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A PRECISE UPPER BOUND FOR THE ERROR
OF INTERPOLATION OF STOCHASTIC PROCESSES

UDC 519.21

A. YA. OLENKO AND T. K. POGÁNY

Abstract. We obtain a precise upper bound for the truncation error of interpolation
of functions of the Paley–Wiener class with the help of finite Whittaker–Kotelnikov–
Shannon sums. We construct an example of an extremal function for which the
upper bound is achieved. We study the error of interpolation and the rate of the
mean square convergence for stochastic processes of the weak Cramér class. The
paper contains an extensive list of references concerning the upper bounds for errors
of interpolation for both deterministic and stochastic cases. The final part of the
paper contains a discussion of new directions in this field.

1. Introduction

Recovering a continuous signal from its discrete readings and estimation of the amount
of information lost due to the discretization procedure is one of the fundamental problems
in the theory of interpolation and approximation.

Let X be a normed space equipped with a norm ‖ · ‖X. Assume that the structure
of X admits the approximation

(1) f(x) =
∑
n∈Z

f(tn)S(x, tn), f ∈ X,

where x ∈ R, {tn}n∈Z ⊂ R is the sampling set, and S is the sampling function. The
latter relation is one of the basic tools in signal processing.

It is a common approach in various numerical applications to consider the truncated
version of (1), namely

(2) YJ(f ; x) =
∑
n∈J

f(tn)S(x, tn), J ⊂ Z,

where J is a finite set.
The classical problem is to obtain an upper bound ϕJ(f ; x) for the truncation error

TJ(f ; x), namely

‖TJ(f ; x)‖ = ‖f(x) − YJ(f ; x)‖ ≤ ϕJ(f ; x), f ∈ X.

It is very important for numerical applications to find simple upper bounds that do not
involve infinite products, iterative procedures, or unknown values of the function.
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The problem of evaluating an optimal/minimal size |J| of the interpolating sum in (2)
for a given truncation error ε > 0 of approximation (interpolation) is solved in some
earlier papers by finding a minimal |J| such that

sup
x

ϕJ(f ; x) ≤ ε.

More details concerning this approach can be found in §3.5 and §4.5 in the survey paper [5]
or in §IV.C and §VI of the classical paper [15], or in §III.A of [17]. Chapter 11 of the
book [12] contains a useful discussion of the analysis of errors. More details on the upper
bounds for the truncation errors for various procedures of interpolation of a signal and
on different approaches to this topic are given in Section 5.

We mention papers [9, 13, 25] containing results for the most general case of nonpe-
riodic readings and their stochastic counterparts [18]. However the deviation between
the estimates and optimal solutions is not studied in these papers (optimal solutions
correspond to TJ(f ; x) rather than to ϕJ(f ; x)).

The main aim of this paper is to obtain optimal solutions. We propose to consider
the following function:

(3) ϕJ(f ; x) = ε|J|‖f‖.

This means that our aim is to obtain a pointwise upper bound that holds for all argu-
ments x and such that the constant ε|J| cannot be improved; that is, there exist at least
one function f and at least one real number x such that

(4) ‖TJ(f ; x)‖ = ε|J|‖f‖.

We denote this interpolation procedure by f(x)
ε≈ YJ(f ; x).

At first glance, the described problem is similar to the so-called aliasing problem (see
[5, 12]). Nevertheless, these problems are totally different. The difference between f and
the nontruncated series (1) is studied in the aliasing problem. Thus the errors in this
problem appear due to the difference between the real spectrum and the one we use for
the model.

For the sake of simplicity we consider the one-dimensional case in the paper. We find
an optimal value of ε∗ and construct a function for which the upper bound (4) is attained.
As far as we know, this is the first result for the above setting where the optimal value
of ε|J| is evaluated in an explicit form. We show that

lim
|J|→∞

YJ(f ; x) = f(x)

for the optimal ε∗ = ε∗|J| and for several types of convergence (pointwise, uniform, etc.).
We also consider the stochastic approximation of random processes ξ(x) belonging to a
weak Cramér class. We use results obtained in Section 2 for the deterministic case to
solve the interpolation problem ξ(x)

ε≈ YJ(ξ; x) in the L2(Ω) sense. Finally, we discuss
problems of the mean square convergence of YJ(ξ; x) to ξ(x).

2. The exact upper bound in the sampling theorem

for deterministic signals

Consider the Paley–Wiener class of all complex-valued functions of L2(R) for which
the support of the Fourier spectrum is [−π, π]. Following [12, §6] we denote this class
by PW 2

π . According to the classical Whittaker–Kotelnikov–Shannon theorem, every
function f of the class PW 2

π can be uniquely reconstructed from its values at integer
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points; namely,

(5) f(x) =
∞∑

n=−∞
sinc(x − n)f(n)

where

sinc(t) :=

{
sin(πt)

πt , t �= 0,

1, t = 0.

The truncated version of (5), that is,

(6) YN (f ; x) :=
∑

|x−n|≤N

sinc(x − n)f(n),

is commonly used in applications. Our goal is to obtain bounds of the following form:

(7) ‖f(x) − YN (f ; x)‖ ≤ ε · ‖f‖,

where ‖ ·‖ denotes some Lp-norm (the norms on the left-hand and right-hand sides of (7)
are possibly different). Consider the norm

‖f‖∞ = inf{a > 0: such that |f(x)| ≤ a for all x ∈ R}

for the left-hand side and the norm ‖f‖2 =
(∫

R
|f(x)|2 dx

)1/2 for the right-hand side
of (7).

Our aim is to find the minimal constant ε∗ = ε∗N such that, given a number N ,
inequality (7) holds for all functions of PW 2

π and for the above norms. Another interesting
problem is to find the so-called extremal function f∗ for which inequality (7) becomes an
equality for the number ε∗.

Thus we deal with the precise bounds for the truncation error in an approximation.
Therefore we want to find the minimal ε such that the difference

TN (f, x) := f(x) − YN (f ; x)

satisfies the inequality
‖TN (f, x)‖∞ ≤ ε‖f‖2

for a given number of terms in (6), for all functions f of PW 2
π , and for all x ∈ R. Thus we

obtain a uniform estimate in R, while other papers deal with estimates that are uniform
only in bounded subsets of R.

Theorem 1. Let f ∈ PW 2
π . Then

(8) ‖TN (f, ·)‖∞ ≤
(

1 − 8
π2

N∑
n=1

1
(2n − 1)2

)1/2

‖f‖2.

Inequality (7) cannot be improved; the extremal function is given by

(9) f∗
N (x) :=

∑
|n−2−1|>N

sin(πx)
π2

(
n − 1

2

)
(n − x)

.

Proof. Applying the Cauchy–Schwarz inequality and Parceval equality ([12, §6.7])

‖f‖2 =
( ∞∑

n=−∞
|f(n)|2

)1/2

, f ∈ PW 2
π ,
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we obtain an upper bound for the pointwise error:

|f(x) − YN (f ; x)| =
∣∣∣∣ ∑
|x−n|>N

sinc(x − n)f(n)
∣∣∣∣ ≤ ∑

|x−n|>N

|sinc(x − n)f(n)|

≤
( ∑

|x−n|>N

|f(n)|2
)1/2( ∑

|x−n|>N

sinc2(x − n)
)1/2

≤ ‖f‖2

( ∑
|x−n|>N

sinc2(x − n)
)1/2

.

(10)

To evaluate the minimal ε = εN we consider the behavior of the function

(11) ΨN (x) :=
∑

|x−n|>N

sinc2(x − n) = sin2(πx)
∑

|x−n|>N

1
π2(x − n)2

with respect to the argument x. It follows from

(12)
1
π2

∞∑
n=−∞

1
(x − n)2

=
1

sin2(πx)

that

(13) ΨN (x) := 1 − sin2(πx)
∑

|x−n|≤N

1
π2(x − n)2

.

Note that sin2(πx) = sin2[π(1−x)] and
∑

|x−n|≤N (x−n)−2 does not change if (1−x) is
substituted for x. Thus ΨN (x) is a symmetric function about x = 1

2 . Thus we can restrict
our consideration of ΨN (x) to the interval [0, 1

2 ], since ΨN (x) is a periodic function with
period 1. In order to obtain the minimal number ε in (7), we find the maximum of the
function ΨN (x).

The function ΨN (x) can be rewritten in the following form:

1 +
sin2(πx)Ψ(1, N + 1 − x)

π2
− sin2(πx)Ψ(1,−N + 1 − x)

π2
,

where Ψ(n, x) is the polygamma function of order n; that is, Ψ(n, x) is the nth derivative
of the digamma function

Ψ(x) := (ln(Γ(x)))′ =
Γ′(x)
Γ(x)

.

The graphs of ΨN (x) can be depicted for various N with the help of Maple 8. All the
graphs depicted have the same unimodal form shown in Figure 1 for N = 20. Therefore
it is natural to conjecture that x = 1

2 is the point of supremum of the function ΨN (x).
Let us prove that this is the case, indeed. First we rewrite (11) as follows:

(14) ΨN (x) =
∑
k>N

sin2(πx)
π2

(
1

(k − x)2
+

1
(x + k − 1)2

)
: =

∑
k>N

ϕk(x).

Then we show that each function ϕk(x), k > 1, is increasing in x on the interval [0, 1
2 ].

The function ΨN (x), as the sum of increasing terms, also is increasing on [0, 1
2 ] and,

moreover,

(15) max
x∈[0, 1

2 ]
ΨN (x) = ΨN

(
1
2

)
.
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Figure 1. ΨN (x), N = 20

Indeed,

∂ϕk(x)
∂x

=
2 sin(πx)

π2(k − x)3(k − 1 + x)3

×
{
π(k − x)(k − 1 + x)

[
(k − x)2 + (k − 1 + x)2

]
cos(πx)

− (1 − 2x)
[
(k − x)2 + (k − x)(k − 1 + x) + (k − 1 + x)2

]
sin(πx)

}
.

Since cos(x) is concave in the first quadrant, it follows that cos(πx) ≥ 1− 2x, x ∈ [0, 1
2 ].

Using the estimate sin(πx) ≤ π we get

∂ϕk(x)
∂x

≥ 2 sin(πx)(1 − 2x)
π(k − x)3(k − 1 + x)3

×
{[

(k − x)2 + (k − 1 + x)2
]
[(k − x)(k − 1 + x) − 1] − (k − x)(k − 1 + x)

}
≥ 2 sin(πx)(1 − 2x)

π(k − x)3(k − 1 + x)3

× {2(k − x)(k − 1 + x)[(k − x)(k − 1 + x) − 1] − (k − x)(k − 1 + x)}

=
4 sin(πx)(1 − 2x)

π(k − x)2(k − 1 + x)2
{(k − x)(k − 1 + x) − 3/2} ≥ 0.

The latter inequality holds in view of

(k − x)(k − 1 + x) − 3/2 = (k − 1/2)2 − (1/2 − x)2 − 3/2 ≥ (k − 1/2)2 − 7/4 > 0,

which is true for all k > 1.
This proves that the function ϕk(x) is increasing on the interval [0, 1

2 ]. Therefore
ΨN (x) is increasing, too. Now (13) implies that

ΨN

(
1
2

)
= 1 − 2

π2

N∑
n=1

1(
n − 1

2

)2 = 1 − 8
π2

N∑
n=1

1
(2n − 1)2

,

whence

ε∗N :=
√

sup
x∈R

ΨN (x) =

√√√√1 − 8
π2

N∑
n=1

1
(2n − 1)2

.

Therefore the left-hand side of (10) does not exceed ε∗N‖f‖2.
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To show that the above number ε∗N cannot be improved in the problem under con-
sideration, we introduce the function fN (n) assuming the following values at integer
arguments:

fN (n) :=

{
0, for n = −N + 1, . . . , N,

sinc
(
n − 1

2

)
≡ (−1)n+1

π(n−2−1) , otherwise.

Then we define the extremal function f∗
N (x) according to the Whittaker–Kotelnikov–

Shannon formula (5):

f∗
N (x) :=

∞∑
n=−∞

sinc(x − n)fN (n) =
∑

|n−2−1|>N

(−1)n+1sinc(x − n)
π

(
n − 1

2

)
=

∑
|n−2−1|>N

sin(πx)
π2

(
n − 1

2

)
(n − x)

.

The function f∗
N (x) belongs to the class PW 2

π since {sinc(x − n)}n∈Z is an orthogonal
basis in PW 2

π . Note also that fN (n) is the nth Fourier coefficient of f∗
N (x) ([12, §6.7])

and, moreover, the series of squared Fourier coefficients converges:( ∞∑
n=−∞

|fN (n)|2
)1/2

=
( ∞∑

n=N+1

8
π2(2n − 1)2

)1/2

≤
√

2
π
√

N
< ∞.

Inequalities (10) become equalities for the function f∗
N (x) at x = 1

2 . This shows, in
particular, that, given N , the constant ε∗ = ε∗N in (8) cannot be improved for the
function fN (x). �

Remark 1. The above discussion implies that the set of functions for which inequalities (8)
become equalities for ε∗ coincides with

{κf∗
N (x + m) : κ ∈ C, m ∈ Z} .

Now we consider some corollaries of Theorem 1. Note that Theorem 1 can be used to
prove that

(16) lim
N→∞

YN (f ; x) = f(x)

in a certain sense. First we define the space of functions

PW 2
π,C :=

{
f ∈ PW 2

π : ‖f‖2 < C
}

,

where C > 0.

Corollary 1.1.
lim

N→∞
sup

f∈PW 2
π,C

‖f(x) − YN (f ; x)‖∞ = 0.

Proof. The equality
∞∑

n=1

1
(2n − 1)2

=
π2

8

easily implies that ε∗N → 0 as N → ∞. Combining this result and (8) we prove that (16)
holds uniformly on PW 2

π,C × R. �

The following assertion contains a precise solution of the problem of finding the min-
imal number of terms in the approximating sum YN (f ; x) in (6) if the approximation
error ε is fixed.
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Corollary 1.2. For a given level ε of the approximation error, the minimal number
N∗(ε) of terms in the truncated sum is equal to

N∗(ε) = min

{
N :

(1 − ε2)π2

8
≤

N∑
n=1

1
(2n − 1)2

}
.

3. Stochastic processes of the weak Cramér class

In Section 4, we obtain the interpolation formula for the class of nonstationary stochas-
tic processes by using the Piranashvili approach [22]. In this section, we briefly discuss
some results for stochastic processes of the weak Cramér class that are generalizations of
the corresponding results of Rozanov [29] and Rao [27] (more detail and references can
be found in [16]).

Let SΛ be a σ-ring of subsets of Λ ⊆ R and F : SΛ × SΛ 
→ C be a positive definite
bimeasure. The Fréchet variation or semivariation of F on (A, B) is defined by

‖F‖(A, B) := sup

{∣∣∣∣
n∑

i=1

m∑
j=1

aibjF (Ai, Bj)
∣∣∣∣ : |ai| ≤ 1, |bj | ≤ 1,

{Ai}n
1 ∈ S(A), {Bj}m

1 ∈ S(B); AiAl = BjBk = ∅, n ≥ 1

}

where S(∆) = {∆ ∩ B : B ∈ SΛ}.
Let {ξ(x), x ∈ R} be a second-order stochastic process on a certain probability space

(Ω, F, P). For the sake of simplicity we assume that Eξ(x) = 0 and that the correlation
function B(x, y) = Eξ(x)ξ(y) of the process ξ is determined by a family

{f(x, λ) : x ∈ R, λ ∈ Λ}
of SΛ-measurable functions as follows:

(17) B(x, y) =
∫

Λ

∫ ∗

Λ

f(x, λ)f(y, µ)Fξ(dλ, dµ)

where “∗” means that the integral on the right-hand side of (17) exists in the strong
Morse–Transue sense with respect to the bimeasure Fξ(dλ, dµ) that has a bounded vari-
ation. We say in this case that the correlation function (17) belongs to the weak Cramér
class. A stochastic process ξ(x) belongs to the weak Cramér class if its correlation
function belongs to the weak Cramér class. The following spectral representation

(18) ξ(x) =
∫

Λ

f(x, λ) Zξ(dλ)

is well known for ξ(x) whose correlation function is of the form (17). Representation (18)
means that there exists a stochastic measure Zξ : SΛ 
→ L2(Ω) such that (18) holds, where
the integral is defined in the Dunford–Schwartz sense. The converse is also true, namely
if (18) holds with a stochastic measure Zξ, then the correlation function of ξ is of the
form (17). The semivariation of Zξ on A is defined by

‖Zξ‖(A) := sup

{∥∥∥∥
n∑

i=1

aiZξ(Ai)
∥∥∥∥

L2

: |ai| ≤ 1, {Ai}n
1 ∈ S(A), AiAl = ∅, n ≥ 1

}
,

where ‖ · ‖L2 means the norm in L2(Ω). The semivariation of the bimeasure Fξ and that
of the stochastic measure Zξ are such that ‖Zξ‖(A)2 = ‖Fξ‖(A, A) [16].

We denote by L2
MT (Λ; Fξ) the Hilbert space of complex-valued functions on Λ that are

square integrable (in the Morse–Transue sense) with respect to the measure Fξ. Note that
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the space L2
MT (Λ; Fξ) is isometric to L2(Λ; Ω), where L2(Λ; Ω) consists of all stochastic

measures
ζ : SΛ × F 
→ C

that are L2(Ω)-bounded, that is, E|ζ(A)|2 < ∞, A ∈ SΛ.

4. Interpolation of stochastic processes

Our next aim is to investigate the approximation procedure

ξ(x)
ε≈ YN (ξ; x) =

∑
|x−n|≤N

sinc(x − n)ξ(n) in the L2(Ω) sense

for a stochastic process ξ(x) of the weak Cramér class. More precisely, we fix N and find
ε = εN such that

‖ξ(x) − YN (ξ; x)‖2
L2

< ε‖Fξ‖(Λ, Λ).
Furthermore, we fix ε and find the mean square optimal interpolator YN (ξ; x).

Put

‖f(x, ·)‖∞,Fξ
:= inf

{
α : ‖Fξ‖(Aα, Aα) = 0, Aα = {λ ∈ Λ: |f(x, λ)| ≥ α}

}
.

Theorem 2. Let {ξ(x), x∈R} be a stochastic process of the weak Cramér class. Assume
that f(·, λ), as a function of the first argument, belongs to PW 2

π for almost all λ. Then
the upper bound of the mean square truncation error TN (ξ; x) := ‖ξ(x) − YN (ξ; x)‖2

L2

for the discrete approximation procedure ξ(x)
ε≈ YN (ξ; x) is determined by the following

inequality:

(19) ‖TN (ξ; ·)‖∞ ≤ C2
f

(
1 − 8

π2

N∑
n=1

1
(2n − 1)2

)
‖Fξ‖(Λ, Λ),

where
Cf =

∥∥ ‖f(·, ·)‖2

∥∥
∞,Fξ

and the norm ‖ · ‖2 is considered with respect to the first argument of the function f ,
while the norm ‖ · ‖∞,Fξ

is considered with respect to its second argument.

Proof. Relation (18) implies that

ξ(x) =
∫

Λ

f(x, λ) Zξ(dλ).

Thus ξ(x) admits the representation

ξ(x) = YN (ξ; x) +
∫

Λ

∑
|x−n|>N

sinc(x − n)f(n, λ) Zξ(dλ)

in the L2(Ω) sense. Using the isometry between the space L2(Λ; Ω) and the Hilbert space
L2

MT (Λ; Fξ) we get

TN (ξ; x) =
∫

Λ

∫ ∗

Λ

∑
|x−n|>N

sinc(x − n)f(n, λ)

×
∑

|x−m|>N

sinc(x − m)f(m, µ)Fξ(dλ, dµ)

=
∫

Λ

∫ ∗

Λ

TN (f ; x, λ)TN (f ; x, µ)Fξ(dλ, dµ)

≤ ‖TN (f ; x, ·)‖2
∞,Zξ

‖Fξ(Λ, Λ)‖,

(20)

where TN (f ; x, λ) = f(x, λ) − YN (f(·, λ); x).
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The last inequality in (20) follows from the isometry between the spaces L2(Λ; Ω) and
L2

MT (Λ; Fξ) since

‖Zξ‖(A) = sup

{∥∥∥∥
∫

A

f(λ)Zξ(dλ)
∥∥∥∥

L2

: ‖f‖∞,Zξ
≤ 1, f is Zξ-integrable

}
,

where

‖f(x, ·)‖∞,Zξ
:= inf

{
α : ‖Zξ‖(Aα) = 0, Aα = {λ ∈ Λ: |f(x, λ)| ≥ α}

}
(see [16]).

A set A is called a Zξ-null set if ‖Zξ‖(A) = 0; similarly, A is called an Fξ-null set if
‖Fξ‖(A, A) = 0. Since Zξ-negligible sets and Fξ-negligible sets coincide,

‖f(x, ·)‖∞,Zξ
≡ ‖f(x, ·)‖∞,Fξ

.

Now we use the upper bound (8) for the truncation error:

‖TN (f ; x, ·)‖∞,Fξ
≤

∥∥‖TN (f ; ·, ·)‖∞
∥∥
∞,Fξ

≤ ε∗N
∥∥‖f(·, ·)‖2

∥∥
∞,Fξ

.

Finally, relation (20) and the preceding discussion imply that

‖TN (ξ; x)‖∞ ≤ C2
f (ε∗N )2‖Fξ‖(Λ, Λ) = C2

f

(
1 − 8

π2

N∑
n=1

1
(2n − 1)2

)
‖Fξ‖(Λ, Λ),

whence the upper bound (19) follows. �

Theorem 3. Inequality (19) cannot be improved in the class of stochastic processes that
have the spectral representation of the form (18) with f ∈ PW 2

π . The extremal process
for (19) is given by

η�(x) =
∑

|n−2−1|>N

� sin(πx)
π2

(
n − 1

2

)
(n + m − x)

,

where m ∈ Z and the random variable � has finite second moment.

Proof. It follows from the deterministic case that, given a fixed λ, the function

|TN (f ; x, λ)|

attains its maximal value at the point x = 1
2 if f(n, λ) is multiplicative, that is, if

f(n, λ) = fN (n)g(λ),

where fN (x) is defined by (9). Putting g(λ) ≡ 1 we get f(x, λ) = fN (x) and the
corresponding value

C2
f = 1 − 8

π2

N∑
n=1

1
(2n − 1)2

.

The stochastic process that corresponds to this function f(x, λ) is given by∫
Λ

( ∞∑
n=−∞

sinc(x − n)fN (n)

)
Zξ(dλ) =

∑
|n−2−1|>N

∫
Λ

Zξ(dλ) sin(πx)
π2(n − 1

2 )(n − x)
.

Thus the extremal stochastic process can be represented as follows:

η�(x) :=
∑

|n−2−1|>N

� sin(πx)
π2

(
n − 1

2

)
(n − x)

,
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where � =
∫
Λ

Zξ(dλ) is a random variable such that

E|�|2 = EZξ(Λ)Zξ(Λ) = ‖F (Λ, Λ)‖ < +∞.

It remains to use Remark 1. �
As one can see from the above representation, the extremal process η�(x) is determined

by a single random variable �.
We introduce the subclass GC , C > 0, of weak Cramér stochastic processes by

GC :=
{
ξ : C2

f‖Fξ‖(Λ, Λ) < C
}

,

where Cf is defined in the statement of Theorem 2, and Fξ is the bimeasure for the weak
Cramér class of correlation functions (16) that corresponds to ξ.

Corollary 3.1. The convergence

lim
N→∞

sup
ξ∈GC

‖ξ(x) − YN (ξ, x)‖L2 = 0

is uniform for x ∈ R.

5. Concluding remarks

A. We have already mentioned in Section 1 that the upper bounds for the truncation
error are the main tool to solve interpolation problems such as f(x)

ε≈ YN (f ; x). Earlier
papers dealt with truncations of the usual Whittaker–Kotelnikov–Shannon series (5),
that is, with

Y 0
N (f ; x) :=

∑
|n|≤N

sinc(x − n)f(n)

for both deterministic and stochastic signals f belonging to a certain space of functions.
A nice upper bound of the truncation error TN (f ; x) = f(x)−Y 0

N (f ; x) allows one to prove
various types of convergence (namely pointwise, almost sure, uniform convergence, etc.)
of the approximating Whittaker–Kotelnikov–Shannon sequence Y 0

N (f ; x) to the original
signal f . There are two main approaches for obtaining results of this type. The first
approach originated with Belyaev [1] in 1959 who proved that the bound

TN (ξ; x) ≤ 16π2(2 + |x|)2E|ξ(x)|2
(π − w)2N2

, w < π,

is exact in the class of weakly stationary stochastic processes with spectra whose sup-
ports belong to [−w, w] (with a band-limited spectrum, in other words). Another result
of the paper [1] is that the paths of second-order stationary processes with a band-limited
spectrum belong almost surely to the class of functions of exponential type with bounded
exponent1 (see [25]). Using the one-to-one correspondence between functions of exponen-
tial type with a finite index and the band-limited spectrum, Piranashvili [22] generalized
Belyaev’s results and obtained an upper bound of the truncation error of order O(N−2)
for all bounded x-subsets of R. Further upper bounds for the truncation error are ob-
tained in [7, 10, 19, 23, 24, 25, 27, 28, 30, 31, 32, 33, 36] under various conditions on the
signal function (typically, the conditions are close to the assumption that the signal func-
tion is of exponential type). The proofs use similar approaches but specific conditions on
the signal function (Lipschitz, Paley–Wiener, Bernstein, a restriction on the spectrum,
superdiscretization, the polynomially bounded correlation etc.) lead to different forms of
upper bounds. Note that the time shifted function YN (f ; x) is considered in [9, 18, 26]
instead of Y 0

N (f ; x).

1A relation between functions with a band-limited spectrum and functions of exponential type with
bounded exponent is described in the prominent Paley–Wiener theorem.
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Other upper bounds of the truncation error deal with a narrow time interval containing
the origin. The upper bounds for the truncation error in [2, 3, 4, 11, 14, 34, 35] use the
estimation from above of the sum

∑b
n=a |sinc(x − n)|q, q > 0, and convexity of the

function sin(x). The analysis of the estimate of the truncation error is done in [20, 21]
for x ∈ [−N, N ].

One of the best results known for weakly stationary processes with band-limited spec-
trum on [−π + γ, π − γ], γ ∈ (0, π), is due to Cambanis and Masry [6]:

TN (ξ; x) ≤ 2x2E|ξ(x)|2sinc2(x)
sin2(γ/2)N2

, x ∈ [−2, 2].

Our method described above allows one to obtain simple upper bounds (8) and (19)
being uniform, minimal, and time shifted . These bounds of the interpolation error hold
for functions of the class PW 2

π and for stochastic processes of the weak Cramér class
whose kernel functions in the spectral representations (18) belong to the class PW 2

π .
Note that the earlier papers cited above do not contain examples of extremal functions
for the approximation f(x)

ε≈ YN (f ; x), f ∈ PW 2
π .

B. The method used in the proof of Theorems 1–3 and their corollaries raises the
following questions.

(i) Does our method work in a more realistic model than that of regular/homogeneous
readings for signals with band-limited spectra?

(ii) If the answer to the question (i) is positive, then what are the conditions to be
posed on the signal function? Following the classical Yen paper [37] (written in a heuristic
style) Flornes et al. [9] proposed to make a correction to the discrete approximation of
the Whittaker–Kotelnikov–Shannon sum such that the deviation of the new nodes from
the uniform nodes does not exceed a certain constant (this allows one to deal with the
interpolation which is stable in the Landau sense according to the 1

4 -Kadetz theorem).
Yen [37] considered other approaches to the nonregular time discretization (“jitter”). A
multivariate analog of these results is obtained by Pogány [26] for the deterministic case
and by Olenko and Pogány [18] for random fields of the weak Cramér class.

The contour integration, integral Cauchy theorem, etc. are used in some papers
to obtain upper bounds of the truncation error (see, for example, Butzer et al. [5],
Higgins [12], Seip [30, 31], Pogány [26], Yao and Thomas [36], and Helms and Thomas [11].
One can conjecture that these methods are also useful to obtain the minimal ε∗ = ε∗N .

It would be interesting to check our method in all the cases mentioned above. Even
an incomplete test of the method related to the abstract harmonic analysis studied in [8]
would be of essential interest for the approximation f(x)

ε≈ YN (f ; x). Among other
topics, Dodson and Beaty [8] study the problem of extremal functions.

Finally, an interesting problem arises if one switches from the mean square convergence
to the almost sure convergence. The paper [25] contains some results concerning the rate
of convergence for the almost sure convergence.
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