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Abstract—This paper addresses the question of identifying
the right camera direct or inverse distortion model permitting
a high subpixel precision fit to real camera distortion. Five
classic camera distortion models are reviewed and their precision
compared for direct or inverse distortion. By definition, the
three radially symmetric models can only model a distortion
radially symmetric around some distortion center. They can
be extended to deal with non-radially symmetric distortions
by adding tangential distortion components, but still may be
too simple for very accurate modeling of real cameras. The
polynomial and the rational models instead miss a physical or
optical interpretation, but can cope equally with radially and non-
radially symmetric distortions. Indeed, they do not require the
evaluation of a distortion center. When requiring high precisions,
we found that the distortion modeling must also be evaluated
primarily as a numerical problem. Indeed, all models except the
polynomial involve a non-linear minimization which increases the
numerical risk. The estimation of a polynomial distortion model
leads instead to a linear problem, which is secure and much
faster. We concluded by extensive numerical experiments that,
although high degree polynomials were required to reach a high
precision of 1/100 pixels, such polynomials were easily estimated
and produced a precise distortion modeling without over-fitting.
Our conclusion is validated by three independent experimental
setups: The models were compared first on the lens distortion
database of the Lensfun library by their distortion simulation
and inversion power; second by fitting real camera distortions
estimated by a non parametric algorithm; and finally by the
absolute correction measurement provided by photographs of
tightly stretched strings, warranting a high straightness.

Index Terms—distortion measurement, camera calibration

I. INTRODUCTION

The pinhole camera model is widely used in computer

vision applications because of its simplicity and its linearity

in terms of projective geometry [14]. But real cameras deviate

from the ideal pinhole model. The main geometric deviation

is a lens geometric distortion [3], possibly complicated by a

deviation from planarity of the CCD shape. Thus an accurate

camera distortion correction is the first step towards high

precision 3D metric reconstruction from photographs. With the

steady progress in lens quality and camera resolution, high-

precision 3D reconstructions become feasible. But they require

in turn higher camera distortion precisions than those provided

by classic methods. The object of this paper is to investigate

the validity of distortion models at the light of precision re-

quirements increased by two or three orders of magnitude. This

increased accuracy requires a new methodology for evaluating

distortion models. Five models are studied and evaluated in

the paper: the radial [3], division [10], FOV [9], polynomial

(such as bicubic [15]), and rational [7], [13] models. They rely

on several different hypotheses on the underlying distortion

model. Clearly their precision depends on which model hy-

pothesis is valid. Radially symmetric models are very precise

for radially symmetric distortions. They can be extended to

treat non-radially symmetric distortions by adding tangential

components. The polynomial model and the rational model

impose the fewer constraints on the distortion, to the cost

of an increased number of model parameters. Thay way they

can cope with radial and non-radial symmetric distortions as

well. Among them the polynomial is the only linear model.

Its estimation is a simple matrix inversion. All the other

models require a somewhat complex non-linear minimization.

We shall see that the linearity of the polynomial model reduces

its numerical risk and makes its modeling precision closer to

1/100 pixels for realistic camera distortions.

It could be argued that a correct model should be based

on physical measurements on systems of lenses. Surprisingly

enough, there is little physical background for the distortion

models in the literature. According to Weng et al. [30],

lens distortion can be decomposed into three effects: radial

distortion, decentering distortion and thin prism distortion.

Nevertheless, it is only marginally based on a physical back-

ground, and it is not clear that the real distortion precisely

follows this model. In fact, the final distortion is the result of

the cumulated effects of a complex lens system, of the camera

geometry, and of the (not perfectly planar) shape of the image

sensor. One is therefore led to figure out a flexible model

with enough parameters to simulate any plausible distortion. In

absence of a physical model, the model classification approach

adopted here will be to look for models that actually cope with

any realistic distortion, at a given precision.

Many works in the computer vision community assume that

the distortion is radially symmetric around the center of the

image, and the radial, division and FOV models are often used

to simulate and inverse the radially symmetric distortion. Even

though these models are not exactly (algebraically) invertible,

the simulation and correction can be obtained at very high

precision if the order of the model is high enough, as we will

show in Section III. This explains why these models in the

literature are used with the interchangeable roles of distorted

points and undistorted points. For example, direct distortion

models are used in global camera calibration [29], [32], [17],

[30]. Yet, in most plumb-line methods [3], [9], [1], [2], [25],

[23], [22], [6] or some pattern-free methods [26], [31], [10],

[19], [28], [7], [21], [4], [16], the very same radial correction

models are used without any fuss to inverse the distortion.

In practice, the distortion center is unknown and we do

not even a priori know if the distortion is radially symmetric

around a certain center. So the radially symmetric models
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with an arbitrarily fixed distortion center (typically, the image

center) is not always a good model. The common practice

is to fix the distortion center at some reasonable position

and add tangential distortion components to the model. All

the global camera calibration methods adopt this strategy by

fixing the distortion center at the principal point. An alternative

is to estimate the distortion center that makes the radially

symmetric models fit optimally to the distortion. For example,

Hartley and Kang [12] propose to estimate the distortion center

under the assumption that the distortion is radially symmetric

and monotone. Being more general, the polynomial model and

the rational model are invariant to the distortion center and can

be directly used to model the distortion without estimating any

distortion center.

Our aim is to find models which are flexible and easy to

use, producing small residual error no matter what reasonable

distortion has been applied. Ideally we would like to test on

all possible distortions of any existing camera lens. Since

exhaustive testing is impossible, we resorted to the lens

database of the LensFun library, which is known to contain the

most complete freely available lens profiles. All the distortions

provided by Lensfun are radially symmetric around the image

center.

The question we raise here only makes sense within fixed

accuracy bounds. This is a first caveat: any evaluation must

be performed at a given precision. As a matter of fact, for

off-the-shelf cameras, most distortion models perform well at

a 1 pixel precision. The question is different when we aim

at sub-pixel precisions. These precisions, up to 1/100 pixels,

are highly desirable when using cameras for stereovision or

photogrammetric tasks. Indeed, in stereovision a determining

factor is b/h, the ratio of baseline to average depth. A high ra-

tio improves accuracy of depth determination by triangulation,

but makes automatic image matching more difficult because of

the significant viewangle change. On the contrary, a low ratio

eases the point-matching step but requires sub-pixel estimation

to avoid a strong quantization of recovered depths. The latter

case is advisable for automatic processing, hence the need for

highly accurate distortion correction.

The other caveat is that, although distortion models reflect

a model of the optical lens, the real distortion must actually

involve the whole system lens plus CCD. There is no way

to guarantee that a CCD is absolutely flat, or exactly per-

pendicular to the optical axis. This explains why the camera

distortion modeling remains, after all, an empirical question

where no physical argument can be final. The ultimate decision

is numerical.

The various distortion models will be carefully compared on

lens distortions in the Lensfun library, permitting to quantify

the ideal attainable precision. Then, the same models will be

compared on their capacity to fit to real camera distortions

(estimated by a non-parametric algorithm [11]). Finally, the

distortion correction accuracy by each model will be evaluated

by using the plumb-line approach, with photographs of tightly

stretched strings, warranting a high straightness, and giving

absolute measurements of the correction quality [27]. In short,

there will be three different numerical validations of our

conclusions.

This paper is organized as follows. Section II reviews five

classic distortion models. Their power to simulate and inverse

distortions are evaluated in Section III by synthetic experi-

ments. Section IV and V describe the experiments performed

on real cameras. Section VI sums up the lessons learned from

these experiments.

II. DISTORTION AND CORRECTION MODELS

We denote by (xu, yu) the coordinates of an undistorted

point as would be observed by an ideal pinhole camera. Due

to the lens geometric distortion, this point will be observed at

coordinates (xd, yd). The distortion is modeled by a function f
that transforms undistorted to distorted coordinates,

xd = fx(xu, yu) yd = fy(xu, yu). (1)

A correction model g performs the inverse transformation,

xu = gx(xd, yd) yu = gy(xd, yd). (2)

A particularly interesting case is when the function f or g
shows radial symmetry relative to a fixed distortion center

(xc, yc). In that case we obtain a compact formulation using

radial coordinates x̄u = xu − xc, ȳu = yu − yc, x̄d = xd − xc

and ȳd = yd − yc; then, the distortion can be expressed as the

transformation of the undistorted radius ru =
√

x̄2
u + ȳ2u to

the distorted radius rd =
√

x̄2
d + ȳ2d.

We start by reviewing the most current models. To treat

both directions in a neutral way, we will write the models

as transforming from coordinates (x1, y1) to (x2, y2). When

a model would be used as a distortion model, (x1, y1) will

correspond to (xu, yu) and (x2, y2) to (xd, yd), and it is the

opposite when used as a correction model.

The radial model displaces a point along its radial direction

originating at the distortion center. The new radius r2 is a

function of the original radius r1,

r2 = r1(k0 + k1r1 + k2r
2
1 + · · · ). (3)

The parameter k0 represents a scaling and therefore does not

introduce distortion. The scaled image is distorted by k1, k2,
. . . If all are positive, we have a pincushion distortion; if all

are negative, a barrel distortion. Mustache distortion occurs

if the signs are not the same1. Note that the distortion center

(xc, yc) is also a parameter of radial models.

The division model is obtained by simply putting the factor

term (k0 + k1r1 + k2r
2
1 + · · · ) on the denominator,

r2 =
r1

k0 + k1r1 + k2r21 + · · ·
. (4)

In these models, high-order coefficients are needed to model

extreme distortion in fish-eye lenses or other wide angle

lens systems. A more sparse representation is obtained by

parameterizing the distortion by the field of view (FOV).

The only parameter of the FOV model is the field of view

parameter ω:

r2 =
tan(r1 tan(ω))

tan(ω)
.2 (5)

1To be exact, it depends on the concavity or convexity (or their absence)
of the polynomial on the right hand side of (3) over the extent of the image.

2This formula is slightly different from the original one proposed in [9]
because we work in the normalized image domain and we consider ω as half
of the field of view instead of the full field of view.
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The Taylor expansion of the FOV model around r1 = 0 is

r2 = r1 +
tan2(ω)

3
r31 +

2 tan4(ω)

15
r51 + · · · . (6)

So the FOV model is a radial model with odd terms around

r1 = 0. Note that the order-0 scale coefficient is fixed to be 1
and all the other coefficients are coupled to ω. So to model

more complex distortions, the authors proposed to complete it

with k0, k1, k3, · · · :3

r2 =
tan(r1 tan(ω))

tan(ω)
+ r1(k0 + k1r1 + k3r

3
1 · · · ). (7)

In the polynomial model the distortion is modeled as a

polynomial in x1 and y1. For example, the third order (bicubic)

polynomial model is

x2 = a1x
3
1 + a2x

2
1y1 + a3x1y

2
1 + a4y

3
1 + a5x

2
1

+ a6x1y1 + a7y
2
1 + a8x1 + a9y1 + a10,

y2 = b1x
3
1 + b2x

2
1y1 + b3x1y

2
1 + b4y

3
1 + b5x

2
1

+ b6x1y1 + b7y
2
1 + b8x1 + b9y1 + b10, (8)

depending on the (3 + 1) · (3 + 2) = 20 parameters

a1, · · · , a10, b1, · · · , b10. More generally, a polynomial model

of order n depends on (n+1)·(n+2) parameters. The rational

function model is a quotient of two polynomials. A second

order rational function model can be written as

x2 =
a1x

2
1 + a2x1y1 + · · ·+ a5y1 + a6

c1x2
1 + c2x1y1 + · · ·+ c5y1 + c6

,

y2 =
b1x

2
1 + b2x1y1 + · · ·+ b5y1 + b6

c1x2
1 + c2x1y1 + · · ·+ c5y1 + c6

. (9)

III. PRECISION EVALUATION

We shall evaluate the distortion simulation and inversion

power of the above mentioned models. Being a theoretical

property of model families, the precision in both directions

can be genuinely evaluated by synthetic experiments.

The test begins by synthesizing realistic distortions pro-

duced by a camera lens. Since it is impossible to exhaustively

obtain all existing lens distortion profiles, we resort to the

lens database of the public library LensFun, which inherits the

database of the commercial software PTLens and has the most

comprehensive freely available lens database (see Table I for a

few lens examples. A complete lens list supported by Lensfun

can be found at http://lensfun.sourceforge.net/lenslist/. We

use version 0.3.2 of LensFun comprising more than 3500

models.). In Lensfun, the distortion is calibrated with some

predefined models (see Table II), based on the matching

points between two images taken by the same camera on

the same focal length.4 The final calibrated distortion models

in Lensfun are represented in the normalized image domain

[−1.0,+1.0]× [−1.0,+1.0]5.

3Originally the authors proposed to complete the FOV model with even-
order coefficients k4, k6, · · · .

4See http://lensfun.sourceforge.net/calibration/ for the lens profile calibra-
tion procedure.

5Actually, the larger image dimension is mapped to [−1.0, 1.0] and the
other dimension scaled so as to preserve the aspect ratio.

lens maker lens model distortion model

Canon

Canon EF-S 10–22mm f/3.5–4.5 USM ptlens

Canon EF-S 18–55mm f/3.5–5.6 ptlens

Canon EF 24–105mm f/4L IS USM ptlens

Nikon

Nikkor 12–24mm f/4G ED-IF AF-S DX ptlens

Nikkor 16–35mm f/4G ED-AFS VR ptlens

Nikkor 16–85mm f/3.5–5.6G AF-S ED VR DX ptlens

Sony

Sony AF DT 16–105mm F3.5–5.6 poly5

Sony DT 18–55mm F3.5–5.6 SAM SAL 1855 poly3

Minolta/Sony AF DT 18–70mm F3.5–5.6 (D) ptlens

Olympus

Zuiko Digital 7–14mm f/4.0 ptlens

Zuiko Digital 14–45mm f/3.5–5.6 ptlens

Zuiko Digital 40–150mm f/3.5–4.5 ptlens

Tamron

Tamron 17–35mm f/2.8–4 Di LD ptlens

Tamron 17–50mm f/2.8 XR Di II LD ptlens

Tamron 18–200mm f/3.5–6.3 XR Di II LD ptlens

Pentax

SMC Pentax DA 12–24mm F/4 ED AL IF poly3

SMC Pentax DA 18–55mm f/3.5–5.6 ptlens

SMC Pentax DA 50–200mm f/4–5.6 DA ED ptlens

TABLE I: Some lenses in LensFun used for synthetic tests.

Note that our experiments are run on a complete list of lenses

available in LensFun. Refer to LensFun website for more

information. The distortion models referred here are written

in Table II.

Model Formulation

ptlens rd = ru(1− a− b− c+ cru + br2u + ar3u)
poly3 rd = ru(1− k1 + k1r

2
u)

poly5 rd = ru(1 + k1r
2
u + k2r

4
u)

TABLE II: Models used to generate distortion in Lensfun.

According to each calibrated lens model in LensFun, we

can synthetically generate distorted/undistorted point pairs in

the normalized image domain. The simulation and correction

precisions are then verified by identifying the best parameters

through (1) and (2) respectively. In other words, both (xu, yu)
and (xd, yd) are known in the synthetic tests, and the question

is how well the distorted points (xd, yd) can be approached

by fx(xu, yu) and fy(xu, yu), and how well the ideal points

(xu, yu) can be approached by gx(xd, yd) and gy(xd, yd). We

want to compute the coefficients of fx and fy by minimizing

the difference between the observed distortion and the simu-

lated distortion. The energy to be minimized can be written

as

Ca =

∫∫

(

fx(xu, yu)− xd

)2
+
(

fy(xu, yu)− yd
)2
dxudyu.

(10)

Similarily, the energy to be minimized for estimating the

coefficients of gx and gy can be written as

Cc =

∫∫

(

gx(xd, yd)− xu

)2
+
(

gy(xd, yd)− yu
)2
dxddyd.

(11)

In practice, we generated a total of 2M pairs of dis-

torted/undistorted points {(xdi
, ydi

), (xui
, yui

)}i=1,...,2M uni-

formly distributed in the normalized image domain. Among

these pairs, M of them were used to estimate the parameter

by minimizing the discrete energy

Da =

M
∑

i=1

(

fx(xui
, yui

)−xdi

)2
+
(

fy(xui
, yui

)−ydi

)2
(12)

http://lensfun.sourceforge.net/lenslist/
http://lensfun.sourceforge.net/calibration/
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and

Dc =

M
∑

i=1

(

gx(xdi
, ydi

)−xui

)2
+
(

gy(xdi
, ydi

)− yui

)2
(13)

respectively. In order to verify the precision of the tested

models, the estimated parameters were then used to compute

the average residual error:

√

D̂a

M
and

√

D̂c

M
with D̂a and D̂c

the energy computed on the other M pairs of points, which

were not used in the energy minimization. We used points on

regular grids in [−1, 1]2 with M = 20× 20 = 400.

The unknown parameters include the specific parameters

of each distortion model and the distortion center (xc, yc).
This center (xc, yc) is irrelevant for the polynomial model

and the rational function model, both models being invariant

to the distortion center. Yet for the other models, (xc, yc) is

an important parameter that must be accurately estimated to

achieve precise distortion modeling [5], [12].

Linear or non-linear optimization methods are required to

minimize the energy in (12) and (13). For the radial model (if

the distortion center (xc, yc) is known) and the polynomial

model, the energies can be minimized by solving a linear

system

Ak = b, (14)

where A is a matrix containing the different powers for all

the distorted (or undistorted) points, k is formed with the

correction (or distortion) model coefficients, and b contains

the undistorted (or distorted) coordinates. The set of model

coefficients with least error is obtained by minimizing the

residual ‖Ak− b‖2, which results in

k =
(

A
T
A
)−1

A
T
b. (15)

Since the synthetic tests can be done in the normalized image

domain, the coefficient matrix A is usually well conditioned.

For all other models, a non-linear method must be used,

even if (xc, yc) is known. The minimization was performed by

an incremental Levenberg-Marquardt (LM) algorithm which

estimates the parameters in increasing order: The algorithm

starts estimating the parameters of a second-order model; the

result is used to initialize the model with the next higher

order, and the process continues until the aimed order. The

Jacobian matrix J required by LM was computed explicitly

to make the algorithm efficient and more precise than with

finite differences. We chose quite strict LM stopping criteria:

each individual LM stops after 1000 iterations or when the

energy does not decrease by more than 1e−10. Even though

this strategy was complex, it avoided some local minima and is

safer than performing LM directly on the model at the aimed

order.

Parameters initialization: For non-linear minimization, it

is important to initialize the parameters with reasonable values.

The common practice for the radial model and the division

model is to initialize the 0th-order parameter k0 to be 1 and

all the other parameters to be 0. The parameter ω in the FOV

model is interpreted as half the field of view of the camera.

For ordinary cameras, a typical value of ω is about π
6 ≈ 0.52,

which can be can be used as initial value.

The initialization of the rational function model is more

involved. As shown in [7], it can be solved linearly by using

a “lifted process” technique. More precisely, (x1, y1) and

(x2, y2) are related by a 3× 6 matrix A:

λ(x2, y2, 1)
T = A(x2

1, x1y1, y
2
1 , x1, y1, 1)

T , (16)

A =





a1 a2 a3 a4 a5 a6
b1 b2 b3 b4 b5 b6
c1 c2 c3 c4 c5 c6



 . (17)

A can be solved linearly by using at least 9 dis-

torted/undistorted point pairs, similar to the classic homogra-

phy estimation. This linear solution is used in the experiments

to initialize the incremental LM algorithm, since it minimizes

the algebraic error, which is not directly related to the ge-

ometric error we want to minimize and sometimes leads to

undesirable result.

Distortion center initialization: The distortion center is

a sensitive parameter for distortion models and should be ac-

curately estimated to model or remove distortion precisely [5].

The common practice is to put the initial distortion center at

the center of image. However, this is not always a safe initial-

ization because the true solution can be away from the image

center up to 10% of the image domain [5]. A more delicate

approach was proposed [12] to linearly estimate the distortion

center for radially symmetric models, which can be used as

an initialization for our non-linear minimization. Based on the

monotonicity assumption of the radially symmetric distortion,

this method exploits the observation that the distorted points

are obtained by moving the undistorted points away from (or

to) the distortion center, similar to the motion of points seen by

a camera moving forward toward/backward from a scene. So

the distortion center plays the same role as the epipole of the

fundamental matrix in a special situation, where the camera

undergoes a pure translation between two views [14]. This

observation leads to the following epipolar geometry [12]:

x
T
di
[e]×xui

= x
T
di
([e]×H)xci = x

T
di
Fxci = 0, (18)

with [e]× the skew-symmetric 3 × 3 matrix representing the

cross product by the distortion center e. The undistorted

points xui
are projected from the 3D points xci on a planar

calibration pattern through a pinhole camera: xui
= Hxci .

The matrix F can be linearly computed from at least 7 pairs

of {xdi
,xui

} correspondences [14]. In our case, H is the 3×3
identity matrix and we have simply: x

T
di
[e]×xui

= 0. The

distortion center e can then be computed as the right null

vector of the matrix [e]×, which can be solved by at least 7
distorted/undistorted point pairs, just like the fundamental

matrix estimation in binocular stereo [14].

A. Experiments with known distortion center

We first consider the case where the distortion center is

known. Then the radial model and the polynomial can be

estimated by a matrix inversion, whereas all the other models

require an incremental LM minimization.
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Simulation: Notice that the distortions are all generated

by radially symmetric models, see Table II. So the radial

model should be able to ideally simulate these distortions if

it contains all the terms used in the distortion generation in

Table II. Fig. 1a shows that the simulation precision is close

to the machine limit except for the curve corresponding to the

third-order radial model, which cannot simulate the distortions

generated by higher order models (Table II). The division

model can also simulate the distortion well. Even though this

simulation is not exact, the precision increases with the order

of the division model. In fact, a radially symmetric distortion

can be written as

r2 = r1(k0 + k1r1 + k2r
2
1 + · · · ) =

r1
1

(k0+k1r1+k2r
2

1
+··· )

=
r1

1
k0

− k1

k2

0

r1 +
1
k0

(−k2

k0

+
k2

1

k2

0

)r21 + · · ·
, (19)

which means that the radially symmetric distortion can be

well simulated by the division model with high enough order.

For the FOV model, as we have shown before, since it

has a high correlation with second order coefficient k2 and

has been completed by the other coefficients, it should also

be able to simulate the radially symmetric distortion very

precisely. However, in practice, both the division model and

the FOV model estimation require a non-linear minimization

and the resulting numerical risk explains why we obtained a

less precise simulation in practice (Fig. 1b and 1c).

As for the polynomial model, it can simulate ideally the

radially symmetric distortions composed of only even-order

terms r2 = r1(k0 + k2r
2
1 + k4r

4
1 + · · · ) because

x2 = x1(k0 + k2r
2
1 + · · · ) = k0x1 + k2x

3
1 + k2x1y

2
1 + · · ·

y2 = y1(k0 + k2r
2
1 + · · · ) = k0y1 + k2x

2
1y1 + k2y

3
1 + · · ·

are just two polynomials, with some monomials missing

though. If odd-order terms also appear: r2 = r1(k0 + k1r1 +
k2r

2
1 + · · · ), the polynomial model cannot ideally simulate

the distortion. But the simulation precision increases with

the order of polynomial model. Two polynomial models of

adjacent orders (for example, the third-order and fourth order

polynomials) have very similar performance due to the fact

that the distorted/undistorted point pairs are almost radially

symmetric and thus the odd-order terms in the polynomial

model play a more important role to model such points. Also

the error curve of the polynomial model is cut into three pieces

due to the fact that the synthesized distortions can be classified

into three groups: one group with only odd-order terms, one

group with odd-order terms and one even-order term, and one

group with odd-order terms and two even-order terms. These

observations explain what we observe in Fig. 1e. In fact, if the

radial model contains only odd terms, we observe the similar

curves in Fig. 1d as in Fig. 1e. The rational function model

is more general than the polynomial model. So it should in

theory improve the simulation power of the polynomial model

(Fig. 1f).

The maximum residual error among the points, represented

as dashed lines in the figure, is typically higher by a factor 10
than the average error. This shows that even the worst error

remains low for most camera lenses.

Inversion: The correction power is the precision achieved

by the distortion models to inverse the distortions in Lensfun.

For any tested model, the inversion is not exact for the radially

symmetric distortions in Lensfun. However, to inverse the

distortion following r2 = r1(k0 + k1r1 + k2r
2
2 + · · · ), we

have

r1 =
r2

k0 + k1r1 + k2r21 + · · ·

= r2

( 1

k0
−

k1
k20

r1 + · · ·
)

= r2

( 1

k0
−

k1
k20

·
r2

k0 + k1r1 + k2r21 + · · ·
+ · · ·

)

= r2

( 1

k0
−

k1
k20

· r2(
1

k0
−

k1
k20

r1 + · · · ) + · · ·
)

= r2

( 1

k0
−

k1
k30

r2 +
k21
k50

r22 + · · ·
)

(20)

or

r1 =
r2

k0 + k1r1 + k2r21 + · · ·

=
r2

k0 + k1 ·
r2

k0+k1r1+k2r
2

1
+···

+ · · ·

=
r2

k0 + k1r2

(

1
k0

− k1

k2

0

r1 + · · ·
)

+ · · ·

=
r2

k0 +
k1

k0

r2 −
k2

1

k3

0

r22 · · ·
, (21)

which means that radially symmetric distortions are invertible

by the radial model, the division model and the FOV model.

The inversion is not exact and the precision increases with

the order of the inversion model. In addition, with the same

argument as before, the polynomial model and the rational

function model can also be inverse of the radially symmetric

distortion, in particular when the radially symmetric distortion

is composed of only even-order terms. All the curves are

shown in Fig. 1g–1l. It was shown in [25] that the second order

division model is superior to the radial of the same order; our

experiments do not show such advantage for third or higher

orders.

Today’s digital cameras produce images of millions of pixels

with a minimal order of magnitude of 1000×1000. We aim at

an average precision about 10−2 pixel for images of such size.

This is about 10−5 in the normalized image domain. All the

models are able to simulate and correct the radially symmetric

distortions provided by the Lensfun library at this precision if

the order is high enough. In this restricted setting, they are all

equivalent, notwithstanding the difficulty of minimization for

some.

B. Experiments with unknown distortion center

In practice, the distortion center (xc, yc) is unknown and

we have to estimate it as well. The distorted/undistorted point

pairs were generated in the same way as before except that

the distortion center (xc, yc) was unknown. We used the linear

method proposed in [12] to first obtain an initial estimate

of the distortion center, which was then refined with the
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(a) radial model for distortion
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(b) division model for distortion

-16

-14

-12

-10

-8

-6

-4

-2

 0  500  1000  1500  2000  2500  3000  3500  4000

a
v
e
ra

g
e
/m

a
x
 r

e
s
id

u
a
l 
e
rr

o
r 

(i
n
 l
o
g
_
1

0
)

lens index

order 1
order 5
order 7
order 9

(c) FOV model for distortion
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(d) odd-order radial model for distortion
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(e) polynomial model for distortion
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(f) rational model for distortion
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(g) radial model for correction
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(h) division model for correction
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(i) FOV model for correction
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(j) odd-order radial model for correction
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(k) polynomial model for correction
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(l) rational model for correction

Fig. 1: The average residual error (dahed line: maximal error) of different models when used to simulate the distortion or

its inverse (i.e., the correction) synthesized following the models and the parameters provided by the Lensfun library. The

horizontal axis is the lens index (or one lens at different focal lengths) and the vertical axis is the average residual error

represented in log10 in the normalized domain. The average residual errors are ordered increasingly. This figure is better

viewed electronically in color.

other parameters of distortion models in the incremental LM

minimization. Since the initial estimate of (xc, yc) is already

precise, we finally obtained results very similar to the models

with (xc, yc) known and fixed. For the polynomial model and

the rational model, since they are invariant to the distortion

center, it is not suprising that they fall into the same precision.

We do not show these very similar curves to make the paper

more concise.

C. Comparison of radial and division models

Based on observations of Fitzgibbon [10], the division

model is assumed to be more precise than the radial model, at

the same number of parameters. This is confirmed by the ex-

periments of Santana-Cedrés et al. [25]. The compared models

are infinitely differentiable, with one or two parameters, that

is (3) or (4) with: k0 = 1, k1 = k3 = 0, and k2, possibly

k4, as variables. To test them on LensFun models, we need

to let k0 as variable, as LensFun models are not necessarily

close to the identity near the origin. In [25], such radial and
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division models are used to correct the distortion. Therefore,

in Figure 2, we measure the precision obtained when trying

to inverse the distortions of LensFun models. The division

model is indeed more precise than the radial model with the

same number of parameters, yet the improvement is marginal.

These experiments do not support the observations of the cited

articles.

D. Realistic distortion

We remark that the lens profile in the LensFun database is

only approximatively calibrated: The provided lens distortions

are all radially symmetric around the image center. This is the

drawback of most commercial software and explains why they

correct the distortion at a precision no better than 0.5 pixel.

In reality, we are not sure if the real distortion is symmetric

around a certain distortion center. The model complemented

by the tangential distortion components is perhaps closer to

the real distortion [30]:

x̄u = x̄d + x̄d(k1r
2
d + · · ·+ k5r

10
d ) +

[

p1
(

r2d + 2x̄2
d

)

+ 2p2x̄dȳd
]

,

ȳu = ȳd + ȳd(k1r
2
d + · · ·+ k5r

10
d ) +

[

p2
(

r2d + 2ȳ2d
)

+ 2p1x̄dȳd
]

,
(22)

with p1, p2, p3 parameters for decentering distortion and s1,

s2 parameters for thin prism distortion. They contribute to

both radially symmetric distortion and tangential distortion.

This model is often adopted in bundle adjustment algorithms.

The parameters calibrated with Lavest et al. algorithm [17]

on an EF-S 18–55mm f/3.5–5.6 lens mounted on a Canon

EOS 30D camera were used to synthesize the distortion ac-

cording to (22). The synthesized distortion was then corrected

by the different models through incremental LM minimization.

The results are shown in Table III. The radial+tangential model

has the distortion center fixed at the known distortion center

and inverses the distortion synthesized by the same model. The

parameters p1 and p2 were initialized at 0. For three radially

symmetric models, we estimated also the distortion center

which makes them best fit the distortion. The polynomial

model and the rational model are invariant to the distortion

center. It seems that the radial+tangential model can better

inverse the distortion (fitting error 0.005 pixels) than the

three radially symmetric models (fitting error 0.01 pixels). In

fact, since the synthesized distortion follows the above model

in (22), it can be inversed by a model of the same family if

the tangential component and the radial component satisfy the

following constraints (see Fig. 3a):

∆t′ =
∆d∆t

∆u
,

∆r′ =
√

∆r2 +∆t2 −∆t′2.

∆d is the distance between the distorted point to the distortion

center and ∆u is the distance between the undistorted point

to the distortion center. ∆r and ∆t are the radial component

and the tangential component of the synthesized distortion.

∆r′ and ∆t′ are the radial component and the tangential

component of inversed distortion. Similarly, the synthesized

distortion can also be modeled by the radially symmetric

models if the following constraint is satisfied (see Fig. 3b):

∆r′ =
√

∆r2 +∆t2 (23)

where (x′

c, y
′

c) denotes the new distortion center for the

radially symmetric models.

These constraints are complex and no closed-form formula

exists. They can be simulated but not exactly satisfied. This

explains why the polynomial and the rational models are even

more precise and yield errors on the order of 1e−5 pixels.

But we should remember that the distortion is synthesized

following (22) and we are not sure if the real distortion can be

precisely modeled in this way. We shall confirm the precision

and the stability of the models under consideration in the next

real experiments. We will see in the real experiments that the

radial+tangential models perform sometimes worse than the

radially symmetric models. This poses the problem of model

selection in practice.

(a) (b)

Fig. 3: The geometric constraint to correct the distortion

synthesized by the radial+tangential model. (a) The correction

model is the radial+tangential model. The distortion center

is fixed and known at (xc, yc). (b) The correction model is

the radially symmetric. The distortion center (x′

c, y
′

c) is also

estimated.

order R+T Radial Division FOV Polynomial Rational

3 0.039 0.039 0.036 0.233 0.112 0.005
4 0.005 0.011 0.010 0.064 0.112 0.005
5 0.005 0.011 0.010 0.015 0.002 0.005
6 0.005 0.011 0.010 0.010 0.002 0.002
7 0.005 0.011 0.010 0.010 0.002 0.002
8 0.005 0.011 0.010 0.010 0.002 0.002
9 0.005 0.011 0.010 0.010 0.0003 0.002
10 0.005 0.011 0.010 0.010 0.0003 0.002
11 0.005 0.011 0.010 0.010 0.00003 0.00001
12 0.005 0.011 0.010 0.010 0.00003 0.00001

TABLE III: The synthesized distortion by one

radial+tangential (R+T) model, corrected by different

models. The average residual error is represented in pixels in

an image of 1761× 1174 pixels.

IV. REAL DISTORTION FITTING EXPERIMENTS

We now present real tests to compare the performance of

the models for real distortion correction. Our test was based

on a non-parametric camera distortion estimation method [11]
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Fig. 2: Comparison of infinitely differentiable radial and division models with few parameters, used for correction. From left

to right: one, two, and three parameters in the models. The plain curve represents the average residual error and the dashed

curve the maximum error.

but could be performed on any distortion model obtained

by blind correction. This method requires a highly textured

planar pattern, which is obtained by printing a textured image

and pasting it on a very flat object (a thick, heavy and rigid

aluminium plate was used in the experiments). Another option

is to use a high density grid pattern as in [18]. Two photos

of the pattern were taken by a same camera. The distortion

is estimated (up to a homography) as the diffeomorphism

mapping the original digital pattern to its photograph. The

algorithm is summarized below.

1) Take two slightly different photographs of a textured

planar pattern (Fig. 4) with a camera whose settings are

manually fixed (disable automatic mode);

2) apply the SIFT method [20] between the original digi-

tal pattern and two photographs respectively, to obtain

matching pairs of points;

3) triangulate and interpolate the SIFT matches from the

digital image to two photographs respectively;

4) use a loop validation to eliminate the outlier matches

from the digital pattern to one of the two photographs;

5) use a vector filter to remove the few remaining outliers

matches from the digital pattern to that photograph;

6) refine the precision of the SIFT matching by correcting

each matching point in one image with the local homog-

raphy estimated from its neighboring matching points;

7) triangulate and interpolate the refined inlier matches

to get a dense reverse distortion field from the digital

pattern to that photograph;

8) apply the reverse distortion field to any image produced

by the same camera to correct the distortion.

For more details please refer to [11].

(a) (b) (c)

Fig. 4: (a) digital texture pattern. (b) and (c) two similar

photographs of the flat pattern.

The matching pairs delivered by step 6 (about 8000 in

our experiments) in the algorithm above do not contain gross

outliers and are precise thanks to the local filtering. So we

could directly try all the models to fit these matchings. The

residual fitting error shows to what extent the models are

faithful to a real camera distortion. Under the assumption that

the textured pattern is flat, the mapping from the digital pattern

to the photo can be modeled as SDH, with H the homography

from the digital pattern to the photo, D the non-linear lens

distortion and S a diagonal matrix to model the slant of the

CCD matrix:

H =





h11 h12 h13

h21 h22 h23

h31 h32 1



 , S =





1 0 0
0 s 0
0 0 1



 . (24)

Since the polynomial and the rational function models can

simulate well H and S, we can use these models to simulate

the distortion field without explicitly estimating the homog-

raphy. Nevertheless, for the radially symmetric models, it is

necessary to take into account H and S when approximating

the distortion. Indeed H and S are generally not radially

symmetric. Thus, we have 9 additional parameters to estimate,

besides the parameters of radially symmetric distortion models

and their distortion center. The radial+tangential model is

also tried with H and S (with the distortion center fixed at

the center of image). The polynomial model can again be

solved linearly. For all the other models, an incremental LM

minimization was used to estimate the distortion center, the

distortion parameters, H and S. The matrix H was initialized

as the homography linearly estimated from the digital pattern

to the photo and s is initialized at 1. The other parameters

were initialized in the same way as we did for the synthetic

tests. We worked in the normalized image domain to avoid

possible numerical problems.

Half the matching pairs were used to estimate the parame-

ters for the different models, and the other half to evaluate

the average fitting error. We tried two cameras: a Canon

EOS 30D with EF-S 18–55mm lens and a Canon EOS 40D

with EF 24–70mm lens. Both extreme focal lengths were

tested: 18mm and 55mm for EF-S 18–55mm lens, 24mm and

70mm for EF 24–70mm lens. The results are recapitulated

in Table IV. They show that by combining H and S to

model the inclination between the camera and the pattern,

all of the radially symmetric models give almost the same

fitting error, which becomes stable with the increase of the

model order. The similar estimation of H and S indicates

that the minimization process is stable. The radial+tangential

model is not always better than the radially symmetric models.
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Sometimes, it is even slightly worse (24mm focal length,

Table IV).

The polynomial and the rational function models give a

stable fitting error, which is smaller than the radially sym-

metric models. The stability of the fitting error confirms that

none of the models suffers from numerical instability or noise

fitting. We remark that the residual with the rational function

model becomes stable just a little faster than the polynomial

model. However, solving the rational function model requires

a complex incremental LM minimization, which is a time-

consuming process requiring a good initialization and does

not always ensure the convergence to the global minimum,

whereas the polynomial model can always be solved linearly.

order R+T R D F P Ra

18mm

3 0.39 0.40 0.41 0.41 1.05 0.15
4 0.10 0.18 0.17 0.39 1.12 0.05
5 0.09 0.17 0.17 0.19 0.08 0.05
6 0.09 0.17 0.16 0.18 0.07 0.05
7 0.09 0.17 0.17 0.17 0.04 0.04

55mm
3 0.08 0.07 0.07 0.07 0.07 0.05
4 0.07 0.07 0.07 0.07 0.06 0.04
5 0.07 0.07 0.07 0.07 0.04 0.04

24mm
3 0.14 0.12 0.12 0.28 0.27 0.05
4 0.12 0.11 0.10 0.15 0.23 0.04
5 0.12 0.11 0.10 0.13 0.05 0.04

70mm

3 0.09 0.11 0.20 0.08 0.06 0.06
4 0.08 0.10 0.20 0.08 0.05 0.05
5 0.08 0.09 0.20 0.08 0.04 0.04
9 0.08 0.10 0.09 0.08 0.04 0.04

TABLE IV: The average fitting error for the considered models

for the experiment with cameras Canon EOS 30D and Canon

EOS 40D. R+T: radial + tangential model, R: radial model,

D: division model, F: FOV model, P: polynomial model and

Ra: rational model.

V. PLUMB-LINE VALIDATION

It should be noted that the non-parametric method does not

give a ground truth. It is just a non-parametric estimation

of the camera distortion, and it is subject to errors. Thus,

we needed a more objective evaluation to check the quality

of the correction models. To this purpose, a physical frame

with tightly stretched opaque fishing strings was built [27].

The physical tension of the strings guarantees a very high

straightness. Once the parameters of the models are estimated,

a distortion field can be constructed and applied for the

distortion correction of images of strings taken by the same

camera with the same fixed lens configuration, see Fig. 5.

The “average straightness error” is the average distance from

the sub-pixel edge points (computed by an improved Canny

filter [8]) of the corrected lines to the corresponding regression

line (see [27] for more details). Table V recapitulates the

average distance measured on the strings image corrected

by different models for the lens we tested. The stabilized

straightness error implies again that none of the models has

the problem of noise fitting, which guarantees the correction

quality and stability. The radial+tangential model does not

always perform better than the radially symmetric models and

sometimes it is even worse (focal length 24mm). The radially

symmetric models with varying distortion center seems enough

to fit the real camera distortion precisely when the distortion

is not very big. For the big distortion with short focal length

18mm, the polynomial model and the rational model are twice

more precise.

We also remark that the measurement precision provided

by the fishing strings is limited by the detection precision of

edge points and the small intrinsic oscillation of the fishing

strings. The limit measurement precision is around 0.03 ∼
0.04 pixels, which appears many times in Table V. This means

that the distortion was corrected at approximately the limit

precision that could be measured. This fact might also explain

why the polynomial and the rational models giving smaller

fitting error do not always lead to smaller straightness error.

Some other more precise instruments might be able to measure

the different errors obtained by the two models.

order R+T R D F P Ra

18mm

3 0.25 0.24 0.25 0.25 0.64 0.10
4 0.06 0.06 0.07 0.24 0.63 0.03
5 0.06 0.06 0.07 0.06 0.04 0.03
6 0.06 0.06 0.06 0.06 0.04 0.03
7 0.06 0.06 0.06 0.06 0.03 0.03
8 0.06 0.06 0.06 0.06 0.03 0.03

55mm

3 0.04 0.04 0.04 0.04 0.05 0.04
4 0.04 0.04 0.04 0.04 0.05 0.04
5 0.04 0.04 0.04 0.04 0.04 0.04
6 0.04 0.04 0.04 0.04 0.04 0.04
7 0.04 0.04 0.04 0.04 0.04 0.04
8 0.04 0.04 0.04 0.04 0.04 0.04

24mm

3 0.09 0.06 0.06 0.18 0.14 0.03
4 0.08 0.05 0.04 0.10 0.14 0.03
5 0.08 0.05 0.04 0.08 0.04 0.04
6 0.08 0.05 0.04 0.08 0.04 0.04
7 0.08 0.05 0.04 0.08 0.04 0.04

70mm

3 0.03 0.03 0.11 0.03 0.04 0.03
4 0.03 0.03 0.11 0.03 0.04 0.04
5 0.03 0.03 0.11 0.03 0.04 0.04
6 0.03 0.03 0.10 0.03 0.04 0.03
7 0.03 0.03 0.10 0.03 0.04 0.04
8 0.03 0.03 0.10 0.03 0.04 0.04
9 0.03 0.03 0.03 0.03 0.04 0.04

TABLE V: The average straightness error for different models

for the experiment with cameras Canon EOS 30D and Canon

EOS 40D. R+T: radial + tangential model, R: radial model,

D: division model, F: FOV model, P: polynomial model and

Ra: rational model.

VI. CONCLUSION

We evaluated and compared the precision of five distortion

models. The radially symmetric models are ideal for modeling

the radially symmetric distortion, but in practice, the related

non-linear optimization raises a numerical risk. These models

can be extended by adding tangential distortion components.

However, this is not always a good choice and can pose the

problem of model selection. The polynomial and the rational

models are more universal in the sense that they are invariant

to the distortion center and can model realistic non-radially

symmetric distortion. The polynomial model requires a little

higher degrees than the rational model to achieve the precision

on the order of 1/100 pixels. This high degree raises no
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(a) distorted image

(b) radial model of 12th-order (c) radial+tangential model of 12th-order (d) polynomial model of 12th-order

Fig. 5: The experiment with cameras Canon EOS 30D with EF-S 18–55mm lens. The focal length is 18mm. Top row: distorted

image. Second row: corrected images. Third row: distortion field coded as the module of the displacement vector pointing

from the digital pattern to the photo. The radial model and the radial+tangential model are with H and S in (24). In fact, the

results of all the tested parametric models are visually identical, according to the accuracy shown in Tables IV and V.

computational problem for the polynomial model, which can

be solved linearly after a correct conditioning.

The polynomial and the rational models are not adapted to

global bundle adjustment, where the internal/external parame-

ters and the distortion model are estimated simultaneously. The

distortion correction must be dealt with as an independent and

previous step to camera calibration [24]. All the models are

able to correct the distortion at sub-pixel precision better than

0.1 pixel and the polynomial and the rational models seem

to perform better when the distortion is large. The polynomial

model raises less numerical risk since it can be solved linearly.

The only requirement is to dispose of many more control

points than the number of parameters. This might be an

objection when using over-simple calibration patterns. In our

experiments the number of control points (about 4000) was far

higher, about 60 times the number of polynomial coefficients

((7 + 1) · (7 + 2) = 72 for a 7th-order polynomial). Clearly,

this also entails two methodological changes: first that the

distortion should be corrected independently and previously to

projective calibration. Second, that calibration patterns should

contain a higher than usual number of control points (more

than 500). With the current image resolution in most cameras,

this is no longer a restriction. With these provisions, the

polynomial model is clearly the best model in terms of high

precision and of ease of evaluation.
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