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Abstract: Fuzzy control of robot manipulators with a decentralized structure is facing a serious challenge. The state-space model
of a robotic system including the robot manipulator and motors is in non-companion form, multivariable, highly nonlinear, and
heavily coupled with a variable input gain matrix. Considering the problem, causes and solutions, we use voltage control strategy and
convergence analysis to design a novel precise robust fuzzy control (PRFC) approach for electrically driven robot manipulators. The
proposed fuzzy controller is Mamdani type and has a decentralized structure with guaranteed stability. In order to obtain a precise
response, we regulate a fuzzy rule which governs the origin of the tracking space. The proposed design is verified by stability analysis.
Simulations illustrate the superiority of the PRFC over a proprotional derivative like (PD-like) fuzzy controller applied on a selective
compliant assembly robot arm (SCARA) driven by permanent magnet DC motors.
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1 Introduction

In the field of multivariable control, the decentralized
control is a dominant control scheme because it has many
advantages, such as flexibility in operation, failure toler-
ance, simplified design and tuning[1]. The decentralized
controller is still adopted by majority of modern robots
in favor of computational simplicity and low-cost hard-
ware setup[2]. To form the decentralized control, a robotic
system is decomposed into individual single-input/single-
output systems. Then, the effect of interactions between
decomposed systems must be compensated. Thus, robust
and adaptive techniques are suggested.

Adaptive fuzzy controllers may fulfill this role due to
their ability to adapt with changing environment and model
uncertainty. The unknown continuous functions of delayed
high order nonlinear systems can be estimated by fuzzy
adaptive systems[3]. Using the direct method of Lyapunov,
many types of adaptive fuzzy controllers were developed
for tracking control of robot manipulators[4−6]. Some re-
cent researches such as [7–9] paid attention to considering
whole robotic system including motor dynamics. The men-
tioned controllers guarantee stability and provide conver-
gence of tracking error using multi-input fuzzy systems to
cover the required states. However, number of fuzzy rules
exponentially increases as the number of inputs increases,
thus resulting in computational burden.

Voltage control of robots has been efficiently used in var-
ious methods by considering the whole robotic system of
electrically driven robots in the control problem. A neural-
network-based adaptive controller was proposed for the
tracking problem of manipulators with uncertain kinemat-
ics, dynamics and actuator model in the Cartesian space[10].
The uncertainties were compensated by three-layer neural
networks. A robust adaptive controller was developed using
adaptive control, back-stepping and fuzzy logic techniques
for the tracking control of an electrically driven nonholo-
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nomic mobile robot with model uncertainties[11]. The fuzzy
logic system was used to learn the behaviors of unknown dy-
namics. The stability is guaranteed using the multivariable
controllers in the mentioned approaches.

To cope with the requirements for fast response and pre-
cision, advanced feedforward controllers such as gravity
compensator, Coriolis/centrifugal force compensator and
friction compensators have been built in the controller.
Generally, it causes heavy computational load when cal-
culating the compensating value within a short sampling
period[12]. To simplify the control problem, we use the volt-
age control strategy (VCS). On the other hand, there would
seem to have some major shortcomings in the torque control
strategy (TCS), as TCS is highly nonlinear, heavily coupled
and computationally extensive.

Voltage control strategy[13] can be free from the manipu-
lator dynamics. Actually, the robot control problem be-
comes the problem of motor control in the voltage con-
trol strategy. This advantage provides a simple control
design in a decentralized structure, thus makes it supe-
rior to the torque control strategy. Following our research,
we have proposed robust voltage control laws for electri-
cally driven robots in the form of fuzzy control[14], task-
space control[15], time-delay control[16], adaptive control[17],
repetitive control[18] and adaptive fuzzy estimation of
uncertainty[19].

This paper presents the design and analysis of a novel
decentralized precise robust fuzzy control (PRFC) of elec-
trically driven robot manipulators using the VCS and con-
vergence analysis. The proposed controller is simple, with
highly accurate tracking performance and guaranteed sta-
bility. To our best knowledge, the proposed control is novel.
The rest of paper is organized as follows. Section 2 presents
the modeling of electrically driven robot manipulators. Sec-
tion 3 describes the control design, convergence analysis,
and stability analysis. Section 4 introduces a decentralized
PD-Like fuzzy controller. Section 5 illustrates the simula-
tion results. Finally, Section 6 concludes the paper.
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2 Modeling

The dynamics of manipulator[20] is expressed as

DDD(θθθ)θ̈θθ + CCC(θθθ, θ̇θθ)θ̇θθ + ggg(θθθ)= τττrrr − τττfff (θ̇θθ) (1)

where θθθ ∈ Rn is the vector of joint positions, DDD(θθθ) is the
n × n matrix of manipulator inertia, CCC(θθθ, θ̇θθ)θ̇θθ ∈ Rn is the
vector of centrifugal and Coriolis torques, g(θθθ) ∈ Rn is the
vector of gravitational torques, τττfff (θ̇θθ) ∈ Rn is the vector
of friction torques, and τττrrr ∈ Rn the joint torque vector of
robot. Note that vectors and matrices are represented in
bold form for clarity.

The electric motors provide the joint torque vector as

JrJrJr
−1

θ̈θθ + BrBrBr
−1

θ̇θθ + rτrτrτrrr= τττmmm (2)

where τττmmm ∈ Rn is the torque vector of motors, JJJ , BBB and
rrr are the n × n diagonal matrices for motor coefficients[20]

namely the inertia, damping, and reduction gear, respec-
tively. The joint velocity vector θ̇θθ and the motor velocity
vector θ̇θθmmm ∈ Rn are related through the gears to yield

rrrθ̇θθmmm = θ̇θθ. (3)

In order to obtain the motor voltages as the inputs of
system, we consider the electrical equation of geared per-
manent magnet DC motors in the matrix form

RIRIRIaaa+++LLLİIIaaa+K+K+Kbbbrrr
−1

θ̇θθ + φφφ = uuu (4)

where uuu ∈ Rn is the vector of motor voltages, IIIaaa ∈ Rn

is the vector of motor currents, and φφφ ∈ Rn is a vector of
external disturbances. RRR, LLL and KKKbbb represent the n×n di-
agonal matrices for the coefficients of armature resistance,
inductance, and back-emf constant, respectively. The mo-
tor torque vector τττmmm as the input for dynamic equation (2)
is produced by the motor current vector

KKKmmmIIIaaa = τττmmm (5)

where KKKmmm is a diagonal matrix of the torque constants.
The state-space model of the electrically driven robot

manipulator is introduced by the use of (1)–(5) as

ẋxx = fff(xxx) + bububu − bφbφbφ (6)

where uuu is considered as the inputs, xxx is the state vector
and fff(xxx) is of the form

fff(xxx) =







xxx2
(

JrJrJr−1 + rDrDrD(xxx1)
)−1

fff2

−LLL−1
(

KKKbbbrrr
−1xxx2 + RxRxRx3

)






,

xxx =







θθθ

θ̇θθ

IIIaaa






, bbb =







0

0

LLL−1







fff2 = −
(

BrBrBr
−1+rCrCrC(xxx1,xxx2)

)

xxx2 − rgrgrg(xxx1)− rτrτrτfff (xxx2) +KKKmmmxxx3.

(7)
The state-space equation (6) shows a highly coupled nonlin-
ear multivariable system in the non-companion form. The
robot modeling and control is facing a serious challenge
due to the complexity of the model. Many works have

ignored the motors′ dynamics to provide a simple second
order model. However, we should consider the motors′ dy-
namics to control a robot in high-speed and high-accuracy
applications.

A companion form of the electrically driven robot ma-
nipulators is obtained using the state transformation of

zzz =







θθθ

θ̇θθ

θ̈θθ







zzz1 = xxx1

zzz2 = xxx2

zzz3 = (JrJrJr−1 + rDrDrD(xxx1))
−1fff2

(8)

which results in

żzz1 = zzz2

żzz2 = zzz3

żzz3 = hhh(zzz1, zzz2, zzz3)+

(JrJrJr
−1 + rDrDrD(xxx1))

−1
KKKmmmLLL

−1 (−φφφ + uuu) (9)

where

hhh(zzz1, zzz2, zzz3) =

(

d

dt

(

JrJrJr
−1 + DDD(zzz1)

)−1
)

(−hhh1) +

(

d

dt

(

JrJrJr
−1 + DDD(zzz1)

)−1
)

(hhh1) +

(

JrJrJr
−1 + rDrDrD(zzz1)

)−1
(

−rrrĊCC(zzz1, zzz2)zzz2 − hhh2

)

−

(

JrJrJr
−1 + rDrDrD(zzz1)

)−1
LLL

−1
RRR

((

JrJrJr
−1 + rDrDrD(zzz1)

)

zzz3 + hhh1

)

−
(

JrJrJr
−1 + rDrDrD(zzz1)

)−1
KKKmmmLLL

−1
KKKbbbrrr

−1
zzz2

hhh1 =
(

BrBrBr
−1+rCrCrC(zzz1, zzz2)

)

zzz2 + rgrgrg(zzz1) + rτrτrτfff (zzz2)

hhh2 =
(

BrBrBr
−1 + rCrCrC(zzz1, zzz2)

)

zzz3 − rrrġgg(zzz1) − rrrτ̇ττfff (zzz2). (10)

The system dynamics is described as

θ̇θθ = hhh(θθθ, θ̇θθ, θ̈θθ) +
(

JrJrJr
−1 + rDrDrD(θθθ)

)−1
KKKmmmLLL

−1 (−φφφ + uuu) . (11)

Since DDD(θθθ), JJJ , rrr, KKKmmm and LLL are positive definite matrices,
(JrJrJr−1 +rDrDrD(zzz1))

−1KKKmmmLLL−1 6= 0. Thus, the companion form
(9) proves that the robotic system is controllable. However,
the companion form is highly nonlinear, heavily coupled and
computationally extensive.

3 Precise robust fuzzy control

The uncertainty and precision are opposite to each other,
thus overcoming uncertainty is a necessary condition to ob-
tain a precise performance. On the other hand, the decen-
tralized control is a promising control approach for multi-
input/multi-output nonlinear uncertain systems due to its
simplicity and ease of implementation. When a robot con-
troller has a decentralized structure, each joint is controlled
by a separate controller using feedbacks obtained from the
same joint. As a result, the controller is computationally
simple with easy implementation using available feedbacks.
Therefore, designing a decentralized fuzzy controller with
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a precise tracking performance is our objective. For this
purpose, we use the voltage control strategy.

Fuzzy controllers in proportional-integral-derivative
(PID) structure are superior to the conventional PID con-
trollers due to their capability to cope with nonlinearity[21].
According to the literature, a PD-like fuzzy controller has
been efficiently used in many applications. The PD-like
fuzzy controller used for controlling the joint position of
the robot has a decentralized structure. We improve the
PD-like fuzzy controller to have a precise robust fuzzy con-
troller. For this purpose, we use a conventional PI con-
troller to regulate a fuzzy rule which governs the origin of
the tracking space.

A fuzzy controller may be designed by trial and error
method to achieve a reasonable performance. In this paper,
the convergence analysis is employed to design the fuzzy
controller. Then, stability analysis is presented to verify
the suggested controller. Steps to design a Mamdani type
fuzzy controller are as follows:

1) Determine inputs and output of the controller;
2) Define the membership functions;
3) Write the fuzzy IF-THEN rules;
4) Select Mamdani type inference engine, the fuzzifier

and the defuzzifier;
5) Formulate the fuzzy controller.
Inputs and output: The proposed control design has a

decentralized structure in the form of PD-like fuzzy con-
troller. Thus, inputs of the controller are determined as
position error e and its derivative ė of each joint, and the
output is determined as the voltage u of the motor. The
tracking error e is expressed as e = θd − θ, in which θd and
θ are the desired and actual joint positions, respectively.

Membership functions: Membership functions play a sig-
nificant role in the performance of control system. The cen-
ter, range and shape of membership functions are the most
significant parameters. The operating range of variables
should be covered by membership functions. To cover a
large unwanted error caused by disturbances or initial er-
ror, the membership functions of input located in the left
and right sides should be sigmoid type whereas the member-
ship functions in the center can be a Gaussian or triangular
shape.

Based on the discussion above, three membership func-
tions called P, Z and N are given to the input e in the oper-
ating range of manipulator as shown in Fig. 1 and expressed
as

µP(e) =



















0, e 6 0

2e2, 0 6 e 6 0.5

1 − 2(e − 1)2, 0.5 6 e 6 1

1, e > 1

µN(e) =



















1, e 6 −1

1 − 2(e + 1)2, −1 6 e 6 −0.5

2e2, −0.5 6 e 6 0

0, e > 0

(12)

µZ(e) = exp

(

−
e2

2σ2

)

, σ = 0.3.

Membership functions of ė are given the same as those for

e in Fig. 1.

Fig. 1 Membership functions of input e

To define the membership functions of output, we con-
sider the maximum voltage of motor, umax, that is 42 V
in this study. Then, we arrange the membership functions
to cover the range of output in [−42, 42]. The membership
functions of output u are named as positive high (PH), pos-
itive medium (PM), positive small (PS), zero (Z), negative
small (NS), negative medium (NM) and negative high (NH).
They are expressed as

µPH(u) = exp

(

−
(u − 42)2

32

)

µPM(u) = exp

(

−
(u − 28)2

32

)

µPS(u) = exp

(

−
(u − 14)2

32

)

µZ(u) = exp

(

−
(u − ŷ5)

2

32

)

µNS(u) = exp

(

−
(u + 14)2

32

)

µNM(u) = exp

(

−
(u + 28)2

32

)

µNH(u) = exp

(

−
(u + 42)2

32

)

. (13)

Fuzzy rules: Assigning three membership functions to
each fuzzy input, the whole control space is covered by nine
fuzzy rules. The linguistic fuzzy rules are proposed in the
form of Mamdani type as

Rule l : If e is Al and ė is Bl, then u is Cl (14)

where Rule l denotes the l-th fuzzy rule for l = 1, · · · , 9. In
the l-th rule, Al, Bl and Cl are fuzzy membership functions
belonging to the fuzzy variables e, ė and u, respectively. A
set of fuzzy IF-THEN rules should be complete, consistent
and continuous[22]. It is complete if for given inputs, one
or more rules respond to it. It is consistent if there are no
rules with the same IF parts but different THEN parts. It
is continuous if there do not exist such neighboring rules
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whose THEN part fuzzy sets have empty intersection. We
use the convergence analysis to define the fuzzy rules in this
paper.

3.1 Convergence analysis

In order to provide the convergence of tracking error e, a
positive definite function V (e) is suggested as

V (e) = 0.5 e
2 (15)

where V (e) > 0 for e 6= 0 and V (0) = 0. The time derivative
of V (e) is obtained as

V̇ (e) = eė. (16)

We assign e to the horizontal axis and ė to the vertical
axis of the classic phase plane. According to the signs of e

and ė, the sign of V̇ is determined in the four quarters of
classic phase plane as follows: In the first quarter named as
Q1 and in the third quarter named as Q3, we have V̇ > 0,
thus e diverges and goes away from the origin. In the second
quarter named as Q2 and in the forth quarter named as Q4,
we have V̇ < 0, thus e converges and goes to the origin. The
direction of state trajectory in the phase plane is clockwise.

Assume that a positive voltage u rotates the motor an-
ticlockwise and amplifying voltage u increases the velocity
θ̇. If θ < θd, then e > 0 where e = θd − θ. Thus, a positive
voltage u increases θ and reduces e. If θ̇ < θ̇d, then ė > 0
where ė = θ̇d − θ̇. Thus, amplifying voltage u increases θ̇

and reduces ė.
The following laws are suggested to direct the error tra-

jectory toward the origin according to the convergence anal-
ysis:

1) The control effort u has the same sign as e.
2) A small control effort is sufficient in the converge-

quarters Q2 and Q4.
3) A medium control effort is sufficient when passing from

Q2 to Q1, and from Q4 to Q3.
4) A high control effort is required in the diverge-quarters

Q1 and Q3.
5) The control effort must change the sign of ė to negative

in Q1 for going into Q4.
6) The control effort should change the sign of ė to posi-

tive in Q3 for moving in Q2.
Using (12), (13) and (14), based on the convergence anal-

ysis, we define fuzzy rules in Table 1.

Table 1 Fuzzy rules

Rule l 1 2 3 4 5 6 7 8 9

Al P P P Z Z Z N N N

Bl P Z N P Z N P Z N

Cl PH PM PS PM Z NM NS NM NH

In order to obtain a precise tracking, Rule 5 which gov-
erns the vicinity of origin should be fine-tuned. Center of
“zero fuzzy set” of output u is regulated to reduce the track-
ing error. An ordinary proportional-integral (PI) controller
equipped by a saturation unit is proposed to fulfill this role

as

ŷ5 =







umax, if kpe + ki

∫

e dt > umax

kpe + ki

∫

edt, if
∣

∣kpe + ki

∫

e dt
∣

∣ < umax

−umax, if kpe + ki

∫

e dt < −umax

(17)

where kp is a proportional gain and ki is an integral gain.
Inference engine, fuzzifier and defuzzifier: Since the used

fuzzy rules are Mamdani type, we choose the Mamdani type
inference engine. The singleton fuzzifier and the center av-
erage defuzzifier are commonly used in the design of fuzzy
controllers that are computationally simple with a reason-
able response.

Formulating the fuzzy controller: Following the previous
step, the proposed control law u[22] is then formulated as

u =

9
∑

l=1

ŷlψl(e, ė) = ŷyy
T
ψψψ(e, ė) (18)

where ŷyy is given by (13) as

ŷyy =
[

42 28 14 28 ŷ5 −28 −14 −28 −42
]

(19)

where ŷ5 is expressed in (17), ψψψ =
[

ψ1, · · ·, ψ9

]T

, ψl

is a positive value expressed as

ψl(e, ė) =
µAl

(e)µBl
(ė)

9
∑

l=1

µAl
(e)µBl

(ė)

(20)

where Al and Bl are defined in Table 1 and expressed in
(12).

An important contribution of fuzzy systems theory is to
provide a systematic procedure for transforming a set of
linguistic rules into a nonlinear mapping as (18).

3.2 Stability analysis

Stability analysis of the control system is presented to
evaluate the proposed PRFC in (18). The proposed control
approach is a decentralized control. Thus stability of all
joints implies the stability of the robotic system.

The electrical equation of motor in the scalar form is
given by (4)

RIa + Lİa + Kbr
−1

θ̇ + φ(t) = u. (21)

Applying control law (18) yields the closed loop system

RIa + Lİa + Kbr
−1

θ̇ + φ(t) = ŷyy
T
ψψψ(e, ė). (22)

To make the dynamics of tracking error well defined such
that the robot can track the desired trajectory, we make the
following assumption.

Assumption 1. The desired trajectory θd must be
smooth in the sense that θd and its derivatives up to a
necessary order are available and all uniformly bounded.

As a necessary condition to design a robust control, the
external disturbance must be bounded.

Assumption 2. The external disturbance φ(t) is
bounded as

|φ(t)| 6 φmax (23)



68 International Journal of Automation and Computing 10(1), February 2013

where φmax is a positive constant.
By multiplying both sides of (21) by Ia, one obtains the

following power equation

uIa = RI
2
a + LİaIa + kbr

−1
θ̇Ia + φ(t)Ia. (24)

Motor receives the electrical power expressed by uIa to
provide the mechanical power stated as kbr

−1θ̇Ia in (20).
The power RI2

a is the loss in the windings, and the power
LİaIa is the time derivative of the magnetic energy. From
(24), we can write for t > 0

∫ t

0

(u − φ(σ)) Iadσ =

∫ t

0

RI
2
adσ +

∫ t

0

LİaIadσ+

∫ t

0

kbr
−1

θ̇Iadσ. (25)

With Ia(0) = 0, (25) becomes

∫ t

0

(u − φ(σ)) Iadσ = RI
2
at + 0.5LI

2
a +

∫ t

0

kbr
−1

θ̇Iadσ.

(26)

Since RI2
at > 0 and 0.5LI2

a > 0,

∫ t

0

kbr
−1

θ̇Iadσ 6

∫ t

0

(u − φ(σ)) Iadσ. (27)

Thus, the upper bound of mechanical energy
∫ t

0
kbr

−1θ̇Iadσ

is given by

∫ t

0

kbr
−1

θ̇Iadσ =

∫ t

0

(u − φ(σ)) Iadσ. (28)

Thus,

d
(

∫ t

0
kbr

−1θ̇Iadσ
)

dt
=

d
(

∫ t

0
(u − φ(σ)) Iadσ

)

dt
. (29)

Hence,

kbr
−1

θ̇Ia = (u − φ(t)) Ia. (30)

Therefore, θ̇ is limited as
∣

∣

∣
θ̇
∣

∣

∣
6 k

−1
b r (|u| + |φ(t)|) . (31)

The electric motor should be protected against the over
voltage. Thus, we make the following assumption.

Assumption 3. The motor voltage is bounded as

|u| 6 umax. (32)

We ensure (32) by considering that the membership func-
tions 0 6 µAl

(e) 6 1 and 0 6 µBl
(ė) 6 1 for l = 1, · · · , 9.

Thus, ψl(e, ė) in (20) is bounded. The membership func-
tions of inputs, µAl

(e) and µBl
(ė), can be defined such that

if ψl1(e, ė) = 1 for l = l1, then ψl(e, ė) = 0 for l 6= l1.
Consequently u =

∑9
l=1 ŷlψl(e, ė) = ŷl1 if ψl1(e, ė) = 1.

Therefore, in order to satisfy |u| 6 umax, it is required to
select ŷl such that

|ŷl| 6 umax for l = 1, · · · , 9. (33)

Since ψl(e, ė) and ŷl are bounded, u =
∑9

l=1 ψl(e, ė)ŷl

will be bounded.
Substituting (23) and (32) into (31) yields

∣

∣

∣
θ̇
∣

∣

∣
6 k

−1
b r (umax + φmax) = θ̇max (34)

where θ̇max is the maximum velocity of motor. Inequality
(34) verifies that the joint velocity θ̇ is bounded. From (21),
we can write

RIa + Lİa = w (35)

where

w = u − kbr
−1

θ̇ − φ(t). (36)

We can see that u, θ̇ and φ(t) are bounded as stated by
(32), (34) and (23), respectively. Consequently, w expressed
by (36) as the input in (35) is bounded. The linear differ-
ential equation (35) is a stable linear system based on the
Routh-Hurwitz criterion. Since the input w is bounded, the
output Ia is bounded. From (35), we have

Lİa = w − RIa. (37)

Since w and Ia are bounded, İa is bounded.
To consider the convergence of tracking error e, we cal-

culate V̇ in (15) using ė = θ̇d − θ̇ as

V̇ = e
(

θ̇d − θ̇
)

. (38)

One can easily show from (22) that

θ̇ = K
−1
b r

(

9
∑

l=1

ŷlψl(e, ė) − RIa − Lİa − φ(t)

)

. (39)

Substituting (39) into (38) yields

V̇ = eθ̇d − eK
−1
b r

(

9
∑

l=1

ŷlψl(e, ė) − RIa − Lİa − φ(t)

)

.

(40)

To establish the convergence, we should satisfy V̇ < 0.
To satisfy V̇ < 0 in (40), it is required that

e
(

kbr
−1

θ̇d + RIa + Lİa + φ(t)
)

< e

9
∑

l=1

ŷlψl(e, ė). (41)

For this purpose, the motor must be sufficiently strong to
follow the desired joint velocity under the maximum permit-
ted voltage. Therefore, the following assumption is made.

Assumption 4. The motor is sufficiently strong for
tracking the desired trajectory such that

∣

∣

∣
RIa + Lİa + kbr

−1
θ̇d + φ(t)

∣

∣

∣
6 ρ(t) < umax (42)

where ρ(t) is a positive scalar. Using Cauchy-Schwartz in-
equality and (42), it follows that

e
(

kbr
−1

θ̇d + RIa + Lİa + φ(t)
)

6

|e| ·
∣

∣

∣
kbr

−1
θ̇d + RIa + Lİa + φ(t)

∣

∣

∣
6

|e| · ρ(t) (43)
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Thus, to satisfy (41), it is sufficient that

|e| · ρ(t) = e

9
∑

l=1

ŷlψl(e, ė). (44)

Hence, in general the following condition provides con-
vergence.

ρ(t) =

9
∑

l=1

ŷlψl(e, ė)sgn(e) (45)

where sgn(e) = e
|e|

. As mentioned above, if ψl1(e, ė) = 1

for l = l1 then for l 6= l1, then ψl(e, ė) = 0 for l 6= l1.
Thus

∑9
l=1 ŷlψl(e, ė) = ŷl1 . As a result, if ψl1(e, ė) = 1, the

convergence is guaranteed using

ρ(t) = ŷl1sgn(e). (46)

Thus,

ŷl1 = ρ(t)sgn(e). (47)

Equation (47) follows that

|ŷl1 | = ρ(t) and sgn(ŷl1) = sgn(e). (48)

Thus, the motor tracking error converges to zero. In the
vicinity of equilibrium point, when e and ė are very small
and

∣

∣kpe + ki

∫

edt
∣

∣ < umax, from (17) and (47), we can
write

kpe + ki

∫

edt = sgn(e)ρ(t). (49)

By taking derivative from both side of (49) for e 6= 0, we
have

kpė + kie = ρ̇(t). (50)

Equation (50) is obtained by considering d(sgn(e))
dt

= 0 for
e 6= 0. If ρ̇(t) = 0, we have e → 0 as t → ∞, for kp > 0 and
ki > 0.

Calculating V̇ from (15) and (50), and using sgn(e)e = |e|
results in

V̇ (e) =
ρ̇(t)e − kie

2

kp

. (51)

Thus, in the case of ρ̇(t) 6= 0, the convergence of error is
guaranteed by V̇ (e) < 0 if satisfying

ρ̇(t)

ki

< |e| . (52)

The performance of the fuzzy controller is improved by
selecting a large ki since the size of tracking error becomes
as small as ρ̇(t)

ki
. In addition, the origin of the tracking space

is stable if gains kp and ki are positive. However, the track-
ing error depends on ρ̇(t), which is not known in (50). To
obtain a desired performance, the gains kp and ki should
be fine-tuned. One may choose them by trial and error
method or using an optimization method such as particle
swarm optimization to achieve an optimal performance[23].

4 PD-like fuzzy control

The proposed controller (18) has been developed by im-
proving the PD-like fuzzy controller. Therefore, we prefer
to compare it with the PD-like fuzzy controller to show its
superiority. A decentralized PD-like fuzzy controller in the
form of Mamdani type using VCS is designed. The PD-like
fuzzy controller has two inputs of e and ė and the output
u. Three membership functions of P, Z and N are given to
each input as shown in Fig. 1 membership functions. The
Gaussian MFs in the form of (13) with the centers of ŷyy in
(53) are given to the controller output u.

ŷyy =
[

42 28 14 28 0 −28 −14 −28 −42
]

.

(53)

Following the steps of design, u is formulated as

u = ŷyy
T
ψ(k1e, k2ė), k1 = 100, k2 = 20 (54)

where k1 and k2 are the input scaling factors which are the
control design parameters.

5 Simulations

The proposed PRFC is simulated on a selective compliant
assembly robot arm (SCARA) driven by permanent mag-
net DC motors as shown in Fig. 2. The performance of the
PRFC is compared with the PD-like fuzzy controller. Fig. 2
shows the initial configuration of robot manipulator. The
Denavit-Hartenberg (DH) parameters of the SCARA are
given in Table 2, where the parameters θi, di, ai and αi are
called the joint angle, link offset, link length and link twist,
respectively.

Fig. 2 Symbolic representation of the four-link SCARA
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Table 3 The dynamical parameters of SCARA

i x i (m) yi (m) z i (m) mi (km) Ixxi (kg·m2) Iyyi (kg·m2) I zzi (kg·m2) Ixyi (kg·m2) Ixzi (kg·m2) Iyzi (kg·m2)

1 −0.172 0 0 2.6 0.0034 0.0043 0.0045 0 0.0012 0

2 −0.133 0 −0.111 5.9 0.0240 0.0670 0.0540 0 0.0066 0

3 0 0 −0.333 1.1 0.0041 0.0041 3.2×10−4 0 0 0

4 0 0 -0.04 0.06 2.2×10−5 2.2×10−5 2.3×10−5 0 0 0

Table 2 The DH parameters

i θ (rad) d (m) a (m) α (rad)

1 θ1 0 a1 = 0.325 0

2 θ2 0 a2 = 0.225 π

3 0 d3 0 0

4 θ4 d4 = 0.0548 0 0

The dynamical parameters of manipulator are given
in Table 3 for the i-th link, mi is the mass, ri =
[

xi yi zi

]T

is the center of mass expressed in the i-th

frame, and Ii is the inertia tensor expressed in the center
of mass frame defined as

Ii =







Ixxi Ixyi Ixzi

Ixyi Iyyi Iyzi

Ixzi Iyzi Izzi






. (55)

The parameters of motors are given in Table 4.

Table 4 The specifications of DC servo motors

umax R Kb L Jm Bm r

(V) (Ω) (V·s/rad) (H) (N·m·s2/rad) (N·m·s2 /rad)

42 1.6 0.26 0.001 0.0002 0.001 0.1

The desired position for every joint is given by

θd =

{

0.5 − 0.5 cos
πt

2
, if 0 6 t < 2

1, if 2 6 t < 4.
(56)

The capability of control system in both set point and
tracking can be considered by the desired trajectory (56),
where the first part is time variant, and the second part is
constant.

Simulation 1. We simulate the proposed PRFC given
by (18) by selecting the controller gains as given in Table 5
and umax = 42 V.

Table 5 Controller gains

Controller 1 Controller 2 Controller 3 Controller 4

kp 5 000 5 000 5 000 4 000

ki 2 0000 2 0000 2 0000 2 0000

The external disturbance is inserted to the system by a
pulse function with a period of 4 s, amplitude of 1 V, phase
delay of 1 s and pulse width of 2 s. The decentralized PRFC
shows a satisfactory performance under the given distur-
bance in Fig. 3 such that the value of tracking error for joint
3 reaches −3.7 × 10−6 m at the end which is ignorable. In
order to evaluate the control performance, we use the mean
of integral of squared errors, MISE, in the operating range

T = 4 s on four joints expressed as

MISE =
1

T

∫ T

0

(

e
2
1 + e

2
2 + e

2
3 + e

2
4

)

dt. (57)

MISE is calculated as MISE = 8.223 × 10−8 which is
ignorable. The control efforts behave well under the max-
imum voltage in the presence of disturbance as shown in
Fig. 4. The center of zero fuzzy set of the consequent part of
Rule 5 is regulated as shown in Fig. 5. The proposed decen-
tralized PRFC is very simple, highly accurate, model-free
and robust with guaranteed stability as verified in Section
3.

Fig. 3 Performance of the PRFC under disturbance

Fig. 4 Control efforts of the PRFC under disturbance
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Fig. 5 Adapting the center of zero fuzzy set of output

Simulation 2. The decentralized PD-like fuzzy con-
troller (54) is simulated. The same external disturbance
as used in Simulation 1, is inserted to the control system.
The performance of the PD-like fuzzy controller is shown
in Fig. 6. Tracking error for joint 3 at the end is about
−3.1 × 10−3 m. This value is about 837 times greater than
the one in the PRFC. The MISE of the PD-like fuzzy con-
troller is about 1.337× 10−5. This value is about 163 times
greater than its value in the PRFC. The control efforts be-
have well under disturbance as shown in Fig. 7. Perfor-
mance of the decentralized PD-like fuzzy controller is quite
good. However, the performance of the decentralized PRFC
is much better.

Fig. 6 Performance of the PD-like fuzzy controller under distur-

bance

6 Conclusions

The decentralized PRFC of electrically driven robot ma-
nipulators has been proposed using voltage control strategy
and convergence analysis. This design is important from
a control point of view that the state-space model of the
robotic system including robot manipulator and motors is
in non-companion form, multivariable, highly nonlinear and
heavily coupled with a variable input gain matrix. The
proposed decentralized PRFC is simple, model-free, robust

with guaranteed stability and high accuracy tracking per-
formance in a decentralized structure. The error and its
derivative are the only feedbacks required for the proposed
control law. Simulation results show the effectiveness of the
proposed PRFC. It is superior to the PD-like fuzzy con-
troller as presented through comparisons.

Fig. 7 Control efforts of the PD-Like fuzzy controller under dis-

turbance
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