � a

�2: (16)

There are three unknown variables in Eq. (9), Eq. (15) and
Eq. (16), and after some algebraic manipulations we obtain:

x̂r+1 � a
2
� (x̂r + x̂r+2) � a+ x̂r+1 = 0: (17)

Solve Eq. (17) to obtain

a =
(x̂r + x̂r+2) �

q
(x̂r + x̂r+2)2 � 4x̂2r+1

2x̂r+1
:

Then from the definition of “a” in Eq. (12), we can get the exact
solution of the frequency

f = 60+ �f = cos�1(Re(a)) �
60N

2�
: (18)

Moreover, we can estimate phasor after getting exact “f ” by the
following equations:

Ar =
x̂r+1 � a� x̂r

a2 � 1
(19)

X = abs(Ar) �

N � sin

�
��f

60N

�

sin

�
��f

60

� (20)

� = angle(Ar )�
�

60N
� (�f � (N � 1)): (21)

It is observed that SDFT can provide exact frequency and
phasor usinĝxr , x̂r+1 and x̂r+2 in the presence of frequency
deviation.

Next, we take harmonics into consideration. Assume a sinu-
soidal signal of frequency! = 2�f with mth harmonic given
by:

x(t) = X1 cos(!t + �1) +X2 cos(m!t + �2) (22)

where
X1; X2: the amplitude,
�1; �2: the phase angle.

Following similar steps developed previously, we can get:
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: (23)

Then

x̂r =
x1
N
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2
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2
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+
x�1
N

sin
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2
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+
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2
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Fig. 1. Test signal:v(t) = cos(!t); simulated frequency 59.5 Hz; sampling frequency 960 Hz.

� ej(�=60N )(m�f(2r+N�1)+60(2mr+mN�m�N+1))

+
x�2
N

sin
N�4

2

sin
�4

2

� e�j(�=60N)(m�f(2r+N�1)+60(2mr+mN�m+N�1))

(24)

x̂r = Ar + Br +Cr +Dr (25)

x̂r+1 =Ar+1 + Br+1 +Cr+1 +Dr+1

=Ar � a+ Br � a
�1

+Cr � a
m
+Dr � a

�m (26)

where
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x2

N
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2
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2
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m� 1 +

m�f

60

�

N
;

and

�4 =

2�

�
�m � 1 +

m�f

60

�

N
:

There arefive unknown variables in Eq. (25), hence, we need
five equations to solve this problem. So usingx̂r , x̂r+1, x̂r+2,
x̂r+3 and x̂r+4, we can get exact frequency and phasor in the
presence of one harmonic. We use SDFT, to denote that 3rd

harmonic has been taken into consideration. Of course, any
other integral order harmonic can be taken into consideration
too, for example: SDFT35 and SDFT357 take 3rd, 5th harmonic
and 3rd, 5th, 7th harmonic into consideration respectively.
Similarly, nonintegral harmonics also can be developed. We
use SDFTn to denote that nonintegral harmonics has been
taken into consideration.

III. SIMULATION RESULTS

Most of the frequency estimation methods are concerned with
the performances of the four cases: frequency deviation, fre-
quency variation, harmonics and noise. Hence, we used these
four cases to compare the performance of these methods. Sim-
ulation results presented in this section were all simulated from

Authorized licensed use limited to: National Taiwan University. Downloaded on March 9, 2009 at 04:14 from IEEE Xplore.  Restrictions apply.



YANG AND LIU: A PRECISE CALCULATION OF POWER SYSTEM FREQUENCY AND PHASOR 497

Fig. 2. Test signal:v(t) = cos(!t); simulated frequency variation form 59.5 Hz to 60.5 Hz during 1 second; sampling frequency 960 Hz.

Fig. 3. Test signal:v(t) = cos(!t); simulated frequency variation like sin wave during 1 second; sampling frequency 960 Hz.

Matlab and shown for a fair comparison to DFT method and
Prony method.

In Fig. 1(a), we showed that SDFT family and the Prony
method could obtain an exact frequency calculation under
frequency deviation in a pure sinusoidal waveform. We also

show the performance of conventional DFT method. It is clear
that conventional DFT method gives the wrong answer in
frequency and phasor. By comparison of computation speed,
Fig. 1(d) shows the AMD K6-200 CPU time of each method.
There are 960 data per second computed by each method.
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Fig. 4. Test signal:v(t) = cos(!t) + 0:05 cos(3!t) + 0:02 cos(5!t) +O:O1 cos(7!t); simulated frequency 60.05 Hz; sampling frequency 960 Hz.

Fig. 5. Test signal:v(t) = cos(!t); simulated frequency 60 Hz; sampling frequency 960 Hz; with 1% noise.

In Fig. 2 and Fig. 3, we put the emphasis on the frequency
variation. The frequency of test signal in Fig. 2 is varied linearly
form 59.5 Hz to 60.5 Hz during 1 second. Another test in Fig. 3 is

to make the frequency change like a sinusoid:f=60+ sin(2�t).
It is observed that the errors of conventional DFT method are
larger than SDFT family in terms of frequency and phasor.

Authorized licensed use limited to: National Taiwan University. Downloaded on March 9, 2009 at 04:14 from IEEE Xplore.  Restrictions apply.



YANG AND LIU: A PRECISE CALCULATION OF POWER SYSTEM FREQUENCY AND PHASOR 499

We designed the test frequency to be 60.05Hz and added 3rd,
5th and 7th harmonics into test signal in Fig. 4. In Fig. 4a, we
find that Prony method is very sensitive to harmonic. Although
Prony method can change its window size, it still can’t have
better performance. SDFT has better performance than DFT,
and the rest of SDFT family, expect SDFTn, is better than SDFT.
SDFT357, SDFT35n and SDFT357n get the exact frequency and
phasor in this case.

We know that if a method can be used in real world, it must
take noise into consideration. The frequency of test signal in
Fig. 5 is 60Hz, and we add one percent of white noise into signal.
In Fig. 5, we didn’t show the performance of Prony Method,
since the performance of Prony method depends on window
size in this test. It is shown that SDFT is better than DFT and
SDFT357n is better than SDFT.

IV. CONCLUSION

In this paper we introduce the SDFT family and demonstrate
their performance. SDFT family both keeps the advantages of
DFT and also deals with the difficulty of frequency deviation er-
rors, while taking harmonics, noise into consideration. These as-
pects make SDFT family accurate, harmonic-resisting methods.
If only rough answer is required, DFT is still a good choice, but
if precise answer is essential, we recommend SDFT family. We
believe that SDFT family has a great potential to replace con-
ventional DFT method for power system frequency and phasor
calculation in the future, if SDFT family can be speeded up by
the advanced computing architecture.
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