
A PRECISION MEASUREMENT

OF THE

FINE STRUCTURE CONSTANT

a disser t at ion

submit t ed t o t he depar t ment of physics

and t he commit t ee on gr aduat e st udies

of st anf or d univer sit y

in par t ial f ul f i l l ment of t he r equir ement s

f or t he degr ee of

doct or of phil osophy

Joel Moses Hensley

August 2001

c° Copyright by Joel Moses Hensley 2001

All Rights Reserved

ii

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Steve Chu
(Principal Adviser)

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Blas Cabrera

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Stephen E. Harris

Approved for the University Committee on Graduate

Studies:

iii

Abstract

Using an atom interferometer method based on adiabatic transfer between atomic

states, we measure the recoil frequency shift frec = h/(mCsλ
2
eff) of cesium due to the

absorption of a photon of effective inverse wavelength 1/λeff = 1/λ330+ 1/λ430, where

λ330 and λ430 are the wavelengths of the D1 transitions between the F =3 and F =4

hyperÞne ground states of the 6S1/2 energy level and the F
0=3 hyperÞne 6P1/2 ex-

cited state, respectively. We report a value of frec = 15 006.276 9996(874) Hz, where

the single standard deviation uncertainty includes both the systematic and statistical

uncertainties after averaging more than 2 800 data points. With independent mea-

surements of the Rydberg constant, the proton to electron mass ratio, the cesium to

proton mass ratio, and the wavelengths for the D1 transition of cesium, we derive a

value for the Þne structure constant α−1 = 137.035 999 710(427)(401), where the Þrst

error bar is the combined uncertainty, equivalent to a fractional error of 3.1 × 10−9,

from both this and the above mentioned independent measurements and the second

value is the contribution to the uncertainty from just this work.

iv

�. . . One thirty-seven is Eddington�s Þne structure constant, of course, and

it turns up over and over in nuclear physics. But it is more than that.

Suppose you take the inverse, that is one over one thirty-seven, and express

it as a decimal. The Þrst three digits are Double Ought Seven, James

Bond�s identiÞcation as a killer. There is the lethality of the universe for

you! The Þrst eight digits are Clarke�s Palindrome, point oh oh seven two

nine nine two seven oh. There is its symmetry. Deadly, and two-faced,

that is the Þne structure constant! Or,� he mused, �perhaps I should

say, there is its inverse. Which would imply that the universe itself is the

inverse of that? Namely kind and uneven? . . . �

�Frederik Pohl, 1980

Beyond the Blue Event Horizon

v

Acknowledgments

I would be remiss not to thank my advisor Steve Chu for providing me the opportunity

to work on such a troublesome and difficult (I mean, stimulating and challenging)

experiment. More importantly, I would like to thank the people who taught me

everything I know. My bad-ass physicist (BAP) father never had the guts to steer

me away from this thankless Þeld. I will always be grateful to Duke University

Physics Department faculty member Frank DeLucia (now at Ohio State University)

who saw the taint of the dark side in me and started me down this long and twisted

road. Duke physics professors Hugh Robinson, John Thomas, and Dan Gauthier,

Columbia University professor George Flynn, NASA research fellow Sheldon Green,

and Lawrence Livermore National Laboratory Staff Scientist Nicolas J. Collela were

also instrumental. At Stanford, my Þrst role model was senior graduate student Brent

Young, from whom I inherited in addition to the nightmare we know of as h̄/MCs, a

fascination with electronics and a preoccupation to detail. Other graduate students

of varying sizes, shapes, and temperaments who also taught me a great deal include

(but are not limited to) Achim Peters (Mr. Vibration), Heun-Jin Lee (Chief Cynic),

and Todd Gustavson (Toddbert). More recently, I would also like to thank fellow

salt miners Keng Yeow Chung, Cheng Chen, Jamie Kerman, and Hazen Babcock

for a great deal of commiseration and assistance, both technical and theoretical. I

also had the extremely pleasant experience of working and sharing this experiment

with graduate students Richard Swartz and Kurt Franke. For the last two years, I

have also spent a great deal of positive time working with post-doc Andreas Wicht.

Except for brief moments when he was recovering from a �four-by-four�, he was

always more than willing to help me understand and work through both work-related

vi

and non-work-related challenges. I will always be indebted to him for his assistance

and for taking much of the heat. There are many other wonderful people I had the

privilege of getting to know at Stanford, many of whom I will forget to mention.

Ken Sherwin, the eternal spirit of the Varian Building and Yoda-Þgure to all of its

temporary occupants. I had more in common with him than I will ever admit. Marcia

Keating, Þrst adoptive mother to us all. Rosenna Yau, for her consistent and rock-

steady support and guidance. Barbara Heather for understanding. Stewart Kramer

for helping us through all of the Varian building�s growing and aging pains. Machinists

Wolfgang Jung, Karlheinz Merkle, Matt Chuck, John Kirk, and Mehmet Solyali for

tactfully averting their eyes or patiently lending a hand with my amateur attempts to

make the machines behave. I would also like to thank Professor Mark Kasevich (now

at Yale University) and Barry Taylor for their professional guidance. Barry Taylor,

more than any other, inspired me to try to make the best measurement I could make.

I acknowledge the support of an Air Force graduate fellowship and grants from

AFOSR and NSF.

Finally, and most importantly, I would like to thank the members of my ever

expanding family for their support and patience. Both my son, Ethan, who mercifully

wont remember any of this, and my wife, Betsy, who will remember all of it, deserve

much better but never asked for anything more.

vii

Contents

Abstract iv

v

Acknowledgments vi

1 Introduction 1

1.1 Photon recoil measurement . 5

1.2 Overview of this thesis . 12

2 Theory 13

2.1 Atom interferometry . 13

2.1.1 Interferometer Phase . 13

2.1.2 Conjugate Interferometer . 24

2.1.3 π-pulses . 29

2.1.4 Inverted Interferometers . 39

2.2 Two-photon transitions . 43

2.2.1 Adiabatic passage . 43

2.3 Interferometers using adiabatic transfer 50

2.3.1 Contrast limit . 54

2.3.2 AC-stark shifts . 60

3 Experiment 63

3.1 Cesium fountain . 63

viii

3.1.1 Laser source . 67

3.1.2 Slowing beam . 69

3.1.3 MOT beams . 71

3.1.4 Launch . 72

3.1.5 Detection . 75

3.1.6 Magnetic sublevel-sensitive detection 76

3.1.7 Zeeman pumping . 79

3.2 Adiabatic passage beam generation 81

3.2.1 Laser source . 81

3.2.2 Second optical frequency . 83

3.2.3 Shaping AOMs . 84

3.2.4 Common switch AOM . 85

3.2.5 Switchyard . 85

3.2.6 Spatial Þltering . 87

3.2.7 Collimation and polarization 89

3.3 Frequency and phase control . 91

3.3.1 Difference frequency . 91

3.3.2 Absolute frequency . 93

3.3.3 Tracer laser . 97

3.4 Vibration isolation . 102

3.5 Magnetic Þelds . 110

3.6 Interferometer pattern generation . 113

3.6.1 Pulse shaping . 117

3.6.2 Beam direction switching . 121

3.6.3 Frequency chirp during π/2-pulses 122

3.6.4 Timing . 124

3.7 Tests of adiabatic passage . 130

3.7.1 π-pulses . 130

3.7.2 Interferometry . 134

ix

4 Improvements 137

4.1 RF synthesizer . 139

4.2 RF amplitude-dependent phase shifts 146

4.3 Beam collimation . 150

4.4 Relative angular alignment of beams 152

4.5 Intensity matching . 156

4.6 Crystal Þlters . 157

4.7 Dynamic response of the Raman beam AOMs 158

5 Results 160

5.1 Interferometer data . 160

5.2 Noise . 167

6 Checks for systematic errors 172

6.1 Beams . 173

6.1.1 Wavefront curvature . 175

6.1.2 Clipping . 180

6.1.3 Speckle . 181

6.1.4 Relative angle . 183

6.1.5 Polarization . 184

6.2 Frequencies . 189

6.2.1 Lock to cesium . 190

6.2.2 Difference frequency . 191

6.2.3 Difference frequency switching 193

6.2.4 Gravity chirp . 197

6.2.5 Gravity gradient . 198

6.2.6 Bad frequencies . 199

6.2.7 Computer arithmetic . 200

6.3 Electric Þelds . 201

6.3.1 dc-Stark effect . 201

6.3.2 AC-Stark effect . 202

6.4 Magnetic Þelds . 206

x

6.5 Dispersion . 211

6.5.1 Room temperature background gas 214

6.5.2 Cold atom cloud . 215

6.6 Timing . 219

6.6.1 60 Hz line noise . 220

6.6.2 Periodic ßuctuations synchronized with launch 220

6.6.3 Time resolution . 224

6.7 Adiabatic transfer . 225

6.8 Interferometers . 229

6.8.1 Sloping background . 229

6.8.2 Fit routines and numerology 230

6.8.3 Missed recoils . 231

6.8.4 Sagnac effect . 233

6.9 Fundamental . 244

6.9.1 Collisional shifts . 244

6.9.2 Relativity . 244

6.9.3 Gravitational red shift . 245

7 Determination of α 248

7.1 A Þnal value for frec . 248

7.2 Determining α . 252

8 Future prospects 254

A Transition strengths 256

A.1 Rabi frequency . 256

A.1.1 Alternate deÞnitions . 258

A.1.2 Cesium . 259

A.2 Photon-cesium cross-section . 263

B Phase lock loop electronics 264

xi

C Computer code 266

C.1 AltInt.BAS . 266

C.1.1 Menu.BAS . 276

C.1.2 Data.BAS . 280

C.1.3 PlotFit.BAS . 284

C.2 Fit.C . 290

C.3 DigFil.C . 297

Bibliography 303

xii

List of Tables

2.1 Change in the atomic wavefunction due to the interaction with the

laser Þeld . 18

2.2 The complete phase expression for the four fundamental interferometer

geometries . 42

2.3 Laser intensity pulse shapes . 52

3.1 Isolation performance of the switchyard 89

3.2 Controls for generating the adiabatic transfer light pulses 118

6.1 Evolution of the atom density . 218

6.2 Systematic Error Budget . 246

6.3 Systematic Error Budget continued 247

7.1 Current values . 252

A.1 Different conventions relating the Rabi frequency to the saturation

intensity . 259

A.2 The angular matrix elements . 261

A.3 Photon-atom scattering cross-sections σ12 263

xiii

List of Figures

1.1 The current determinations of the Þne structure constant α 2

1.2 The fundamental measurement of the recoil frequency shift ωrec . . . 8

1.3 Recoil measurement using interferometry 11

2.1 Interferometer geometry 1 . 14

2.2 The fundamental recoil measurement 24

2.3 Recoil measurement with two additional recoils (N = 2) 30

2.4 Recoil measurement with one additional recoil (N = 1) 36

2.5 Inverted interferometers . 40

2.6 The Cesium level structure . 44

2.7 The two laser intensities for an adiabatic passage π-pulse 48

2.8 The two laser intensities for two adiabatic passage π/2-pulses 49

2.9 Interference contrast limit with adiabatic passage 55

2.10 Interference contrast limit due to imperfect π/2-pulses 58

3.1 Cesium source . 64

3.2 Physical setup . 66

3.3 The Titanium-sapphire ring laser . 68

3.4 Optical setup used to lock the SEO Ti-sapphire laser to the cesium

transition at 852 nm . 69

3.5 Preparation of the laser light to cool, trap, and detect atoms in an

atomic fountain . 70

3.6 Fluorescence from the upward traveling atom cloud 73

3.7 Fluorescence from the downward traveling atom cloud 74

xiv

3.8 Setup for an external cavity laser diode 78

3.9 Preparation of the adiabatic passage beams 82

3.10 The Raman beam switchyard . 86

3.11 Final Raman beam preparation . 90

3.12 Microwave beatnote . 92

3.13 Optical setup used to lock the Coherent Ti-sapphire laser to the cesium

transition at 894.6 nm . 95

3.14 Interferometer platform . 100

3.15 Active vibration isolation system . 103

3.16 Theoretical transfer functions . 105

3.17 Reduction of the vibrational error signal 107

3.18 Vibration isolation performance for atom interferometry 109

3.19 Magnetic Þeld strength inside the magnetic shielding 112

3.20 Contents of the AWFG board�s two analog channels 116

3.21 RF power to the shaping AOMs . 117

3.22 RF attenuator used to generate the adiabatic transfer pulse shapes . 119

3.23 Raman beam direction controller . 120

3.24 Generation of the chirp signal for the shaping AOMs 123

3.25 Example 1: Timing diagram for interferometers with 30 π-pulses and

T = 5 ms . 126

3.26 Timing diagram generating geometry 1 127

3.27 Timing diagram generating geometry 2 127

3.28 Timing diagram generating geometry 3 128

3.29 Timing diagram generating geometry 4 128

3.30 Example 2: Timing diagram for interferometers with 30 π-pulses and

T = 120 ms . 129

3.31 Example 3: Timing diagram for interferometers with no π-pulses and

T = 120 ms . 129

3.32 Adiabatic transfer using a single velocity preselecting 131

3.33 Adiabatic transfer linewidth . 132

3.34 Fringe structure from four π/2-pulse interferometers 135

xv

4.1 Direct digital synthesizer (DDS) . 140

4.2 Systematic phase error from the direct digital synthesizer (DDS) . . . 143

4.3 RF phase shifter . 147

4.4 Correction of the rf-amplitude dependent phase shifts from the variable

rf attenuators . 149

4.5 Collimation of the bottom Raman beam 151

4.6 Switching behavior of the F =4 shaping AOM 159

5.1 Interferometer data for all four interferometers with T = 5 ms and

N = 30 π-pulses . 164

5.2 Interferometer data for all four interferometers with T = 120 ms and

N = 30 π-pulses . 165

5.3 Interferometer data for all four interferometers with T = 120 ms and

N = 0 π-pulses . 166

6.1 Magnitude of the wavefront gradient for a 2w0 = 2.0 cm diameter

Gaussian beam . 176

6.2 Magnitude of the wavefront gradient as a function of the longitudinal

position of the collimating lens . 179

6.3 Recoil frequency versus longitudinal displacement of the bottom colli-

mating lens . 180

6.4 Change in the recoil frequency frec due to a relative angular misalign-

ment of the Raman beams . 184

6.5 Recoil frequency versus Raman beam polarization: dataset (1) 185

6.6 Recoil frequency versus Raman beam polarization: dataset (2) 186

6.7 Recoil frequency versus two-photon detuning: dataset (1) 192

6.8 Recoil frequency versus two-photon detuning: dataset (2) 193

6.9 Recoil frequency versus two-photon frequency sweep rate 198

6.10 AC-stark effect from the tracer laser 204

6.11 Recoil frequency versus the single-photon detuning of Raman lasers:

dataset (1) . 206

xvi

6.12 Recoil frequency versus the single-photon detuning of Raman lasers:

dataset (2) . 207

6.13 Recoil frequency versus magnetic bias Þeld: dataset (1) 210

6.14 Recoil frequency versus magnetic bias Þeld: dataset (1) (magniÞed) . 211

6.15 Recoil frequency versus magnetic bias Þeld: dataset (2) 212

6.16 Wavelength change of a laser incident on the cold atom cloud 216

6.17 Recoil frequency versus the phase of the 60 Hz line signal 221

6.18 Recoil frequency for the same interferometer sequence starting at dif-

ferent times in the fountain trajectory 224

6.19 Recoil frequency versus the time T between the π/2-pulses 227

6.20 Up/Down interferometer phase difference versus the time T between

the π/2-pulses . 228

6.21 Looking for missed recoils . 233

6.22 Spatial area enclosed by the interferometers 235

6.23 Sagnac effect due to a misalignment of the launch velocity 240

6.24 Sagnac effect due to a non-verticality of the Raman beams 243

7.1 Summary of the data taken by varying the time T between the π/2-

pulses. 249

xvii

xviii

Chapter 1

Introduction

The Þne structure constant α is a dimensionless number that describes the strength

of the electromagnetic interaction between matter and light. It was originally in-

troduced by Sommerfeld in 1916 to describe the size of the relativistic correction,

termed �Þne structure�, to the energies levels of the Bohr hydrogen atom [1]. Be-

cause it appears any time electromagnetic interactions are involved, it links almost all

disciplines of physics from elementary particle to macroscopic systems. As a result,

throughout all of physics there have been several fundamentally different approaches

to determining its value [2]. Currently, the Þve most precise determinations of α

are based on the quantum Hall effect, the electron�s anomalous magnetic moment,

the ac Josephson effect, the muonium hyperÞne structure, and the measurement of

h/m for slow neutrons. The values from these measurements used in the most recent

statistical combination of all of the fundamental constants [3] are shown together

with the value from this work in Figure 1.1. The quantum Hall approach measures

the Hall resistance RH and thus α directly, but it is limited to an accuracy of 19.7

parts per billion (ppb) by the uncertainty in the calibration of the standard Ohm.

Determining α from a measurement of ae [4], the anomalous magnetic moment of the

electron, requires expanding ae in powers of α and calculating the coefficients of this

expansion. These calculations, which require an increasing complicated application of

quantum electrodynamics (QED) theory, have been completed through the α3 term

and most of the α4 term. Assuming the theory is correct, this determination of α will

1

2 CHAPTER 1. INTRODUCTION

soon be limited only by the 3.4 ppb uncertainty in the determining ae. The current

discrepancy between the standard model and the muon anomalous magnetic moment

aµ is ∼ 4 ppb. Because of the electron�s smaller mass, if this discrepancy is real, it
would appear at approximately the 10−13 level for ae, or approximately 0.5 ppb in

α [5]. Therefore, if the 1987 measurement of ae [6] could be signiÞcantly improved,

comparing the resulting theory-dependent value of α with another measurement that

does not depend as heavily on QED would represent a signiÞcant test of the standard

model. The 3 ppb measurement of α presented here is only a factor of six away from

this limit.

CO
D
ATA

ele
ct
ro
n
g-
2

qu
an

tu
m
 H

al
l

h/
m
(n

eu
tr
on

)

ac
 J
os
ep

hs
on

M
uo

ni
um

 H
FS

h/
m
(c
es
iu
m
)

(α
- 1
 −

 1
37

.0
3)

 x
 1

06

5985

5990

5995

6000

6005

6010

(3.7)

(3.8)

(19.7)

(24.1)

(31.4)

(57.7)

(3.1)

Figure 1.1: The current determinations of the Þne structure constant α. The value from
the most recent adjustment of all the fundamental constants is shown in gray. This value is primarily
determined by the Þve most precise measurements of α, based on the anomalous magnetic moment
of the electron (g − 2), the quantum Hall effect, neutron interferometry, the ac Josephson effect,
and the muonium hyperÞne structure. Our work will discuss the details behind and the results of
another determination of α based on a measurement of the photon recoil frequency for cesium. The
values in parentheses () are the fractional single-standard deviation uncertainties in parts per billion.

The remaining methods including the one presented here determine α indirectly

3

by combining one or more precision measurements with the value of the Rydberg

constant

R∞ =
mec

2h
α2 (1.1)

measured to an uncertainty of 0.0076 ppb [3].

The ac Josephson technique Þrst determines e/h, the elementary charge over

Planck�s constant, by carefully measuring the frequency of current oscillations pro-

duced when a known voltage is applied to a superconducting junction. The electron

mass me in equation (1.1) can be expressed in terms of the Bohr magneton µB, the

proton�s magnetic moment µp0 in water, and the corresponding gyromagnetic moment

γp0, all of which can be accurately measured. Combining these measurements pro-

duces a value for α whose 31.4 ppb accuracy is currently limited by the experimental

uncertainty in determining γp0.

One can also determine α by comparing the measured ground state hyperÞne

splitting ∆fµ of muonium with the theoretically predicted value that depends on

R∞, the muon electron mass ratio mµ/me, and α. Currently the 58 ppb uncertainty

in α from this technique is limited mostly by the experimental determination of the

muon mass. However, even if the mass ratio were known more precisely, complexities

in the theory for predicting ∆fµ will limit the uncertainty to ∼17 ppb for quite some
time.

Finally, with a precise value for R∞, one of the most basic methods for experi-

mentally determining α is to measure h/m, the ratio of Planck�s constant to the mass

m of some particle. Combining this result with a measurement of m/me allows one

to determine α from equation (1.1). By scattering a beam of neutrons off an ultra-

pure silicon crystal, the velocity and de Broglie wavelength of the neutron and thus

the quantity h/mn have been measured to an accuracy of 24.1 ppb, which is large

compared to the 2.2 ppb uncertainty in the neutron to electron mass ratio mn/me.

This uncertainty in the measured value of h/mn comes primarily from not knowing

the exact effective lattice spacing of the silicon crystal. Even with a more exact x-ray

measurement of the crystal lattice spacing, however, it is not clear that all effects

such as impurities and mechanical stresses of the silicon crystal can be sufficiently

4 CHAPTER 1. INTRODUCTION

controlled and/or characterized.

In a completely different way, we perform an analogous measurement with cesium

atoms. Instead of scattering the cesium atoms off a physical object, we use a laser

with well-deÞned wavelength λ to impart a momentum p = h/λ to a cesium atom.

In order to conserve momentum, the atom will recoil with velocity ∆v = p/mCs =

1/λ(h/mCs). According to the Þrst-order Doppler effect, this change ∆v in the atom�s

velocity shifts the perceived value of the atom�s internal resonances by a frequency

∆f = ∆v/λ = 1/λ2(h/mCs). If we know the wavelength λ of our laser accurately and

we measure this frequency shift, often called the recoil shift frec, we can determine a

value for h/mCs, from which we can derive a value for α according to

α2 =
2R∞
c

mp

me

mCs

mp

h

mCs

=
2R∞
c

mp

me

mCs

mp
frecλ

2 (1.2)

Note that in addition to a value for R∞, this approach requires measurements of the

proton to electron and the cesium to proton mass ratios, and the wavelength of the

atomic transitions we lock our lasers to. Fortunately, the proton to electron mass ratio

has been measured by Van Dyck and Schwinberg with an uncertainty of 2.1 ppb [7],

and a beautiful measurement performed by the group of D. Pritchard assigns a value

to the cesium mass with an uncertainty of 0.2 ppb. Finally, the group of T. Haensch

has determined the frequency of the cesium D1 transition to an accuracy of 0.13 ppb.

Since we lock our lasers to this transition, this frequency measurement determines the

value of λ and thus the size of the recoil. And, since all of the quantities in equation

(1.2) are either deÞned or measured to the ppb level, a precise measurement of the

recoil shift frec = h/mCs(1/λ
2) for cesium will lead to a measurement of α with an

uncertainty of only a few parts in one billion.

1.1. PHOTON RECOIL MEASUREMENT 5

1.1 Photon recoil measurement

The Þrst measurement of the recoil frequency shift was made in an heroic experiment

by Hall, Bordé and Uehara [8], achieving a resolution ∆frec/frec = 2.3× 10
−3 using a

laser with a linewidth of 200 Hz, 32 cm diameter optics and an absorption cell with

a 13 m path length. Systematic effects led to a 6× 10−3 discrepancy from the known

value of h/M.

To look more closely at the deÞnition of the recoil frequency, consider an atom of

mass m moving with velocity vi. For now, consider just two of the internal electronic

states of the atom: |ai and |bi. These states have energies Ea = h̄ωa and Eb =

h̄ωb, respectively. A laser with frequency ωL ' ωb − ωa ≡ ωab resonantly drives an

electric dipole transition between these two states. A photon from this laser Þeld has

momentum h̄k, where k = |k| = ωL/c is the laser�s wavenumber. Assume the atom

starts in state |ai, absorbs a photon from the laser Þeld, and ends in state |bi. Before

the absorption of this single photon the total energy and momentum of the system

are

Einitial =
1

2
m|vi|

2 + h̄ωa + h̄ωL (1.3)

pinitial = mvi + h̄k (1.4)

When the atom absorbs the photon it also absorbs the photon�s momentum and recoils

with velocity change ∆v in the direction of the photon. The energy and momentum

are now

EÞnal =
1

2
m|vi +∆v|

2 + h̄ωb (1.5)

pÞnal = m(vi +∆v) (1.6)

In order to conserve momentum pÞnal = pinitial, the atom�s Þnal velocity vf must be

vf = vi +∆v = vi +
h̄

m
k (1.7)

6 CHAPTER 1. INTRODUCTION

Similarly, the change in energy is

EÞnal − Einitial

=
1

2
m|vi + (h̄/m)k|

2 + h̄ωb −
1

2
m|vi|

2 − h̄ωa − h̄ωL

=
1

2
m
h
v2i + 2(h̄/m)vi · k+ (h̄/m)

2k2
i
− 1

2
mv2i + h̄(ωb − ωa)− h̄ωL

= h̄(vi · k) +
(h̄k)2

2m
+ h̄ωab − h̄ωL (1.8)

To conserve energy, the laser frequency ωL must be

ωL − ωab = vi · k+
h̄k2

2m
(1.9)

The Þrst term on the right hand side of equation (1.9) is the Þrst order Doppler shift.

The second term is the recoil shift1 1

2
ωrec =

1

2
(2πfrec).

frec =
1

2π

h̄k2

m
=
1

λ2
h

m
(1.10)

where λ = 2π/k is the laser�s wavelength. This term represents the amount of energy

that must be added to the photon energy in order to compensate for the change of the

atom�s kinetic energy when it recoils with the photon�s momentum. Once the atom

absorbs a photon and changes its internal state, it can no longer absorb any more

photons. Via its interaction with the laser Þeld, it can however undergo a stimulated

emission process, whereby it emits a photon of momentum h̄k with the laser Þeld,

recoils in the opposite direction, and returns to state |ai. In this stimulated emission

case, the initial and Þnal energy and momentum are

Einitial =
1

2
m|vi|

2 + h̄ωb

¯̄
¯̄
¯ EÞnal =

1

2
m|vi +∆v|

2 + h̄ωa + h̄ωL (1.11)

pinitial = mvi

¯̄
¯̄
¯ pÞnal = m(vi +∆v) + h̄k (1.12)

1The recoil shift is often deÞned to include the 1
2
, and sometimes with the 1

2
replaced with a 2

(see [9]). Throughout this work, we will use the deÞnition given in equation (1.10).

1.1. PHOTON RECOIL MEASUREMENT 7

Again, to conserve momentum we must have

∆v = −
h̄

m
k (1.13)

which implies that the change in energy is

EÞnal − Einitial

=
1

2
m|vi − (h̄/m)k|2 + h̄ωa + h̄ωL −

1

2
m|vi|

2 − h̄ωb

=
1

2
m
h
v2i − 2(h̄/m)vi · k+ (h̄/m)

2k2
i
− 1

2
mv2i − h̄(ωb − ωa) + h̄ωL

= −h̄(vi · k) +
(h̄k)2

2m
− h̄ωab + h̄ωL (1.14)

To conserve energy, the laser frequency is exactly the same as equation (1.9) except the

last term is negative. For stimulated absorption or emission, the resonance condition

for the laser is thus

ωL − ωab = vi · k±
1

2
ωrec (1.15)

where the recoil shift term ωrec = h̄k
2/m is positive for absorption and negative for

emission.

We are now ready to propose a direct experiment for measuring the value of the

recoil shift given in equation (1.10). Once again, assume the atom starts in |ai with

velocity v1 along the laser beam direction. At some time we expose the atom to laser

light for a Þnite amount of time. The laser has wavevector |kP1| = k and frequency

ωP1, which we set near resonance. From equation (1.15), ωP1 = ωab+v1 ·kP1+
1

2
ωrec.

We control the duration and intensity of this light pulse so that the atom is transfered

from |ai to a superposition of states |ai and |bi. In order to go from state |ai to |bi

the atom must absorb a photon from the laser Þeld and recoil with velocity vr = h̄k/m

in the direction of the laser. As a result, the parts of the atom in states |ai and |bi

have velocities that differ by vr. As depicted in Figure 1.2a, these two components of

the atomic state begin to separate in space. At some later time we again pulse the

laser light on and off, but for this pulse we reverse the direction of the laser beam, so

that kP2 = −kP1. Finally, we detect the atomic state and repeat the measurement to

8 CHAPTER 1. INTRODUCTION

�

�

ω������

���� = +����

���� = +���

���� = −���
���� = 	�

���� = 	�

ω������

��

Probability of emerging in state |ai

Frequency (ωP2 − ωab) / ωrec

-3 -2 -1 0 1 2

2ωrec

(b)

Figure 1.2: The fundamental measurement of the recoil frequency shift ωrec. A two-level
atom of mass m initially in state |ai interacts with a laser Þeld of frequency ωP1 and wavenumber
kP1 such that the atom is transfered to an equal superposition of states |ai and |bi. In order to
go from state |ai to state |bi, the atom must absorb a photon of momentum h̄kP1 and recoil with
velocity change vr = h̄kP1/m. As shown in (a), where for the moment we have assumed that the
atom starts at rest, the part of the atomic state projecting onto |bi separates spatially from the
part of the atomic state projecting onto |ai. If at some time later, we reverse the direction of our
laser and again illuminate the atom, but this time scan the laser�s frequency ωP2 and repeat the
entire measurement to determine the probability of emerging in state |ai, we see the lineshape shown
in (b). Far off-resonance the laser does not address the atom, so it will emerge in state |ai with
probability 0.5. When the laser is resonant with the part of the atomic state in |bi, it drives the
atom from |bi to |ai and thus increases the probability of emerging in |ai. Similarly, when the laser
is resonant with the part of the atomic state in |ai, it drives the atom out of |ai into |bi and this
reduces the probability of emerging in |ai. The frequency separation between these two resonance is
twice the recoil frequency 2ωrec, independent of the atom�s initial velocity.

determine the probability of emerging in state |ai. This probability as a function of

the frequency ωP2 of the second laser pulse is shown in Figure 1.2b. Two resonance

features are present, one for each part of the atomic state. When the second laser

pulse is resonant with the |ai part of the atomic state at frequency

ωP2 = ωP2(|ai) = ωab + v1 · kP2 +
1

2
ωrec

= ωab − v1k +
h̄k2

2m
(1.16)

it transfers the atom from |ai to |bi thus decreasing the probability of it emerging

in state |ai. On the other hand, when the laser is resonant with the |bi part of the

1.1. PHOTON RECOIL MEASUREMENT 9

atomic state which is moving with velocity v1 + vr, its frequency must be

ωP2 = ωP2(|bi) = ωab + (v1 +
h̄

m
k) · kP2 −

1

2
ωrec

= ωab − v1k −
h̄k2

m
−
h̄k2

2m

= ωab − v1k −
3h̄k2

2m
(1.17)

and it will transfer the atom from |bi to |ai thus increasing the probability of emerging

in state |ai. The difference between these two resonances is

ωP2(|ai)− ωP2(|bi) = 2
h̄k2

m
= 2ωrec (1.18)

independent of the Doppler shift from the non-zero initial velocity. For a given beam

direction the atom plus laser form a closed system with energy being transferred to

and from the atom for each stimulated absorption and emission process. In other

words, if we do not reverse the beam direction, the Þrst and second pulses will have

the exact same apparent resonance frequency. Thus, in order to observe the recoil

shift, one must reverse the beam direction.

For the cesium atoms we use in this measurement, with the laser tuned to the D1

line at 894.6 nm, this frequency difference is 2ωr ' (2π)7.5 kHz. Therefore, to measure

h/mCs with an accuracy of one part in 10
9, we must determine the center of these

resonances to within 7.5µHz. To make matters more interesting, in a real experiment

we use a sample of many atoms that has a distribution of velocities. This velocity

distribution Doppler broadens the resonances. Other sources of broadening include

the laser linewidth and the natural linewidth of the transition, which is ∼ 4.6 MHz
for the cesium D1 transitions.

Two-photon transitions

To make this fundamental recoil measurement feasible, the Þrst improvement we

make is to replace the single laser Þeld with two counter-propagating lasers with

frequencies ω1 and ω2 and wavevectors k1 and k2 ' −k1. We derive two extremely

10 CHAPTER 1. INTRODUCTION

important beneÞts when the atom exchanges photons with both light Þelds. First, we

can now drive two-photon transitions between meta-stable ground states. With |bi

representing a long-lived ground state, we are not limited by the natural linewidth

of a relatively short-lived excited state. Second, the stability requirements for the

laser�s absolute frequency are much less stringent. Because the initial and Þnal states

are separated only by the ground state hyperÞne splitting (∼ 9.2 GHz for cesium,
see Figure 2.6), the two-photon resonance is determined by the frequency difference

ω1 − ω2 of the two lasers. Since the difference frequency is in the microwave regime,
it can easily be controlled with virtually arbitrarily Þne resolution. Finally, by using

two-photon transitions we further beneÞt by doubling the size of the recoil. Because

the two lasers counter propagate, the atom�s momentum changes by h̄k1 when it

absorbs a photon from the Þrst laser Þeld and then by −h̄(−k2) = h̄k2 when it

emits a photon into the second Þeld directed in the opposite direction. The net

change of momentum is thus h̄(k1 + k2) = h̄keff . Similarly, the recoil frequency shift

frec = (1/λ1 + 1/λ2)
2h/m = h/(mλ2eff) is now four times larger.

Interferometry

By extending each of the two paths in Figure 1.2a into interferometers, we can dramat-

ically improve our resolution. Figure 1.3a shows the two interferometry geometries,

originally proposed by Bordé [10, 11], each constructed with four π/2-pulses. The

enclosed phase space area and thus the Þnal phase difference between the two paths

of each interferometer is proportional to the size of the recoil (see Section 2.1 for

details). As we scan the frequencies ωP3 and ωP4 of the Þnal two π/2-pulses, the

phase difference between the interferometer paths varies and we observe interference

fringes superimposed on the original two resonance lineshapes, as represented in Fig-

ure 1.3b. The frequency period of these fringes can be made arbitrarily small, limited

only by the Þnite interaction time with the atoms. By superimposing fringes with

linewidths as small as ∼ 4 Hz on top of the much broader resonance lineshape, we
effectively reduce the width of the resonances by almost four orders of magnitude. In

addition, because the area of the interferometers is independent of an atom�s initial

velocity, all atoms contribute equally to the Þnal signal. In order to improve the

1.1. PHOTON RECOIL MEASUREMENT 11

ω������ ω�
���

ω������ ω������

���� = 	�

�

� � �

���� = +���
���� = +����

��
Probability of emerging in state |ai

Frequency (ωP34 − ωab) / ωrec

-3 -2 -1 0 1 2

(b) 2ωrec

Figure 1.3: Recoil measurement using interferometry. Each of the two paths in Figure 1.2a
are extended into an interferometer constructed with four π/2-pulses. These two interferometers
superimpose fringes on the two resonances shown in Figure 1.2b. The interference fringes have
frequency period 1/T , where T is the time between the π/2-pulse pairs during which the atoms
freely evolve in a superposition state. By increasing this time T , the fringe features can be made
Þner and Þner, allowing us to more precisely Þnd the center of the resonances. The position of the
fringes and the area enclosed by each interferometer is proportional to the size of the photon recoil
we are trying to measure. Since this enclosed area is independent of the atom�s initial velocity, all of
the atoms produce the same Þnal phase. Without the fringes, the measurement precision would be
limited by the width of the resonances which are Doppler broadened by the atoms� initial velocity
distribution. In order to make a precise measurement without interferometry, we would have to
dramatically reduce our signal size by selecting a small fraction of the atoms in a narrow velocity
class. By observing the interference phase, however, we are no longer limited by the Doppler width
and can therefore use the entire sample of atoms to make a measurement of ωrec.

resolution without the interferometers, we would have to reduce the Doppler width

of the resonances by selecting a particular fraction of the atoms� velocity distribution

and thereby dramatically reducing the signal size. With the interferometers, we have

the beneÞt of a large Þnal signal without sacriÞcing resolution.

Additional recoils

A Þnal resolution enhancement comes from inserting a number N of π-pulses between

the second and third π/2-pulses of each interferometer. These π-pulses increase the

separation between the two interferometers by 2N recoils, which shifts the resonances

in Figure 1.3b apart by exactly 2Nωrec. We have demonstrated interferometers with

up to 50 π-pulses, in which case the resonances are separated by 102 two-photon

recoils, or 204 single-photon recoils. Since the additional recoils do not change the

12 CHAPTER 1. INTRODUCTION

interference fringes, we have ampliÞed the effective recoil shift without altering the

precision with which we can determine the resonance centers, thereby improving the

Þnal measurement resolution linearly proportional to N .

1.2 Overview of this thesis

In Chapter 2, I derive general expressions for the phase of the interferometers and de-

scribe the different interferometer geometries. I also discuss our particular technique

using adiabatic dark-state evolution to transfer atoms between the two hyperÞne

ground states and its implications to interferometry. Chapter 3 covers the details of

the experimental apparatus, focusing mostly on the generation of the crucial Raman

lasers which impart the recoils and build the interferometers. Since this is the third

thesis from this experiment, Chapter 4 discusses the more signiÞcant changes in the

apparatus and overall improvements. In Chapter 5, I brießy discuss what the data

look like and how we acquire and process them. Most important for a precision mea-

surement is the discussion of the tests for systematic errors, which I plod through one

by one in Chapter 6. Finally, Chapter 7 concludes with a presentation of the Þnal

value, and Chapter 8 presents a brief discussion of possible future improvements.

Chapter 2

Theory

2.1 Atom interferometry

2.1.1 Interferometer Phase

To calculate the phase of an interferometer from initial splitting to Þnal recombin-

ing we consider the interaction of a single atom of mass m with a laser Þeld of

wavevector kL and frequency ωL, whose wavefront propagation can be described

by exp [i(kL · r− ωLt− φL)]. Since our laser Þelds are well-collimated and highly

directional, we follow only one spatial dimension, the beam direction, and assume

kL = kL�z, in the vertical direction. We assume that the atom has well-deÞned initial

momentum and two internal states, |ai and |bi, with energies h̄ωa and h̄ωb, respec-

tively.

When the laser light is off, we assume that the phase evolution of the atomic

wavefunction can be described by Scl/h̄ where Scl =
R
dt L(z, úz) is the classical ac-

tion. For an atom in a uniform gravitational Þeld with internal energy levels ωi, the

Lagrangian

L(z, úz) =
1

2
m úz2 −mgz − h̄ωi (2.1)

gives the classical solutions for velocity v(t) = úz(t) and position z(t). Evaluating the

action along the path described by this classical solution gives the classical action

13

14 CHAPTER 2. THEORY

which depends only on the endpoints za and zb [12, 13].

Scl(zbtb, zata) =
Z tb

ta
dt
∙
1

2
mv(t)2 −mgz(t)− h̄ωi

¸

=
m

2

(zb − za)2

tb − ta
−
mg

2
(zb + za)(tb − ta) (2.2)

−
mg2

24
(tb − ta)3 − h̄ωi(tb − ta)

�

�
�� ��� �� �� �
���

�������������

�����������

� �� �

Figure 2.1: Interferometer geometry 1 . An atom at rest and initially in state |ai is transfered
to a superposition of states |ai and |bi, represented with thick and thin lines, respectively. Due to
momentum conservation, these internal states are coupled to different momentum states. Plotting
position versus time and neglecting gravity, these parts of the atomic wavefunction separate in time
into two different paths. The path that deviates from the input trajectory will be called the �shifted�
path, while the other path will be referred to as the �unshifted� path.

For all interferometer geometries (enumerated 1 , 2 , 3 , and 4), we assume

that the atom starts in the internal state |ai with velocity v1 in the z-direction. The

Þrst π/2-pulse puts the atom in a superposition of states |ai and |bi. In order to

conserve momentum, the velocity of the part of the atomic wavefunction in state |bi

must differ from the velocity of the part of the atomic wavefunction in state |ai by

vr = h̄kL/m = ±(h̄kL/m)�z, where the sign is determined by the direction of the

laser wavevector, parallel or anti-parallel to �z. Because of this velocity difference, as

depicted in Figure 2.1 these two parts of the wavefunction separate spatially into two

paths. We label the |bi-state path �S� for �shifted� and the |ai-state path, which

does not change velocity during the Þrst π/2-pulse, �U� for �unshifted�.

For the unshifted and shifted paths with the four π/2-pulses occuring at times ti

2.1. ATOM INTERFEROMETRY 15

we calculate the atom�s velocity vi and position zi just before the i-th π/2-pulse.

v2U = v1U − g (t2 − t1) v2S = v1S − g (t2 − t1) + vr
v3U = v1U − g (t3 − t1) v3S = v1S − g (t3 − t1)
v4U = v1U − g (t4 − t1) v4S = v1S − g (t4 − t1)− vr

(2.3)

z2U = z1U + v1U(t2 − t1)− 1

2
gt2

¯̄
¯̄
t2−t1

0

z3U = z2U + v1U(t3 − t2)− 1

2
gt2

¯̄
¯̄
t3−t1

t2−t1

z4U = z3U + v1U(t4 − t3)− 1

2
gt2

¯̄
¯̄
t4−t1

t3−t1
(2.4)

z2S = z1S + (v1S + vr)(t2 − t1)− 1

2
gt2

¯̄
¯̄
t2−t1

0

z3S = z2S + (v1S)(t3 − t2)− 1

2
gt2
¯̄
¯̄
t3−t1

t2−t1

z4S = z3S + (v1S − vr)(t4 − t3)− 1

2
gt2

¯̄
¯̄
t4−t1

t3−t1

We now assert that t4 − t3 = t2 − t1 = T , which is required for the two paths to

intersect at the fourth π/2-pulse1. We also deÞne the interval t3 − t2 = T 0 which

will eventually contain N π-pulses but for now just represents some arbitrary delay

between the Þrst and second halves of the interferometer. Note that v1S = v1U = v1.

The velocity and position thus become

v2U = v1 − g T v2S = v1 − g T + vr
v3U = v1 − g (T + T 0) v3S = v1 − g (T + T 0)
v4U = v1 − g (2T + T 0) v4S = v1 − g (2T + T 0)− vr

(2.5)

1In principle, if the two interferometer paths do not intersect in position (and velocity) space,
they will not interfere. However, as long as the spread of the individual atomic wavefunctions is
larger than the gap between the interferometer paths at the Þnal interference point, there will still
be interference. The two paths can be thought of as originating from two different points within
the atomic wavepacket such that the two paths overlap at the Þnal interference point. The possible
phase errors from this effect are discussed in Section 6.6.3.

16 CHAPTER 2. THEORY

z2U = z1U + v1T − 1

2
gT 2

z3U = z2U + v1T
0 − 1

2
g
h
(T + T 0)2 − T 2

i

= z2U + v1T
0 − 1

2
g
h
2TT 0 + T 02

i

z4U = z3U + v1T − 1

2
g
h
(2T + T 0)2 − (T + T 0)2

i

= z3U + v1T − 1

2
g
h
3T 2 + 2TT 0

i

(2.6)

z2S = z1S + (v1 + vr)T − 1

2
gT 2

z3S = z2S + v1T
0 − 1

2
g
h
2TT 0 + T 02

i

z4S = z3S + (v1 − vr)T − 1

2
g
h
3T 2 + 2TT 0

i

Evaluating the action over the paths described in equation (2.6) we can calculate

the relative phase shift of the atomic wavefunction between the two interferometer

paths. Between the Þrst and second π/2-pulses, from equation (2.2) we have

1

h̄
[Scl(shifted12)− Scl(unshifted12)] = [Scl(S12)− Scl(U12)] /h̄ = ∆Scl(12)/h̄

=
m

2h̄

(
(z2S − z1S)2

(t2 − t1)
−
(z2U − z1U)2

(t2 − t1)
− g (t2 − t1)

h
(z2S + z1S)− (z2U + z1U)

i)

−
∙
ωb(t2 − t1)− ωa(t2 − t1)

¸

=
m

2h̄






³
(v1 + vr)T − 1

2
g T 2

´2

T
−

³
v1T − 1

2
g T 2

´2

T
− g T [vrT]





− (ωb − ωa)T

=
m

2h̄

n
2v1vrT + v

2
rT − vrg T

2 − vrg T 2
o
− ωabT

=
m

2h̄
vrT {2v1 + vr − 2g T}− ωabT (2.7)

where ωab = ωb − ωa is the frequency difference between the two internal energy
levels. Note that because the third term in equation (2.2) is proportional only to the

time separation between the two pulses and not the position, it cancels immediately

between the two interferometer paths. Between the second and third π/2-pulses, we

have

[Scl(S23)− Scl(U23)] /h̄ = ∆Scl(23)/h̄

2.1. ATOM INTERFEROMETRY 17

=
m

2h̄

(
(z3S − z2S)2

(t3 − t2)
−
(z3U − z2U)2

(t3 − t2)
− g (t3 − t2)

h
(z3S + z2S)− (z3U + z2U)

i)

−
∙
ωa(t3 − t2)− ωa(t3 − t2)

¸

=
m

2h̄
{0− g T 0 [2vrT]}− 0

=
m

2h̄
vrT {−2g T 0} (2.8)

And Þnally, the phase difference between the shifted and unshifted paths for the last

segment is

[Scl(S34)− Scl(U34)] /h̄ = ∆Scl(34)/h̄

=
m

2h̄

(
(z4S − z3S)2

(t4 − t3)
−
(z4U − z3U)2

(t4 − t3)
− g (t4 − t3)

h
(z4S + z3S)− (z4U + z3U)

i)

−
∙
ωb(t4 − t3)− ωa(t4 − t3)

¸

=
m

2h̄

(³
(v1 − vr)T − 1

2
g T (3T + 2T 0)

´2

T
−

³
v1T − 1

2
g T (3T + 2T 0)

´2

T
− g T [vrT]

)

−
∙
(ωb − ωa)T

¸

=
m

2h̄

n
−2v1vrT + v2rT + vrg T (3T + 2T

0)− vrg T 2
o
− ωabT

=
m

2h̄
vrT {−2v1 + vr + 2g(T + T 0)}− ωabT (2.9)

Summing equations (2.7) through (2.9) we have the overall phase difference between

the shifted (ΦS) and unshifted (ΦU) interferometer paths due to the evolution of the

atomic wavefunction

Φ
1

(atom) = ΦS − ΦU = [∆Scl(12) +∆Scl(23) +∆Scl(34)] /h̄

=
m

2h̄
vrT{2vr}− 2ωabT

=
mv2rT

h̄
− 2ωabT (2.10)

As contrasted with other more symmetric interferometer geometries [14, 15], this

result for our interferometers is non-zero. Note that because we have evaluated the

18 CHAPTER 2. THEORY

difference between the two interferometer paths, the Þnal expression in equation (2.10)

is independent of the initial velocity v1 and the gravitational acceleration g.

In addition to the phase evolution between the pulses, to calculate the complete

phase expression for an interferometer geometry, we must include also the effect of

the light at each pulse for each path of each interferometer. As shown in Table 2.1, we

assume that whenever the atom changes state, that part of the atomic wavefunction

acquires a phase identical to the optical phase at that point in space and time. Note

that this model does not refer to a particular technique used to transfer atoms between

atomic states, such as adiabatic passage or off-resonant Raman transfer.

Table 2.1: Change in the atomic wavefunction due to the interaction with the laser
Þeld. Uij are real transition amplitudes that for our purposes can be assumed to be unity. Note
that only when the internal state of the atom changes does the light Þeld imprint its phase on the
atomic wavefunction.

Initial Final Momentum
State State Change Multiplying factor
a a 0 Uaa
a b +h̄kL Uab exp [−i(kLz − ωLt− φL)]
b a −h̄kL Uba exp [+i(kLz − ωLt− φL)]
b b 0 Ubb

For interferometer geometry 1 , we Þrst calculate the effect of the four π/2-pulses

by applying the rules given in Table 2.1 to each of the vertices of the shifted and

unshifted interferometer paths. To apply these rules, we must know the phase of the

optical wavefront at each vertex. To better conceptualize the contributions of the

individual terms, we separate the optical phase into three parts: the �kz� term, the

�−ωt� term, and the �φ� term and evaluate the complete interferometer for each

term separately.

Movement along the optical wavefronts: the kz term

As an atom moves in space along a laser beam that is Þxed in space with respect to

some absolute reference, the atom experiences an optical phase that varies propor-

tional to kLz, where kL is the magnitude of the laser�s wavevector and z is some

2.1. ATOM INTERFEROMETRY 19

position along that vector. For now we assume that the momentum carried by

the laser beams for each π/2-pulse differs only in direction and not in magnitude:

|k1| = |k2| = |k3| = |k4| = kL = k. For interferometer geometry 1 , during the Þrst

two π/2-pulses the laser Þeld propagates upward: k1 = k2 = +k, and during the

second two π/2-pulses switches direction: k3 = k4 = −k. Using Table 2.1 to evaluate
the kz term vertex by vertex for both paths of interferometer 1 we have

Geometry 1 π/2-pulse #1 #2 #3 #4

Direction of |k| Up Up Down Down

Unshifted path 0 0 0 0

+k1z1S −k2z2S +k3z3S −k4z4S
Shifted path

= +kz1S = −kz2S = −kz3S = +kz4S

At each vertex on the unshifted path, because the atom does not change state, no

phase is imprinted on the atomic wavefunction. For the shifted path, however, each

vertex contributes; the Þrst and the third add because the transition is |ai → |bi,

while the second and fourth subtract because the transition is |bi→ |ai.

Using the position results from equation (2.6). The difference between the shifted

and unshifted paths for kz term is

ΦS − ΦU = k [−(z2S − z1S) + (z4S − z3S)]

= k
∙
−
µ
(v1 + vr)T −

1

2
g T 2

¶
+
µ
(v1 − vr)T −

1

2
g (3T 2 + 2TT 0)

¶¸

= k
∙
− 2vr − g (T + T 0)

¸
T (2.11)

which is proportional to the recoil velocity vr and the local acceleration g from gravity.

The time evolution of the optical phase: the −ωt term

In all precision interferometry experiments, the time evolution of the system being

measured is metered relative to the evolution of a stable reference oscillator, which

in our case with cesium atoms is the light Þeld. After the Þrst π/2-pulse when the

light is off, the relative phase between the two internal pure atomic states |ai and

20 CHAPTER 2. THEORY

|bi and their respective velocities evolves according to their energy difference. This

energy difference includes the ground state hyperÞne splitting of cesium ωab and the

kinetic energy difference due to a velocity change vr from the absorption or emission

of a photon. The −ωt term acts as the reference oscillator that is compared to this

internal phase evolution of the atomic wavefunction. As discussed in Section 1, due to

the two-photon process, the resonance condition is deÞned by the difference between

the absolute frequencies of the two Þelds, so the laser frequency ωL in the optical

phase expression represents here the difference between the two laser frequencies.

This frequency difference is set to cancel both the hyperÞne splitting, which is deÞned,

and the recoil energy, which we are trying to measure. If the value ω̄rec = k̄v̄r for the

recoil frequency used to set the oscillator frequency differs from the true value ωrec,

the atomic wavefunction and the reference oscillator will evolve at slightly different

rates and produce a phase shift after some time interval. It is this phase shift that we

measure at the end of the interferometers which tells us how much our current value

ω̄rec for the recoil velocity differs from the true value ωrec.

To track the phase evolution of the reference oscillator, we must know its fre-

quency at all times. From the atomic velocity given in equation (2.5) we can evaluate

the resonance condition in equation (1.15) for each π/2-pulse and calculate the fre-

quencies of the laser Þelds. During the Þrst π/2-pulse, because the atom is in state |ai

moving with velocity v1, the laser Þelds are two-photon resonant when their frequency

difference is ω = ωab+kv1+
1

2
kvr. The last term compensates for the change in kinetic

energy due to the stimulated absorption and emission of two photons from and into

the laser Þelds. For the second π/2-pulse, the beam direction is the same but the

atom is in a superposition state with velocity v2U for the |ai part and v2S = v2U + vr

for the |bi part. The resonance condition for the part of the atom in the |bi state

is ω = ωab + k(v2U + vr) − 1

2
kvr = ωab + kv2U +

1

2
kvr, identical to the resonance

condition for the |ai state. Because the laser Þeld does not change direction between

the Þrst and second π/2-pulses, the laser Þeld plus the atom still make up the same

closed system. Thus, except for the effect of gravity, the atom still has the exact same

resonance condition. For interferometer geometry 1 , the resonance frequency ωi for

2.1. ATOM INTERFEROMETRY 21

the ith π/2-pulse is

ω1 − ωab = δ + k̄1v̄1 +
1

2
k̄v̄r = δ + k̄v̄1 +

1

2
k̄v̄r (2.12)

ω2 − ωab = δ + k̄2v̄2 +
1

2
k̄v̄r = δ + k̄ [v̄1 − ḡ T] +

1

2
k̄v̄r (2.13)

ω3 − ωab = δ + k̄3v̄3 +
1

2
k̄v̄r = δ − k̄ [v̄1 − ḡ (T + T 0)] +

1

2
k̄v̄r (2.14)

ω4 − ωab = δ + k̄4v̄4 +
1

2
k̄v̄r = δ − k̄ [v̄1 − ḡ (2T + T 0)] +

1

2
k̄v̄r (2.15)

where δ represents any frequency offset from resonance, intentional or otherwise. Here

the bars indicate our best guess for each quantity, as opposed to their actual value.

Let φi(ω) be the phase of the −ωt term at the time of the ith π/2-pulse, then the
total phase expression of interferometer 1 for the time varying part of the optical

phase is

ΦS − ΦU = +φ1(ω)− φ2(ω) + φ3(ω)− φ4(ω)

= φ1(ω)− [φ1(ω) +∆φ12(ω)] + [φ1(ω) +∆φ12(ω) +∆φ23(ω)]

−[φ1(ω) +∆φ12(ω) +∆φ23(ω) +∆φ34(ω)]

= −[∆φ12(ω)]− [∆φ34(ω)] (2.16)

where ∆φij(ω) is the change in time-dependent phase between the ith and jth π/2-

pulses. We have applied the rules in Table 2.1: the Þrst and third π/2-pulses add, the

second and fourth π/2-pulses subtract, and the unshifted path does not contribute.

Note that because of the geometry of our four π/2-pulse interferometers, the phase

evolution of this −ωt term contributes only between the Þrst and second and between
the third and fourth π/2-pulses when the atom is in a superposition state.

To evaluate this expression, we must introduce our experimental method for

changing from one frequency to the next. As a step-wise approximation to changing

the frequency continuously to compensate for gravity, we change frequencies at the

midpoints, t12 and t34, of the π/2-pulse pairs (see Figure 2.1). Thus, equation (2.16)

becomes

−
h
−ω1 (t12 − t1)− ω2 (t2 − t12)

i
−
h
−ω3 (t34 − t3)− ω4 (t4 − t34)

i

22 CHAPTER 2. THEORY

Inserting the frequencies from equations (2.12) through (2.15) into this equation we

have

(2.17)

ΦS − ΦU =
∙
δ + ωab + k̄v̄1 +

1

2
k̄v̄r

¸
(t12 − t1)

+
∙
δ + ωab + k̄v̄1 − k̄ḡ T +

1

2
k̄v̄r

¸
(t2 − t12)

+
∙
δ + ωab − k̄v̄1 + k̄ḡ (T + T 0) +

1

2
k̄v̄r

¸
(t34 − t3)

+
∙
δ + ωab − k̄v̄1 + k̄ḡ (2T + T 0) +

1

2
k̄v̄r

¸
(t4 − t34)

With the same constraints on the timing of the π/2-pulses discussed in the previous

section (namely, t4 − t3 = t2 − t1 = T and t3 − t2 = T 0), we have Þnally

ΦS − ΦU =
∙
δ + ωab + k̄v̄1 +

1

2
k̄v̄r

¸
T − k̄ḡ T (t2 − t12)

+
∙
δ + ωab − k̄v̄1 +

1

2
k̄v̄r + k̄ḡ (T + T

0)
¸
T + k̄ḡ T (t4 − t34)

=
h
2(ωab + δ) + k̄v̄r + k̄ḡ (T + T

0)
i
T + k̄ḡ T [(t4 − t2)− (t34 − t12)]

=
h
2(ωab + δ) + k̄v̄r + k̄ḡ (T + T

0)
i
T + k̄ḡ T [(T + T 0)− (T + T 0)]

=
h
2(ωab + δ) + k̄v̄r + k̄ḡ (T + T

0)
i
T (2.18)

Additional optical phase: the φ term

Beyond the fundamental phase change due to the time evolution of the optical wave-

fronts and the motion of the atom along the laser Þeld, any additional phase shift

will also contribute to the Þnal phase result. Sources for such a phase shift might

include imperfections in the transfer, shifts of the atomic levels due to the presence

of the light Þelds during the pulses, or any of the many noise sources which cause the

optical phase to deviate from precisely kz − ωt. Independent of its origin, however,
any additional phase shift during the light pulses will contribute as

ΦS − ΦU = φ1 − φ2 + φ3 − φ4 (2.19)

2.1. ATOM INTERFEROMETRY 23

Combining equations (2.11) and (2.18), we can now construct the Þnal interferom-

eter phase Φ(light) due to the light Þelds interacting with the atoms during the four

π/2-pulses. For now, we leave out any additional phase shifts referred to in equation

(2.19).

Φ
1

(light)

= k [−2vr − g (T + T 0)]T +
h
2(ωab + δ) + k̄v̄r + k̄ḡ (T + T

0)
i
T

=
h
−kvr − (kvr − k̄v̄r)− (kg − k̄ḡ)(T + T 0)

i
T + 2(ωab + δ)T (2.20)

Combining this result with the total phase shift from the free evolution of the

atom between the pulses in equation (2.10), we have the complete phase difference

for interferometer geometry 1 .

Φ
1

= Φ
1

(atom) + Φ
1

(light)

=
mvrT

h̄
vr − 2ωabT

+
h
−kvr − (kvr − k̄v̄r)− (kg − k̄ḡ)(T + T 0)

i
T + 2(ωab + δ)T

=
mvrT

h̄

h̄k

m
+
h
−kvr − (kvr − k̄v̄r)− (kg − k̄ḡ)(T + T 0)

i
T + 2δT

=
h
−(kvr − k̄v̄r)− (kg − k̄ḡ)(T + T 0)

i
T + 2δT (2.21)

If our guesses for the values of the recoil velocity v̄r and the acceleration due to gravity

ḡ are correct and δ = 0, the net phase shift will be zero and the atom will emerge in

state |ai with unity probability. Any difference between our guesses and the actual

values will reduce this probability and be observed as a shift in the interferometer

fringe. Note that in addition to the recoil velocity, this interferometer geometry is

also sensitive to the local gravitational acceleration. To make the overall measurement

independent of small inaccuracies in the value for g, we make a second measurement

with a slightly modiÞed geometry.

24 CHAPTER 2. THEORY

ω������ ω�
���

ω������ ω������

���� = 	�

�

� � �

���� = +���
���� = +����

Figure 2.2: The fundamental recoil measurement is a difference between two interferometers.
By selecting the other internal state (in this case |bi) after the second π/2-pulse, we can generate an-
other interferometer, conjugate to the Þrst, shown with light lines. Although the Þnal interferometer
phase also depends on the laser frequencies during the pulses and the atom�s free evolution during
time T , the recoil measurement can be understood as counting the number of laser wavefronts,
shown for the last π/2-pulse, between the Þnal interference points of the two interferometers.

2.1.2 Conjugate Interferometer

In order to make the overall measurement sensitive only to deviations in the recoil

shift, we can measure the phase from a slightly modiÞed interferometer geometry.

As we will show below, interferometer geometry 2 (see Figure 2.2) has the same

sensitivity as geometry 1 except the recoil terms enter with the opposite sign. By

taking the difference between the results from geometries 1 and 2 , we remove the

sensitivity to the local gravitational acceleration and to any frequency detuning from

the two-photon resonance condition. Interferometers 1 and 2 are thus �conjugate�

interferometer geometries; both must be measured in order to arrive at a value for the

recoil shift independent of g.

As depicted in Figure 2.2, geometry 2 is identical to its conjugate geometry 1 ,

except that after the Þrst two π/2-pulses, the atom is left in the other hyperÞne

state: state |bi instead |ai. Geometries 3 and 4 (see Figure 2.5) are constructed

2.1. ATOM INTERFEROMETRY 25

from 1 and 2 by reversing the direction of all of the laser beams. We will refer to

the conjugate interferometer pair 1 and 2 as the �normal� interferometers and the

conjugate pair 3 and 4 as the �inverted� interferometers.

To calculate the Þnal phase for interferometer geometry 2 , we follow the same

procedure as in the previous section. Equations (2.5) and (2.6) for the velocity and

position become

v2U = v1 − g T v2S = v1 − g T + vr
v3U = v1 − g (T + T 0) + vr v3S = v1 − g (T + T 0) + vr
v4U = v1 − g (2T + T 0) + 2vr v4S = v1 − g (2T + T 0) + vr

(2.22)

z2U = z1U + v1T − 1
2 gT

2

z3U = z2U + (v1 + vr)T
0 − 1

2
g
h
2TT 0 + T 02

i

z4U = z3U + (v1 + 2vr)T − 1

2
g
h
3T 2 + 2TT 0

i

(2.23)

z2S = z1S + (v1 + vr)T − 1

2
gT 2

z3S = z2S + (v1 + vr)T
0 − 1

2
g
h
2TT 0 + T 02

i

z4S = z3S + (v1 + vr)T − 1

2
g
h
3T 2 + 2TT 0

i

From this trajectory, we calculate the difference between the action along the shifted

and unshifted paths. ∆Scl(12) and∆Scl(23) are the same, but∆Scl(34) from equation

(2.9) becomes

∆Scl(34)/h̄

=
m

2h̄

(³
(v1 + vr)T − 1

2
g T (3T + 2T 0)

´2

T
−

³
(v1 + 2vr)T − 1

2
g T (3T + 2T 0)

´2

T

−g T [vrT]
)

−
∙
(ωb − ωa)T

¸

=
m

2h̄

n
−2v1vrT + v2rT − 3vrg T (3T + 2T

0)− vrg T 2
o
− ωabT

=
m

2h̄
vrT {−2v1 − 3vr + 2g(T + T 0)}− ωabT (2.24)

and the overall phase difference between the shifted and unshifted paths due to the

26 CHAPTER 2. THEORY

evolution of the atomic wavefunction is

Φ
2
(atom) = ΦS − ΦU = [∆Scl(12) +∆Scl(23) +∆Scl(34)] /h̄

=
m

2h̄
vrT{−2vr}− 2ωabT

= −
mv2rT

h̄
− 2ωabT (2.25)

differing from the same expression for interferometer 1 in equation (2.10) only in

the sign of the Þrst term.

To calculate the effect of the light pulses, we again evaluate the kz term, the −ωt
term, and the φ term separately. As before, we assume |k1| = |k2| = |k3| = |k4| =

kL = k, with the same beam directions as with geometry 1 . At each π/2-pulse for

geometry 2 , we have

Geometry 2 π/2-pulse #1 #2 #3 #4

Direction of |k| Up Up Down Down

+k2z2S −k3z3S
Unshifted path 0

= +kz2S = +kz3S
0

+k1z1S −k4z4S
Shifted path

= +kz1S
0 0

= +kz4S

Unlike geometry 1 , both paths for this geometry contribute to the Þnal expres-

sion. Along the unshifted path, the atom changes state during the second (|ai to |bi)

and third (|bi to |ai) π/2-pulses, adding during the second and subtracting during

the third. Along the shifted path, only the Þrst and fourth π/2-pulse contribute,

the Þrst adding and the fourth subtracting. Using the position results from equation

(2.23). The difference between the shifted and unshifted paths for kz term is

ΦS − ΦU = k [−(z2U − z1S) + (z4S − z3U)]

= k
∙
−
µ
v1T −

1

2
g T 2

¶
+
µ
(v1 + 2vr)T −

1

2
g (3T 2 + TT 0)

¶¸

= k
∙
+ 2vr − g (T + T 0)

¸
T (2.26)

2.1. ATOM INTERFEROMETRY 27

Compare this result with the same expression from interferometer 1 in equation

(2.11) and note that the term proportional to vr changes sign while the term propor-

tional to g does not.

To evaluate the −ωt term, we calculate the resonance condition for each π/2-pulse
using the velocity in equation (2.22) and again assuming an offset δ.

ω1 − ωab = δ + k̄1v̄1 +
1

2
k̄v̄r = δ + k̄v̄1 +

1

2
k̄v̄r (2.27)

ω2 − ωab = δ + k̄2v̄2 +
1

2
k̄v̄r = δ + k̄ [v̄1 − ḡ T] +

1

2
k̄v̄r (2.28)

ω3 − ωab = δ + k̄3v̄3 −
1

2
k̄v̄r = δ − k̄ [v̄1 + v̄r − ḡ (T + T 0)]−

1

2
k̄v̄r

= δ + k̄
h
−v̄1 − 3

2
v̄r + ḡ (T + T

0)
i

(2.29)

ω4 − ωab = δ + k̄4v̄4 +
1

2
k̄v̄r = δ − k̄ [v̄1 + 2v̄r − ḡ (2T + T 0)] +

1

2
k̄v̄r

= δ + k̄
h
−v̄1 − 3

2
v̄r + ḡ (2T + T

0)
i

(2.30)

Using the rules in Table 2.1, one can show that interferometers 1 and 2 have the

exact same sensitivity to the −ωt term: +φ1(ω) − φ2(ω) + φ3(ω) − φ4(ω). For the
shifted path, the Þrst π/2-pulse adds and the fourth pulse subtracts. For the unshifted

path, the second pulse adds and the third pulse subtracts. Thus, the evaluation of

the total phase contribution from this term is the same as in equation (2.16).

ΦS − ΦU = −[∆φ12(ω)]− [∆φ34(ω)]

= −[−ω1 (t12 − t1)− ω2 (t2 − t12)]− [−ω3 (t34 − t3)− ω4 (t4 − t34)]

=
∙
ωab + δ + k̄v̄1 +

1

2
k̄v̄r

¸
(t12 − t1)

+
∙
ωab + δ + k̄v̄1 +

1

2
k̄v̄r − k̄ḡ T

¸
(t2 − t12)

+
h
ωab + δ − k̄v̄1 − 3

2
k̄v̄r + k̄ḡ (T + T

0)
i
(t34 − t3)

+
h
ωab + δ − k̄v̄1 − 3

2
k̄v̄r + k̄ḡ (2T + T

0)
i
(t4 − t34)

=
∙
ωab + δ + k̄v̄1 +

1

2
k̄v̄r

¸
T − k̄ḡ T (t2 − t12)

+
h
ωab + δ − k̄v̄1 − 3

2
k̄v̄r + k̄ḡ (T + T

0)
i
T + k̄ḡ T (t4 − t34)

=
h
2(ωab + δ)− k̄v̄r + k̄ḡ (T + T 0)

i
T + k̄ḡ T [(t4 − t2)− (t34 − t12)]

28 CHAPTER 2. THEORY

=
h
2(ωab + δ)− k̄v̄r + k̄ḡ (T + T 0)

i
T (2.31)

Here we have inserted frequencies from equations (2.27) through (2.30) and again

used the same constraints on the timing of the π/2-pulses discussed in the previous

section. Comparing this result with the same expression from interferometer 1 in

equation (2.18) again reveals that the term proportional to vr changes sign while the

term proportional to g does not. Any additional optical phase (the φ term) also has

the same expression: φ1 − φ2 + φ3 − φ4 as we had for 1 in equation (2.19).

Combining equations (2.26) and (2.31), we can now construct the interferometer

phase Φ(light) for interferometer geometry 2 .

Φ
2
(light)

= k [+2vr − g (T + T 0)]T +
h
2(ωab + δ)− k̄v̄r + k̄ḡ (T + T 0)

i
T

=
h
+kvr + (kvr − k̄v̄r)− (kg − k̄ḡ)(T + T 0)

i
T + 2(ωab + δ)T (2.32)

Combining this result with the total phase shift from the free evolution of the

atom between the pulses in equation (2.25), we have the complete phase difference

for interferometer geometry 2 .

Φ
2

= Φ
2
(atom) + Φ

2
(light)

= −
mvrT

h̄
vr − 2ωabT

+
h
+kvr + (kvr − k̄v̄r)− (kg − k̄ḡ)(T + T 0)

i
T + 2(ωab + δ)T

=
h
+(kvr − k̄v̄r)− (kg − k̄ḡ)(T + T 0)

i
T + 2δT (2.33)

We are now ready to describe the result of a single measurement of the recoil shift.

Because of its sensitivity to the local gravitational acceleration and any arbitrary

offset δ of the laser frequencies, a measurement of the phase shift for interferometer

geometry 1 alone is not sufficient to measure the recoil shift. However, by measuring

the phase shift from geometries 1 and 2 and subtracting the result in equation (2.21)

from that in equation (2.33), we have a result that is sensitive only to the difference

2.1. ATOM INTERFEROMETRY 29

between the accepted and actual values of the recoil shift.

Φ
1

− Φ
2

=
n
[−(kvr − k̄v̄r)− (kg − k̄ḡ)(T + T 0)]T + 2δT

o

−
n
[+(kvr − k̄v̄r)− (kg − k̄ḡ)(T + T 0)]T + 2δT

o

= −2(kvr − k̄v̄r)T (2.34)

This process is identical to the hypothetical measurement described in the intro-

duction, except that interferometers are used to greatly increase the precision with

which the center of the resonances can be determined.

2.1.3 π-pulses

To further improve the measurement sensitivity, we insert N π-pulses between the

second and third π/2-pulses. These π-pulses are evenly spaced, separated by a time

Tππ. Each π-pulse simultaneously addresses both interferometer paths. Because the

atoms in each interferometer path are all in either state |ai or state |bi, the π-pulse

transfers the atoms in both paths to the other state, |ai to |bi, and vice versa. When

the atoms change state they undergo a stimulated absorption (and emission) and

recoil accordingly. After each π-pulse, we change the beam direction so that the

atoms continue recoiling in one direction. For the normal interferometers (1 and

2), the π-pulses start with keff = −keff�z. Interferometer 1 shown in Figure 2.3 for
N = 2 leaves the atoms in the state |ai after the second π/2-pulse. These atoms recoil

downward, and end in state |bi. For the second π-pulse, the beam direction reverses.

However, because the atoms are now in state |bi, the recoil is again downward. For

interferometer 2 shown in Figure 2.3, the atoms leave the second π/2-pulse in state

|bi. Consequently, each π-pulse causes the atoms to recoil upward. Since the π-pulses

push interferometer 1 down, we will often refer to it as a �down� interferometer. Its

conjugate interferometer which is pushed upward by the π-pulses will be called an

�up� interferometer.

To determine how the π-pulses change the Þnal interferometer phase, we go

through the same process we completed in Sections 2.1.1 2.1.2 for the π/2-pulses

30 CHAPTER 2. THEORY

π
�

π
�

π

π

π
�

π
�

���� = 	�

�

� � ���

���� = +����
���� = +
���

Figure 2.3: Recoil measurement with two additional recoils (N = 2). By inserting N
π-pulses between the second and third π/2-pulses, the separation between the two conjugate inter-
ferometers can be increased by N additional recoils. Because the π-pulses do not affect the fringe
spacing, they do not change the precision with which we can determine the centers of the two res-
onances. Thus, by adding addition recoils, we linearly increase the Þnal measurement resolution.
Since we know the integer number N , we divide the Þnal frequency difference by (N + 1) to derive
the size of a single recoil.

but this time for π-pulses. In addition, due to the π-pulses, the input velocity and

position for these pulses is now different, so we must modify the results of these

sections for the last two π/2-pulses.

N even

If the number of π-pulses N is odd, the atoms in both interferometer paths will enter

the third π/2-pulse in the other state. Although, a perfectly viable interferometer

2.1. ATOM INTERFEROMETRY 31

results, it signiÞcantly changes the Þnal phase expression, so for now we will assume

that N is even, as shown in Figure 2.3. We Þrst calculate the velocity and position

of atoms for the shifted (S) and unshifted (U) paths of interferometer 1 . For both

paths, the velocity vπi before the ith π-pulse will be

vπ1 = v2U − g(tπ1 − t2) = v2U − gTππ

vπ2 = vπ1 − g(tπ2 − t2π1)− vr = v2U − 2gTππ − vr

vπ3 = vπ2 − g(tπ3 − t2π2)− vr = v2U − 3gTππ − 2vr (2.35)
...

vπN = v2U −NgTππ − (N − 1)vr

For the unshifted path, the position zπiU at the ith π-pulse will be

zπ1U = z2U + v1(tπ1 − t2)−
1

2
g(t2π1 − t

2
2)

= z2U + v1Tππ −
1

2
gTππ(2T + Tππ)

zπ2U = zπ1U + [v1 − vr](tπ2 − tπ1)−
1

2
g(t2π2 − t

2
π1)

= z2U + [2v1 − vr]Tππ −
1

2
gTππ(4T + 4Tππ)

(2.36)
zπ3U = zπ2U + [v1 − 2vr](tπ3 − tπ2)−

1

2
g(t2π3 − t

2
π2)

= z2U + [3v1 − 3vr]Tππ −
1

2
gTππ(6T + 9Tππ)

...

zπNU = z2U +
∙
Nv1 −

1

2
N(N − 1)vr

¸
Tππ −

1

2
gTππ(2NT +N

2Tππ)

At each π-pulse, the shifted path is a Þxed displacement ∆z = +vrT from the un-

shifted path

zπiS = zπiU + vrT (2.37)

The velocity given in equation (2.5) for third and fourth π/2-pulse must be modiÞed

to include the term −Nvr from the π-pulses

v3U = v1 − g (T + T 0)−Nvr v3S = v1 − g (T + T 0)−Nvr
v4U = v1 − g (2T + T 0)−Nvr v4S = v1 − g (2T + T 0)− (N + 1)vr

(2.38)

32 CHAPTER 2. THEORY

Similarly, the positions in equation (2.6) for the unshifted and shifted paths become

z3U = zπNU + [v1 −Nvr](T 0 −NTππ)− 1

2
g
h
(T + T 0)2 − (T +NTππ)2

i

= z2U + [v1 −Nvr]T 0 + 1

2
N(N + 1)vrTππ − 1

2
g
h
2TT 0 + T 02

i

z4U = z3U + [v1 −Nvr]T − 1

2
g
h
3T 2 + 2TT 0

i

(2.39)
z3S = z2S + [v1 −Nvr]T 0 + 1

2
N(N + 1)vrTππ − 1

2
g
h
2TT 0 + T 02

i

z4S = z3S + [v1 − (N + 1)vr]T − 1

2
g
h
3T 2 + 2TT 0

i

As before, with the position at each pulse we are now prepared to evaluate the

action over each path and compute the phase difference ∆Scl/h̄ = (Scl(shifted) −
Scl(unshifted)/h̄. Because the displacement between the two interferometer paths

between the second and third π/2-pulses is not affected by the π-pulses, equation

(2.8) for the phase due the action does not change. Equation (2.9), however, for the

phase due to the action between the last two π/2-pulses does change.

∆Scl(34)/h̄

=
m

2h̄

(
µ
v1 − (N|{z}+1)vr]T −

1

2
g T (3T + 2T 0)

¶2

T

−

µ
[v1 −Nvr|{z}]T −

1

2
g T (3T + 2T 0)

¶2

T
− g T [vrT]

)

−
∙
(ωb − ωa)T

¸

=
m

2h̄

½
−2v1vrT + 2Nv2rT| {z }

+v2rT + vrg T (3T + 2T
0)− vrg T 2

¾
− ωabT

=
m

2h̄
vrT

½
−2v1 + (2N|{z}+1)vr + 2g(T + T

0)
¾
− ωabT (2.40)

where the underbraces (|{z}) indicate new terms due to the π-pulses. Summing equa-

tions (2.7), (2.8), and (2.40), we have the total phase difference accumulated from

the evolution of the atomic wavefunction along both paths

Φ
1

(atom) = [∆Scl(12) +∆Scl(23) +∆Scl(34)] /h̄

=
m

2h̄
vrT{2Nvr| {z }+2vr}− 2ωabT

=
mv2rT

h̄
(N|{z}+1)− 2ωabT (2.41)

2.1. ATOM INTERFEROMETRY 33

We next derive the terms for the contribution from the laser at each pulse. As

in Section 2.1.1, we consider the kz, −ωt, and φ components of the optical phase
separately.

kz term

At each π-pulse, the atomic state changes in both interferometer paths. Thus, the

contribution from the π-pulses for the shifted and unshifted paths is

ΦπU = kπ1zπ1U − kπ2zπ2U + kπ3zπ3U − · · ·− kπNzπNU (2.42)

ΦπS = kπ1zπ1S − kπ2zπ2S + kπ3zπ3S − · · ·− kπNzπNS (2.43)

where the sign of each term is determined by the state of the atoms at the beginning

of the π-pulse: positive for |ai → |bi and negative for |bi → |ai. The difference

between the shifted and unshifted paths is

ΦπS − ΦπU = kπ1∆zπ1 − kπ2∆zπ2 + kπ3∆zπ3 − · · ·− kπN∆zπN (2.44)

where ∆zπi = ∆z = vrT is the constant separation between the two interferometer

paths for the whole time between the second and third π/2-pulses. Since the beam

direction alternates for each pulse starting with kπ1 = −k and the recoil size for each
π-pulse is the same, equation (2.44) becomes

ΦπS − ΦπU = (−k − k − k − · · ·− k)∆z

= −NkvrT (2.45)

For the Þrst and second π/2-pulses the kz-expression remains the same, because

the atom�s position for these pulses is unchanged. For the last two π/2-pulses, how-

ever, because of the velocity added by the π-pulses, the distance z4− z3 of the atom�s
position between the third and fourth π/2-pulse has an additional term −NvrT . With

34 CHAPTER 2. THEORY

the addition of equation (2.45), equation (2.11) becomes

ΦS − ΦU = ΦπS − ΦπU| {z }+k [−(z2S − z1S) + (z4S − z3S)]

= −NkvrT| {z }+k
∙
−
µ
(v1 + vr)T −

1

2
g T 2

¶

+
µ
(v1 − (N|{z}+1)vr)T −

1

2
g (3T 2 + 2TT 0)

¶ ¸

= k
∙
− 2(N|{z}+1)vr − g (T + T

0)
¸
T (2.46)

−ωt term

To calculate the phase for the time varying component of the optical phase, we must

know the frequency difference between the lasers for each pulse. Since this frequency

difference is always the same for both interferometer paths, each π-pulse adds the

same phase to each path and thus no net phase is contributed to the −ωt term. For
the Þrst two π/2-pulses, the frequencies are the same. For the last two π/2-pulses,

equations (2.14) and (2.15) become

ω3 − ωab = δ + k̄3v̄3 +
1

2
k̄v̄r

= δ − k̄ [v̄1 − ḡ (T + T 0)] + (N|{z}+
1

2
)k̄v̄r (2.47)

ω4 − ωab = δ + k̄4v̄4 +
1

2
k̄v̄r

= δ − k̄ [v̄1 − ḡ (2T + T 0)] + (N|{z}+
1

2
)k̄v̄r (2.48)

so that equation (2.18) for the total contribution from the −ωt term of the optical

phase for interferometers with N π-pulses (with N even) becomes

ΦS − ΦU =
∙
δ + ωab + k̄v̄1 +

1

2
k̄v̄r

¸
T − k̄ḡ T (t2 − t12)

+
∙
δ + ωab − k̄v̄1 + (N|{z}+

1

2
)k̄v̄r + k̄ḡ (T + T

0)
¸
T + k̄ḡ T (t4 − t34)

=
∙
2(ωab + δ) + (N|{z}+1)k̄v̄r + k̄ḡ (T + T

0)
¸
T (2.49)

2.1. ATOM INTERFEROMETRY 35

φ term

Just as the π-pulses did not contribute a net phase to the −ωt term, they also con-
tribute no net phase to the static phase term. Equation (2.19) still applies, indepen-

dent of N .

Combining equations (2.41), (2.46), and (2.49), we can now evaluate the complete

interferometer phase difference Φ
1

, including the evolution of the atomic wavefunc-

tion and the contribution from the optical phase being imposed on the atoms at each

pulse. Analogous to equation (2.21), we have

Φ
1

= Φ
1

(atom) + Φ
1

(light)

=
mvrT

h̄
(N + 1)vr − 2ωabT

+(N + 1)
h
−kvr − (kvr − k̄v̄r)

i
T −

h
(kg − k̄ḡ)(T + T 0)

i
T + 2(ωab + δ)T

=
h
−(N + 1)(kvr − k̄v̄r)− (kg − k̄ḡ)(T + T 0)

i
T + 2δT (2.50)

and analogous to equation (2.33) for the conjugate interferometer pushed up by the

π-pulses, we have

Φ
2

= Φ
2
(atom) + Φ

2
(light)

= −
mvrT

h̄
(N + 1)vr − 2ωabT

+(N + 1)
h
+kvr + (kvr − k̄v̄r)

i
T −

h
(kg − k̄ḡ)(T + T 0)

i
T + 2(ωab + δ)T

=
h
+(N + 1)(kvr − k̄v̄r)− (kg − k̄ḡ)(T + T 0)

i
T + 2δT (2.51)

The difference between the two measurements (2.50) and (2.51) is the measurement

of the recoil frequency. Analogous to equation (2.34), we now have

Φ
1

− Φ
2

=
n
[−(N + 1)(kvr − k̄v̄r)− (kg − k̄ḡ)(T + T 0)]T + 2δT

o

−
n
[+(N + 1)(kvr − k̄v̄r)− (kg − k̄ḡ)(T + T 0)]T + 2δT

o

= −2(N + 1)(kvr − k̄v̄r)T (2.52)

36 CHAPTER 2. THEORY

π
�

π
�

π

π
�

π
�

���� = 	�

�

� � �
��

���� = +����

���� = −����

�
��������������

�

Figure 2.4: Recoil measurement with one additional recoil (N = 1). When N is odd, the
beam direction for the Þnal two π/2-pulses must reverse (compare with Figure 2.3). Otherwise,
because the atomic state entering the third π/2-pulse is reversed, the Þnal two π/2-pulses would
cancel the effect of the Þrst two π/2-pulses and thereby reduce the frequency separation by one
recoil frequency. To maintain the frequency separation between the interferometers proportional to
N + 1, we therefore reverse the direction of the lasers for the Þnal two π/2-pulses and correct their
frequencies accordingly.

N odd

Interferometers constructed with an odd number of π-pulses enter the third π/2-pulse

in the opposite state they exit the second π/2-pulse. Figure 2.4 shows an example with

N = 1. As a result, the roles of the states |ai and |bi are reversed for the last π/2-pulse

pair. In all of the different expressions which contribute to the Þnal interferometer

phase difference, when N is even, the Þrst and second π/2-pulse pair produce terms

proportional to the recoil shift with the same sign, thus doubling that term in the

Þnal expression. For example, in equation (2.11) the Þrst and second π/2-pulse pair

both generate the term −kvrT , which adds up to −2kvrT in total. On the other hand,
when N is odd, with all of the beam directions unchanged the terms proportional to

2.1. ATOM INTERFEROMETRY 37

the recoil frequency from the second π/2-pulse pair have the opposite sign compared

to the terms from the Þrst π/2-pulse pair. In all of the different components of the

Þnal phase, the terms from the two π/2-pulse pairs cancel, reducing the number of

recoils from N + 1 to N . To avoid reducing the number of recoils, when N is odd we

reverse the beam direction for the Þnal two π/2-pulses. Thus, the kz term for each

of the four π/2-pulses contributes as

Geometry 1 π/2-pulse #1 #2 #3 #4

Direction of |k| Up Up Up Up

−k4z4U
Unshifted path 0 0 0

= −kz4U
+k1z1S −k2z2S −k3z3S

Shifted path
= +kz1S = −kz2S = −kz3S

0

Although we now have a contribution from the unshifted path, each term still con-

tributes with the sign convention given in Table 2.1. In the shifted path the kz term

adds when the atom changes from state |ai to |bi at the Þrst π/2-pulse and sub-

tracts when the atom goes from |bi to |ai at the second and third π/2-pulses. At

the last π/2-pulse in the unshifted path, the kz term again subtracts when the atom

changes from |bi to |ai. Since the positions in equation (2.39) still apply, the total

contribution from the kz term is thus identical to equation (2.46).

The total phase difference from the atom�s evolution in the dark and from the

remaining terms in the optical phase do change, however. Because the roles of the

atomic states are reversed for the Þnal two π/2-pulses, the phase evolution due to the

energy difference h̄ωab between the states exactly cancels the analogous term from

the Þrst two π/2-pulses. The difference of the total action phase between the two

interferometer paths is thus

Φ
1

(atom) =
mv2rT

h̄
(N + 1) (2.53)

the same as equation (2.41) but without the −2ωabT term.

38 CHAPTER 2. THEORY

The contribution from the static phase of the lasers is no longer given by equation

(2.19). Instead

ΦS − ΦU = φ1 − φ2−φ3 + φ4| {z }
(2.54)

where the underbrace indicates the terms whose sign is reversed. Similarly, the phase

for the −ωt term is now

ΦS − ΦU = +φ1(ω)− φ2(ω)− φ3(ω) + φ4(ω) = −∆φ12(ω) +|{z}∆φ34(ω) (2.55)

Because the input state is different and the beam direction is no longer reversed for

the Þnal two π/2-pulses, the frequencies for these pulses given in equations (2.47) and

(2.48) become

ω3 − ωab = δ + k̄3v̄3 −
1

2
k̄v̄r

= δ + k̄ [v̄1 − ḡ (T + T 0)]− (N +
1

2
)k̄v̄r (2.56)

ω4 − ωab = δ + k̄4v̄4 −
1

2
k̄v̄r

= δ + k̄ [v̄1 − ḡ (2T + T 0)]− (N +
1

2
)k̄v̄r (2.57)

so that equation (2.55) becomes

ΦS − ΦU =
∙
δ + ωab + k̄v̄1 +

1

2
k̄v̄r

¸
(t12 − t1)

+
∙
δ + ωab + k̄v̄1 − k̄ḡ T +

1

2
k̄v̄r

¸
(t2 − t12)

−
∙
δ + ωab + k̄v̄1 − k̄ḡ (T + T 0)− (N +

1

2
)k̄v̄r

¸
(t34 − t3)

−
∙
δ + ωab + k̄v̄1 − k̄ḡ (2T + T 0)− (N +

1

2
)k̄v̄r

¸
(t4 − t34)

=
∙
δ + ωab + k̄v̄1 +

1

2
k̄v̄r

¸
T − k̄ḡ T (t2 − t12)

−
∙
δ + ωab + k̄v̄1 − (N +

1

2
)k̄v̄r − k̄ḡ (T + T 0)

¸
T + k̄ḡ T (t4 − t34)

=
h
(N + 1)k̄v̄r + k̄ḡ (T + T

0)
i
T + k̄ḡ T [(t4 − t2)− (t34 − t12)]

=
h
(N + 1)k̄v̄r + k̄ḡ (T + T

0)
i
T (2.58)

2.1. ATOM INTERFEROMETRY 39

which is the same as equation (2.49) without the 2(ωab + δ)T term.

Combining equations (2.46), (2.53), and (2.58), we have the complete expression

for interferometer 1 with N odd

Φ
1

(N odd)

=
mvrT

h̄
(N + 1)vr

+(N + 1)
h
−kvr − (kvr − k̄v̄r)

i
T −

h
(kg − k̄ḡ)(T + T 0)

i
T

=
h
−(N + 1)(kvr − k̄v̄r)− (kg − k̄ḡ)(T + T 0)

i
T (2.59)

which is identical to equation (2.50) without the +2δT term. Similarly, equation

(2.51) for the conjugate interferometer 2 becomes

Φ
2
(N odd)

= −
mvrT

h̄
(N + 1)vr − 2ωabT

+(N + 1)
h
+kvr + (kvr − k̄v̄r)

i
T −

h
(kg − k̄ḡ)(T + T 0)

i
T

=
h
+(N + 1)(kvr − k̄v̄r)− (kg − k̄ḡ)(T + T 0)

i
T (2.60)

so that the up/down difference for N odd is identical to equation (2.52). Comparing

the results from interferometers with N odd and N even is an important test for

systematic errors (see Section 6.2.3).

2.1.4 Inverted Interferometers

Interferometer 2 differs from its conjugate interferometer 1 by selecting the other

internal state after the second π/2-pulse. If we now take these two �normal� interfer-

ometers and reverse the direction of all of the recoils, we can generate the Þnal two

interferometer geometries 3 and 4 . As shown in Figure 2.5, interferometers 3 and

4 look the same as interferometers 1 and 2 , respectively, but reßected about the

horizontal axis. By measuring the phase from these two �inverted� interferometers,

we are able to eliminate many systematic errors such as shifts due to magnetic bias

40 CHAPTER 2. THEORY

ω������ ω������

ω������ ω�
���

���� = 	�

�

�

���� = −����

���� = 	�

��������������

�

Figure 2.5: Inverted interferometers, generated by reversing the direction of all of the lasers
for each of the pulses. These new interferometer geometries labeled 3 and 4 appear the same as

the normal interferometers 1 and 2 (shown in gray) reßected about the horizontal axis. Except

for the sign of the gravity term, the Þnal phase expressions for 1 and 3 are the same, and similarly

for 2 and 4 . However, since interferometer 3 is pushed up by the π-pulses while 1 is pushed
down, the roles of up and down are reversed for the inverted interferometers. This inversion helps
cancel spatially dependent systematic effects such as those caused by the external magnetic Þeld
and the gravity gradient.

Þeld inhomogeneities and gravity gradients that depend on where the interferometers

occur in space. This cancelation occurs because interferometer 3 for which the atom

emerges from the second π/2-pulse in the |ai state is pushed up by the π-pulses and

has a phase expression

Φ
3
=
h
−(N + 1)(kvr − k̄v̄r) + (kg − k̄ḡ)(T + T 0)

i
T + 2δT (2.61)

which is the same as the result in equation (2.50) for 1 , pushed down by the π-pulses,

with the sign of the gravity term reversed. The roles of up and down are similarly

reversed for interferometers 2 and 4 .

Φ
4
=
h
+(N + 1)(kvr − k̄v̄r) + (kg − k̄ḡ)(T + T 0)

i
T + 2δT (2.62)

2.1. ATOM INTERFEROMETRY 41

Combining the phase results from interferometers 3 and 4 in equations (2.61) and

(2.62), we have

Φ
3
− Φ

4
= −2(N + 1)(kvr − k̄v̄r)T (2.63)

which is identical to equation (2.52), the result for the normal interferometers 1 and

2 . To combine the results from �normal� interferometers 1 and 2 with inverted

interferometers 3 and 4 , we calculate the unweighted arithmetic mean of equations

(2.52) and (2.63)

1

2

"Ã

Φ
1

− Φ
2

!

+

Ã

Φ
3
− Φ

4

!#

= −2(N + 1)(kvr − k̄v̄r)T (2.64)

The results for all four interferometer geometries are summarized in Table 2.2

42 CHAPTER 2. THEORY

Table 2.2: The complete phase expression for the four fundamental interferometer ge-
ometries. To calculate the phase difference between the two paths for each of the four fundamental
interferometer geometries, we must evaluate Þrst the phase evolution of the atomic wavefunction
between the pulses when the light is off and second, the contribution of the optical phase kz−ωt+φ
imposed on the atom at each pulse.

Interferometer Geometry

1 3 2 4

Recoil Direction Normal Inverted Normal Inverted
π-pulses push Down Up Up Down

Evolution of
Atomic

Wavefunction
+
mv2rT
h̄ (N + 1)−2ωabT| {z } − mv2rT

h̄ (N + 1)−2ωabT| {z }

−2(N + 1)kvrT +2(N + 1)kvrTLight Pulses:
kz term −kg (T + T 0)T −kg (T + T 0)T

2(ωab + δ)T| {z }
+(N + 1)k̄v̄rT 2(ωab + δ)T| {z }

−(N + 1)k̄v̄rT
−ωt term

+k̄ḡ (T + T 0)T +k̄ḡ (T + T 0)T

φ term (φ1 − φ2) + (−1)N(φ3 − φ4)

−(N + 1)(kvr − k̄v̄r)T
Φ

³
1
´
, Φ

³
3
´

−(kg − k̄ḡ) (T + T 0)T

+(N + 1)(kvr − k̄v̄r)T
Φ(2), Φ(4)

−(kg − k̄ḡ) (T + T 0)T

Up/Down Difference:

Φ

³
1
´
−Φ

³
2
´
, Φ

³
3
´
−Φ

³
4
´ −2(N + 1)(kvr − k̄v̄r)T

2.2. TWO-PHOTON TRANSITIONS 43

2.2 Two-photon transitions

2.2.1 Adiabatic passage

The ability to transfer atomic population from one state to another using adiabatic

passage [16, 17, 18, 19] has been demonstrated in many different contexts [20, 21,

22, 23]. In this experiment we transfer cesium atoms between the F =3 and F =4

hyperÞne ground states by adiabatically varying the intensity of two lasers tuned to

the transitions from the ground states to the F =30 excited state.

Consider the cesium atom energy structure shown in Figure 2.6 in the presence

of two counter-propagating laser beams with frequencies ω1 and ω2 and wavevector

magnitudes k1 and k2. We assume for now that the beams can be described by plane

waves so that the electric Þeld is

E(z, t) = E1 cos(k1z − ω1t+ φ1) +E2 cos(−k2z − ω1t+ φ2) (2.65)

Using the excited state 6P1/2(F =3) as intermediate state |ii, we can write the single-

photon coupling strength in terms of Rabi frequencies

Ω1 =
e

h̄

D
i
¯̄
¯ r · E1

¯̄
¯ a
E

(2.66)

Ω2 =
e

h̄

D
i
¯̄
¯ r · E2

¯̄
¯ b
E

(2.67)

where |ai and |bi represent the hyperÞne ground states 6S1/2(F =3) and 6S1/2(F =4),

respectively. The frequency detunings from resonance

ω�

ω�

∆

ω�

ω�

ω�

δ
��

δ
��

∆1 = ω1 − ωai = ∆− δ/2− k1 · v −
1

2

h̄

m
k2
1

(2.68)

∆2 = ω2 − ωai = ∆+ δ/2− k1 · v −
1

2

h̄

m
(k2
1
+ k22) (2.69)

can be deÞned in terms of a detuning ∆ from the single-photon resonance condition

and a relative detuning δ from the two-photon resonance.

44 CHAPTER 2. THEORY

+�

Ω�

Ω�

�� ! 	
� =

� = �

"#� $%&

'����

'��/�

'��/�'��/�
()�#�) ��

("
#'	 ��

��*���

��*���

+��,
-����

� =

� = �

�#�
 $%&

'����

� = �

� =)

� =

� = �

	#�) $%&

	#�	 $%&

	#�) $%&

'����

−�

−�

−�

	

+�

+�

�� .�		�			

�� ! +�

.��			�			
.��			�			

/�0��1
-�����

Figure 2.6: The Cesium level structure shown to scale. The 6S1/ 2 ground state couples via
electric dipole transitions to the two Þne structure split excited state levels 6P1/ 2 and 6P3/ 2. Because

of the I = 7
2
spin of the nucleus, each of these three levels is further split into 2J+1 hyperÞne levels,

which can be further split into 2F + 1 magnetic sublevels in the presence of an external magnetic
Þeld. We use lasers tuned to the 6P3/ 2 excited state (often called the D2 transition) to cool and trap
the atoms. To impart the recoils, build the interferometers, and make the measurement of ωrec, we
tune another set of lasers to the 6P1/ 2 excited state (D1 transition). These lasers drive two-photon
transitions between the F =3 and F =4 hyperÞne levels of the ground state. These two ground states
are metastable and thus live forever on the time scales of our measurement. Because the frequency
splitting of exactly 9.192 631 770 GHz (the famous clock transition) between these ground states is
much less than the optical frequency of c/(894.6 nm) ' 335 THz between the ground and excited
states, the resonance condition for this two-photon transition is deÞned by the difference between the
frequencies of the two lasers. Consequently, only the difference frequency which is in the much more
easily accessible microwave regime must be precisely controlled. In order to transfer from the F =3
state to the F =4 state, an atom must undergo a stimulated absorption process from the Þrst laser
and a stimulated emission process into the second laser. If the two lasers always counterpropagate,
the atom recoils in the same direction during both processes. Thus, as an additional beneÞt, by
driving two-photon transitions, we double the size of the recoil and quadruple the size of the recoil
frequency shift ωrec.

2.2. TWO-PHOTON TRANSITIONS 45

The goal is to transfer atoms efficiently between ground states (from |ai to |bi

and back) without disturbing their relative phase. At the atomic densities and tem-

peratures used in our experiment, state changing collisions are extremely rare. Thus,

for laboratory time scales, the hyperÞne ground states live essentially forever. The

excited states, on the other hand, are stable for only roughly 30 ns before they spon-

taneously decay back into one of the ground states. The spontaneous decay process is

driven by coupling to the background vacuum Þeld. Because the number of these vac-

uum states is inÞnite, the chance that any two spontaneous decay processes will result

in the same Þnal phase is vanishingly small. Thus, each spontaneous decay process

produces a random Þnal phase value. Since the lifetime of the excited states is much

smaller than the millisecond time scales of our interferometers, the randomizing spon-

taneous decay process immediately destroys any coherence. Therefore, we must avoid

any coupling to the excited levels. There are two general methods for transferring

atoms between states |ai to |bi while at the same time minimizing the coupling to

the decohering excited levels. They are off-resonant Raman and dark-state adiabatic

passage. Off-resonant Raman techniques have been successfully used in atom interfer-

ometry [14, 15]. In this technique both laser frequencies are detuned by many excited

state natural linewidths (∆ ∼ 200Γ) from single-photon resonance, thereby greatly

suppressing the coupling to the excited states but still driving two-photon transitions.

In this case the effective two-photon Rabi frequency will be Ωeff = Ω1Ω2/∆. To gener-

ate a pulse which transfers atoms from one ground state to another, one simply Þxes

the laser frequencies and exposes the atoms to the laser light for a time τ such that

θ =
R τ
0 dtΩeff(t) = π. The case when θ = π is called a π-pulse. A π/2-pulse is created

when the integrated effective Rabi frequency θ = π/2. In this case, an atom starting

in one of the pure states (|ai or |bi) ends in a quantum superposition of states |ai

and |bi.

For the dark-state adiabatic transfer technique which is used in this experiment

[24, 25], both lasers are tuned exactly on resonance (∆ = 0). To see how this technique

avoids coupling to the excited states, we Þrst write the Hamiltonian for the atom plus

46 CHAPTER 2. THEORY

laser system in the {|aiha|, |iihi|, |bihb|} pure-state basis.

H = −
h̄

2






0 Ω1e
−i[φ1+(∆−δ/2)t] 0

Ω1e
+i[φ1+(∆−δ/2)t] iΓ Ω2e

+i[φ2+(∆+δ/2)t]

0 Ω2e
−i[φ2+(∆+δ/2)t] 0






(2.70)

Diagonalizing this Hamiltonian produces a new basis of three states: |BS1(t)i,

|BS2(t)i, and |DS(t)i. The Þrst two states are �bright states� because they still

include the excited state |ii. The last state can be written in the original pure-state

basis

|DS(t)i =
h
c1(t) c2(t) c3(t)

i






|ai

|ii

|bi






=






cos θ(t) |ai

0 |ii

− sin θ(t)e−i[δt+φ2−φ1] |bi






(2.71)

where

tan θ(t) = Ω1(t)/Ω2(t) (2.72)

Note that this �dark state� does not include the excited state |ii and thus will re-

main coherent. To understand how such a dark state can arise when both light

Þelds are on resonance, consider the case when the atom is in state |ai. If the

Þrst laser were off (Ω1 = 0), then θ = tan−1(0/Ω2) = tan−1(0) = 0, and |DSi =

{1, 0, 0} = |ai. The second laser couples resonantly only to state |bi so an atom

in state |ai will not be driven to the excited state, and thus it is in the dark state.

More generally, consider arbitrary laser strengths Ω1 and Ω2 interacting with some

state |ψi = c1|ai + c3|bi. The coupling between this state and the excited state is

hi|H|ψi = c1Ω1e
+i[φ1+(∆−δ/2)t]+c3Ω2e

+i[φ2+(∆+δ/2)t]. By appropriately choosing c1 and

c3 as in equation (2.71), the excited state coupling with the fraction of |ψi in the

state |ai exactly cancels the excited state coupling with the fraction of |ψi in state

|bi: hi|H|ψi = 0.

2.2. TWO-PHOTON TRANSITIONS 47

To actually transfer the atoms from one state to another, the relative intensities of

the two laser Þelds are varied in time. At any given instant, there will be a well-deÞned

dark state. As the relative laser intensities (or frequencies) change, this dark state

will also change. However, if the change is slow enough, atoms starting in the dark

state will remain there and adiabatically follow the changing state. The time scale

which roughly deÞnes the rate of change for which the process will still be adiabatic

is the effective Rabi frequency, Ωeff . For on-resonance dark-state transfer,

Ωeff =
q
Ω21 + Ω

2
2 (2.73)

If τ is the time scale of some change of the dark state, then when Ωeff τ À 1, the

process will be adiabatic. In the other regime when Ωeffτ ¿ 1, the change of the

dark state is too fast for the atoms to follow. In the limit of an inÞnitely fast change,

the atomic state will simply be projected onto the new basis deÞned by the light

Þelds after the change. The part of the atomic state projecting onto either of the two

bright states will couple to the excited states and absorb a single photon. Once in the

excited state, the atom almost immediately falls back into one of the ground states

with randomized phase. There is a chance that it will fall back into the dark state

(see Section 2.3.1). If it falls back into the bright state, it will once again absorb and

then spontaneously emit a photon. This process continues until the atom ends up

either 1) in the dark state, 2) optically pumped to a magnetic sublevel that has no

excited state with which the light Þelds can couple, or 3) pushed via optical recoils

out of the spatial extent of the laser beams. The remainder of the atomic state will

be in the dark state with its phase preserved.

To construct a pulse similar to the π-pulse of the off-resonant Raman technique,

we apply a pulse of light whose light intensities vary as shown in Figure 2.7. In this

case, the atoms begin in state |ai. At the beginning of the pulse, the Ω1 light is

off and Ω2 turns on rapidly. With just Ω2 on, the dark state is |ai, so the overlap

between the dark state and the atomic state is perfect and all of the atoms start in

the dark state. After Ω2 is fully on, we begin slowly turning on Ω1. As Ω1 turns on,

we also begin slowly turning Ω2 off. With both light Þelds present, the dark state is

48 CHAPTER 2. THEORY

Time / PulseLength

0.0 0.2 0.4 0.6 0.8 1.0

L
ig

h
t

In
te

n
si

ty

(Ω
 /

 Ω
m

ax
)2

0.0

0.2

0.4

0.6

0.8

1.0

Ω1
2 Ω2

2

|DSi = |ai |DSi = |bi

Figure 2.7: The two laser intensities for an adiabatic passage π-pulse which transfers
atoms from state |ai to |bi. The bold curve shows the intensity Ω21 of the laser coupling state |ai
to |ii, while the other curve shows the intensity Ω22 of the second laser coupling |bi to |ii. For given
intensities, the laser-atom coupling deÞnes a dark state |DSi which is not coupled to the excited
state and which changes in time as the intensities change. If the intensities change slowly enough,
an atom starting in the dark state (in this case, |ai) will remain there and evolve into the Þnal state
(in this case, |bi) without ever coupling to the excited state.

a combination of |ai and |bi. As the light intensities change, the dark state changes,

but if the intensities change slowly enough, the atoms will adiabatically follow this

change and stay in the dark state. At the middle of the pulse when the light intensities

are equal, the atom is in an equal superposition of |ai and |bi. If at this point, both

light Þelds were shut off rapidly as shown in Figure 2.8a, the atoms would stay in

this superposition state, similar to a π/2-pulse. For a π-pulse, the light intensities

continue slowly changing until at the end of the pulse only Ω1 is on and the dark

state is |bi. Finally, Ω1 is turned off suddenly and the atoms are projected onto the

original pure state basis. Since the atoms are all in |bi, the overlap is again perfect

and all of the atoms remain in state |bi.

It is important to note that although this dark-state transfer process is analogous

to the π-pulse of off-resonant Raman transfer, it is not identical. An off-resonant

Raman π-pulse will transfer atoms to the other hyperÞne ground state independent

of their initial state: |ai goes to |bi and |bi to |ai. For dark-state adiabatic transfer,

however, because the light Þelds always determine the state of the atoms, the pulse

2.2. TWO-PHOTON TRANSITIONS 49

Time / PulseLength

0.0 0.2 0.4 0.6 0.8 1.0

Ω1
2

Ω2
2

|DSi

=

|ai

Time / PulseLength

0.0 0.2 0.4 0.6 0.8 1.0

Light Intensity (Ω / Ωmax)2

0.0

0.2

0.4

0.6

0.8

1.0

Ω1
2

Ω2
2

|DSi = |bi
|DSi = c1|ai+c3|bi

(a) (b)

Figure 2.8: The two laser intensities for two adiabatic passage π/2-pulses. The bold
curves show the intensity Ω21 of the laser coupling state |ai to |ii, while the other curves show the
intensity Ω22 of the second laser coupling |bi to |ii. The pulse shape in (a) transfers the atoms from
state |ai to an equal superposition of states |ai and |bi, while the π/2-pulse in (b) transfers the
atoms from an equal superposition state to |bi. At the beginning and end of the pulses, the light
intensities change rapidly. This non-adiabatic or sudden change in the dark state is too fast for the
atoms to follow. At the beginning of the pulses, the atomic state is projected onto the dark state
|DSi deÞned by the light. At the end of the pulses, the atomic state projects onto the pure state
basis {|aiha|, |iihi|, |bihb|}.

will only transfer atoms from one state to the other but not the other way around.

In the above example, for instance, the �AB-pulse� shape transfers atoms only from

|ai to |bi. Any atoms in |bi at the beginning of the pulse are in the bright state and

will be driven to the excited state where they will spontaneously emit a decohering

photon. This dark-state transfer pulse is therefore not a true π-pulse. However,

because of its convenience and historical signiÞcance, throughout this work, we will

refer to these general pulse shapes as π- and π/2-pulses.

Building the remaining pulse shapes is a simple matter of time reversing the one

shape or reversing the role of the Ω1 and Ω2. For instance, reversing the roles of Ω1

and Ω2 in Figure 2.7 constructs a BA-pulse which transfers atoms from |bi to |ai.

The pulse shape in Figure 2.8a is an AS-pulse because it transfers atoms from |ai to a

superposition state. Time reversing this pulse constructs an SA-pulse. Interchanging

the roles of Ω1 and Ω2 construct the remaining BS- and SB-pulses. An SB-pulse is

50 CHAPTER 2. THEORY

shown in Figure 2.8b.

The primary advantage of dark-state transfer is its high transfer efficiency. In

similar experiments using the off-resonant Raman technique, π-pulse efficiencies are

typically on the order of 90% [26]. In our experiment, dark-state adiabatic passage

transfers atoms from one ground state to the other with around (1− ²) ∼ 94% effi-

ciency. Theoretically, the maximum transfer efficiency is around 99%, limited by the

presence of the of the other hyperÞne excited state. Largely for this reason, we use

the �D1�-transition of cesium at 894.6 nm where the 6P1/2 excited state hyperÞne

splitting is 1.17 GHz instead of the �D2�-transition at 852.4 nm whose excited state

6P3/2 has a much smaller hyperÞne splitting of roughly 0.2 GHz (see Figure 2.6). Be-

sides the fundamental limit set by the presence of the other excited state, the transfer

efficiency is also limited in practice by pulse shapes that do not change perfectly

adiabatically. For a given Þnite laser power, we are always limited in how long we

can generate the pulse, because as the pulse duration gets longer, its frequency width

becomes narrower and narrower until it becomes less than the Doppler width of the

atomic cloud. At this point, many of the atoms are Doppler shifted out of two photon

resonance. The light does not drive these atoms as strongly and thus they are less

able to follow the change of the dark state. In addition to the effect of the narrowing

linewidth, long π-pulses also suffer because as gravity accelerates the atoms during

the pulse, they Doppler shift out of resonance. Although we change the laser differ-

ence frequency between pulses to compensate for the Doppler shift due to gravity, we

do not linearly sweep the frequency during the π-pulses. This makes the beginning

and end of the pulses less adiabatic. However, even with these practical limitations,

we are still able to achieve much better efficiency using adiabatic dark-state transfer

than using only off-resonant Raman transfer.

2.3 Interferometers using adiabatic transfer

To construct all of the various interferometer geometries discussed in Sections 2.1.1

through 2.1.4, we must assemble the appropriate adiabatic transfer pulse shapes. For

interferometer geometry 1 with no π-pulses we require four π/2-pulses with shape

2.3. INTERFEROMETERS USING ADIABATIC TRANSFER 51

AS, SA, AS, SA, where AS indicates a π/2-pulse that transfers atoms from |ai to

the superposition state with roughly equal parts of |ai and |bi. For the conjugate

interferometer 2 , the atom must be in the other hyperÞne ground state between the

second and third π/2-pulses. Building this interferometer thus requires pulse shapes

AS, SB, BS, SA. For our interferometers, the atoms always start and end in the |ai,

so only the middle two π/2-pulses ever change shape. Interferometer 3 is the same

as 1 with all of the recoil directions reversed, so it is constructed with the same pulse

shapes, and similarly for interferometers 2 and 4 . If the polarity of N changes, then

the third π/2-pulse must once again interchange between AS and BS pulses. Table

2.3 summarizes the pulse shapes required to build each interferometer.

52 CHAPTER 2. THEORY

Table 2.3: Laser intensity pulse shapes required to generate the four interferom-
eter geometries 1 , 2 , 3 , and 4 . The gray curves show the intensity of the laser
coupling state |ai to |ii, while the other curve shows the intensity of the second laser
coupling |bi to |ii. Each of the these geometries incorporate four π/2-pulses and N
additional π-pulses inserted between the second and third π/2-pulses. Here A, B, and
S represent states |ai, |bi, and the equal superposition state, respectively. Thus, an
AS pulse shape transfers the atoms from state |ai to an equal superposition of states
|ai and |bi. The only difference between interferometer 1 and 2 is the atomic state

after the second π/2-pulse, and similarly for the inverted interferometers 3 and 4 .
When N is odd, the atomic state at the beginning of the third π/2-pulse is reversed.
The initial atomic state entering and the Þnal atomic state leaving the interferometers
is arbitrary. In our case, we always begin and end in state |ai, so the Þrst and fourth
π/2-pulse shapes are always the same for the different interferometer geometries.

N = 2 (N even)
AS SA AB BA AS SA

1

3

AS SB BA AB BS SA

2

4

N = 1 (N odd)
AS SA AB BS SA

1

3

AS SB BA AS SA

2

4

2.3. INTERFEROMETERS USING ADIABATIC TRANSFER 53

Ignoring imperfections in the pulses, the Þnal interferometer phase difference does

not depend on whether the interferometer is constructed using off-resonant Raman

or adiabatic transfer pulses. However, for adiabatic dark-state transfer there is an

important distinction for the second and fourth π/2-pulses. Just before the light

for these pulses turns on, the atoms are in a coherent superposition state, |ψ−i =

(|ai + e−iφA |bi)/
√
2. This single quantum state is spread over two distinct spatial

paths, where φA represents the total phase difference that has evolved between the

two paths. Both light Þelds Ω1 and Ω2 turn on at the same time to the same level

with a well deÞned phase difference φL. These light Þelds deÞne a dark state given

by equation (2.71), |DSi = (|ai− e−iφL |bi)/
√
2. Instead of causing the atomic state

to start Rabi oscillations as an off-resonant Raman process would, these adiabatic

transfer pulses project the atomic state onto the dark state and then adiabatically

change the dark state to end up with a pure state. Because the atoms have been

evolving for time T in a superposition of two states whose velocity differ by one recoil

vr, the two paths of the interferometer will be spatially distinct as long as vrT > ∆r,

where ∆r is the spatial spread of the individual atomic wavefunctions. Even for∆r as

large as one wavelength, all reasonable experimental values for T satisfy this relation.

When the light Þelds for the second π/2-pulse turn on, they thus interact separately

with the two parts of the atomic wavefunction, |ψ−i(shifted) = |ψS−i = −e−iφA |bi

for the shifted path and |ψ−i(unshifted) = |ψU−i = |ai for the unshifted path. After

the projection, these atomic states become

|ψS+i = |DSihDS||ψS−i = |DSi
1

2
(ha|− e+iφL hb|)(−e−iφA |bi)

= −
1

2
exp(i(φL − φA)))|DSi (2.74)

and

|ψU+i = |DSihDS||ψU−i = |DSi
1

2
(ha|− e+iφL hb|)|ai

=
1

2
|DSi (2.75)

both of which then follow the dark state as it adiabatically evolves into a pure state.

54 CHAPTER 2. THEORY

No interference has taken place. The relative phase between the interferometer paths

is still preserved. However, because the separate parts of the atomic wavefunction

each overlap with half of the equal superposition state, the probability of Þnding the

atom in either path is 1/4 instead of 1/2. Half of the atomic wavefunction projected

into the bright state, absorbed a single photon, and then spontaneously emitted a

decohering photon. What we have neglected to quantify up until this point is that

each time the atom spontaneously decays from the excited state, there is a non-

zero probability that it will fall back into the dark state. Because the phase of this

atom is randomized by the spontaneous emission process, it does not change the Þnal

interferometer phase. However, because it is in the dark state, it will be carried along

though the interferometer and ultimately detected with the Þnal signal, thus reducing

the interferometer contrast.

The third π/2-pulse, just like the Þrst, transfers each interferometer path from

a pure state to an equal superposition of states |ai and |bi. Half of these atoms

never overlap and thus never interfere. The two interferometer paths that overlap

at the fourth π/2-pulse are combined together into a single wavefunction. Therefore,

the overlap between the atomic state |ψ−i and the dark state |DSi it is projected

onto is not limited to 1/2. Finally, the atom will emerge in the pure state |ai with

amplitude 1

2
√
2
(1 + exp(i∆φ)), where ∆φ is the Þnal interferometer phase difference.

The probability of Þnding the atom in this state is thus

|
1

2
√
2
(1 + exp(i∆φ)|2 =

1

8
(1 + exp(−i∆φ))(1 + exp(i∆φ))

=
1

4
(1 + cos∆φ) (2.76)

The phase ∆φ is the quantity we measure in order to derive a value for the recoil

frequency. In Section 5.1 we dicuss how this is done.

2.3.1 Contrast limit

To determine a theoretical limit for the contrast, we assume that the AS and BS

π/2-pulses (the Þrst and third) transfer a fraction r of the atoms from one hyperÞne

2.3. INTERFEROMETERS USING ADIABATIC TRANSFER 55

�
��

�
��

�

�

�

�

�
��

�
(��

(�
�
(�

�
(�

�

�

�

�

�
�'

�
�'

�
(�

�
(�

�
�

�

�

�

�

�
(�

Figure 2.9: Interference contrast limit with adiabatic passage, assuming ideal π/2-pulses.
The fraction of atoms in each path is given. At the second π/2-pulse half of the atoms project into
the dark state. The other half that project into the bright state are driven to the excited state
|ii. From |ii they spontaneously emit an incoherent photon and fall back into the dark state with
probability f . This process is represented by the curved dashed lines. At the last π/2-pulse, the two
intersecting interferometer paths interfere. If the interference is completely constructive (∆φ = 0),
all of the atoms start the pulse in the dark state and the fraction of atoms emerging is the total
fraction from both paths. On the other hand, if the interference is completely destructive (∆φ = π),
all of the atoms are in the bright state. As before, a fraction f of these atoms fall back into the
dark state after absorbing and then emitting a single photon. Thus, the double-headed arrow at
the interfering output of the interferometer represents the continuous range of possible interference
phase differences ∆φ = π ↔ 0.

ground state to the other and leave a fraction (1 − r) in the input state. Since we
are interested in the theoretical maximum, for now we will assume ideal beamsplitter

pulses with r = 1

2
. The second π/2-pulse, with shape either SA or SB projects half of

the atoms onto the bright state and half of the atoms onto the dark state. The atoms

in the bright state have probability f of falling back into the dark state and continuing

on through the interferometer. Three distinct groups of atoms interact with the third

π/2-pulse: 1

4
of the atoms enter from the shifted path, 1

4
from the unshifted path,

and f
2
incoherent atoms scattered back into the dark state by the second π/2-pulse.

56 CHAPTER 2. THEORY

Each of these groups is again split with equal ratios. Because the atoms enter the

Þrst and third π/2-pulses in a pure state, the projection is perfect and no atoms are

scattered via spontaneous emission processes back into the dark state. A fraction 1

8

from each interferometer path continues on to the fourth π/2-pulse and never overlaps.

This total fraction of 1
4
produces no interference fringes, just a constant background.

Similarly, the group of f
2
atoms split into two paths of f

4
which do not interfere. Two

1

8
fractions from the shifted and unshifted paths overlap and do interfere at the fourth

π/2-pulse. For perfectly constructive interference, 1
8
+ 1

8
= 1

4
atoms emerge. If the

Þnal total phase difference is π, these paths destructively interfere and this fraction

of the atoms are all in the bright state. A fraction f
4
fall back into the dark state

to be detected. When the 1

4
of the atoms that do not overlap encounter the fourth

π/2-pulse, half of them are projected onto the dark state and half are projected onto

the bright state. The 1

8
of the atoms projecting onto the dark state and the f

8
of

the atoms that began in the bright state but fall back into the dark state combine

for a total fraction of 1+f
8
in the dark state to be detected. Also contributing to this

signal are the f
2
atoms which are again projected by the fourth π/2-pulse leaving

f
2
1+f
2
= f(1+f)

4
in the dark state. For this idealized interferometer as summarized in

Figure 2.9, the minimum nmin and maximum nmax fraction of atoms detected are

nmin =
f

4
+
1 + f

8
+
f(1 + f)

4
=
1

8
(2f + 2f 2 + 3f + 1) (2.77)

nmax =
1

4
+
1 + f

8
+
f(1 + f)

4
=
1

8
(2 + 2f 2 + 3f + 1) (2.78)

The contrast is thus

C =
nmax − nmin
nmax + nmin

=
2− 2f

4f 2 + 8f + 4
=
1

2

1− f
f2 + 2f + 1

=
1− f

2(f + 1)2
(2.79)

Next we calculate a value for f , the probability of falling back into the dark state

after one or more single photon excitations. Once an atom has absorbed a single

photon and transfers to the excited state it has probability pB and pD of falling back

into the bright and dark states, respectively. If it falls back into the bright state, it

2.3. INTERFEROMETERS USING ADIABATIC TRANSFER 57

will absorb another single photon, transfer to the excited state, and once again have

a chance pD of falling into the dark state. This process of absorbing and re-emitting

single photons will continue until the atom falls into the dark state, at which point it

will stop absorbing single photons. Thus, the net chance f of ending up in the dark

state after 1, 2, 3, . . . excitations is

f = pD + pB pD + pB pB pD + pB pB pB pD + · · · (2.80)

Since there are only three possible states, we must have pB = pD = p, so equation

(2.80) becomes

f = p + p2 + p3 + · · · =
p

1− p
(2.81)

Because the dark state is a combination of particular magnetic sublevels of the cesium,

the probability p depends on the branching ratios for all of the possible states acces-

sible from the mF =+1 excited state. The transition strengths for cesium are given in

Table A.2 of Appendix A.1.2. For the F =30,mF =+1
0 and F =40,mF =+1

0 excited

states the probabilities p30 and p40 of falling into the F =3,mF =0 or F =4,mF =0

state are

p30 =
1

2

6 + 6

6 + 15 + 15 + 6 + 1 + 5
=
1

8
(2.82)

p40 =
1

2

10 + 10

10 + 1 + 9 + 10 + 15 + 3
=

5

24
(2.83)

Inserting these two probabilities for the two possible excited states into equation

(2.81) gives

f30 =
p30

1− p30

=
1/8

1− 1/8
=
1

7
= 0.143 (2.84)

f40 =
p40

1− p40

=
5/24

1− 5/24
=

5

19
= 0.263 (2.85)

58 CHAPTER 2. THEORY

Finally, using these two values in equation (2.79) give the maximum possible inter-

ferometer contrast for each of the two excited states

C(F =30) =
1− f30

2(f30+ 1)2
=

1− 1/7
2(1/7 + 1)2

= 0.328 (2.86)

C(F =40) =
1− f40

2(f40+ 1)2
=

1− 5/19
2(5/19 + 1)2

= 0.231 (2.87)

Because this theoretical maximum contrast is lower for the F =40 excited state, we

instead tune our lasers to the F =30 excited state.

�

�−�

��

�−���

�−���

�
�
�−���

�
�
�−���

�
�
�−��

|��−
�−���| ����

�
�+
�−��� ��.

�

�−�

�

�

Figure 2.10: Interference contrast limit due to imperfect π/2-pulses. Each π/2-pulse
transfers a fraction r of the input atoms into the other state and leaves alone the remaining 1 − r
atoms. At the last π/2-pulse, the two intersecting interferometer paths interfere. If the interference
is completely constructive (∆φ = 0), the fraction of atoms emerging is the total fraction from both
paths, labeled �max�. On the other hand, if the interference is completely destructive (∆φ = π),
twice the minimum fraction of the two paths is subtracted from the total fraction, labeled �min�.

Practical limitations for the contrast include pulse shapes that are not perfectly

adiabatic. Assuming that each π/2-pulses transfers a fraction r of the atoms into

the other ground state and leaves 1 − r in the input state. Figure 2.10 depicts how
these fractions propagate through the interferometer. After the Þrst π/2-pulse, r

of the atoms are in the shifted path and the remaining 1 − r atoms are unshifted.
After the second π/2-pulse, the shifted and unshifted paths contain a fraction r2

2.3. INTERFEROMETERS USING ADIABATIC TRANSFER 59

and (1 − r)2, respectively. The third π/2-pulse, splits these two groups into four
groups, two of which go on to overlap at the fourth π/2-pulse and two of which never

interfere. After the fourth π/2-pulse, the groups which did not interfere contribute a

total fraction 2r2(1 − r)2 atoms to the Þnal signal. The two paths with fractions r3

and (1− r)3 interfere at the fourth π/2-pulse either constructively, producing a total
fraction r3 + (1 − r)3, or destructively, producing a fraction of only |r3 − (1 − r)3|.
We thus have

nmin = |r3 − (1− r)3|+ 2r2(1− r)2 (2.88)

nmax = r3 + (1− r)3 + 2r2(1− r)2 (2.89)

To arrive at a more tractable expression for the contrast we now assume that like the

π-pulses, the π/2-pulses transfer the atoms from one ground state to the other with

efficiency of 1 − ². Thus, r = 1

2
(1 − ²) and (1 − r) = 1

2
(1 + ²) and in the limit that

²¿ 1 we have

nmin '
1

8
(1 + 3²)−

1

8
(1− 3²) + 2

1

4
(1− 2²)

1

4
(1 + 2²)

'
1

8
(3²+ 3²+ 1) =

1

8
(1 + 6²) (2.90)

nmax '
1

8
(1 + 3²) +

1

8
(1− 3²) + 2

1

4
(1− 2²)

1

4
(1 + 2²)

'
1

8
(2 + 1) =

3

8
(2.91)

producing a contrast of

C =
nmax − nmin
nmax + nmin

=
3− 1− 6²
3 + 1 + 6²

'
2− 6²
4

=
1

2
−
3

2
² (2.92)

For a transfer efficiency of (1 − ²) = 94%, ² = 6%, and the contrast is reduced by

9%. Including the effect discussed in the previous sections where atoms fall back into

the dark state and assuming we use the F =30 excited state, the non-unity transfer

efficiency of the pulses reduces the contrast to approximately 24%.

60 CHAPTER 2. THEORY

Since the conjugate interferometer 2 uses the other hyperÞne ground state the

two interfering fractions are r2(1− r) and r(1− r)2 which produces a contrast of

C =
3− 1− 2²
3 + 1 + 2²

'
2− 2²
4

=
1

2
−
1

2
² (2.93)

equivalent to a contrast reduction of ∼3%.

2.3.2 AC-stark shifts

Here we consider how unavoidable off-resonant couplings affect the dark state. In

equations (2.66) and (2.67) we wrote the Rabi frequencies for the Þrst laser Þeld E1

coupling with the |ai → |ii transition and the second laser Þeld E2 coupling with

the |bi → |ii transition. There are also two additional couplings for the reversed

situation when the second laser Þeld E2 couples with the |ai → |ii transition and

vice versa. Both of these couplings are detuned from resonance by the ground state

hyperÞne splitting ωab. Since this detuning is larger than all of the other terms in

the Hamiltonian, to an excellent approximation these off-resonant couplings modify

the Hamiltonian in equation (2.70) by

∆H = h̄






∆
AC
a 0 0

0 0 0

0 0 −∆ACb






(2.94)

where

∆
AC
a =

Ω22

4ωab
(2.95)

∆
AC
b =

Ω2
1

4ωab
(2.96)

are the ac-stark shifts. As a Þrst-order perturbation the dark state energy eigenvalue

will change from zero to

EDS = hDS|∆H|DSi

2.3. INTERFEROMETERS USING ADIABATIC TRANSFER 61

= h̄
h
cos θ 0 − sin θ

i






∆ACa 0 0

0 0 0

0 0 −∆AC
b











cos θ

0

− sin θ






= h̄
h
cos θ 0 − sin θ

i






∆ACa cos θ

0

∆ACb sin θ






= h̄(∆AC
a cos2 θ −∆ACb sin2 θ)

=
h̄

4ωab

Ã
Ω42 − Ω41
Ω2eff

!

=
h̄

4ωab

³
Ω
2
2 − Ω

2
1

´
(2.97)

where we have used equation (2.72) to evaluate θ. Similarly, to lowest order the

perturbed dark state |DS0i can be shown to be

|DS0i = A






Ω2(1 + iφ1) |ai

−Ω1Ω2

2ωab
|i i

−Ω1(1− iφ2) |bi






(2.98)

where A is required for normalization and

φi =
Γ

2ωab

Ω2i

Ω2eff

(2.99)

The dark state is thus no longer perfectly dark and is shifted in phase by

−φ2 − φ1 = −
Γ

2ωab

Ω22 + Ω
2
1

Ω2eff

= −
Γ

2ωab
(2.100)

which amounts to a constant −Γ/2ωab = −4.6MHz/[2(9.2GHz)] = −0.25 mrad. We
have simulated the interferometers by numerically integrating the Schrödinger equa-

tion during each of the four π/2-pulses and tracking the atom�s state evolution over

both interferometer paths. Even with the actual pulse shapes used in the laboratory,

the simulation indicates that this ac-stark shift, although present for a single pulse,

cancels after four pulses when the two interferometer paths recombine. If the pulse

62 CHAPTER 2. THEORY

shapes are not the same under time reversal and exchange of Ω1 and Ω2, it will not

completely cancel. However, if the same imbalance exists for the conjugate interfer-

ometer, the shift will subtract away with the difference between the up and down

interferometers.

Another source of ac-stark shifts is the other hyperÞne excited state. In this case,

because of the excited state hyperÞne splitting both light Þelds are detuned by the

same amount of ±1.17 GHz, where the sign depends on which excited state the lasers

are locked to (negative for F =30). Because this ac-stark effect shifts each of the

ground states used in the interferometers by the same amount, it should not cause a

measurement error.

Chapter 3

Experiment

3.1 Cesium fountain

Our source of cold cesium atoms is provided by a beam-loaded magneto-optic trap

(MOT) [27, 28, 29, 30, 31]. As shown in Figure 3.1, a 5 g sample of 99.98% pure

cesium1 metal is placed inside a vacuum chamber composed of a crushable can holding

the cesium ampule, two bakeable all-metal valves, and a 0.6 mm diameter nozzle.

This chamber, called the oven arm, is wrapped with two Þberglass heater tapes.

One heater tape, called the storage heater, is wrapped around the crushable can

where the cesium is located. The other tape, called the nozzle heater, is wrapped

around the rest of the oven arm. To prevent reactive cesium and its byproducts

from condensing in the nozzle and clogging it, the nozzle heater is always on. This

holds the nozzle at around 210◦C, which is always warmer than the rest of the oven

arm chamber. The storage heater, on the other hand, is shut off when we are not

running the experiment. This brings regions of the storage can below the sublimation

point of solid cesium. Cesium condenses in these regions and does not leave the

oven arm, thereby conserving cesium. When the storage heater is on, the coldest

part of the storage can is around 120◦C and the metal cesium sublimates into a

1Cesium has only one naturally occuring stable isotope, so our cesium sample consists entirely of
133Cs.

63

64 CHAPTER 3. EXPERIMENT

vapor, which sprays ballistically out of the nozzle into the lower pressure region of

the source chamber. From the measured temperature of the cesium can, we calculate

a minimum root-mean-square (rms) velocity of
q
3kBT/m ' 271 m/s. From vapor

pressure data for cesium [32], we can also estimate a density of n ∼ 4 × 1013 cm−3

and thus a mean distance of 1/(nσ
√
2) ∼35 cm between Cs-Cs collisions, assuming a

collisional cross-section of σ∼500× 10−16 cm2. This distance is much larger than the
dimensions of the nozzle hole, thus the nozzle system should operate in the effusive

regime where the velocity proÞle of the escaping cesium vapor is determined solely

by the length and diameter of the nozzle hole. For circular apertures the collimation

factor is (8r)/(3l), where r and l are the nozzle radius and length [33]. For our nozzle

dimensions, r = 0.3 mm and l = 6.4 mm, the ratio of the longitudinal velocity to the

transverse velocity is ∼8.

��

2�&&1�
%�����

�����3�
%�����

+��&&1�

+�����3�

�	 0�

.�	

'#
 ��

	#' ��

4�15� � 4�15� �
2�&&1�

Figure 3.1: Cesium source. A glass ampule containing several grams of cesium metal is placed
in a crushable can attached to a stainless steel vacuum chamber. After the chamber is evacuated
through �Valve 2� and the ampule is broken, the chamber is heated with Þberglass insulated heater
tape. As shown, two separate heater tapes are used to independently heat the �nozzle� and �storage�
regions. The temperatures of these regions are measured with thermocouples located as shown.
When operating, these temperatures are Tnozzle = 210◦C and Tstorage = 120◦C. With �Valve 1�
open, gaseous cesium diffuses out through the 0.6 mm diameter circular nozzle into the larger
vacuum chamber. Because the 6.4 mm length of the nozzle is much greater than the nozzle tube
diameter, the escaping cesium is partially collimated. All connections are either vacuum tight welds
or copper gasket sealed knife-edge ßanges.

3.1. CESIUM FOUNTAIN 65

By observing the light scattered when two copropagating circularly polarized lasers

tuned to the F =4 → F =50 and F =3 → F =40 D2 transitions (see Figure 2.6)

intersect orthogonally with the atomic beam at the nozzle, we estimate an output

ßux of roughly 1× 1013 atoms/s.

The oven arm is attached to the source chamber via vacuum-tight bellows, which

allow the direction of the partially collimated atomic beam to be controlled externally.

The source chamber consists of a 100 L/s turbomolecular pump and two orthogonally

oriented rectangular apertures (�crossed slots�) that can be moved transversely to the

atomic beam with external mechanical feed-thrus. As depicted in Figure 3.2, these

shutter blades along with the controllable orientation of the oven arm allow us to

control the direction of the atomic beam into the main chamber. In addition to further

collimating the atomic beam, the shutter blades also limit the leakage of background

gases from the source chamber (Psource ∼ 4 × 10−9 torr) into the main chamber,

thereby allowing the main chamber to be held at an even lower pressure of around

2 × 10−9 torr. Between the source chamber and the main chamber is a 4 inch gate

valve that allows us to isolate the two chambers and minimize possible contamination

of the main chamber. Overlapped with the entire atomic beam but propagating in

the opposite direction is a circularly polarized laser beam tuned near but below the

F =4 → F =50 transition. As described below in Section 3.1.2, this �slowing beam�

is frequency chirped at a rate designed to reduce the longitudinal velocity of groups

of atoms emerging from the oven arm nozzle to a speed slow enough that they can

be caught in the trap. To maximize the efficiency of this capture process, the slowing

beam enters the chamber with a Gaussian beam diameter of 13 mm and focuses

eventually to the size of approximately 2 mm at the oven arm nozzle.

Inside the main chamber, the atoms are loaded into the MOT. Inside the roughly

1m3 volume of the main chamber are the two high-Þeld anti-Helmholtz coils for the

MOT. These coils are made from 0.25 inch outer diameter copper tubing, which is

electrically insulated with a loose Þberglass sheath and water cooled through the

0.19 inch diameter hollow core. Each coil is wound two turns wide by four turns deep

with inner and outer diameters of roughly 6 and 9 cm. The coils are separated by

6 cm with their axes along the atomic beam direction. With a current of 16 A

66 CHAPTER 3. EXPERIMENT

+6���
�6�,

+6���
�6�,

�* 7�11�8�
�1�.6��

�1�8��3
7���

7�����
/����
7���

+�,
/����
7���

9���6�
��6�0�

:�3����0
����1���3

� �����

' 0�

�7�

λ�

�7�
λ�

*���0����
7����

:;+
7����

$���
4�15�

:;+
���� 0��1�

:;+

:;+
0��1�

*���0����
/�3���

<�=6����1�
9������ �1���

Figure 3.2: Physical setup shown to scale. Cesium atoms from an atomic beam are loaded at a
rate of roughly 3 × 108 atoms/s into a magneto-optic trap (MOT). A frequency chirped �slowing�
laser propagates against the atomic beam and slows the atoms� longitudinal velocities so that the
atoms can be more efficiently trapped by the MOT. Two of the six MOT beams are not shown and
propagate into and out of the page. The four beams that are shown are used to launch the atoms
vertically with a velocity of ∼ 3 m/s. After traveling ∼ 46 cm upward, the atoms turn around due
to gravity. At this point inside the vacuum chamber, we have installed three layers of cylindrical
magnetic shielding. Centered around the apex of their trajectory, we thus have almost 400 ms with
which to interact with the atoms in a perturbation free environment. It is during this time while the
atoms are still within the magnetic shielding that we ßash on the vertical Raman beams and build
the atom interferometers. After the interference has taken place and the atoms have emerged from
the shielding, we ßash on a vertical �probe� beam and with a photomultiplier tube (PMT), observe
the resulting ßuorescence which is proportional to the number of atoms in the atomic cloud.

3.1. CESIUM FOUNTAIN 67

through the coils, this geometry provides a longitudinal and transverse magnetic Þeld

gradient of roughly 6.2 and 3.1 G/cm, respectively.

As shown in Figure 3.2, four of the six MOT beams enter the main chamber

through anti-reßection (AR) coated windows in a cross conÞguration. The remaining

two MOT beams enter normal to the plane deÞned by the four cross beams. All of

the six MOT beams are collimated with a Gaussian waist diameter of 2.0 cm and

set to the appropriate circular polarizations with 2 inch zero-order λ/4-plates before

each window.

3.1.1 Laser source

Except for a small amount of repumping light tuned to the F =3→ F =40 transition,

a single titanium-sapphire ring laser, assembled from a kit from the Schwarz Electric

Optics Company (SEO), provides all of the light necessary to trap, cool, launch,

magnetically polarize, and detect the cesium atoms. When pumped with 7.4 W of

light from a large frame argon-ion plasma-tube laser made by Coherent, this laser

produces 1.0W of light at 852.3 nm. Figure 3.3 shows the fundamental components

inside this laser, including two stages of active frequency stabilization.

As depicted in Figure 3.4 some of the light output is directed into an external

glass cell containing cesium vapor. Using a standard technique [34, 35], we observe

the dispersive component of the direct saturation absorption signal from this gas cell

and use it to lock the laser output frequency to the cesium D2 transition. The satura-

tion absorption signal produces dispersive features as the laser frequency crosses each

of the allowed D2 transitions originating from the F =4 ground state. Because the

�pump� and �probe� beams counter-propagate through the cesium cell, the width

of these features is roughly 5 MHz, the natural linewidth of the 6P3/2 state, and is

not limited by the much larger Doppler broadening of the room temperature cesium

gas. Relative to the F =4 → 50 transition, the dispersive features occur at frequen-

cies f30 ' −450 MHz, f40 ' −250 MHz, and f50 = 0. In addition to these three

features, there are an additional three dispersive features at the midpoints between

each pairwise combination of these transitions. Again relative to the F =4 → 50

68 CHAPTER 3. EXPERIMENT

;,��0�1
*����

+��0�
>��1��

;6�,6�
9�6,1��

+���
>��1��

7���
�,1�����

>;:

����?@����� 9�5��?

�A+

+�@��,,����
0�?���1

<�3�� ��� �6�, 7���

7��8����
�1���

����������
7�������3���

��1���

��������
;6�,6�

Figure 3.3: The Titanium-sapphire ring laser pumped by an argon ion input beam generates
coherent light at infrared wavelengths. The Þgure-eight shaped ring cavity is constrained to resonate
in only one direction by the optical diode. The remaining optical elements all have frequency
dependent transmission efficiencies and thus determine the Þnal cavity resonance frequency. In
order of increasing frequency selectivity, they are: the birefringent Þlter, the thin etalon, the thick
etalon, and Þnally the external Fabry-Perot cavity. The ring cavity is frequency locked to the Fabry-
Perot cavity by actuating the piezo-electric transducer (PZT) mounted mirror and the Brewster
plate. The layout shown here is particular to the Schwarz Electric Optics Company model used to
generate the trap lasers at 852 nm. Another Ti-sapphire laser made by Coherent with a different
layout but all of the same fundamental components produces the light for the Raman lasers at
894.6 nm.

transition, these additional features, often called �crossover resonances�, are located

at frequencies f30/40 = (f30+ f40)/2 ' −350 MHz, f30/50 = (f30+ f50)/2 ' −225 MHz,
and f40/50 = (f40 + f50)/2 ' −125 MHz. Because it is the largest, we lock the laser
to the F =40/50 crossover. Because the light going to the Cs lock Þrst passes twice

through an acousto-optic modulator (AOM) (see Figure 3.4), the absolute output

frequency of the laser will be offset from this transition by twice the AOM frequency

of foffsetAOM ' 108 MHz. In this way the Þnal output frequency

fSEO = f(F =4→ 50) + f40/50+ 2foffsetAOM

' f(F =4→ 50)− 125MHz + 2(108MHz)

' f(F =4→ 50) + 91MHz (3.1)

can be easily varied by changing foffsetAOM.

3.1. CESIUM FOUNTAIN 69

�' :%&�

>;: 9���6� 0�11

7�

7�

�7�

λ�

+�	(:%&

��� 9���6�
-�0� <;:

����������

���� ���
+�@��,,����

-����

���,����6��
0�����11��

�)0�

�0�

Figure 3.4: Optical setup used to lock the SEO Ti-sapphire laser to the cesium transition
at 852 nm. Before interacting with the cesium atoms, light from the SEO Ti-sapphire laser
is diffracted twice by an acousto-optic modulator (AOM). This diffracted light is then split by
a dielectric beamsplitter (BS) into a �pump� and �probe� beams that counterpropagate through
a temperature stabilized cell containing cesium vapor. An electro-optic modulator (EOM) phase
modulates the probe beam which is observed by a photodiode. By mixing down the resulting
electronic signal with a copy of the signal driving the EOM, a dispersive lock error signal can
be generated. Because the pump and probe beams counterpropagate, the Doppler shifts of the
individual cesium atoms cancel, and thus the width of the dispersive feature is close to natural
linewidth of the atomic transition. The AOM shifts the frequency of the light by twice the frequency
(foffsetAOM = +108 MHz) of its radio-frequency (rf) driving signal. Therefore, by varying foffsetAOM,
one can control the laser�s absolute frequency relative to the cesium transition.

3.1.2 Slowing beam

The slowing beam is generated by separating the +1 order from an Isomet 1250C

AOM, passing it through a traveling-wave electro-optic modulator (EOM) [36], and

then directing it into the vacuum chamber (see Figure 3.5). The EOM is driven by a

7.9 W rf signal that sweeps between 518 and 322 MHz in 4.9 ms. In frequency space,

this phase modulation produces sidebands shifted from the carrier by the frequency

of the rf signal, fsweep. Thus, at most one third of the optical power emerging from

the slowing EOM will have frequency

fslowing = fSEO + fslowAOM − fsweep

' f(F =4→ 50) + 91MHz + 200MHz− (518→ 322MHz)

' f(F =4→ 50)− 227→ −31MHz) (3.2)

70 CHAPTER 3. EXPERIMENT

���
+�@��,,����

-����7�

+��,
<;: 9

)�	µ�

�	0�

+��,
<;: <

+��,
<;: 7

�1�8��3
>;:

�1�8��3
<;:

+��,
��6����

�1�8��3
��6����

�����1�

�� 9���6�
-�0�

�� B�5������

91�����3
<;:

�����
<;:

+����5����
+��, 7����

������
91�����3�

*� /����

�1�8��3
7���

��
*� /����

-����

A�����
�6�,��3

A�����
�6�,��3
<;: �

A�����
�6�,��3
<;: �

+�		 :%&

−�	'#' :%&

−�	'#' ��
−�	
#� :%&

−��C#) :%&

−"� :%&

*���0����
��6����

����
/�,6�,��3

����
*� /����

-����

−�	(:%&

−)�	 ��
 −��	 :%&

�	0�

	0�

'#�0�

�	0�

�		µ�

�)	µ�

�	0�

−�	'#' ��
−�	(#" :%&

�	0�

)	0�

�	0��	0�

�,8���
+��, 7����

−"� :%&

+"�:%&�

+��
+)	:%&�

−��" �� −�":%&��

+��
−
C	 �� +��
−�C	:%&�

+"�:%&��

+��
−�)	:%&�

+	:%&�

+	:%&�

−�)�:%&�

−�

:%&�

−�)#':%&�

−�)#' ��
 −��#�:%&�

−�)#' ��
 −�C#":%&� *�8�8���

+��, 7����

Figure 3.5: Preparation of the laser light to cool, trap, and detect atoms in an atomic
fountain. The magneto-optic trap (MOT) beams come from a Schwarz Electric Optics (SEO) Ti-
sapphire laser. A small fraction of this laser�s output is immediately routed with a power beamsplitter
(BS) to measure its wavelength with a wavemeter, lock it and the DF Raman laser diode to cesium,
and generate the probe, clearing, and Zeeman pumping beams. The remaining fraction is split
roughly equally by the slowing acousto-optic modulator (AOM), sending one part to generate the
slowing beam and the rest to be split up into the six MOT beams. At this AOM, repumping light
from a laser diode is overlapped with all of these beams. The slowing beam is frequency chirped
using a traveling-wave electro-optic modulator (EOM) and then directed to the vacuum chamber.
The MOT beams are generated with trap AOMs A, B, and C, which split off a fraction of the light for
the transverse, upward going, and downward going trap beams, respectively. Each beam diffracted
from these AOMs is focused through a pinhole to clean up its spatial proÞle. Note that all of the
light that ultimately arrives at the vacuum chamber can be completely extinguished with mechanical
shutters. The laser frequencies at various points relative to the F =4 to F =50 D2 transition are
given in parentheses ().

3.1. CESIUM FOUNTAIN 71

A linear frequency sweep of ∆f in time ∆t corresponds to an acceleration of

a = λ∆f/∆t = (852.3 nm)(196MHz)/(4.9ms) = 3.4 × 104m/s2. Thus, due to the

absorbing of photons from the slowing beam, atoms leaving the nozzle with longitu-

dinal velocity
q
9πkBT/(8m) ' 294 m/s will come to rest 1.3 m later, roughly the

distance from the nozzle to the center of the MOT [37].

3.1.3 MOT beams

The remainder of the light not removed by the slowing AOM, passes through the

three trap AOMs, labeled A, B, and C. Each trap AOM diffracts a fraction of the

light into the −1 order which separates from the main beam. The diffracted light is

then focused through a pinhole, and directed into the vacuum chamber. As shown in

Figure 3.5, trap AOM A generates the light for the horizontal transverse trap beam,

while AOMs B and C generate light for the upward and downward going beams of

the cross. To generate the two upward going beams, the light diffracted by AOM B is

split by a 50/50 beam splitter so that half of the light can be sent to each side of the

chamber, and similarly for the downward going beams from AOM C. The horizontal

transverse beam from AOM A, on the other hand, is not split. It passes through the

chamber and is then retroreßected by a mirror on the other side.

For optimal MOT performance, it is important that the atoms experience an iden-

tical magneto-optic force from each of the six trap beams. This force is proportional

to the local magnetic Þeld gradient and the local intensity of the laser. Each of the

four cross beams is magniÞed to a collimated Gaussian beam diameter of roughly

2.0 cm. By symmetry, along each of these beam directions the magnetic Þeld gradi-

ent is approximately the same. Therefore, since the beam size and Þeld gradient are

the same for the four cross beams, to balance the magneto-optic force, we must only

control the power ratio of the these beams. The power ratio between the two upward

going beams is Þxed by the beam splitter, and similarly for the two downward going

beams. Because the upward and downward going beam pairs come from different

trap AOMs, we can continuously vary the top versus bottom power ratio by control-

ling the amplitude of the rf signal to the trap AOMs B and C. Along the axis of the

72 CHAPTER 3. EXPERIMENT

trap coils, the gradient is approximately twice as big, and thus the intensity of the

horizontal trap beams must be correspondingly smaller. The horizontal trap beam

going to the chamber is magniÞed to a collimated Gaussian diameter of 2.0 cm. The

second horizontal beam is created by retroreßecting instead of splitting the incoming

beam. Because of losses through the second vacuum window and in the retro-mirror,

the retroreßected beam does not have the same power as the incoming beam. To

compensate, a long focal length lens is inserted after the chamber so that the beam

size of the returning beam at the MOT will be slightly smaller and thus its intensity

will be approximately the same.

3.1.4 Launch

Figure 3.25 shows a master timing diagram which repeats every 908 ms. The arbi-

trarily chosen zero occurs when the MOT coils turn off and the mechanical shutter

for the slowing beam closes. For approximately 300 ms preceding this time, the MOT

has been fully operational and loading atoms at a rate of around 3 × 108 atoms/s.

When the slowing beam shuts off, essentially no more atoms are loaded into the trap.

When the trap coils shut off, there is no longer a spatial minimum in the trapping

potential. The atoms thus begin to ballistically expand in all directions. However,

because the trap beams are still on, the atoms are still being Doppler cooled toward

the Doppler cooling frequency limit of Γ/2 [38]. To achieve even lower temperatures

we apply a small magnetic Þeld to mostly cancel the local Earth�s magnetic Þeld and

any stray Þelds. This Þeld is generated by three pairs of ∼ 1 m diameter coils in a

Helmholtz conÞguration. These �MOT trim coils� consist of ∼40 turns of 0.050 inch
diameter solid copper wire and are located outside the vacuum chamber on all faces

of an imaginary cube oriented normal to the atomic beam (see Figure 3.2). With

zero magnetic Þeld in the region of the trap, the atom�s magnetic sub-levels are all

degenerate and polarization gradient cooling takes over [39, 40, 41]. To further im-

prove the cooling, at t = 0 we lower the intensities of the trap beams by a factor of

∼ 150. This provides some adiabatic cooling and minimizes the heating due to the
absorption and then isotropic spontaneous re-emission of photons.

3.1. CESIUM FOUNTAIN 73

Five milliseconds later at t = 5 ms, we change the frequencies of the cross beams

relative to the horizontal beams. We shift the upward going beams up (blue shift)

and the downward going beams down (red shift) by 2.3 MHz. With this frequency

asymmetry, the beams effectively cool the atoms toward a non-zero velocity of 2.7 m/s

in the vertical direction. This launches the atoms upward to produce the atomic

fountain which serves as the source of atoms for the interferometer measurement.

Distance traveled from MOT until detection (cm)
8.0 8.5 9.0

E
ar

ly
 P

ro
b
e

S
ig

n
al

 (
ar

b
)

0.0

0.5

1.0

σz

zprobe

Figure 3.6: Fluorescence from the upward traveling atom cloud. As the atoms pass through
the detection region on their way up, a vertical probe beam is ßashed on for 0.3 ms. A photomultiplier
tube (PMT) collects a fraction of the photons scattered from this probe beam by the atoms. For a
probe pulse occuring at time t after the launch, we convert to position according to z = vLt− 1

2
g t2

using a vertical launch velocity of vL = 2.71 m/s and a gravitational acceleration of g = 9.80m/s
2
.

By varying the time of the probe pulse, we can map out the atoms� spatial distribution in the vertical
direction. Fitting these data with the function A exp{− 1

2
[(z − zprobe)/σz]

2}+B using the four free
parameters A, zprobe, σz , and B gives a probe position of zprobe = 8.505± 0.004 cm above the MOT
and an rms radius of σz = 1.645± 0.089 mm.

After traveling about 8 cm upward the atoms enter a region which is imaged with a

reduction of ∼3 by a 4 inch biconvex lens of focal length 8 cm onto the approximately
1× 1 cm active area of a Hammamatsu R943-2 photomultiplier tube (PMT). When

the atoms are illuminated with the vertical traveling probe beam ßashed on 33.6 ms

after the launch (�early probe�), they scatter light which is converted to an electrical

signal by the PMT. In Figure 3.6, we present the time of ßight data for the atoms

as they travel upward. At this point in time, the spatial distribution of the atoms is

74 CHAPTER 3. EXPERIMENT

much smaller than the size of the probe beam, so by varying the time when the probe

turns on, we can extract an rms radius of 1.65 mm in the vertical dimension for the

atomic cloud. Assuming the cloud is symmetric in space, this measurement indicates

the size of the atomic cloud at the time of the early probe.

Vertical velocity (m/s)

2.65 2.70 2.75

L
at

e
P

ro
b
e

S
ig

n
al

 (
ar

b
)

0.0

0.5

1.0

σv

vL

Figure 3.7: Fluorescence from the downward traveling atom cloud. We perform a mea-
surement similar to the one described in Figure 3.6, but in this case we ßash the probe beam on when
the atoms are traveling downward instead of upward through the detection region. For a probe pulse
occuring at time t after the launch, we convert to velocity according to v = zprobe/t +

1
2
g t using a

probe position of zprobe = 8.51 cm above the MOT and a gravitational acceleration of g = 9.80m/s
2
.

By varying the time of the late probe pulse, we can map out the atoms� velocity distribution in the
vertical direction. The two data sets correspond to atoms launched with (hollow) and without (solid)
Zeeman pumping. Fitting these two datasets with the function A exp{− 1

2
[(v−vL)/σv]

2}+B using the
four free parameters A, vL, σv , and B gives a vertical launch velocity of vL = 2.7061±0.0004 m/s and
an rms velocity radius of σv = 1.640±0.058 cm/s with Zeeman pumping and σv = 1.404±0.050 cm/s
without.

If we perform the same measurement at 520 ms after the launch (�late probe�)

after the atoms have reached the top of their trajectory and returned to the detection

region, we can investigate the atom�s vertical velocity distribution. In order to make

this measurement depend only on the velocity distribution and not on the atom�s

spatial distribution, we iris the probe beam from its Gaussian diameter of 12 mm

down to ∼ 2 mm so that it is much smaller that the falling cloud. As shown in

Figure 3.7, the rms velocity spread in the vertical direction of atoms leaving the

3.1. CESIUM FOUNTAIN 75

MOT is σv = 1.40 cm/s, equivalent to 3.99 single photon recoils
2 or a temperature3

of 3.18µK. Even with this relatively cold temperature, this velocity spread produces

a non-negligible spread ∆z in position distribution of the atoms at the time of the

early probe, ∆z = σvtearlyprobe = (14.0mm/s)(33.6ms) = 0.472 mm. By subtracting

this spread in quadrature from the observed position spread of 1.65 mm at the time

of the early probe, we can determine the rms radius of the atomic cloud at the time

of the launch: σz(t = 0) = 1.58 mm.

3.1.5 Detection

Brief mention of the probe beam was made in the previous section. As shown in Figure

3.5, this beam is derived from the light off the Þrst beam splitter outside the SEO

Ti-Sapphire laser. It passes through a mechanical shutter, two AOMs (the clearing

and then the probe AOM), and a Þnal collimating lens, before it is directed into the

chamber via the other input port of the bottom polarizing beam splitting (PBS) cube

(see Figure 3.2). The probe beam thus propagates upward approximately overlapped

with the vertical interferometer Raman beams. Overlapped with this probe beam are

two other beams used for detection: the clearing and the Doppler-free (DF) Raman

beam. The clearing actually comes from the same source as the probe, but it is

turned on and off by the clearing AOM instead of the probe AOM. In addition, when

the clearing AOM is on, the beam is deßected through a slightly different beam path

which changes the beam size so that the emerging clearing beam is roughly 24 mm

in diameter, or roughly twice the size of the probe beam. The probe and the clearing

beams have frequency

fprobe = fSEO − fprobeAOM

' f(F =4→ 50) + 91MHz− 91MHz

' f(F =4→ 50) (3.3)

fclearing = fSEO − fclearingAOM

2The recoil velocity vr for photons with wavelength λ = 852.356 nm is h/(mCsλ) = 3.5224 mm/s.
3The recoil temperature for cesium is mCsv

2
r /kB = 200 nK.

76 CHAPTER 3. EXPERIMENT

' f(F =4→ 50) + 91MHz− 91MHz

' f(F =4→ 50) (3.4)

The clearing beam acts like a second probe beam but instead of scattering photons

to be detected, the clearing beam is used to reduce the background signal by pushing

all of the atoms in the F =4 ground state out of the detection region.

3.1.6 Magnetic sublevel-sensitive detection

The third beam overlapped with the probe and clearing beams is the Doppler-free

(DF) Raman beam. It is used to transfer atoms between the F =3,mF =0 and

F =4,mF =0 states. It comes from an 850 nm laser diode stabilized with a grat-

ing in the Littrow conÞguration [42]. The layout for this laser is shown in Figure

3.8. After some of the output power is split off to an optical spectrum analyzer and

an rf photodiode, the light passes through an AOM (the DF Raman AOM) and a

pinhole spatial Þlter before being overlapped with the clearing beam. Because this

diode beam is overlapped with the clearing beam, it will have roughly the same size,

a Gaussian beam diameter of ∼24 mm at the atoms. Using the beatnote between this
laser and the SEO laser to feed back to the position of the grating, the DF Raman

output frequency is locked ∼3.6 GHz above the SEO laser frequency.

fDFRaman = fSEO + fDFRamanVCO + fDFRamanXTAL + fDFRamanAOM

' fSEO + 3.6GHz + 16MHz + 80MHz

' f(F =4→ 50) + 3.7GHz (3.5)

By combining the dc current to this laser with an 1.3 mW microwave signal, the

current to this laser is modulated at fmod = 4.6 GHz, approximately half of cesium�s

ground state hyperÞne splitting of 9.192 631 770 GHz. If the magnitude of the electric

Þeld is given by E(t) = 1

2
E0 exp(iωct)+c.c., this modulation at frequency ωm produces

3.1. CESIUM FOUNTAIN 77

sidebands in frequency space according to the expression

E(t)→
E0
2

+∞X

n=−∞
Jn(M) exp[i(ωc + nωm)t] + c.c. (3.6)

whereM is the modulation depth. By varying the amplitude of the microwave signal,

M is set so that the strength of the carrier and Þrst-order sidebands are approximately

equal. With the absolute laser frequency set to fDFRaman, the Þrst-order sidebands

have frequencies

f+1 = fDFRaman + fmod

' f(F =4→ 50) + 91MHz + 3.6GHz + 4.6GHz (3.7)

f−1 = fDFRaman − fmod

' f(F =4→ 50) + 91MHz + 3.6GHz− 4.6GHz (3.8)

separated by f+1−f−1 = 4.6−(−4.6) = 9.2 GHz, the ground state hyperÞne splitting.
Thus, because of the modulation, the two Þrst-order sidebands are nearly two-photon

resonant. By tuning the modulation frequency with respect to a stable frequency

reference, we can make this laser resonantly drive two-photon off-resonant Raman

transitions. Because both effective Raman frequencies are copropagating, the reso-

nance is Þrst-order insensitve to Doppler and recoil shifts. Thus, we need only cancel

any ac-stark shifts due to the DF Raman laser or any remnant magnetic Þeld shifts.

With a Þnal output power of ∼ 2.2 mW, we typically achieve effective two-photon
Rabi frequencies of ∼ 200 Hz and detunings of around −80 Hz from Doppler-free

resonance. Because these resonant sidebands are detuned ∼ 1 GHz from the single-

photon F =4 → F =50 transition, the resonance width is not limited by the excited

state lifetime but only by the spectral width of the ∼ 2.5 ms long π-pulses. This
linewidth of roughly 1/(2πTπ) = 64 Hz is much smaller than the Zeeman shift of

∼50 kHz for magnetic bias Þeld strengths of 72 mG. Thus, by tuning the two-photon
frequency, each of the Zeeman sublevels can addressed individually.

78 CHAPTER 3. EXPERIMENT

�� ��0� ��������
�16���6� ��01��6��

%���
�����5���

7��8����
8����8

9�11������3
1���

$�����3

�A+

-����
�����

+> 9��1��

��5��
����,1���

9?1�����0�1
1�����

;,��0�1
���1����

�����1� �	0�

��0�

�'0�

��5���

Figure 3.8: Setup for an external cavity laser diode used for the repumping, DF Raman, and
tracer lasers. An anti-reßection (AR) coated semiconductor laser diode is pressed into an Invar block,
onto which is mounted a collimating lens whose distance to the diode can be sensitively adjusted.
Feedback electronics stabilize the diode�s temperature by reading the signal from a thermistor (not
shown) and controlling the current to a thermo-electric (TE) cooler. A grating reßects the laser
output into several diffraction orders. Using a stable aluminum mirror mount, the grating is oriented
so that a Þrst order diffraction reßects exactly back into the laser. According to the Bragg condition,
the reßection angle of this Þrst order diffraction depends on the laser wavelength, so this back
reßected light stabilizes the laser�s output frequency. By controlling the voltage to a piezo-electric
transducer (PZT) which sensitively adjusts the distance from the diode to the grating, the laser
frequency can be Þne tuned or locked to an atomic reference. The primary zero-order reßection
continues on out of the airtight aluminum enclosure through two cylindrical lens which remove
the beam�s asymmetry. An optical isolator prevents downstream optics from scattering light back
into the diode and disturbing its stability. Finally, the beam is focused through a pinhole with a
tranmission efficiency of roughly 50% to Þlter out higher order spatial modes.

3.1. CESIUM FOUNTAIN 79

With the probe alone, we count all of the atoms in the F =4 state. However,

by introducing spectrally narrow transitions between speciÞc Zeeman sub-levels, we

are able to detect only those atoms in the mF =0 Zeeman sublevel. To detect the

number of atoms launched from the trap in the F =4,mF =0, for example, we would

perform one Doppler-free π-pulse to transfer the atoms from the F =4,mF =0 to the

F =3,mF =0 state. Because of the presence of the F =3 → F =40 repumping light

overlapped with the trap beams, all atoms leave the trap in the F =4 state. Thus,

after one DF Raman π-pulse, the only atoms in the F =3 state are atoms that were

launched in the F =4,mF =0 state. We then apply a clearing pulse to remove any

atoms leftover in the F =4 state. A second Doppler-free π-pulse from the DF Raman

laser brings the F =3,mF =0 atoms back to the F =4,mF =0 state, where they can

be detected by the ordinary F =4→ F =50 probe light. The light scattered from this

probe pulse will be proportional to the atoms leaving the trap in the F =4,mF =0

state.

3.1.7 Zeeman pumping

To increase the Þnal signal we magnetically polarize the atoms after they leave the

trap but before they enter the magnetic shielding. To accomplish this, we turn on

a laser beam tuned to the F =4 → F =40 transition. This laser enters the chamber

∼5 cm above the trap, travels horizontally through the chamber, hits a mirror, and

retroreßects exactly back on itself. It is linearly polarized in the vertical direction.

Because its polarization is roughly parallel to the magnetic bias Þeld it will drive

all transitions F =4,mf → F =40,m0

f except when mf = 0. After roughly 30 ns the

atoms will spontaneous emit a photon and fall back into one of the states F =4,mf−1,
F =4,mf , or F =4,mf+1 with probabilities given by the angular matrix elements for

that transition. Once an atom reaches the F =4,mF =0 ground state, it will no longer

be coupled to the excited state by the laser, and it will thus remain in that state.

Because of the chance that an atom in the F =40 excited state might fall into the F =3

ground state, out of resonance with the Zeeman pumping laser, we overlap with this

beam some of the F =3 → F =40 light from the repumping laser. When the atoms

80 CHAPTER 3. EXPERIMENT

encounter these beams on their way upward, they are pumped to the F =4,mF =0

state. Although the mF =0 signal from a sample of atoms equally distributed among

the 9 possible Zeeman sublevels should increase by a factor of 9 when it encounters

this �Zeeman pumping� beam, we typically see an enhancement of only 3. This is

most likely due to heating as the atoms spontaneously re-emit photons. The heated

atom cloud expands faster and thus fewer atoms remain in the probe beam when

the detection pulse occurs. From Figure 3.7, the spread of the atomic velocities in

the vertical direction increases from 1.40 cm/s to 1.64 cm/s. Subtracting these two

rms velocities in quadrature indicates that the Zeeman pumping adds a velocity of

0.85 cm/s, equivalent to 2.4 single photon recoils or a temperature increase of 1.2µK.

The Zeeman pumping beam comes originally from the SEO Ti-Sapphire laser but

passes through two AOMs before entering the chamber (see Figure 3.5). The Þrst

Zeeman pumping AOM at frequency fZP1 = 117.5 MHz is on all the time while the

second Zeeman pumping AOM at frequency fZP2 = 108 MHz switches on 1 ms after

the launch, well before the atoms pass through the Zeeman pumping beam.

fZP = fSEO − 2fZP1 − fZP1

' fSEO + 91MHz− 235MHz− 108MHz

' f(F =4→ 50)− 252MHz

' f(F =4→ 40) (3.9)

Also at this time, the MOT trim coils switch current levels to a setting which applies

a large bias Þeld in the vertical direction. Because the Þnal measurement will involve

magnetic sublevel sensitive detection, we must preserve the magnetic dipole orien-

tation of the atoms by applying a well-deÞned magnetic bias Þeld. For the Zeeman

pumping process to work properly, this magnetic Þeld must be vertical to match the

polarization of the Zeeman pumping beam. It must also be in the same direction as

the magnetic bias Þeld within the magnetic shielding so that there is no point along

the atoms� trajectory where the magnitude of the Þeld vanishes.

3.2. ADIABATIC PASSAGE BEAM GENERATION 81

3.2 Adiabatic passage beam generation

The most fundamental part of the entire experiment consists of the Raman beams

which are used to construct the atom interferometers and thereby measure the recoil

shift. These beams must have precise and well deÞned wavefront properties. They

must have stable absolute frequency with respect to the cesium atom. They must

be split into two counter-propagating beams whose phase and frequency difference

are ultra-stable with respect to a precision time standard even when changed to

compensate for Doppler and recoil shifts. In order to adiabatically transfer atoms

between internal states, we must be able to independently control the intensity of

each beam. Finally, we must be able to electronically switch the beam direction.

3.2.1 Laser source

As diagrammed in Figure 3.9, the adiabatic transfer or �Raman� beams originate

from a Model 599 titanium-sapphire ring laser from Coherent pumped by 11 W from

the same large frame Argon Ion laser that pumps the SEO Ti-sapphire. Although

the ring cavity is in the vertical plane instead of the horizontal plane, this laser

contains the same components described in the layout for the SEO laser (Figure 3.3).

As shown in Figure 3.9, ∼ 20mW of the 900 mW output at 894.6 nm is split off,

10 mW to an external lock to cesium and 10 mW to a wavemeter which determines

the wavelength to ±0.0005 nm. The remainder of the power goes to the generation

of the two optical frequencies used to adiabatically transfer atoms between the F =3

and F =4 ground states and thereby build the atom interferometers. From here on,

these two frequencies addressing the F =3→ F =30 and F =4→ F =30 transitions of

the D1 line of cesium at 894.606 nm will be called �F =3� and �F =4�, respectively.

82 CHAPTER 3. EXPERIMENT

������	

+�@��,,����

-����

" $%& >;:

����?@�����
��1��� 9�5��?

9��

9��

9�����
�8��0�
<;:

� = �
���,��3
<;:

� =

���,��3
<;:

−��	 :%&

+
	 :%&

−
	 :%&
λ�

λ�

λ��

λ��

" $%&
��������

�7�

7�
9� 1�0��
8�5��������

� = �

� =

�� �8��0�?���

9�5��?
������������
����������

��

λ��

����
+��0��
-����

�	0�

�	0�

)0�

�	0�

	0�

�	0�

�	0�

C#'0�

+'	:%&�

−�		:%&�

+��
+(:%&�

+�	:%&��

+��
+�		:%&�

+'	:%&+�>;: = +��
+�'	:%&�

;*
�#	

�7� '#
��

Figure 3.9: Preparation of the adiabatic passage beams. The laser beams used to drive
two-photon transitions and build the interferometers come from a Coherent Titanium-sapphire laser.
A small fraction of its output is immediately separated with a power beam splitter (BS) in order
to measure the laser�s wavelength and to lock the laser to cesium. Roughly 80% of the remaining
power is split off by a polarizing beamsplitter (PBS) and frequency shifted by 9 GHz. This microwave
frequency shift is achieved by Þrst phase modulating the light with a 9 GHz electro-optic modulator
(EOM) and then using a Fabry-Perot cavity to Þlter out all spectral components except the desired
sideband. In order to achieve the required modulation depth from the EOM, a Porro prism (PP)
reßects the light back through the EOM. This �F =3� light is overlapped with the other 20% of the
laser power, the �F =4� light, at the Þrst calcite polarizer (CP1). A microwave photodiode detects
the 9 GHz beat frequency between these two lasers, allowing their phase and frequency difference to
be precisely controlled. To control the intensity of each laser, an acousto-optic modulator (AOM) is
placed in each path before CP1. In addition to these �shaping� AOMs, a �common switch AOM�
is placed between CP1 and CP2. By varying the amplitude of the rf signal to these three AOMs,
the fraction of light diffracted toward the switchyard and ultimately to the atoms can be controlled.
The laser frequencies relative to the F =4 to F =30 D1 transition are given in parentheses ().

3.2. ADIABATIC PASSAGE BEAM GENERATION 83

3.2.2 Second optical frequency

To generate the two optical frequencies, we lock the Ti-sapphire laser near the F =4

transition and shift a fraction of the output by 9.2 GHz to address the F =3 transition.

As shown in Figure 3.9, we use an electro-optic modulator (EOM) to produce the

microwave frequency shift of fEOM. This EOM is a prototype design4 from New

Focus which consists of 0.6 mm wide by 0.4 mm tall by 33.3 mm long anti-reßection

(AR) coated LiTaO4 crystal housed in a specially designed case. The case forms a

cavity that resonates at certain rf and microwave frequencies, one of which is 9 GHz.

The geometry of this enclosure is designed so that when microwave power is properly

coupled into the cavity, the electric Þeld produced in the crystal will be resonantly

enhanced. According to the Pockels effect, this electric Þeld alters the real part of the

index of refraction [43]. Consequently, light whose polarization is aligned with the

electric Þeld in the crystal will experience a phase shift. Because this phase shift is

proportional to the electric Þeld, the phase of the light will be effectively modulated

at the microwave frequency. As mentioned in equation (3.6), in frequency space

this modulation produces sidebands separated by the modulation frequency. Even

with the long crystal and the resonantly enhanced electric Þeld driven with input

microwave power of 1.0 W, we are not able to obtain the optimum modulation depth

with a single pass. By using a square-cut knife-edge Porro prism to retro-reßect the

light back through the crystal, however, we are able to maximize the amount of power

in the Þrst-order sidebands, so that they each account for roughly one third of the

optical power, with the remaining third of the power divided between the carrier and

higher order sidebands. We are interested in only one of the sidebands. In order to

Þlter out the other unwanted frequency components, we next pass the modulated light

through a Fabry-Perot cavity with a Þnesse of ∼150 and an off-resonant transmission
efficiency of ∼0.015. By tuning this Fabry-Perot cavity to resonate at only one of the
frequencies, we select a single sideband. We obtain an optical transmission of more

than 97% for the Þrst pass through the EOM crystal and a total transmission of 89%

4A modiÞed version of this prototype design which we helped construct is now sold by New Focus
as part of their 484X-series.

84 CHAPTER 3. EXPERIMENT

for both passes5. The resonant transmission efficiency through the Fabry-Perot cavity

is 80%. Thus, the process of shifting an optical frequency by a microwave frequency

fEOM has a total efficiency of ∼24%.

In order to obtain approximately the same amount of power in the F =3 and F =4

beams, an adjustable power splitter separates the Ti-sapphire light into fractions of

roughly 80% and 20%, with the larger amount going to the frequency shifting section

which produces the F =3 beam. This power splitter is simply a zero-order λ/2-plate

plus a polarizing beamsplitter (PBS) cube. After shifting the frequency of the F =4

light to produce the F =3 beam, we now have effectively two 170 mW lasers whose

frequency difference is given by the frequency of the microwave signal driving the

EOM. We are now ready to control the intensity and direction of these two lasers.

3.2.3 Shaping AOMs

To control the intensity, we pass each of these beams through its own 40 MHz AOM

made by Andersen Laboratories. By varying the amplitude of the fshAOM = 40 MHz

rf signal to these two �shaping AOMs� we can control the fraction of light they diffract

into the Þrst-order. These anti-reßection coated shaping AOMs transmit > 99% of

the light. At an optimum rf power of ∼3 W, they have diffraction efficiencies of 90%
and 97% for the F =3 and F =4 beams, respectively, By controlling the amplitude of

the two separate rf signals, we can thus electronically vary the intensity of the light

sent to the atoms.

The outputs of the two shaping AOMs are overlapped at the Þrst calcite polarizer

(CP1 in Figure 3.9). To improve the overlap efficiency, we use a zero-order λ/4-plate

to set the polarization of the F =3 beam to be linear and perpendicular to the plane

of the optical table (S-polarized). A λ/4-plate instead of a λ/2-plate is required

because the polarization of the light is converted from linear to circular by another

λ/4-plate placed just before the Fabry-Perot optical Þlter cavity. This Þrst λ/4-plate

serves to minimize the light that reßects off of the mode-matched Fabry-Perot cavity

and travels back into the Ti-sapphire laser thus interfering with the laser�s frequency

5We estimate there is some loss due to slight clipping on the horizontal edges of the crystal.

3.2. ADIABATIC PASSAGE BEAM GENERATION 85

stability. At the overlapping polarizer CP1, the polarizations of the F =3 and F =4

are therefore nearly orthogonal.

3.2.4 Common switch AOM

The Þrst-order light from the shaping AOMs continues on through an Isomet model

1206C-1-830 AOM. This �common switch AOM� is driven by a 2.0 W rf signal at

fswAOM = 120 MHz. The amplitude of this 120 MHz signal is controlled by a (Mini-

Circuits model ZYSW-2-50DR) rf switch which leaves the rf on or turns it off with

an isolation of 58 dB. Because at this point both the F =3 and F =4 beams are

overlapped and spatially mode matched, the common switch AOM serves to switch

both light Þelds on or off together in exactly the same manner with exactly the same

phase shift. This AOM was added to the setup partway into the experiment to Þx

a previously unexplained systematic error from the π/2-pulses (see Section 6.7), so

much of the recoil data were taken without it.

3.2.5 Switchyard

After the common switch AOM, the overlapped but orthogonally polarized F =3

and F =4 beams are separated by a second calcite polarizer (CP2 in Figures 3.9

and 3.10). When aligned to the Þrst polarizer, CP2 separates the two orthogonal

Raman polarizations with leakage less than 1×10−5. With the common switch AOM

in the beam, however, this isolation decreases to roughly 10−3, most likely due to

small (possibly thermally induced) birefringent properties of the AOM crystal. To

repurify the polarization we insert an additional zero-order λ/2-plate designed for use

at 852 nm just before CP2. By adjusting the angle of incidence and angle of the

optic axis of this waveplate, we are able to compensate for the effect of the common

switch AOM and return the leakage to ∼10−5. However, as might be expected from
thermally induced birefringence, this cancelation does not remain perfect, causing the

leakage to drift up to but never higher than ∼1× 10−4. This second calcite polarizer
CP2 also serves as the point where the tracer beam is overlapped with the Raman

beams. The tracer beam will be discussed in Section 3.3.3.

86 CHAPTER 3. EXPERIMENT

λ��

����
+��0��
-����

λ��

.�	
λ��

λ��

λ��
/����
7����

�=�

�=

7�����
/����
7���

+�,
/����
7���

D6���&
9�?���1

7�����
�����

+�,
�����

:�0���0�,�
;�=�0��5�

+�		 :%&

+�		 :%&

−(:%&

−(:%&

�!
 ����
<;:

�!
 ���
<;:

�!� ����
<;:

�!� ���
<;:

9��

0���� ,�1���&���

�	0�

�	0�

�	0�

'#�"0� �#)
0�

'#�"0�

�#)
0�

+��
+(:%&�

−�		:%&�

Figure 3.10: The Raman beam switchyard allows us to electronically reverse the direction of
the Raman lasers. Two pairs (�near� and �far�) of acousto-optic modulators (AOMs) selectively
direct each of the two input frequencies (�F =3� and �F =4�) into either of the two possible output
directions ultimately pointed toward the top and bottom of the vacuum chamber. If the switchyard
is on, each laser is diffracted by only one switchyard AOM into one of the two optical Þbers. The
Þbers are used to 1) improve the isolation of all of the AOMs and 2) to provide the Þnal spatial
Þltering before the beams interact with the atoms. The �tracer� laser is overlapped with the Raman
lasers at the second calcite polarizer (CP2) and thus propagates orthogonally polarized relative to
the Raman beams. A quartz crystal is inserted before the bottom Þber to rotate the polarization
of just the tracer beam so that its polarization is then approximately parallel to that of the Raman
beams. The laser frequencies at various points relative to the F =4 to F =30 D1 transition are given
in parentheses ()s. Note that the Raman light emerging from the Þbers is resonant with either the
F =3→ 30 or the F =4→ 40 transition.

3.2. ADIABATIC PASSAGE BEAM GENERATION 87

After the beams split they enter the �switchyard� which consists of four Isomet

model 1205C-1-830 AOMS, a few refocusing lenses, and several mirrors (see Figure

3.10). The switchyard has two input paths, labeled F =3 and F =4, and two output

paths, labeled �top� and �bottom�. Its purpose is to allow us to electronically switch

between three possible conditions: 1) �normal� condition where F =3 goes to bottom

and F =4 goes to top, 2) �invert� condition where F =3 goes to top and F =4 goes

to bottom, and 3) �off� condition when no light emerges into either output. The

switchyard thus allows us to change the beam direction and also provides an additional

layer of isolation to ensure that the Raman light is really off when it is supposed to

be.

To better understand how the switchyard works, consider the normal condition.

In this case, the �near� AOMs (see Figure 3.10) are off and the �far� AOMs are on.

The F =4 light, for example, passes unshifted through the F =4 near AOM but is

then shifted into the top Þber by the F =4 far AOM, and similarly for the F =3 beam

into the bottom Þber. In the inverted condition the control electronics switch the rf

signals so that the near AOMs are on and the far AOMs are off. In this case, the

F =4 light is shifted by the Þrst AOM it encounters (the F =4 near AOM) into a

path that when the next two mirrors are correctly oriented overlaps with the path

that the F =3 far AOM would shift the beam into if it were on (i.e. the path headed

into the bottom Þber). In a similar way, the F =3 near AOM directs the F =3 beam

through the F =4 far AOM, which must be off, and into the top Þber. Note that the

condition with all four switchyard AOMs on is not permitted. The OFF condition is

when all switchyard AOMs are off.

3.2.6 Spatial Þltering

After emerging from the switchyard, each interferometer Raman beam passes through

a 3M FS-PM-4611HT single-mode polarization-preserving optical Þber. A high nu-

merical aperture lens focuses the light into the 5.3µmmode Þeld diameter of the Þber.

A zero-order λ/2-plate before the lens sets the polarization of the beam to match the

orientation of the asymmetry of the Þber core. Because the Þber input and output

88 CHAPTER 3. EXPERIMENT

facets are not anti-reßection coated or angle polished, they tend to exactly retrore-

ßect a fraction of the light. The Þber thus acts like an extremely thick glass etalon,

whose transmission efficiency varies as the reßections off its input and output faces

interfere. To minimize this effect we insert some index-matching gel made by Math

Associates between the input focusing lens and the bare Þber. With the gel in place,

the light sees roughly the same index of refraction as it passes through the focusing

lens, propagates through the gel, and into the glass Þber. Because the gel changes

the effective focal length of the focusing lens, we compensate for this by re-optimizing

the distance between the lens and the Þber.

After emerging from the ∼ 1 m long bare Þbers the beams diverge rapidly in

free space until they are focused by ×10 microscope objectives to a Gaussian beam

waist diameter of 114 µm. Including the input focusing lens and this microscope

objective after the output, we measure a total transmission efficiency of 60% through

the top Þber and 40% through the bottom Þber6. This efficiency could be improved

by as much as 15% by AR coating the Þbers and replacing the microscope objectives,

which are made for use at visible frequencies and are not optimized for transmission

at 894.6 nm. The total transmission efficiency will ultimately be limited by the input

beam quality. Although the spatial mode emerging from the Ti-sapphire laser is quite

good, after being diffracted by three AOMs (one shaping, the common switching, and

one switchyard), the Þnal beam may not be as easily matched with the mode of the

Þber. In fact, mode quality is the primary reason for using optical Þbers. The recoil

measurement depends on the atoms interacting with lasers of extremely well deÞned

momentum, which is deÞned by the local wavefront gradient. By Þltering out higher

order spatial modes, the Þbers insure that the interferometer beams have clean and

well-deÞned wavefronts. In addition to spatial Þltering, the Þbers also improve the

on-off insolation of the AOM intensity switches (see Table 3.1).

6The difference in transmission efficiency is probably due to the quality of the Þber facets which
were cleaved using a precision Þber cleaver from Fujikura.

3.2. ADIABATIC PASSAGE BEAM GENERATION 89

Table 3.1: Isolation performance of the switchyard. In order to pass through
one of the two optical Þbers, the F =4 and F =3 Raman beams must be diffracted
in series by three acousto-optic modulators (AOMs): the individual shaping AOMs
(Ind), the common switch AOM (Com), and one AOM from the switchyard. The
state of these AOMs is represented as either on (1) or off (0). The state of the
switchyard is determined by two switchyard controls (10=normal, 01=inverted, and
00=off). The inÞnity ∞ symbol indicates that the light emerging from the Þber
saturated the sensitive photodiode we used to detect the leakage signals. All other
numbers represent the amount of optical power emerging from the Þber relative the
fully on level.

Switchyard Top Fiber Bottom Fiber

Ind Com Norm Inv F =4 F =3 F =4 F =3

1 1 1 0 ∞ 3× 10−5 2× 10−5 ∞
0 1 1 0 4× 10−4 1× 10−7 3× 10−7 2× 10−4

1 0 1 0 8× 10−6 9× 10−9 6× 10−9 8× 10−6

0 0 1 0 3× 10−9 < 6× 10−10 < 6× 10−9 2× 10−9

1 1 0 1 2× 10−5 ∞ ∞ 3× 10−5

0 1 0 1 2× 10−7 1× 10−4 4× 10−4 1× 10−7

1 0 0 1 9× 10−9 6× 10−6 1× 10−5 8× 10−9

0 0 0 1 < 6× 10−10 1× 10−9 4× 10−9 < 6× 10−10

1 1 0 0 6× 10−8 6× 10−7 1× 10−7 7× 10−7

0 1 0 0 < 1× 10−9 < 1× 10−9 < 2× 10−9 < 2× 10−9

1 0 0 0 3× 10−9 3× 10−9 < 6× 10−10 1× 10−9

3.2.7 Collimation and polarization

After emerging from the Þbers, the light is collimated, circularly polarized, and then

directed vertically into the vacuum chamber. After being focused by the microscope

objectives at the outputs of the Þbers each beam is allowed to expand freely to a

Gaussian beam diameter of 1.91± 0.15 cm before being collimated by a plano-convex

lens of focal length 2 m (part number PLCX-50.8-1030.2-C from CVI). Each beam

then reßects off three more high quality dielectric mirrors, which direct it into the

vacuum chamber. Except for the last top mirror, all of the mirrors are at least 3 inches

in diameter. Because of space constraints, the last top mirror is cut at 45◦ from two

inch round stock, so it is elliptical with 2 inches for its smaller dimension. Each mirror

90 CHAPTER 3. EXPERIMENT

.�	
+�,
�����

:�0���0�,�
;�=�0��5�

λ��

�����1�
φ = �
� µ�

$�6�����
8����

��������

��
 µ�

�#		 �

:�3����0
����1���3

�7�

λ�

7�����
/����
7���

+�,
/����
7���

$�6�����
8����

��������
�	 ��

7�����
�����

:�0���0�,�
;�=�0��5�

λ��

�����1�
φ = �
� µ�

4�066�
9������

9�11������3
-�����

����

����

��������������
�1������

Figure 3.11: Final Raman beam preparation. After being spatially Þltered by an optical
Þber, each Raman beam is focused by a ×10 microscope objective to a Gaussian waist diameter of
114µm, where its position is determined using a 343µm diameter pinhole. Each beam expands to
a diameter of 9.7 mm before it is collimated by a f = 2 m plano-convex lens. High quality optics
then direct the beams to the vacuum chamber. Before entering the chamber, each beam passes
through a polarizing beamsplitter (PBS) cube that puriÞes its polarization and a λ/4-plate that
converts its polarization to circular. Irises above and below the chamber Þx the position of the
beam. Overlapped with each Raman beam is the tracer laser. The beat signal between the bottom
and top tracer beams is detected by the optical interferometer on the interferometer platform (see
Figure 3.14) and used by the tracer PLL to remove phase noise from the Raman beams. Not shown is
the active vibration isolation system (see Figure 3.15) that stabilizes and isolates the interferometer
platform from environmental vibrations. By amplitude modulating the tracer laser and comparing
the phase delay of this modulation signal for the top path to the same signal from the bottom path,
we estimate that the optical path from CP2 (see Figure 3.10) to the top PBS cube is no more than
12 cm longer for the top path than for the bottom path.

3.3. FREQUENCY AND PHASE CONTROL 91

is speciÞed to be λ/10 at 633 nm with scratch-dig rating of 10-5. Before entering the

chamber, each beam passes through a 2 inch polarizing beam splitter cube and then

a zero-order λ/4-plate with 2 inch clear aperture from Special Optics. The polarizing

cubes clean up the polarizations of the already roughly linearly polarized beams before

the λ/4-plates converts their polarization from linear to circular. Although we do not

know the actual sign of the helicity used in the lab, without loss of generality, from

here on we will assume the Raman beams are �σ+ polarized. To minimize the chance

of the bottom beam reßecting off the surfaces of the λ/4-plate or the polarizing beam

splitter cube, each of these optics is tilted from normal so that the small amount of

reßected light does not make it back to the atoms inside the vacuum chamber. For the

same reason, as depicted in Figure 3.11, the top and bottom windows of the vacuum

chamber are also tilted at a 5◦ from normal.

3.3 Frequency and phase control

3.3.1 Difference frequency

After the Þrst calcite polarizer CP1 overlaps the F =3 and F =4 polarizer, a mir-

ror picks off just the zero-order light from the shaping AOMs and directs it toward a

microwave photodiode. Because the orthogonally polarized light beams will not inter-

fere and produce a beatnote, a polarizing beamsplitter cube oriented at 45◦ projects

roughly half of each frequency component into the same linear polarization ∼ 45◦

from S-polarized. These two overlapped beams are then focused by a 6.4 mm focal

length lens onto a 25µm diameter photodiode. This gallium-arsenide photodetector

is a custom-made design of Agilent (formerly Hewlett Packard) [44]. For our beams

focused to a Gaussian beam waist diameter of 54µm, this detector has a sensitiv-

ity of 0.1 A/W. Via an SMA adaptor the photodetector is connected directly to a

Picosecond Pulse Labs bias tee (model 5550B) which allows the incoming dc bias volt-

age to be separated from the outgoing microwave signal. This signal terminates in

a JCA812-300 microwave ampliÞer from JCA Technology which has a speciÞed gain

and noise ßoor of 24 and 2.4 dB, respectively.

92 CHAPTER 3. EXPERIMENT

���
��	

��������

:E
':F

:�0��8�5�
/������0�

���

�	 :%& �������0�

"#�($%& �6�,6�

-;/<2 9

����������

+
4 *9 ����

��������	������������
)))	7

�����	

+�
 �7

��������	�����7���+��

9�����1

;6�,6�

�����
-�0�
-��,

>1�0�����0�

/� ��,6� �

/� ��,6� �

���1����

4�1��3�@
0�����11��
;�0�11����

9�����1

4�1��3�

�+9)@		�
�
�����

���
��	

��������

*���0�
*�3���1

�?������&��

�			 :%& �������0�
���0���1� �� -;/<2 9

/� ;6�,6�

���G6��0?
������

���G6��0?
9�����1 7���

���� 0��,6����

" $%&
>;: Σ

φ5��

��������
����
��	�

:��@
')	C(�

�����
�
��������
9�-@)��)@�:<@C(

-��	#C

Figure 3.12: Microwave beatnote. A 9 GHz resonant cavity electro-optic modulator (EOM)
frequency offsets the F =3 laser from the F =4 laser. A microwave photodiode detects the beat
signal between these two lasers. This 9 GHz signal is mixed down to the radio-frequency (rf)
regime using a precision microwave reference whose Þxed frequency output is exactly 928 times its
external reference. Its 10 MHz external reference is based on the LORAN C frequency standard
which can ultimately be traced to the NIST atomic clocks. Once in the rf regime, phase lock
loop (PLL) electronics discussed in Appendix B compare this beatnote with the output of a direct
digital synthesizer (DDS), whose output frequency is computer controlled and also traceable to the
LORAN C reference. The PLL controls the voltage-controlled oscillator (VCO) which drives the
EOM, thus closing the loop. With the feedback loop closed, the frequency difference between the
two Raman lasers can be precisely controlled with the DDS while their phase difference is stably
locked to an atomic clock standard. The PLL thus removes all phase noise (represented by φvib) due
to the relative motion of all optical elements up until the photodiode. The dotted lines represent
the optical part of the feedback loop.

3.3. FREQUENCY AND PHASE CONTROL 93

Figure 3.12 diagrams how the 9.3 GHz output of the microwave beatnote is mixed

down and then used to phase lock the EOM frequency to a stable time reference.

First, the output of microwave beatnote ampliÞer is mixed down by a Western Mi-

crowave MJ46MX mixer. The reference signal connected to the LO port of the mixer

comes from a cw precision microwave source made by CTI Communications. This

source contains two oscillator plus phase lock loop (PLL) stages. These two PLLs lock

a dielectric resonance oscillator (DRO) at a frequency exactly 928 times a 10 MHz

external reference signal. This reference signal comes directly from a Stanford Re-

search Systems FS700 frequency standard, which receives the LORAN C [45] timing

signal maintained by United States Naval Observatory. This timing signal is certiÞed

by the National Bureau of Standards and traceable to the atomic clock time standard

maintained by the National Institute of Standards and Technology in Colorado. In

this way our microwave reference is locked to an accurate time standard.

With the beatnote at frequency fEOM ' f34 + 100MHz at its RF port and the

microwave reference at 9 280 000.000Hz = f34 + 87.368 23MHz Hz at its LO port,

the IF port of the microwave mixer outputs a signal whose frequency is fEOM −
9.28GHz ' 12.631 77 MHz. This rf signal is then compared with the output of the

direct digital synthesizer (DDS) by the Raman PLL (see Appendix B) that controls

the VCO driving the EOM. This closes the loop and thereby phaselocks the F =3

beam to the F =4 beam with a difference frequency close to cesium�s ground state

hyperÞne splitting but precisely tunable in discrete steps of ∼0.233 Hz by a frequency
synthesizer stable with respect to the official time standard. Because the microwave

beatnote also senses any shift of phase of the F =3 light with respect to the phase of

the F =4 light, the Raman PLL also removes any relative phase noise between the

two lasers.

3.3.2 Absolute frequency

To determine the absolute laser frequency of the F =3 and F =4 components, we must

trace the frequencies from the source through all of the frequency shifting optics until

we arrive at the atoms. At the atoms the laser frequencies must be tuned to the

94 CHAPTER 3. EXPERIMENT

F =3→ F =30 and F =4→ F =30 cesium transitions, respectively.

First, we discuss Figure 3.13 which shows how the Coherent Ti-sapphire laser

source is locked to cesium. The ∼10 mW split off from the main output at frequency

fCoh is immediately split into two beams with a controllable power ratio using a

zero-order λ/2-plate followed by a polarizing beamsplitter cube. The beam which

continues on through the cesium cell and into the detection photodiode will in this

section be called the �probe�. The other beam called the �pump� passes Þrst through

an AOM and then an EOM before being overlapped with the probe beam within

the cesium cell. Because the frequency of the fCsAOM ' 60 MHz rf signal at the

AOM is varied to control the absolute laser frequency relative to cesium, the pump

beam passes twice through this AOM. Exactly retro-reßecting the pump beam after

it passes once through the AOM guarantees that the return beam which is shifted

twice by the AOM to frequency fCoh − 2fCsAOM will not move as the diffraction

angle changes with AOM driving frequency. In order to separate the exactly retro-

reßected returning pump beam from the incoming pump beam without losing power,

we use the beam�s polarization. The incoming pump beam is S-polarized by a second

polarizing beamsplitter cube. After one pass through the AOM it encounters a zero-

order λ/4-plate which circularizes the beam�s polarization. After this beam reßects

off the retro-mirror it passes again through the λ/4-plate converting the polarization

to P-polarized, which is orthogonal to the input polarization. This ongoing beam

then passes through the polarizing beamsplitter cube without being deßected.

The frequency shifted pump beam next passes through an EOM crystal whose

applied electric Þeld oscillates sinusoidally at 3.53 MHz. This pump beam which is

frequency shifted and now also phase modulated at 3.53 MHz by the EOM is then

overlapped with the probe beam using an R = 70, T = 30% power beamsplitter.

The power beamsplitter is oriented so that the pump counter-propagates with the

probe beam through the cesium cell. Because the pump beam frequency fpump =

fCoh − 2fCsAOM is tuned near the F =4 → F =30 cesium D1 transition, the pump

beam polarizes the cesium atoms it encounters. Because the pump beam is phase

modulated, the atomic polarization is also phase modulated. When the probe

3.3. FREQUENCY AND PHASE CONTROL 95

�#) :%&�

>;:

�7�

−'	 :%&

������	
 9���6�
-�0� <;:

����������

������

�6�,�

���� ������	

+�@��,,����

-����

��3���0
����1���3

λ�

λ��

9���6�
0�11

�7�

7�

�	0��	0�

�	0�

C#)0�

��0�

Figure 3.13: Optical setup used to lock the Coherent Ti-sapphire laser to the cesium
transition at 894.6 nm. The small fraction of light separated from the laser�s main output is
immediately split using a polarizing beamsplitter (PBS) into a �pump� and �probe� beam. The
probe beam continues on through a magnetically shielded cesium cell and then into a photodiode.
The pump beam is directed twice through an acousto-optic modulator (AOM) and then through an
electro-optic modulator (EOM) that modulates its phase at 3.53 MHz before it enters the cesium
cell. When the laser is tuned near a cesium transition, it polarizes the atoms. Since it is created by
the light, this atomic polarization also modulates with the pump beam. The probe beam interacts
with these same atoms and thus also undergoes the same modulation, which can be detected by
the photodiode. By mixing down the resulting electronic signal with a copy of the signal driving
the EOM, a dispersive lock error signal can be generated. Because the pump and probe beams
counterpropagate, the Doppler shifts of the individual cesium atoms cancel, and thus the width
of the dispersive feature is close to natural linewidth of the atomic transition. The �lock AOM�
shifts the frequency of the light by twice the frequency of its radio-frequency (rf) driving signal
(fCsAOM = −60 MHz). Therefore, by varying fCsAOM, one can control the laser�s absolute frequency
relative to the cesium transition. Note that because the probe beam is modulated only via the atoms,
the potential for systematic lock offsets is greatly reduced. In fact, using the laser cooled atoms in
the main vacuum chamber, we have veriÞed that the long term absolute accuracy of this lock is
better than ±100 kHz.

96 CHAPTER 3. EXPERIMENT

beam encounters this polarized atomic sample, it acquires the same modulation sig-

nal. Pure phase modulation would of course produce no amplitude oscillation at a

photodetector. However, because the modulated light must pass through the disper-

sive cesium medium, the phase modulation becomes amplitude modulation whenever

the laser frequency crosses one of the cesium transitions. This light amplitude modu-

lation is converted to an electronic signal by a photodiode with sufficient bandwidth.

At this point, the electronic signal is demodulated with a copy of the 3.53 MHz driv-

ing signal. As with all saturation spectroscopy signals, the lock signals are visible

only when both the pump and the probe beam address the same atoms. Because the

pump and probe beam counterpropagate, this occurs only when the Doppler shift for

the pump and the probe beam relative to a particular atomic velocity class are equal

and opposite. Thus, when locking to the F =4→ 3 transition,

fpump + fprobe = f4→30 (3.10)

and similarly for the F =4→ F =40 transition. From Figures 3.9 and 3.13, it is clear

that fprobe = fCoh , and since fpump is shifted by the AOM, equation (3.10) becomes

fCoh − 2fCsAOM + fCoh = f4→30 (3.11)

Solving this equation for fCoh gives the absolute frequency of the laser

fCoh = f(F =4→ F =30) + fCsAOM

' c/(894.606 nm) + 60MHz (3.12)

To calculate the Þnal frequencies, we must account for all of the frequency shifting

optics the beams encounter before arriving at the atoms. For the F =4 beam we have

fF =4 = fCoh − fshAOM − fswAOM + fsy4AOM

' f(F =4→ 30) + 60MHz− 40MHz− 120MHz + 100MHz

' f(F =4→ 30) (3.13)

3.3. FREQUENCY AND PHASE CONTROL 97

where fsy4AOM = fsy4near = fsy4far represents the frequency of either F =4 switchyard

AOM. Although the rf signal to the near and far AOMs is controlled with different

rf switches, both signals originate from the same frequency source. Similarly for the

F =3 beam,

fF =3 = fCoh + nfEOM + fshAOM − fswAOM − fsy3AOM

where n = 0,±1,±2, . . . distinguishes which modulation order the Fabry-Perot Þlter

cavity is locked to. Since the F =3 → F =30 transition has a higher frequency than

the F =4→ F =30, we always lock to the n = +1 order.

' f(F =4→ 30) + 60MHz + f34 + 100MHz + 40MHz− 120MHz− 80MHz

' f(F =4→ 30) + f34

' f(F =3→ 30) (3.14)

3.3.3 Tracer laser

Unfortunately, although the F =3 and F =4 are phaselocked to each other at the mi-

crowave beatnote, once they split into different directions at CP2, they each encounter

different optics before arriving at the vacuum chamber. If any of these optics move or

if the effective index of refraction through the different Þbers changes slightly due to

environmental temperature or mechanical changes, then the two Raman beams will

no longer be in phase when they reach the atoms. To correct for all of the relative

phase accumulated after CP2, another laser called the �tracer� laser is overlapped

with the Raman beams at CP2. It exactly copropagates with the Raman beams until

the top of the chamber where the upward going tracer beam is combined with the

downward going beam at a photodiode. The part of the tracer beam that traverses the

switchyard overlapped with the F =3 beam is shifted by one of the F =3 switchyard

AOMs (near or far) by a frequency of −fsy3AOM = −80MHz. Similarly, the opposing
part of the tracer beam that traverses the switchyard overlapped with the F =4 beam

is shifted by one of the F =4 AOMs by a frequency of +fsy4AOM = +100 MHz. Thus,

the upward going and downward going tracer beams at the vacuum chamber always

98 CHAPTER 3. EXPERIMENT

have phase difference 2π(−180MHz)t + φ(t), where φ(t) represents any phase noise
due to the relative motion of optical elements accumulated after the beams separate at

CP2. A model S2381 avalanche photodiode from Hammamatsu detects this 180 MHz

beatnote. The tracer phaselock loop (PLL) compares this beatnote with a 180 MHz

reference traceable to the LORAN C 10 MHz reference and controls a 100 MHz VCO.

The 100 MHz VCO generates the frequency for the F =4 switchyard AOMs at fre-

quency fsy4AOM. Because the F =4 switchyard AOMs control the frequency and thus

the phase of the tracer and Raman beams, this feedback loop effectively removes φ(t),

the relative phase accumulated after the beams split at CP2.

The tracer laser comes from a laser diode that was custom anti-reßection coated

by New Focus. It is mounted similarly to the other laser diodes in this experiment

(see Figure 3.8) and is passively frequency stabilized by a grating in the Littrow

conÞguration to a wavelength of 896.68 nm. As shown in Figure 3.8, the output

beam passes through two elliptical lenses which correct its asymmetry, a single-stage

optical isolator, and Þnally a 350µm diameter pinhole to improve the beam quality.

We typically achieve a transmission efficiency of ∼ 50% and an output power after

the pinhole of ∼3 mW. Using two lenses, this single-frequency cw laser beam is mode
matched to the Raman beams in the switchyard. Finally, two mirrors direct the

beam into the other input port of the calcite polarizer CP2. The single-stage optical

isolator rotates the polarization by ∼45◦, so CP2 splits the tracer beam into roughly
equal parts. Note that because the tracer beam enters the other input port of CP2, on

each output path the tracer beam emerges polarized orthogonal to the Raman beams.

The beams remain orthogonally polarized through the top Þber and to the top PBS

cube where the tracer is deßected toward the photodiode instead of continuing on

toward the vacuum chamber along with the top Raman beam. At the bottom PBS

cube, on the other hand, if the tracer and Raman beam are orthogonally polarized,

then the tracer would be deßected away and not pass through the chamber where it

can be directed onto the photodiode by the top PBS cube. To convert the beams

from orthogonally polarized to parallel polarized, we insert a 20 mm thick piece of

quartz crystal before the input to the bottom Þber. This quartz crystal was cut,

polished, and AR coated by TwinStar Optics to act as a very high order waveplate.

3.3. FREQUENCY AND PHASE CONTROL 99

Incident light polarized along the crystal�s optical axis experiences a different index of

refraction than does light incident along the orthogonal polarization. For the Raman

beams at 894.60 nm this index of refraction difference is almost 10 wavelengths. The

tracer beam detuned by only +2 nm experiences almost the same shift except for a

difference of approximately λ/2. This thickness of quartz crystal thus acts as a λ-plate

for one wavelength and a λ/2-plate for the other wavelength. By varying the angle

of incidence to the crystal, we vary its effective thickness and thus can install it so

that it leaves the Raman beam untouched but rotates the tracer beam polarization by

∼90◦. The Raman and tracer beams thus emerge from the bottom Þber polarized in
the same direction. Since their polarizations are parallel, they both pass undeßected

through the bottom PBS cube, through the bottom λ/4-plate, through the vacuum

chamber, through the top λ/4-plate and into the top PBS cube. Since the top and

bottom λ/4-plates are aligned so that the top and the bottom beams both have the

same circular polarization inside the vacuum chamber, light that passes through both

the bottom and then the top waveplates will emerge orthogonally polarized and thus

be deßected by top PBS cube.

The top PBS cube is used to combine the upward going and downward going

tracer beams at the photodiode (see Figure 3.14). Because the top PBS cube deßects

the top tracer beam away from the photodiode, we install a zero-order λ/4-plate and

a retro-reßecting mirror on the side of the PBS cube opposite the photodiode. The

λ/4-plate which is double-passed by the top beam rotates the polarization of the top

beam by 90◦ so that the beam will not be deßected twice by the PBS cube. Instead,

it will pass horizontally through the cube and overlap with the bottom beam, which

is already deßected toward the photodiode. A 10 cm focal length lens collects the

light and focuses it onto the 100µm square active area of the photodiode.

Note that because the upward going bottom tracer and Raman beams have the

same polarization, the bottom Raman beam will also be deßected by the top PBS

cube. Since the Raman beam is ∼ 100 times more intense than the tracer beam,
the presence of the bottom Raman beam can cause problems with the photodiode

signal. First, it tends to saturate the photodiode which reduces the contrast and

thus the signal-to-noise ratio of the 180 MHz beatnote. Second, when the bottom

100 CHAPTER 3. EXPERIMENT

<�*

+�,λ�

D6���&
9�?���1 �7�

�	0�

<0�6����@
0�����11��

������ λ�

7����� /����
��� +��0�� �����

+�, /���� ���
+��0�� ����� �6,,���� ���� 5����0�1

5�������� ���1����� �?����

;*
��1���

+�,
�7�

Figure 3.14: Interferometer platform used to detect the beat between the upward and down-
ward propagating tracer beams. In order to correct for the phase noise from the relative motion of
all of the optics after the Raman beams separate into the switchyard (see Figure 3.10), we use the
top 2 inch polarizing beam splitter (PBS) to overlap the top and bottom tracer beams. The bottom
tracer beam reßects directly into the avalanche photodiode (APD). The top tracer beam, however,
requires a λ/4-plate to rotate its polarization by 90◦ and a mirror to redirect it back toward the
photodiode. A quartz crystal that acts like a very high order waveplate plus a 0.5 inch PBS are
used to Þlter out the bottom Raman light that is reßected by the top PBS. Phase lock loop (PLL)
electronics (see Appendix B) compare the 180 MHz beat signal with a reference signal and control
a 100 MHz voltage-controlled oscillator (VCO). This VCO drives the F =4 switchyard AOMs (near
and far) and thus affects the difference frequency of both the Raman and tracer beams. With the
feedback loop closed, all of the phase noise due to the relative motion of the optics is removed and
replaced by that due to the motion of the top PBS. In order to reduce the motion of this single
optical element, the interferometer platform that holds the top PBS is suspended from the active
vertical vibration isolation system described in Section 3.4.

Raman beam turns on or off rapidly, it causes a transient but repeatable glitch in the

error signal of the tracer PLL. To minimize these problems, we attempt to use the

wavelength difference between the tracer and Raman beam to Þlter out the Raman

light while leaving the tracer alone. In the current tracer setup, we use another quartz

crystal, identical to the one before the bottom Þber, and a PBS cube. As with the

crystal before the bottom Þber, this piece of quartz is aligned so that it leaves the

Raman beam alone but acts like a λ/2-plate for the tracer. The polarizations of

both the top and bottom tracer beams rotate by ∼ 45◦. The polarizer is then set
to deßect the Raman beam which emerges from the top PBS cube P-polarized and

pass the orthogonal S-polarization. The projection of both the top and the bottom

3.3. FREQUENCY AND PHASE CONTROL 101

tracer beams onto this polarization passes through the polarizer and interferes at the

photodiode. Note that because the top Raman beam is oppositely polarized, this

Þlter does not work for this beam. However, because the tracer and Raman light

emerge from the top Þber orthogonally polarized, very little of the top Raman beam

makes it through the top PBS cube, so this Raman beam does not need to be Þltered

out.

In addition to this Þnal conÞguration of the tracer beam path, much of our data

set was taken with the tracer laser in a slightly different setup. Originally, instead

of overlapping the tracer beam with the Raman beams at CP2, the beams were

combined using an uncoated glass plate tilted at an angle so that it reßected roughly

10% of the light incident on each surface. It thus transmitted 80% of the Raman

light and reßected 10% of the tracer light. Because this tracer beam entered the same

port of CP2 as the Raman beams did, it emerged polarized in the same direction.

Thus, the bottom beam which requires parallel tracer and Raman polarization did not

require the additional crystal quartz optic. The top beam, however, always requires

that the tracer and Raman beam be orthogonally polarized so that the tracer beam

and not the Raman beam will be deßected toward the photodiode. To rotate the

relative polarizations of the tracer and Raman beams, the quartz crystal was placed

before the top Þber instead of before the bottom Þber. At that time the tracer

laser was set to a wavelength of 886.6 nm, or roughly 8 nm lower than the Raman

beams. Because the wavelength separation was four times larger than the +2 nm

separation it has now, we used a different quartz crystal that was roughly four times

thinner than the 20 mm one we use now. The layout of the tracer beam was changed

to increase the amount of Raman and tracer light emerging from the Þbers. The

tracer wavelength was changed in the hope that with a smaller wavelength difference

between it and the Raman beams, it would better correct the phase error due to mirror

motion. To understand how this correction depends on the wavelength difference

∆λ = λtracer − λRaman, consider a hypothetical mirror that the tracer and Raman
beams reßect off at normal incidence. If the mirror moves by ∆z toward the incoming

beams, the outgoing beam will be shifted in phase by 2kRaman∆z = 4π∆z/λRaman

relative to its input phase. Similarly, the tracer beam will experience the phase shift

102 CHAPTER 3. EXPERIMENT

4π∆z/λtracer. This is the phase shift that is detected by the photodiode and used by

the tracer PLL to correct both beams. Since this correction differs from the phase

shift the Raman beam experienced, the net phase error on the Raman beam will be

4π∆z(1/λRaman−1/λtracer) ' 4π∆z(∆λ/λ2), proportional to ∆λ. After making these
two fundamental changes, we found that the improved signal-to-noise of the beatnote

and the smaller wavelength difference neither helped nor hurt the signal-to-noise ratio

of the Þnal signal.

3.4 Vibration isolation

It is important to note that because the laser Þelds represent the absolute reference

with which we meter the evolution of the phase of the atomic wavefunction, it is

absolutely vital that the laser wavefronts be phase stable in both time and space

between the Þrst and second and between the third and fourth π/2-pulses. Thus,

with respect to freely falling atoms accelerating due only to the force of the Earth�s

gravity, the laser wavefronts must not move in space. As discussed in Section 3.6,

we compensate for the effect of gravity by changing the difference frequency of the

two Raman lasers so that at the center of each pulse the lasers will be resonant with

the atoms. In addition to this unavoidable motion due to gravity, the wavefronts

also move in time if any of the mirrors off which the beams reßect or if even the

laser source itself moves along the beam. As described in Section 3.3.3, a tracer laser

overlapped with the Raman beams detects the relative phase change of the two lasers

and controls one of the switchyard frequencies to correct the optical phase for any

error arising from the motion of the optics. However, because the Raman beams do

not reßect off the top polarizing beam splitter (PBS) cube whereas the tracer beam

does, if the top PBS cube moves, the tracer phaselock electronics will detect and

inappropriately correct for this additional phase. The tracer phaselock feedback loop

thus removes the effects of the motion of all of the other optics but then adds a phase

due to the motion of the PBS cube. As we will discuss in more detail below, for

ßuctuations in the position of the PBS cube, the interferometers act like a high-pass

Þlter with a corner frequency of approximately 1/T , where T is the free-evolution

3.4. VIBRATION ISOLATION 103

�#) ��0�
��������
�6,,���
,���� .�

+�1� <�=6������
�0��8 .�

<�� ������

�6��� �1��5��

+�1�
������

>.�������
�,���3

.�

�6,,���
9�3�

��1�����
<0�6����

��� ���8��

��������������
�1������

��� ���8��

Figure 3.15: Active vibration isolation system. An accelerometer is suspended against gravity
by three extension springs. The sensor is mounted inside a support cage from which hangs the
interferometer platform (not shown) we wish to isolate from environmental vibrations. An air piston
constrains the cage from tilting while allowing nearly frictionless motion in the vertical direction.
A tilt sensor and adjustment screws allow the orientation of the air piston�s outer sleeve to be
aligned to be vertical. In real time, a computer system digitizes the sensor�s output, transforms it
numerically, and outputs the resulting control signal which drives a solenoid actuator (not shown).
The actuator controls the entire freely moving column in order to counteract any motion sensed
by the accelerometer. The freely moving components are labeled with round bubbles, while the
components Þxed to the support structure are labeled with square boxes.

104 CHAPTER 3. EXPERIMENT

time between the π/2-pulses. Consequently, for large T where we have more reso-

lution, we are also more sensitive to the integrated position noise of the PBS cube,

which enters the measurement as phase noise on the fringes and hinders our ability

to resolve the phase shift from the photon recoils. To reduce the motion of the PBS

cube, we have designed and implemented a single-axis active vibration isolation (VI)

system [46].

The VI system shown in Figure 3.15 combines mechanical springs with an elec-

tronic feedback loop to produce an almost critically damped spring-mass system with

an effective resonance frequency of 0.033 Hz, which signiÞcantly reduces the ampli-

tude of vibrations at frequencies from 0.1 to 100 Hz. Attached rigidly to the support

platform which holds the top PBS cube and the detection optics for the tracer beat-

note (see Figure 3.14) is a column which is suspended by three stainless steel helical

extension springs. In addition to the interferometer platform, this column consists

of an accelerometer, the inner cylinder of an air piston, and the electrical coil of a

solenoid actuator. The air piston made by Nelson Air is composed of an outer sleeve

and an inner cylinder separated by a tiny air gap. The outer sleeve is attached to

the rigid support structure. The inner cylinder is hollow and has two rows of six tiny

holes placed symmetrically around its circumference. The holes allow air to escape so

that when the inner cylinder is pressurized with air, a thin layer of air ßows between

the cylinder and the outer sleeve. The pressure of this layer of air constrains the inner

cylinder from tilting while at the same time allowing nearly frictionless motion along

the direction deÞned by the outer sleeve.

The Guralp Systems CMG-3V accelerometer measures the acceleration of the en-

tire column. A computer digitizes the acceleration signal using a model AT-MIO-

16XE-50 data acquisition board from National Instruments and processes it internally

to produce the control function shown in Figure 3.16d. Besides ease of optimization,

digital implementation is advantageous because it can minimize low frequency elec-

tronic drift. The 16-bit A-to-D converter is programmed to sample at 4 kHz so that

the computer can perform a 4-point running average, thus producing an effective sam-

ple rate of 1 kHz, which is 10 times faster than the fastest transfer function parameter

implemented. Because of the high-order low-pass Þlters internal to the sensor, there

3.4. VIBRATION ISOLATION 105

is virtually no signal at frequencies above 1 kHz and thus very little aliasing noise.

The output of this digital control function is then converted back to an analog signal

which drives a voltage-to-current converter whose output controls the BEI Motion

Systems LA12-12A solenoid actuator.

Frequency (Hz)

0.0001 0.001 0.01 0.1 1 10 100 1000

lo
g

(O
u
tp

u
t

/
In

p
u
t)

-8

-6

-4

-2

0

2

4

6

(a)

(b)

(d)

(c)
[−3]

[0]

[+1]

[−1]

[−2]

[+3]

[+1]

[−1]

[−2]

[−2]

[−1]

[0]

Figure 3.16: Theoretical transfer functions. (a) and (b) represent the motion of the mass
divided by the motion of the ground for: (a) a spring-mass system with a natural resonance frequency
of f0 = ω/(2π) = 1.6 Hz and very little damping (ζ0 = 0.017), and (b) the same spring-mass after
applying two driving forces, Fa = −mGz̈ and Fv = −2mω0H úz, which lower the effective resonance
frequency and thus increase the range over which the system tends to isolate motions of the ground
from motions of the mass. Notice from the predicted closed-loop gain (b) that ground motion faster
than ∼0.1 Hz is reduced when coupling into motion of the mass. (c) shows the implemented open-
loop gain including the feedback electronics, the measured response of the solenoid actuator, the
spring-mass system, and the Þnite bandwidth of the accelerometer. (d) is the predicted gain of the
feedback electronics alone which provides the Fv force, with H = 46. The overall gain including
the conversion factor of 15.5 for the solenoid actuator provides the Fa term with G = 2300. The
numbers in brackets [] represent the local slope of different sections of the curves (1st order, 2nd
order, . . .)

106 CHAPTER 3. EXPERIMENT

With the active feedback disabled, the motion z(t) of the column is passively

decoupled from the motion zg(t) of the ground by the mechanical springs. Assume

the total mass of the column is m and that the effect of the three springs can be

described by a single linear spring constant k and damping factor β. This system has

equation of motion

z̈ + 2ζ0ω0(úz − úzg) + ω
2
0(z − zg) = 0 (3.15)

where ω20 = k/m is the natural resonance frequency and ζ0 = β/(2mω0) is the natural

damping constant, with ζ0 = 0 implying no damping and ζ0 = 1 for a critically

damped system. We assume the system is linear and decompose the ground motion

into Fourier components zg(t) = �zg(ω) exp(iωt) + c.c. The steady-state solution then

has the form z(t) = �z(ω) exp(iωt)+c.c, where �z(ω) is in general complex to represent

the phase difference between motion of the ground and the motion of the mass.

Inserting these solutions into equation (3.15) gives the frequency domain transfer

function
�z(w)

�zg(w)
=
ú�z(w)
ú�zg(w)

=
�̈z(w)

�̈zg(w)
=

2(iω)ζ0ω0 + ω
2
0

−ω2 + 2(iω)ζ0ω0 + ω20
(3.16)

which is plotted in Figure 3.16a for a typical mechanical spring with natural resonance

frequency of 1.6 Hz and very little damping (ζ0 = 0.017). For frequencies greater

than ω0 = ω0

q
1− ζ20 , there is reduced coupling between the ground and the mass.

For ω < ω0, any motion of the ground couples directly into motion of the mass.

Furthermore, when the natural damping constant is small, any motion of the ground

at ω ∼ ω0 is ampliÞed when transmitted to the mass. For ω > ω0, the response in the
frequency domain falls off as 1/ω2 and, because of the damping, as 1/ω for ω À ω0.

To further isolate the mass from ground motions, the active system adds two

driving force terms, Fa and Fv, to the right-hand side of equation (3.15). Fa = −mGz̈
is proportional to the mass� acceleration and lowers the resonance frequency but also

the damping. To compensate for this loss of damping, we add an additional term

Fv = −2mω0H úz proportional to the mass� velocity. Since the input to the feedback
loop is a voltage proportional to acceleration, the Fa and Fv terms are implemented

as proportional gain and integral gain (proportional to 1/ω in the frequency domain),

3.4. VIBRATION ISOLATION 107

Frequency (Hz)

0.01 0.1 1 10 100

rm
s

A
cc

el
er

at
io

n
 (

m

/s
2)

1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

Time (s)
0 20 40 60 80 100

P
os

it
io

n

(a

rb
)Step Response

Digitization
Floor

H
z

q qqq

(a)

(b)

Figure 3.17: Reduction of the vibrational error signal. The logarithmic vertical axis of (a)
shows equivalent acceleration noise measured at the output of the sensor. The solid and dotted
spectra were taken with no feedback with the accelerometer suspended from the springs (solid) and
resting on the ßoor of the lab (dotted). Comparing these two spectra reveals the noise reduction
from the optical table and the mechanical springs. The bold spectrum is the error signal with the
feedback loop closed. The dashed line shows the theoretical quantization noise limit for a 16-bit
A-to-D converter sampling at 4 kHz. The solid points represent the speciÞed noise level of the
accelerometer. The position response to a step in the current to the solenoid actuator shown in (b)
indicates an almost critically damped system.

respectively. Equation (3.16) becomes

�̈z(w)

�̈zg(w)
=

2(iω)ζ1ω1 + ω
2
1

−ω2 + 2(iω)ζ1ω1 + ω21
(3.17)

where ω1 = ω0/
√
G+ 1, ζ1 = (ζ0+H)/

√
G+ 1, and G and H are constants that will

be controlled by the feedback electronics. Figure 3.16b shows this predicted closed-

loop response with reduced resonance frequency and increased damping for the values

108 CHAPTER 3. EXPERIMENT

actually implemented, G = 2 300 and H = 46. Figure 3.16c shows the overall open-

loop gain. Figure 3.16d shows the predicted gain of the feedback electronics alone.

Notice that in addition to Fa and Fv, this transfer function includes several other

terms which are required for stability because of the Þnite bandwidth of the sensor.

By inputting a step in the current to the solenoid actuator, we observed the step-

response of the closed-loop system (Figure 3.17b). By observing this step-response for

successively smaller damping constants, we were able to Þt the response to the theo-

retical expression for a second order system and obtain a value for the new effective

resonance frequency, f1 = ω1/(2π) = 0.033 Hz.

Figure 3.17a shows that the vibration isolation system plus the optical table reduce

the acceleration error signal of the sensor by as much as 1000 from 0.01 to 100 Hz. By

comparing the spectrum taken on the ßoor of the lab (dotted line) with the spectrum

taken on the vibration isolation tower when the accelerometer is attached rigidly to

the supporting tower (not shown), we observe that the optical table reduces the noise

from 10 to 100 Hz by ∼10 and ampliÞes the noise around 3 Hz by a factor of ∼10.
With the accelerometer freely swinging (solid line), the mechanical springs provide

most of the high frequency isolation by reducing the noise above 10 Hz by another

factor of 100 and somewhat reducing the noise due to the resonance of the optical

table. The large peak in this spectrum at 1.6 Hz is due to the resonance of the

mechanical springs. Notice that the springs do not affect the acceleration noise below

1 Hz. Only with the feedback loop closed (bold line) does the error signal from 0.01

to 1 Hz become smaller by as much as a factor of 300. The features at 0.14 Hz and

around 0.55 Hz most likely represent seismic motion of the ground and wobbling of

the building, respectively.

Without another independent sensor we cannot measure the true noise ßoor of

the isolation system. However, as a practical demonstration that the system works,

Figure 3.18 shows the reduction of interferometer phase uncertainty for different fringe

periods. For our interferometers in the limit that T 0 → 0, acceleration of the laser

wavefronts with Fourier component �a(ω) cos(ωt) causes a phase error

−2π
�a(ω)

λω2
2
√
2
¯̄
¯̄ sin

µ
ωTrep
2

¶¯̄
¯̄ sin2

µ
ωT

2

¶
(3.18)

3.4. VIBRATION ISOLATION 109

Free evolution time T (ms)

0.1 1 10 100 1000

P
h
as

e
u
n
ce

rt
ai

n
ty

 f
ro

m
 f
it

 (
m

ra
d
)

0

50

100

150

200

Feedback:
 Tracer V.I.
 OFF
 ON OFF
 ON ON

Figure 3.18: Vibration isolation performance for atom interferometry. The vertical axis
shows the uncertainty in the phase when interferometer data are Þt by a sine wave. The tracer
phaselock feedback loop corrects the phase error due to any relative change in the optical path
length traveled by the two tracer beams. Because the interferometer beams do not reßect off the
top polarizing beamsplitter cube, the tracer feedback loop removes all of the phase noise on the
interferometer beams up to the cube but then inappropriately adds phase noise due to the motion
of the cube. With the tracer feedback loop inactive (gray diamonds), none of the phase error
due to the relative motion of the optics is canceled and interferometer fringes are apparent only
for the very smallest values of the free evolution time T . With the tracer feedback loop active
(hollow circles), the phase noise of the fringes is then limited by the motion of the beamsplitter
cube which is passively isolated from ground motion by the optical table and the mechanical springs
of the vibration isolation (VI) system. The improvement of the active isolation (solid circles) is
evident. Without active isolation, fringes with period greater than 30 ms are completely washed
out. Since the sensitivity of our measurement increases linearly with fringe period, it is clear that
these types of precision interferometer measurements would have been impossible without active
vibration isolation.

where λ is the light wavelength, T is the interferometer fringe period, and Trep is the

launch repetition period. Note that for acceleration with frequencies ω > π/T , the

measurement acts as a second-order low-pass Þlter. More importantly, for ω < π/T

this sensitivity to wavefront motion increases proportional to T 2. For long fringe

110 CHAPTER 3. EXPERIMENT

periods (T ' 160 ms) where we have the most sensitivity, the interferometer is 1602 =

25 600 times more sensitive to accelerations than it is when T ' 1 ms. Thus, without

vibration isolation, even small background vibrations would completely wash out

these long-period fringes.

3.5 Magnetic Þelds

The energies of the cesium hyperÞne ground states in an external Þeld B are given

by the Breit-Rabi equation

E(F,mF) = −
hf34

2(2I + 1)
−mFgIµBB ±

hf34
2

s

1 +
4mF

2I + 1
x+ x2 (3.19)

where f34 = 9 192 631 770 Hz is the deÞned hyperÞne splitting, I = 7/2 is the nuclear

spin, µB = 1.400 MHz/G is the Bohr magneton, and

x =
(gJ + gI)µBB

hf34
(3.20)

The sign depends on the relative orientation of the electron�s spin: (−) for the F =3
state and (+) for the F =4 state. For cesium, gI = 0.000 398 853 and gJ = 2.002 540

[47]. The term in equation (3.19) proportional to x is the linear Zeeman shift. Since

its sign is opposite for the F =3 and F =4 states, for a magnetic Þeld B (expressed

in mG) the hyperÞne splitting for mF conserving transitions changes by

∆(f4 − f3) '
2(gJ + gI)

2I + 1
µBmFB

=
2(2.002 939)

8
(1.400 kHz/mG)mFB

= (0.7008 kHz/mG)mFB (3.21)

Because it does not shift the mF =0 sublevels, we would like to build the interferome-

ters using only these states. By performing Doppler-free (DF) two-photon transitions

between individual magnetic sublevels (see Section 3.1.6 discussing the DF Raman

3.5. MAGNETIC FIELDS 111

laser), we are able to selectively detect only the atoms in the magnetic Þeld insen-

sitve mF =0 sublevels. This selective detection works only as long as the magnetic

sublevels are not all degenerate. Thus, during the DF Raman transition, all the mag-

netic Þeld sensitive levels (mF 6=0) must be shifted by at least the spectral width of

a DF Raman π-pulse. Additionally, a magnetic bias Þeld is required for the inter-

ferometers. If the spectral width of the Doppler-sensitive transitions driven by the

Raman beams is larger than the shift of the magnetic sublevels, then atoms in these

states will be carried through the interferometer. Due to polarization impurities of

the Raman beams or a misalignment between the Raman beams and the magnetic

bias Þeld, the magnetic Þeld sensitive levels may mix the magnetic Þeld insensitive

levels and thereby shift the Þnal phase of the interferometer7. At the very least, even

if the presence of the other magnetic levels does not change the Þnal phase, they may

reduce the interferometer contrast by increasing the phase randomized background.

Thus, we require a magnetic bias Þeld sufficiently strong to shift all of the mF 6= 0

Zeeman levels out of resonance with DF Raman transitions with width ∼64 Hz and
the interferometer π/2-pulses with halfwidth of ∼ 67 kHz. Unfortunately, because
the magnetic bias Þeld will never be perfectly uniform, the quadratic Zeeman shift

will affect the mF =0 levels. As discussed in Section 6.4, this effect is proportional

to the bias Þeld level. Thus, to minimize potential systematic errors due to magnetic

phase shifts, we must minimize the magnetic bias Þeld and its spatial ßuctuations.

We choose a magnetic bias Þeld of 71.6 mG which according to equation (3.21) shifts

the F =3,mF =1 → F =4,mF =1 transition by 50 kHz as a compromise for these

competing goals.

The magnetic bias Þeld is generated by sending electrical current through a

solenoid that is wound inside the triple-layer 0.025 inch thick Hipernom magnetic

shielding (see Figure 3.19). The solenoid consists of 1.0 mm diameter Kapton-

insulated magnet wire wound up and continuously back down a 2 inch diameter

aluminum tube held coaxially within the magnetic shielding. The effective turn ratio

is ∼19 turns/cm. Two smaller 8 turn solenoids wound at half this rate are wrapped
in the same direction, one on either end of the main bias solenoid. These smaller

7See Sections 6.1.5 and 6.4 for a discussion of this systematic effect.

112 CHAPTER 3. EXPERIMENT

)#	 0�

:���
7���
9��1

�,,��
7���
9��1

-�8��
7���
9��1

)#	 0�

�	#� 0�

)#	 0�

C#	 0�

(#" ��0�

�C#" 0�

�#) 0�

�#) 0�

�#) 0�

�#) 0�

Magnetic Field (mG)

71 72 73

H
ei

gh
t

ab
ov

e
M

O
T

 (
cm

)

20

25

30

35

40

45

Figure 3.19: Magnetic Þeld strength inside the magnetic shielding. Inside the vacuum
chamber three layers of cylindrical magnetic shields are placed concentrically around an aluminum
tube around which magnetic wire is wound (shown in gray). The shielding reduces the external
magnetic Þeld contribution, while the solenoid windings allow us to apply a controllable non-zero
bias of approximately 72 mG as shown in the graph on the right, which has the same vertical scale as
the Þgure on the left. The Þeld�s spatial variation is due to leakage and end effects of the shielding.
To minimize this spatial variation, each end of the solenoid is separated into an independent coil. By
setting the current through the �upper� and �lower� bias coils independent of the current through
the �main� bias coil, we can compensate for these end effects and make the Þeld strength near the
ends the same as the value in the center, effectively doubling the usable range inside the shielding
to over 26 cm.

�bias trim coils� can be controlled independently and are used to reduce the spatial

variation of the main bias Þeld. With no current running through any of the bias coils,

the magnetic Þeld inside the shielding is determined by the ability of the shielding to

redirect the external Þeld lines. The external Þeld comes primarily from the MOT

3.6. INTERFEROMETER PATTERN GENERATION 113

trim coils (see Section 3.1.4) which are set to apply a large magnetic Þeld (> 500 mG)

in the vertical direction after the atoms are launched. The magnetic shielding should

reduce this Þeld by at least four order of magnitude [48], well below the desired Þeld

level of around 70 mG. The measured magnetic Þeld in the vertical direction with

3.00 mA sent through the main bias coil by a source precise to better than 1× 10−5

is shown in Figure 3.19. The ßoor of this well-like structure is determined by the

main bias coil, while the walls are due to the external Þeld from the MOT trim coils

leaking through at the ends of the shielding. To extend the usable range within the

shielding, we send −7.3 mA through the lower bias trim coil and −21 mA through
the upper bias trim coil to produce a local Þeld opposite to the main bias Þeld. These

additional Þelds subtract from the external Þeld and tend to move the walls out. The

particular current values we use were chosen to minimize the peak-to-peak variation

of the Þeld within as large a region as possible.

3.6 Interferometer pattern generation

The main experiment timing is controlled by a single DG555 pulse generator from

Stanford Research Systems. Every 908 ms it triggers all of the channels discussed in

Section 3.1 required to stop loading atoms into the MOT and to launch them ver-

tically. At some time after this trigger, it triggers the other half of the experiment

which controls the adiabatic transfer beams that generate the interferometers. To

build a single interferometer we must be able to control the amplitude, direction,

and frequency of the two Raman lasers for each of the possibly over 50 pulses which

occur during the approximately 300 ms the atoms spend inside the magnetic shield-

ing. In addition, to arrive at a Þnal recoil value we must generate several different

interferometer geometries, so we must change these settings in the remaining 600 ms

so that by the time the atoms are next launched the new interferometer geometries

will be constructed. This last requirement that we change the settings each sec-

ond turns out to be the most difficult to achieve. For instance, we must control the

two-photon difference frequency for each adiabatic transfer pulse so that the Doppler-

sensitive driving lasers are in resonance with the atoms. In addition to the shift of

114 CHAPTER 3. EXPERIMENT

frec = 15.006 kHz from each photon recoil, after time t the resonance condition will

change by −keffgt due to the acceleration of gravity, where keffg = 2π(21.908MHz/s).
Thus, the two-photon difference frequency must be set to a different value for each

of the adiabatic transfer pulses. We could Þnd no commercial synthesizer that could

output the 50 or so different rf frequencies at triggerable times and then change all

of the frequency values in only 600 ms. Another example of the technical difficulties

associated with generating the interferometer pulses involves the amplitude shaping

of individual pulses. Ultimately, these shapes will be stored digitally and converted

to an analog voltage by a digital-to-analog converter (DAC). To adequately deÞne

fast edges for a 70 µs π-pulse, for example, a reasonable time resolution would be no

slower than 1 µs per sample point. Sampling every µs over the whole interferometer

which could last as long as 300 ms would require a array of 300 000 points for each

channel, or 600 000 points in total to control both the F =3 and F =4 amplitude pat-

terns. This pattern length is 20 to 40 times longer than the memory sizes available

in commercial devices at the time. Also consider the time that would be required to

send 0.6 million 2-byte points across current conventional inter-device communication

lines (i.e. GPIB). If these data had to be sent each time a different interferometer was

selected, we would have to dramatically reduce our data rate.

To overcome these technical challenges, we assembled a mostly custom-made sys-

tem speciÞcally designed to run this experiment. The frequencies are controlled by

the direct digital synthesizer (DDS) described in Section 4.1. This synthesizer can

output frequencies from dc up to around 200 MHz as long the frequency is an integer

multiple of the minimum step size fclk/2
32 = (1GHz)/232 = 0.233 Hz. This 32-bit in-

teger is set by a model AT-DIO-32/F pc-board from National Instruments inside the

computer. This pc-board allows direct memory access (DMA), so in order to switch

the DDS�s output frequency between many different values, all the computer must do

is set aside an array of 32-bit numbers in its memory, point the DIO-32/F board to

this array, and provide the board with an external trigger whenever a new frequency

value is required. Whenever the 32-bit control word changes, the DDS outputs the

new frequency in less than 50 ns. For this reason and because the DIO-32/F board

and the DDS handle what little handshaking is necessary, it takes less than 2 µs to

3.6. INTERFEROMETER PATTERN GENERATION 115

change the frequencies and the computer is always free to do other things.

The amplitudes and direction of the beams are controlled by another pc-board

in the computer. This model AWFG/2 pc-board from Keithley Metrabyte functions

as a dual-channel arbitrary waveform synthesizer. For each channel it can store up

to 16 384 16-bit values in its internal memory. When enabled by a gate signal and

driven by a sample clock, the board steps through this memory at a maximum rate of

5 points per µs. 12 of its 16 bits are used by a DA converter on the board to generate

a voltage from 0 to 5 V. The remaining four bits determine the state of four TTL

logic outputs. The dual-channel board thus has two analog and eight logic outputs.

As discussed above, to digitize an entire 300 ms long interferometer with µs res-

olution would require many more memory points than are available. To avoid this

problem, we use an additional synthesizer to gate the AWFG pc-board�s sampling on

and off. For the high-sensitivity interferometers most of the time between the Þrst

and last π/2-pulse is spent with all of the light off, so the AWFG sampling can be

turned off during this time. Thus, the pattern stored in the AWFG memory for an

interferometer with T = 1 ms and with T = 160 ms will look very similar and use

roughly the same number of points. This is clearly advantageous because if the tim-

ing resolution used to deÞne the interferometer pulses is the same for both long and

short interferometers, the pulses for all interferometers will be as close to identical as

possible.

The �gate synthesizer� which turns the AWFG sampling on and off is a model

DS345 arbitrary waveform generator from Stanford Research Systems. Because the

total time for an interferometer varies by over an order of magnitude for different

possible values of T , the timing resolution of this synthesizer will deÞnitely vary.

However, this resolution should not greatly affect the shape of the pattern, since it

outputs only a binary waveform with TTL values 0 or 5 V. When the gate synthesizer�s

output is at 5 V, the clock for the AWFG enables and immediately starts stepping

through its stored memory. When the gate synthesizer outputs 0 V, the AWFG clock

continues oscillating, but it does not step through memory. Figure 3.20 shows the

contents of the AWFG memory for interferometer 1 with no π-pulses. If the gate

signal shown in Figure 3.25 turns the AWFG waveform generation on and off, the

116 CHAPTER 3. EXPERIMENT

F=4

F=3

BA AS SA AS SA
Figure 3.20: Contents of the AWFG board�s two analog channels for interferometer geom-

etry 1 with no π-pulses. The single velocity selecting π-pulse (BA) and four π/2-pulses (AS, SA,
AS, SA) that build the interferometer are shown. An external gate control switches the sampling on
at the beginning and off at the end of each of these pulses. By using this gate control, the memory
contents are independent of T , the time between the π/2-pulses. Because varying T is such an useful
investigative tool for Þnding systematic errors, this feature is an important improvement over early
versions of this experiment.

AWFG board will output the pattern shown in Figure 3.26.

Digital output X0 drives the request line to the AT-DIO/32F board and the strobe

input of the DDS. The strobe input to the DDS is active low, so that whenever it

is held at TTL low voltage, the latch for the 32-bit inputs becomes transparent and

the bits are loaded into the frequency control word of the device (see Figure 4.1).

As discussed in Section 4.1, as soon as this frequency control word changes, the

device will start outputting the new rf frequency determined by the values of the 32

frequency control bits. The AT-DIO/32F board is conÞgured to be active rising, so

that when X0 returns from TTL low to TTL high, the next 32-bit frequency value

will be transfered from the computer�s memory to the digital lines. With X0 held

at TTL high, the strobe line to the DDS is disabled, thus preventing the changing

frequency control bits from affecting the output rf frequency. In this way, the single

AWFG output X0 Þrst tells the DDS to change its output frequency to the value held

currently at the frequency control bits by the AT-DIO/32F board. It then tells the

3.6. INTERFEROMETER PATTERN GENERATION 117

Time (µs)
-10 0 10 20 30 40 50 60

rf
 P

ow
er

 (
ar

b
)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

F=3

F=4

Figure 3.21: RF power to the shaping AOMs. A 50µs long linear ramp (represent in gray)
is applied to the control voltage of the two variable radio-frequency (rf) attenuators. The ampliÞed
output of these attenuators drives the 40 MHz acousto-optic modulators (AOMs) for the F =3 and
F =4 beams. By setting the rf power to these �shaping AOMs�, we control the amount of light
diffracted toward the atoms and thereby generate the adiabatic passage pulse shapes. The nonlinear
response is due to the variable rf attenuators at low powers and the saturation of the rf ampliÞers
at high powers. To correct for this nonlinearity, with a fast photodiode we measure the optical
power diffracted by both shaping AOMs when a 1 ms long ramp with a 0.4% duty cycle drives the
attenuator controls. We then digitize and invert this result using numerical interpolation. Whenever
we wish to generate a certain pulse shape, we can apply this inverted transform and remove the
nonlinearity to better than 1%.

AT-DIO/32F board to load new values for the next frequency onto the 32 frequency

control lines in preparation for the next frequency change.

3.6.1 Pulse shaping

The two analog channels of the AWFG board are used to control the variable rf

attenuators (see Figure 3.22) that set the amplitude (and power) of the rf signal

applied to the shaping AOMs. The amount of light defracted by the shaping AOMs

is proportional to the rf power or the square of the rf amplitude output from the

attenuators. For each pulse shape of each channel the computer determines an array

of values ranging from 0 to 212−1 = 4095 which cause a series of values from 0 to +5 V
to be applied to control input of each rf attenuator. Figure 3.21 shows the power of

118 CHAPTER 3. EXPERIMENT

Table 3.2: Controls for generating the adiabatic transfer light pulses.

Name Source Description

F =3 AWFG:XAn Adiabatic transfer pulse shapes for F =3 light
F =4 AWFG:YAn Adiabatic transfer pulse shapes for F =4 light
Com AWFG:Y3 Switch signal for common switch AOM

SY Norm AWFG:X2 Switchyard normal (chirp up) or off
SY Inv AWFG:X1 Switchyard inverted (chirp down) or off

DDS
Strobe

AWFG:X0 Trigger DDS to update its output

Chirp
Up Trig

AWFG:Y2 Trigger frequency sweep of chirp up synthesizer

Chirp
Down Trig

AWFG:Y1 Trigger frequency sweep of chirp down synthesizer

DDS ADS-431 Tunable reference for Raman difference frequency
Gate DS345 Gate signal for pausing AWFG waveforms

Chirp
Up

DS345 Linear frequency sweep when switchyard is normal

Chirp
Down

DS345 Linear frequency sweep when switchyard is inverted

FF HP33120A Feed-forward signal for cavity and cesium locks
CS HP33120A Tuning voltage for cesium lock AOM

the rf signal from the attenuators when a 50µs long linear ramp is programmed into

memory. In order to achieve the desired pulse shape, we invert this curve to determine

which light output level is produced by which digital output level. To measure this

curve directly, a triangle waveform (rising linear edge followed by falling linear edge)

lasting 2 ms was programmed into the AWFG memory. The light emerging from

the Þbers was measured by a photodiode whose time constant is less than 2 ns. As

the amount of rf power to the AOM increases, so does the heat delivered to the

piezoelectric actuator. This heat can change the properties of the crystal and cause

the AOM to move slightly with respect to the beam, both of which may change the

defraction efficiency. To prevent the AOMs from heating up excessively during this

measurement, after the triangle waveform we turn the output off for 248 ms before

repeating the measurement. This duty cycle of ∼0.4% is similar to the effective duty

3.6. INTERFEROMETER PATTERN GENERATION 119

�	�������
�

:<2@
�%-2

� +�<�@��

�

(

�	�������
�

+�<�@��

�

#""�
#""�

4�����1� /� <����6����

/� �� /� ;6�

9�����1
4�1��3�

Figure 3.22: RF attenuator used to generate the adiabatic transfer pulse shapes by
controlling the amplitude of the radio frequency (rf) signal driving the shaping acousto-optic modu-
lators (AOMs). A single supply operational ampliÞer (not shown) buffers the input control voltage
to provide the bias for two MiniCircuits TFAS-2 radio frequency (rf) attenuators in series. Inter-
nally, these attenuators are rf diodes whose transmission loss depends on the current supplied by
the dc bias voltage. For small currents (or bias voltages), this dependence is strongly nonlinear.
Because of this non-linearity, we measure the attenuation as a function of control voltage and then
modify the shape of the control voltage pulse so that the light intensity diffracted by the shaping
AOMs has the desired shape.

cycle of most interferometer patterns, so it should approximate the amount of heating

present in the actual experiment. To insure linearity we operate the photodiode

at roughly 500 times below its optical saturation point. After approximately 128

averages, we scaled the data and arrived at a curve I(p), where p is a number from 0

to 4095 and I(p) is the light level scaled from 0 to 1. Using numerical interpolation,

we inverted this curve to generate the function pa(x) = I
−1(x) where x is the scaled

light level with x = 0 indicating off and x = 1 indicating fully on and pa(x) is an

integer from 0 to 4095. When the computer calculates a desired pulse shape a(t), it

programs the waveform pa(a(t)) into the AWFG memory. To test the linearization,

after generating the transforms pa3(x) and pa4(x) for the two channels, we apply them

to the triangle pattern described above and demonstrate that we have linearized the

light pulse shapes to better than 1%.

To insure that both the F =3 and F =4 lasers switch on and off together, we

installed a third AOM, the common switch AOM. Digital output X3 controls a Mini-

Circuits model ZYSW-2-50DR rf switch which turns on and off the 120 MHz signal

to this common switch AOM.

120 CHAPTER 3. EXPERIMENT

/���� 7���
*���0���� 9�����11��

���� *�8�

�		 :%&
��6�0�

/� ��

/� ;6�

/� ��

/� ;6�

/� ��

<7

/�
�8��0�

/� ;6�

<7

�8��0�
9�����1

<

�8��0�
9�����1

7

���� �,

<��1�3
9�����1

<�

7����?
9�����1 <

7����?
9�����1 7

<��1�3
9�����1

7�

��
�!
 �24

<;:

��
�!
 2;/:

<;:

� B��� � B���

Figure 3.23: TheRaman beam direction controller uses two logic signals (X1 and X2 from the
AWFG board, indicating keff Down and Up, respectively) to set the state of the switchyard (Normal,
Invert, or Off). It does this by driving a radio frequency (rf) switch and an rf switch/attenuator,
which are shown for just the two F =4 switchyard AOMs. The rf switch directs the Þxed amplitude
100 MHz source signal to either the normal or inverted AOMs, while the rf switch/attenuator
Þne tunes the rf amplitude at each switchyard AOM so that the intensities of all possible Raman
beam combinations can be matched. To improve the on/off isolation of the switchyard, the rf
switch/attenuator also contains an binary switch. Except for the binary controls A and B, the rest
of the components in the Þgure are duplicated for the F =3 switchyard AOMs.

3.6. INTERFEROMETER PATTERN GENERATION 121

3.6.2 Beam direction switching

Digital outputs X1 and X2 control the keff down and up electronics, respectively, which

together determine the state of the switchyard. These outputs are both connected to

the tracer PLL box so that the lock can be put on hold when the switchyard is off

and to the �Raman beam direction controller� shown in Figure 3.23 that determines

which switchyard AOMs are on. Each of the four switchyard AOMs is driven by

an ampliÞed rf signal. The rf signals for the F =3 near and far AOMs both come

from the same Þxed 80 MHz source. Similarly, the signals for the F =4 AOMs come

from the same variable 100 MHz source. These two rf sources each pass through two

MiniCircuits model PSW-1211 rf switches. The Þrst rf switch turns the source on or

off. The second switch directs the rf signal toward either the near or far AOM. After

the directing switch, there are four rf signals, one for each switchyard AOM. These

four rf signals each pass through a MiniCircuits model TFAS-2 variable rf attenuator

and another model PSW-1211 rf switch. The rf switch provides additional isolation

to more completely block the rf signal when it is supposed to be off. The four variable

rf attenuators are used to balance the beam intensities. All of these components are

controlled by the Raman beam direction controller. It takes the two logic outputs X1

and X2 from the AWFG board and converts them to two logic outputs and four analog

outputs. The logic outputs of the switchyard control box control the rf switches. The

analog outputs drive the variable rf attenuators. For example, if the far AOMs are

on, then the binary switches for the two rf sources will both be on, the next switches

will be set to direct the rf signals toward the far AOMs, the switch for the F =3 and

F =4 far path will be on, and Þnally the variable rf attenuators attenuating these

two signals will be set to non-zero voltage values determined by the position of two

potentiometers on the front of the switchyard control box. These potentiometers

provide independent Þne control for the light intensity defracted by each particular

switchyard AOM. If the switchyard is OFF, all binary switches are off and the variable

rf attenuators are set to maximum attenuation. In this case, the rf signal must

pass through three binary switches all set to off and one variable rf attenuator set

to maximum attenuation before being ampliÞed and sent to the switchyard AOMs.

Given this amount of attenuation, the rf amplitude after the ampliÞers does not limit

122 CHAPTER 3. EXPERIMENT

the ability of the switchyard to truly turn the light completely off 8.

3.6.3 Frequency chirp during π/2-pulses

Because the π/2-pulses are particularly sensitive to the relative phase between the

lasers and the atomic wavefunctions, we attempt to maintain the resonance condition

throughout these pulses. To counteract the effect of gravity, we must linearly sweep

the two-photon difference frequency at a rate of ∂f/∂t = ±g/λeff = ±21.908 MHz/s,

where the sign is negative for keff propagating upward. To accomplish this, we chirp

the frequency of the rf signal going to both shaping AOMs. Since the shaping AOMs

frequency shift the Raman beams with opposite sign (+fshapingAOM from the F =3

shaping AOM and −fshapingAOM from the F =4 shaping AOM), chirping the single

frequency fshapingAOM driving both shaping AOMs at a rate of ∂f/∂t automatically

changes the two-photon difference frequency at a rate of 2 ∂f/∂t. Over the π/2-pulse

pulse length of 250µs, the AOM frequency must sweep by only

±
1

2
(21.908MHz/s)(250µs) = 2.74 kHz

which corresponds to a fractional change in the AOM frequency of

(2.74 kHz)/(40MHz) = 6.85× 10−5

This fractional change is small enough that the change in the resulting changing in

the shaping AOMs� diffraction angles should not cause a signiÞcant change in the

transmission efficiency through the switchyard and the optical Þbers.

We use two model DS345 synthesizers from Stanford Research Systems to chirp

the shaping AOM frequency fshapingAOM, one to chirp up and one to chirp down. Logic

outputs Y1 and Y2 trigger the �chirp down� and �chirp up� synthesizers, respectively.

The synthesizers each output a cw 20 MHz signal of Þxed amplitude. The chirp up

synthesizer is programmed to perform a linear sweep in its output frequency from

8The isolation of the switchyard seems to be limited by the optical properties of the beams and/or
the AOMs. See Table 3.1.

3.6. INTERFEROMETER PATTERN GENERATION 123

�	�������
�

:<2@
�%-2

� +�<�@��

�

(

�	�������
�

+�<�@��

�

#""�
#""�

4�����1� /� <����6����

/� �� /� ;6�
� B���

 	
����
��	

���!

���,��3
<;:

−�	 �7-�)	

�	�������
�

:<2@
�-2

�
(

4�����1� /� ����� �������

/� ��/� ;6�
$�	 ��

;6�

9�����1

��
!�	�"���	��	

�	�������
�

:<2@
�-2

�
(

. � 7���#

9���, *�8� �?������&��

9���, �, �?������&��

�
�	#����$�����������
�%�
*��
)

�	 :%& +��8��,� +�' �7�

�
�	#����$�����������
�%�
*��
)

�	 :%& −��8��,� +�' �7�

. � 7���#

���� �,

���� �,

+�(�7

�	�������
�

-�)	

−�� �7

�,

*�8�

-�)	 -�)	

9���,��

	 :%&

�!
 ��,1��6�� 0�����1

�!
 ,���� 0�����1
�� �!�
0�����1

�	�������
�

�	�������
�

A��/9@�)	

Figure 3.24: Generation of the chirp signal for the shaping AOMs. Two Stanford
Research Systems DS345 arbitrary waveform synthesizers are programmed to linearly sweep
their output frequency from frequency 20MHz± fsweep back to 20 MHz whenever they are
externally triggered with a �chirp trigger signal� from the AWFG board. After being
frequency doubled, a MiniCircuits model ZYSW-2-50DR rf switch selects either the �chirp
up� or �chirp down� signal. This rf signal is then Þltered and ampliÞed before Þnally being
split by a MiniCircuits model ZFSRC-2050 resistive power splitter into two equal parts for
the F =3 and F =4 shaping acousto-optic modulators (AOMs), respectively. To form the
adiabatic transfer light pulses, the amplitude of this near 40 MHz rf signal is controlled with
a �variable rf attenuator� shown in Figure 3.22. As discussed in Section 4.2, a �variable rf
phase shifter� removes the phase variation of this variable rf attenuator, so that just the
amplitude of the rf signal driving the shaping AOMs can be varied.

124 CHAPTER 3. EXPERIMENT

a frequency fsweepup to 20 MHz on the rising edge of its external trigger which is

connected to Y2. Similarly, the chirp down synthesizer sweeps between fsweepdown and

20 MHz when it receives a rising edge from Y1. Depending on the beam direction, the

output of one of these synthesizers is used to generate the 40 MHz for both shaping

AOMs. A copy of the logic output X1 and its inverse X̄1 goes to aMiniCircuits model

ZYSW-2-50DR rf switch which selects between the outputs of these two synthesizers.

If X1 is active, the beam direction is inverted and the chirp down synthesizer is used.

On the other hand, if X1 is inactive, indicating that the switchyard is set to normal

(or off), the chirp up synthesizer is used.

3.6.4 Timing

To guarantee that the timing of the interferometer patterns repeats exactly the same

each time, we must insure that 1) all of the synthesizers which generate the Raman

beams use oscillators traceable to the same timing reference and 2) the trigger signal

which starts the pattern is synchronized with these oscillators. The Stanford Research

Systems model DS345 and the Hewlett Packard model HP33120A synthesizers both

have internal 40 MHz clocks locked to an external 10 MHz reference traceable to

LORAN C. The DDS is based on a 1 GHz clock also based on LORAN C. The only

other oscillator is the internal clock of the AWFG board, which normally comes from

an internal 20 MHz oscillator. We disabled this internal oscillator and replace it with

an external signal derived from the LORAN C 10 MHz reference.

To satisfy the second condition, in principle we could synchronize the incoming

trigger signal with any of the oscillators or even with the 10 MHz reference signal

itself. Consider two oscillators, one at frequency f and the other at frequency 4f ,

and an incoming trigger edge that drifts with respect to the oscillators. If we force

the trigger edge to occur at one of the rising edges of the 4f signal, it may not

repeat with respect to the clock at frequency f . Relative to this slower clock, there

are four different possible phases at which the trigger could occur. However, if we

synchronize the trigger with the slower clock, the trigger edge will always repeat with

respect to the faster clock. Therefore, we always synchronize the trigger with the

3.6. INTERFEROMETER PATTERN GENERATION 125

slowest oscillator in the experiment, which in our case is the divided down AWFG

board�s sample clock. On the AWFG board, the 20 MHz clock is divided by four in

two stages to derive a master sample clock oscillating at 5 MHz. Depending on the

desired sample rate for the stored waveform, this clock is then divided down by up to

two 16-bit integers. Most of our data were taken with the AWFG sampling at 1 MHz

(master clock divided by 5). This 1 MHz clock is the slowest clock in the experiment.

To synchronize the incoming trigger signal with this clock we use a TTL latch. If we

clock the latch with a copy of the 1 MHz AWFG sample clock and put the trigger

signal into the data input, the output will change state to reßect the input only on

one of the 1 MHz clock rising edges. If we use this output to trigger the Raman

pattern, we know it will repeat in exactly the same way with respect to all of the

oscillators used to generate the pattern.

We now present the timing diagrams for generating three representative cases

of real interferometer sequences. We Þrst show the complete timing diagram for

all four interferometer geometries with T = 5 ms and 30 π-pulses. For this case,

Figure 3.25 shows a representation of the atomic trajectory overlayed on the master

timing diagram, identifying the regions when (a) the atoms are loaded into the MOT,

(b) they are launched, (c) the interferometers are built, and Þnally (d) the atom

signal is detected. Figures 3.26 through 3.29 zoom in on the interferometer sequence

shown at the bottom of Figure 3.25 for geometries 1 through 4 . Typically, for

an interferometer sequence 1 2 3 4 1 . . . , the master timing diagram (Figure 3.25)

would repeat with each consecutive repetition generating the next interferometer

geometry: Figure 3.26 then 3.27, 3.28, 3.29, 3.26, and so on. Finally, Figures 3.30

and 3.31 show the master timing diagrams for long interferometers with T = 120 ms

with 30 and 0 π-pulses, respectively.

126 CHAPTER 3. EXPERIMENT

Time (ms)
0 100 200 300 400 500 600 700 800 900

MOT Coils

Slowing Shutter

Frequencies

Intensities

Zeeman Pumping

Z.P. Shutter

Trap Shutter

Enable PMT

MOT Trim Coil

Probe Shutter

DF Raman

Clearing

Probe

Raman Trigger

Gate

Common Switch

(a)

(c)

(d)

(b)

Loading

Detection

Launch

Interferometer

Figure 3.25: Example 1: Timing diagram for interferometers with 30 π-
pulses and T = 5 ms. The story starts when the cesium atoms are loaded (a) into
a magneto-optic trap (MOT). At t = 5 ms, the atoms are launched (b) vertically.
The parabolic curve (shown in wide gray) represents the atoms vertical position.
Due to the momentum recoils from the π-pulses an interferometer and its conjugate
are pushed down and up, respectively, away from the gray dashed line which shows
the atomic trajectory with no recoils. When the atoms enter the magnetic shielding
(represented on the trajectory with a narrow dark line), the interferometer sequence
is triggered. This �Raman trigger� is shown at the bottom with the �gate� and
�common switch� controls, from which one can identify where each of the (in this
case) 35 adiabatic transfer pulses occur. (The following four Þgures zoom in on
this region for each of the four different interferometer geometries). A particular
interferometer geometry is constructed (c). Finally, after the atomic cloud leaves the
magnetic shielding, the number of atoms emerging from the interference is detected
(d). Every 908 ms when this sequence repeats with the same loading and launch
sequences, the remaining interferometer controls (not shown) are reprogrammed and
the next interferometer geometry is built.

3.6. INTERFEROMETER PATTERN GENERATION 127

Figure 3.26: Timing diagram generating geometry 1 with 30 π-pulses and T = 5 ms.

250 255 260 265 270 275 280 285

Common Switch

F=3 individual

F=4 individual

Keff Up

Keff Down

Chirp Up Trig

Chirp Up

Chirp Down Trig

Chirp Down

Strobe

Feed Forward

Figure 3.27: Timing diagram generating geometry 2 with 30 π-pulses and T = 5 ms.

Time (ms)
250 255 260 265 270 275 280 285

Common Switch

F=3 individual

F=4 individual

Keff Up

Keff Down

Chirp Up Trig

Chirp Up

Chirp Down Trig

Chirp Down

Strobe

Feed Forward

128 CHAPTER 3. EXPERIMENT

Figure 3.28: Timing diagram generating geometry 3 with 30 π-pulses and T = 5 ms.

250 255 260 265 270 275 280 285

Common Switch

F=3 individual

F=4 individual

Keff Up

Keff Down

Chirp Up Trig

Chirp Up

Chirp Down Trig

Chirp Down

Strobe

Feed Forward

Figure 3.29: Timing diagram generating geometry 4 with 30 π-pulses and T = 5 ms.

Time (ms)
250 255 260 265 270 275 280 285

Common Switch

F=3 individual

F=4 individual

Keff Up

Keff Down

Chirp Up Trig

Chirp Up

Chirp Down Trig

Chirp Down

Strobe

Feed Forward

3.6. INTERFEROMETER PATTERN GENERATION 129

Figure 3.30: Example 2: Timing diagram for interferometers with 30 π-pulses and
T = 120 ms.

0 100 200 300 400 500 600 700 800 900

MOT Coils

Slowing Shutter

Frequencies

Intensities

Zeeman Pumping

Z.P. Shutter

Trap Shutter

Enable PMT

MOT Trim Coil

Probe Shutter

DF Raman

Clearing

Probe

Raman Trigger

Gate

Common Switch

Figure 3.31: Example 3: Timing diagram for interferometers with no π-pulses and
T = 120 ms.

Time (ms)
0 100 200 300 400 500 600 700 800 900

MOT Coils

Slowing Shutter

Frequencies

Intensities

Zeeman Pumping

Z.P. Shutter

Trap Shutter

Enable PMT

MOT Trim Coil

Probe Shutter

DF Raman

Clearing

Probe

Raman Trigger

Gate

Common Switch

130 CHAPTER 3. EXPERIMENT

3.7 Tests of adiabatic passage

3.7.1 π-pulses

To demonstrate adiabatic transfer, we launch the atoms from the MOT as normal.

They leave the MOT in the F =4 state, arbitrarily distributed among the 2F +1 = 9

magnetic sublevels. If the Zeeman pumping is activated, the F =4,mF =0 signal is

increased by roughly a factor of 3 through optical pumping, leaving the remaining

atoms in the other F =4,mF 6=0 sublevels. We program the Raman beam synthesizers

to generate a single adiabatic π-pulse with the shape shown in Figure 2.7. At some

point along the trajectory when the atoms are inside the magnetic shielding, this

single pulse sequence is triggered. The adiabatic π-pulse transfers a fraction of the

atoms to the F =3 state, leaving the rest of the atoms in the F =4. After this pulse,

the clearing laser turns on. Atoms in the F =4 state will absorb a single photon

and recoil upward with the clearing beam direction. Once in an excited state they

spontaneously emit a photon and recoil in a random direction. From the F =50

excited state, they can fall back only into the F =4 ground state where they start the

process all over again. Since the clearing laser is tuned to the closed F =4 → F =50

D2 transition, this process continues until the atoms have either 1) moved out of

the beam due to the scattering of random photons or 2) fallen into the F =3 ground

state due to off-resonant (∆ ∼250MHz = 5Γ) coupling to the F =40 excited state. In
either case and also because the atoms are pushed upward by the clearing beam, none

of these atoms will be detected by the probe laser which is tuned to the same atomic

transition. After the clearing pulse, there are no atoms to be detected in the F =4

state. The signal atoms are in the F =3,mF =0 state along with some remaining

unwanted background atoms in the other F =3 magnetic sublevels.

The next light pulse comes from the DF Raman laser, which transfers a signiÞcant

fraction of the F =3,mF =0 atoms to the F =4,mF =0 state, leaving the atoms in

the F =3 mF 6= 0 states untouched. Since the two frequencies comprising the DF

Raman beam copropagate, the atoms do not recoil and continue along their original

trajectory to be detected by the probe pulse. Like the clearing laser, the probe is tuned

to the closed F =4→ F =50 transition, so it causes any atoms in any F =4 magnetic

3.7. TESTS OF ADIABATIC PASSAGE 131

sublevel to scatter photons over and over. A fraction of these scattered photons are

collected by a lens and focused into a photomultiplier tube (PMT), which Þnally

converts them into a signal that we can observe and record. The size of this signal

is proportional to the number of atoms in the F =4 state. However, because of the

magnetic state selective transfer, the only atoms in the F =4 state at the time of

the signal recording originally came from the signal atoms in the F =3,mF =0 state.

None of the background atoms in the other F =3 magnetic sublevels are detected.

fπ-Pre (kHz)

3800 3900 4000 4100

P
op

u
la

ti
on

 (
ar

b
)

0.0

0.2

0.4

0.6

0.8

1.0

f0

δ0

Figure 3.32: Adiabatic transfer using a single velocity preselecting π-pulse. The π-pulse
is 800 µs long and reduced to 25% of the maximum possible light intensity. For each launch the
difference frequency between the two Raman lasers is changed and the number of atoms emerging
from the π-pulse is detected. The data are Þt by the function exp[−4 ln(2)(f − f0)2/δ20], giving
f0 = 3914.72(29) kHz and δ0 = 76.021(75) kHz. Since the linewidth of the transfer pulse (FWHM∼
37 kHz) is less than the observed width of the resonance, δ0 is predominantly determined by the
width of the atomic velocity distribution.

We now repeat this entire process, but for each subsequent launch we change

the Raman laser difference frequency δ. The adiabatic π-pulse is 800 µs long and

reduced to 25% of the maximum possible light intensity, and thus has a linewidth

132 CHAPTER 3. EXPERIMENT

of 37 kHz (see below). The measured rms velocity of the atoms launched from the

MOT is vMOT = 1.4 cm/s (see Section 3.1.4). This velocity is equivalent to a two

photon detuning of vMOT/λeff = 31 kHz and a linewidth 74 kHz. Therefore, because

the linewidth of the adiabatic π-pulse is narrower than the Doppler width of the

atoms, the width of the lineshape shown in Figure 3.32 is predominantly determined

by the width of the atomic velocity distribution. By Þtting a Gaussian lineshape

to this distribution, we can Þnd the lineshape center to within ∼ 0.3 kHz. We thus
determine the mean atomic velocity along the Raman beams at the time of the pulse

to within 0.1 mm/s. Furthermore, because all subsequent adiabatic transfer pulses

have a broader spectral width, this Þrst π-pulse selects the particular velocity class

from the atomic velocity distribution that will participate in the interferometers.

fπ-16 (kHz)

-2500 -2000 -1500 -1000

P
op

u
la

ti
on

 (
ar

b
)

0.0

0.2

0.4

0.6

0.8

1.0

δ0

f0

Figure 3.33: Adiabatic transfer linewidth. Sixteen 70 µs long π-pulses follow a single velocity
preselection π-pulse. For each launch the difference frequency between the two Raman lasers for only
the last π-pulse is scanned and the Þnal number of atoms detected. The data are Þt to the function
exp[−4 ln(2)(f − f0)2/δ20], giving f0 = −1704.29(38) kHz and a FWHM δ0 = 252.67(98) kHz. Since
the atomic velocity distribution was narrowed by the preselection π-pulse, the observed width of
this resonance represents the linewidth of a 70 µs long π-pulse.

To verify the linewidth of the adiabatic transfer pulses, after this long low intensity

3.7. TESTS OF ADIABATIC PASSAGE 133

velocity �preselection pulse�, we program sixteen normal π-pulses at full intensity

lasting only 70 µs . By scanning the laser difference frequency of the last of these

regular π-pulses, we can map out the pulse linewidth shown in Figure 3.33. This

lineshape can be described by the Gaussian

g(f) = A exp

Ã

−4 ln(2)
(f − f0)2

δ20

!

+B (3.22)

where A and B are arbitrary amplitude and offset factors and δ0 is the FWHM

linewidth. Fitting this lineshape to the data in Figure 3.33 results in a linewidth

δ0 = 253 kHz. By varying the length τ and intensity I of these pulses, we verify that

the linewidth δ0 of adiabatic transfer pulses scales according to

δ0 ∝

s
I

τ
(3.23)

Thus, because the preselection π-pulse is 4 times less intense and 800/70 = 11 times

longer, its linewidth is (253 kHz)
q
0.25/11 = 37 kHz. Without this velocity preselec-

tion the interferometer contrast is worse, because there is a larger background level of

atoms which do not participate in the interferometer because their velocity Doppler

shifts them too far from resonance for the π/2-pulses to address them.

By observing how the signal shrinks as we add more regular π-pulses after the

single velocity preselection π-pulse, we determine an average transfer efficiency of

² = 93.8%. After N π-pulses with efficiency ², only a fraction ²N remain. Even

with pulses as efficient as ours, after 30 π-pulses, only (0.938)30 = 0.147 of the atoms

remain, and a drop in efficiency of only 2% reduces this number almost by half. The

dominant limit on the transfer efficiency of the π-pulses is the selective detection

of only the mF =0 atoms. Even with a magnetic bias Þeld of ∼ 72 mG that shifts

the mF =1 levels apart by 50 kHz, the π-pulses still transfer atoms between the

F =3,mF =+1 and F =4,mF =+1 states. Since only the atoms in the mF =0 states

are detected, the transfer efficiency is artiÞcially lower. With the magnetic bias

Þeld set to zero, the π-pulse efficiency is ∼ 96%, but these π-pulses are not useful
for interferometer measurements that require avoiding the magnetic Þeld sensitive

134 CHAPTER 3. EXPERIMENT

sublevels.

3.7.2 Interferometry

To build interferometers with adiabatic transfer pulses, we add four π/2-pulses to the

pulse sequence. After the preselection π-pulse which precedes all pulse sequences, we

wait ∼3 ms to give the tracer phaselock plenty of time to settle before we start the
Þrst interferometer π/2-pulse. The Þrst π/2-pulse transfers the atoms from the pure

F =3 state to a superposition of the F =3 and F =4 states. From the end of the Þrst

π/2-pulse, this atomic state evolves freely for a time T before the second π/2-pulse

starts. Because the two interferometer paths do not overlap at the second π/2-pulse,

this pulse projects half of the atoms onto the bright state, which scatter incoherent

photons and leave the interferometer9. The remaining half of the atoms projected into

the dark state emerge from the second π/2-pulse in the F =3 state for interferometer

geometries 1 and 3 and in the F =4 state for interferometers 2 and 4 . Both

interferometer paths then experience N regular π-pulses. Before each π-pulse we

wait a time Tππ. After time t gravity changes the atomic velocities by ∆v = −gt. We
choose Tππ, the delay between π-pulses, so that this velocity change due to gravity is

equal to one two-photon recoil vr: Tππ = vr/g = (6.71mm/s)/(9.80m/s
2) = 685µs.

The net effect of the upward pushing π-pulses is thus to cancel the acceleration of

gravity, while the downward pushing π-pulses accelerate the atoms downward at 2g.

After the last π-pulse, before starting the third π/2-pulse, we again wait∼3 ms for the
tracer phaselock loop to settle. After the third π/2-pulse pulse, each interferometer

path is once again in a superposition of the two pure hyperÞne ground states. The

atoms again evolve freely for time T before the fourth π/2-pulse starts. At this

point, the overlapping paths interfere and emerge from the fourth π/2-pulse in the

F =3 state with an amplitude that depends on the total phase difference accumulated

between the two interferometer paths. The non-interfering paths also emerge in the

9It is not strictly true that they leave the interferometer. Many of the atoms absorb a photon, fall
back into the signal dark state, and then continue through the remaining light pulses to be detected
at in the end. On average, however, these atoms contribute no net phase to the Þnal fringe signal,
although as discussed in Section 2.3.1, they do reduce the contrast.

3.7. TESTS OF ADIABATIC PASSAGE 135

F =3 state with some amplitude. The interferometer is now complete. Since the

interference has already occured, the atoms are no longer sensitive to phase shifts.

The only remaining task is to count the atoms and record the signal. As described

above and in Section 3.7.1, in order to detect only the atoms in the F =3,mF =0

state, we Þrst blast all of the F =4 atoms away. A single DF Raman π-pulse then

transfers the F =3,mF =0 atoms to the F =4,mF =0 state, which can be detected

by the probe beam.

f3,4 (kHz)

-550 -500 -450 -400 -350

P
op

u
la

ti
on

 (
ar

b
)

0.0

0.2

0.4

0.6

0.8

1.0

2(N+1)frec = 6 frec ∼ 90 kHz

Figure 3.34: Fringe structure from four π/2-pulse interferometers. The Þrst two and last
two π/2-pulses are separated by the free evolution time T = 0.1 ms, which determines the period of
the fringes 1/T = 10 kHz. The two interferometers, which each produce one of the two resonances,
are further separated by N = 2 additional π-pulses. The frequency separation between these two
resonances is a known integer multiple (in this case, 6) of the recoil frequency frec we are trying to
measure. The π-pulses linearly amplify the size of the separation while the π/2-pulses superimpose
fringes on top of the resonances. These fringes allow us to much more precisely determine the centers
and thus the separation of the two resonances. In order to make a high sensitivity measurement
of frec, T can be increased to as long as 160 ms and as many as 50 π-pulses can be added to each
interferometer, causing a separation of over 200 optical photon recoils.

136 CHAPTER 3. EXPERIMENT

Similar to the graph represented in Figure 1.3, the π/2-pulses serve to superimpose

phase sensitive fringes with periodicity 1/T onto a resonance. In order to see how

the fringes appear on top of the resonance lineshape, Figure 3.34 presents data from

a relatively insensitive interferometer condition when T = 0.1 ms and N = 2. As

described in Section 1, the goal of the measurement is to measure the difference

between the center of two resonances that are separated by a integer number of recoil

frequency shifts. With 30 π-pulses the resonances are separated by 62 two-photon

recoils or 124 single optical photon recoils, equivalent to a shift of almost 1 MHz.

Thus, to make a part per billion measurement with 30 π-pulses, we must Þnd the

center of the two roughly 100 kHz wide resonances to within ∼ 1 mHz. In other
words, without the fringes, we would have to split the resonance lines by one part in

108. With the fringes, however, we have a much Þner feature we can use to Þnd the

resonance center. Since T can be made as long as ∼160 ms before the interferometers
no longer Þt inside the magnetic shielding, the fringe spacing can be made as small

as 1/(2T) ∼ 3 Hz, which in one step improves our accuracy by over four orders of
magnitude.

Chapter 4

Improvements

As part of testing and thoroughly evaluating the previous experimental setup [9], we

have identiÞed several problems and implemented solutions. We determined that the

largest systematic error (over 100 ppb in frec) was due to uncharacterized system-

atic phase shifts from the radio-frequency (rf) synthesizer. In Section 4.1 we discuss

this problem and the improved performance of the replacement synthesizer. In ad-

dition to the phase errors from the synthesizer, it was also clear that our method of

switching the Raman light on and off introduced a systematic and repeatable phase

shift, predominantly due to the intrinsic phase variation as the attenuation of the

variable rf attenuators changed. In Section 4.2 we discuss the feed forward system

we designed and built to reduce this phase versus rf amplitude variation by over an

order of magnitude. We further reduced the phase errors from intensity switching

by installing an additional acousto-optic modulator (AOM). This �common switch�

AOM switches both Raman beams on or off together in exactly the same manner

and at precisely the same time. Adding this AOM removed a systematic error of

over 40 ppb from the π/2-pulses discussed in Section 6.7. Related to this problem of

phase errors during intensity switching, we also observed repeatable ßuctuations in

the light intensity diffracted by the shaping and common switch AOMs. In Section

4.7 we examine these ßuctuations and the improved response after replacing the rf

ampliÞers with ones better suited for switching.

137

138 CHAPTER 4. IMPROVEMENTS

By improving the efficiency of the Raman beam generation, we were able to in-

crease the available amount of Raman beam power by a factor of approximately three.

We also improved the spectral purity of many of our frequency references by installing

crystal Þlters (Section 4.6).

We improved our alignment procedures to have better control over the Raman

beams: their collimation (Section 4.3), their relative angular alignment (Section 4.4),

and the matching of their intensities (Section 4.5).

In an effort to improve the signal to noise ratio of the Þnal interferometer signal1,

we investigated the phase noise added by the two optical Þbers used to spatially Þlter

the Raman beams (see Section 3.2.6). Because the tracer laser also passes through

these Þbers, the tracer phase lock loop removes most of this noise up to the limit where

the phase noise added to the Raman beams is not the same as the noise applied to

the tracer. Our results indicated that the remnant differential phase noise added by

the Þbers might represent a signiÞcant amount of the total noise on the Þnal atom

signal. As an attempt to reduce this noise, we changed the wavelength of the tracer

laser from 887 nm to 896.6 nm, thus reducing the detuning from the cesium resonance

from −8 nm to +2 nm and presumably improving the common mode reduction of

the Þber phase noise.

We also believe that a signiÞcant fraction of the phase noise of the interferom-

eter signal comes from the motion of the top polarizing beamsplitter (PBS) cube

not removed by the vibration isolation (VI) system discussed in Section 3.4. As an

attempt to improve the performance of this system, we redesigned and rebuilt the

mechanical support structure. In particular, we switched the position of the air pis-

ton and the acceleration sensor so that the sensor is now closer to the interferometer

platform (Figure 3.14) which we are trying to isolate from external vibrations. We

were particularly concerned about the rigidity of the air piston. Because of the Þnite

air pressure, the inner cylinder of the piston will always be able to tilt slightly away

from the axis of the outer sleave. If the accelerometer sits above the air piston and

the entire VI column tilts about the piston, the motion detected by the sensor will

be opposite in sign from the actual motion of the interferometer platform. Because

1The random noise of the Þnal atom signal is discussed further in Section 5.2.

4.1. RF SYNTHESIZER 139

the sign is opposite, as the feedback loop attempts to reduce the motion of the sen-

sor, it will actually increase the motion of the interferometer platform. With the

accelerometer on the same side of the air piston as the interferometer platform, the

action of the feedback will always be to reduce the effects of rotational motion on the

interferometer platform.

As an additional precaution we installed a model 755-1129 tilt sensor from Applied

Geomechanics on the freely swinging VI column. By rotating the column about the

axis of the air piston, we calibrated the sensor to Þnd its total offset from vertical.

By tilting the outer sleave of the air piston until the output of the tilt sensor matched

this level point, we were able to make the axis of the air bearing vertical to better

than 100µrad. By temporarily installing a tilt stage under the accelerometer, we

veriÞed that the sensitive axis of the accelerometer is also vertical. Since the Raman

beams whose wavefronts we are trying to stabilize are also aligned to be vertical, we

thus insure that the isolation axis of the VI system is parallel to the Raman beams.

4.1 RF synthesizer

In the scheme shown in Figure 3.12, the optical phase of the interferometer laser Þelds

is locked to a radio-frequency (rf) oscillator. By changing the frequency and phase of

this reference oscillator before every light pulse, we control the frequency and phase

of the interferometer laser Þelds, which act as the reference to be compared with the

internal phase of the atoms (see Section 2.1). The frequency is set to maintain the two-

photon resonance condition with the atoms. This two-photon resonance frequency

changes by as much as approximately±4 MHz over the whole usable atomic trajectory

due to gravity and by frec per π-pulse, or ∼600 kHz for 40 π-pulses. Because the π-
pulses might be separated by only a few hundred microseconds, the oscillator should

have a switching time no longer than ∼ 10µs. Furthermore, because the oscillator
serves as the reference in an interferometry experiment, its exact phase must be known

for all times. In other words, in a predictable way it must switch phase continuously

between two frequencies deÞned exactly in terms of some repeatable time standard.

A direct digital synthesizer (DDS) is ideal for this application. Figure 4.1 shows

140 CHAPTER 4. IMPROVEMENTS

���G6��0? 9�����1 7���

)

�

�
�

	

<
9
9
�
:
�
-
<
+
;
/

)

�

�
�

	

/���@��1?
:����?

*�3���1@��@<��1�3
9��5�����

<���@�1�����3
��1���

/� ;6�,6�

�

�
�

�

�

� � 	�

<����
	@���

���G6��0?
������

>.�����1
91�0�

-��0�
����1�

Figure 4.1: A direct digital synthesizer (DDS) outputs a sinusoidal signal whose frequency is
an exact integer submultiple of the frequency of an external clock signal. The integer that determines
the output frequency is set with n binary �frequency control bits�. The value of this integer controls
the rate at which an adder plus an accumulator step through the 2m addresses of an internal read-only
memory into which is stored a digitized version of a single period of a sine-wave. A digital-to-analog
converter converts the p-bit output of the memory into an analog signal. Because their output is
both frequency tunable and phase locked to the external clock signal, DDSs are ideal for use in
precision interferometry.

a diagram of the fundamental components of a DDS. An external clock signal of

frequency fclk drives an n-bit binary counter called the accumulator. The m most

signiÞcant bits of the accumulator address a digital read-only memory, which contains

a p-bit digitized representation of a single period of a sine-wave. The binary values

loaded from the memory are converted to an analog signal level by a fast DA-converter

followed by an anti-alias Þlter. Given a binary number P from 0 to 2p − 1, the
memory plus the DA-converter converts this number into an output voltage level of

A sin(2πP/ 2p), where A is some arbitrary voltage amplitude. The anti-alias Þlter

smooths the output sine wave and thus reduces the leakage of the clock frequency into

the Þnal output. At every clock cycle an n-bit number N is added to the accumulator.

The number N is determined by the state of the n digital external frequency control

4.1. RF SYNTHESIZER 141

inputs. These n digital frequency control lines thus set the output frequency of the

synthesizer to an exact output sub-multiple of the clock frequency. For example, if

the accumulator starts at zero and N = 2(n−2) = (Nmax+1)/4, at the Þrst active clock

edge, the accumulator will change from 0 to 2(n−2). The top m bits will change by

2(m−2) or (Mmax+1)/4 or one quarter of one cycle. At the next active clock edge the

accumulator will advance another quarter cycle through the sine-wave. The output

frequency will thus be exactly fclk/4. For arbitrary N , the output frequency will be

Nf0, where f0 = fclk/2
n is the smallest frequency step.

The DDS unit we use, model ADS-431-1367 from Sciteq Communications, has

32 digital frequency control lines (n = 32) and can accept clock signals as fast as

1.6 GHz. Its internal anti-alias Þlter is 6th order with a 3 dB corner frequency of

∼ 500 MHz. Since m and o are internal to the device and only limit the amplitude

purity, they are speciÞed as a spurious peak limit of −45 dBc �typical� over its entire
output range. We operate this unit with a clock frequency of 1.0 GHz and an output

frequency centered at 12.631 770 MHz. At these frequencies, we observe a typical

spurious peak level of less than −60 dBc.

For our purposes, however, the phase purity of the DDS output is by far the most

critical performance speciÞcation. A particularly attractive feature of DDS units is

that their output phase noise is as good as the input clock signal, even when switching

between two output frequencies. Neglecting the small amount of amplitude noise

added by the device, the phase noise at a single output frequency fout is given by the

phase noise of the clock signal divided by the ratio fclk/fout. Also, during an output

frequency change, because the time derivative of the accumulator changes and not

the accumulator itself, the output always changes phase continuously. Unfortunately,

because this synthesizer must change output frequencies during an interferometer,

besides random phase noise we are also concerned about any repeatable deviation

from a instantaneous frequency change. SpeciÞcally, if the output frequency of the

DDS is to change from f1 to f2 at time t12, what will the phase φ2 be at some later

time t2 > t12 compared to an initial phase φ1 deÞned at some earlier time t1 < t12?

142 CHAPTER 4. IMPROVEMENTS

Ideally, the answer is

∆φ = φ2 − φ1 = 2π [f1(t12 − t1) + f2(t2 − t12)] (4.1)

In practice, however, there will always be some delay between the signal requesting

the frequency change at t12 and the time when the synthesizer actually makes the

change. If this delay is given by τ +αf , the above expression for the phase difference

must be modiÞed to

∆φ = 2π [f1(t12 − t1) + f2(t2 − t12)]− 2π
∙
τ (f2 − f1) +

1

2
α(f2 − f1)(f2 + f1)

¸
(4.2)

In this expression, α represents a non-linear delay that depends on the synthesizer�s

output frequency, while τ is the zero-order delay that might, for instance, come from

the propagation delay through a simple transmission line. Any dispersive element

located between the DA-converter inside the DDS and the phase detector in our

experiment, whose transmission delay depends on the frequency, could result in a

non-zero α. By far the largest source of such non-linear phase delays comes from any

Þlter on the output of the DDS. For this reason, we intentionally do no Þltering of

the DDS output, thereby insuring that its dynamic phase performance is limited only

by its internal anti-aliasing Þlter.

To fully characterize the performance of this DDS unit, we recorded its output

with a fast digital, sampling oscilloscope around a frequency transition from f1 to

f2. By Þtting the data before and well after the frequency change with sinusoidal

functions, we were able to calculate a phase change ∆φ = φ2 − φ1. Figure 4.2

shows these measurements with f1 = 250 MHz and different values of f2 from 10

to 250 MHz. Note that the results of this direct measurement (open circles) exhibit

discrete jumps as a function of f2 that cannot be explained by the model in equation

(4.2). Upon further investigation we found qualitatively the same jumps over all

frequency ranges, always occuring at frequencies which are exact binary sub-multiples

of the clock frequency (125 MHz, 62.5, 31.25, etc.). Based on a suggestion from the

manufacturer, we suspected that the individual frequency control bits have different

propagation delays through the device before they affect the output. In particular,

4.1. RF SYNTHESIZER 143

Output Frequency Change (MHz)
-250 -200 -150 -100 -50 0

P
h
as

e
C

h
an

ge
 (

ra
d
)

-5

0

5

10

Figure 4.2: Systematic phase error from the direct digital synthesizer (DDS) when it
switches output frequency from f1 to f2. In this case, f1 = 0 and f2 varies from 250 to almost
10 MHz. The synthesizer�s output is sampled before and well after the frequency change and Þt
with two sinusoidal functions whose phase difference is plotted on the vertical axis. Over ∆f =
f2 − f1 ' 250 MHz, this phase error (hollow circles) can be well over one cycle. However, this error
is predictable and can be subtracted out (solid circles) using a simple rule (equation 4.9) for the
propagation delay of the individual frequency control bits. A Þxed propagation delay of 42 ns is
subtracted out of both data sets. Such a delay independent of ∆f appears as a slope in a graph like
this of phase versus ∆f and does not affect the recoil experiment.

we proposed that the additional time it takes before a change at bit b affects the

output frequency is given by (32 − b)/fclk. Thus, the least signiÞcant bit will take
31 clock cycles longer to affect the output than the most signiÞcant bit. Although

difficult to understand from a design standpoint, correcting for this behavior has

proved relatively simple. To calculate the net phase shift due to this effect, we Þrst

assume that the DDS is switching between frequency f1 = 0 and f2. Since f1 = 0, all

frequency control bits must be off to begin with. If this variable delay model holds,

then j clock cycles after the 32 frequency control bits for f2 are applied, the output

frequency f(tj) and phase φ(tj) of the device will be

f(tj) = f(tj−1) +
32X

b=1

δb(f2) 2
b−1 f0 δj,33−b (4.3)

144 CHAPTER 4. IMPROVEMENTS

φ(tj) = φ(tj−1) +
2π

fclk
f(tj) (4.4)

where δb(f) = 1 if bit b in the frequency control bits for output frequency f is on,

δj,33−b = 1 if j = 33 − b, and both are 0 otherwise. At some later clock cycle j = J
after all of the bits have trickled through the device, the output frequency and phase

will thus be

f(tJ) =
32X

b=1

δb(f2) 2
b−1 f0 = f2 (4.5)

φ(tJ) = φ(t0) +
2π

fclk

32X

b=1

[J − (32− b)] δb(f2) 2b−1 f0

= φ(t0) +
2π

fclk

"

Jf2 +
32X

b=1

−(32− b) δb(f2) 2b−1 f0

#

(4.6)

Since we are interested only in the net phase shift due to the variable delay, we can

remove the initial phase and the expected term proportional to Jf2, leaving

∆φ(f2) = −
2π

fclk

32X

b=1

(32− b) δb(f2) 2b−1 f0 (4.7)

So, due to the propagation delay each bit produces a net phase shift

∆φb = −
2π

fclk
(32− b) 2b−1 f0

= −2π (32− b) 2b−33 (4.8)

and the total net phase shift is simply a sum of all ∆φb for each bit b that is on in

the set of frequency control bits that produce output frequency f2. Note that in the

time-reversed case when f2 is zero and f1 is non-zero, the net phase shift has the exact

expression but with opposite sign. As a result, we can derive a general expression

for the net phase shift due to the bit-wise propagation delay when the synthesizer

switches from frequency f1 to f2.

∆φ = 2π
32X

b=1

[∆φ(f2)−∆φ(f1)]

4.1. RF SYNTHESIZER 145

= 2π
32X

b=1

[∆φb δb(f2)−∆φb δb(f1)]

= 2π
32X

b=1

−(32− b) 2b−33 [δb(f2)− δb(f1)] (4.9)

To verify this result we apply this correction to the data shown in Figure 4.2.

Note that the corrected data (solid circles) show no sign of the discontinuous phase

change jumps. According to the general Þrst-order delay model in equation (4.2),

we Þt these corrected data to a second-order polynomial. From these Þt results

|α| ≤ 2.9× 10−18 rad/Hz, we can assign an upper limit for the non-linear phase de-
lay of 0.3 mrad for worst-case frequency changes of ∆f = 8 MHz centered around

12.6 MHz. For the high-sensitivity interferometers, this phase shift would correspond

to a systematic error of ≤ 0.4 ppb. We have taken similar data for different frequency
ranges, particularly around the center frequency of 12.631 770 MHz used in the ex-

periment, and veriÞed that the model in equation (4.9) always removes the phase

jumps. As this test closely simulates what the atoms experience during the actual

interferometer experiment, it assigns an upper limit to the possible systematic phase

shifts from the DDS itself and any dispersive elements between the synthesizer and

the phase detector.

The DDS unit used in the previous version of this experiment, model DDS-1 also

from Sciteq Communications, had a clock frequency of 25 MHz and an internal anti-

aliasing Þlter with a high-frequency rolloff starting at ∼ 10 MHz. This synthesizer�s
output, centered at 6.315 885 MHz, was Þltered, doubled, and Þltered again using

external rf elements. We measured the propagation delay through these external

rf elements. Over the range from 8.4 to 17 MHz, the delay varied by as much as

1.9 ns. This variation alone, which does not include the response of the anti-aliasing

Þlter internal to the DDS, corresponds to a correction of ∼80ppb for high-sensitivity
interferometers.

146 CHAPTER 4. IMPROVEMENTS

4.2 RF amplitude-dependent phase shifts

As described in Section 3.6.1, we construct the adiabatic transfer pulses by varying

the rf amplitude to two acousto-optic modulators: the shaping AOMs. We vary the rf

amplitude by passing a Þxed amplitude 40 MHz signal through two separate voltage-

controlled variable rf attenuators shown in Figure 3.22, where the voltage control is

provided by the computer. The variable rf attenuators are fundamentally rf diodes

that are forward biased by the control voltage. If the bias voltage is zero, the diodes

do not conduct and present a large impedance to an incident rf signal. As the bias

voltage increases above zero, the effective impedance seen by the rf signal shrinks to

arbitrarily small values. Relative to the input rf signal, this impedance both reduces

the amplitude and shifts the phase of the output rf signal. As a function of input

control voltage, the transmission and the phase shift through the variable rf attenuator

traces out the current-voltage curve of the diode. As discussed in Section 3.6, because

the amplitude curve is strongly non-linear we must correct the control voltage in

order to produce a linear response in the output rf amplitude. Here, however, we are

concerned about the phase shift. Because this rf amplitude-dependent phase shift is

present on the rf signal launched into the crystals of the shaping AOMs, it will also be

transfered to the interferometer laser beams. In their current conÞguration (see Figure

3.9), the two shaping AOMs defract the light in opposite directions, one with the

direction of the propagating sound wave and one against the sound wave. Thus, if the

rf signal to the F =3 shaping AOM changes by phase ∆φ(ON−OFF) = φ3 from on to
off, the optical phase of the F =3 beam will change by +φ3. On the other hand, if the

rf signal to the F =4 shaping AOM changes by phase∆φ(ON−OFF) = φ4, the optical
phase of the F =4 beam will change in the opposite direction by −φ4. Thus, the phase
difference between the Raman beams which is what the atom interferometers sense

would change by φ3− (−φ4) = φ3+φ4. So, even if the phase change were exactly the
same for each shaping AOM (φ3 = φ4), the effect would not cancel; it would add.

To reduce this rf-amplitude dependent phase shift, we introduce a �phase shifter�

into the rf path for the F =3 and F =4 shaping AOM signals. These phase shifters

are also rf attenuators, except they are chosen because they have a larger phase

4.2. RF AMPLITUDE-DEPENDENT PHASE SHIFTS 147

�	�������
�

:<2@
�-2

�
(

4�����1� /� ����� �������

/� �� /� ;6�

9�����1
4�1��3�

$�	��
;6�

9�����1

��
!�	�"���	��	

�	�������
�

:<2@
�-2

�
(

Figure 4.3: RF phase shifter used to correct for the phase variation of the variable radio
frequency (rf) attenuators shown in Figure 3.22. The phase shifter consists of two rf ampliÞers
and a Watkins Johnson model G30 variable rf attenuator. A single supply operational ampliÞer
(not shown) buffers the input control voltage to provide the bias for the G30. The G30 was chosen
because it has an especially large propagation phase change over its full range of attenuation. By
saturating the ampliÞers and operating the G30 in a bias regime where its attenuation is relatively
ßat, the change in attenuation through the whole device can be reduced to less than 0.3 dB whereas
the phase changes by more than 2 rad.

change for the same change in attenuation. We use the phase shifters to counteract

the phase variation of the original variable rf attenuators. In a steady-state limit,

there is a one-to-one mapping between the 12-bit digital value stored in the AWFG

board memory and the phase shift that the rf attenuators will apply. As described

in Section 3.6.1 the 12-bit integer is converted to an analog voltage by the AWFG

board. This analog voltage is used to bias the rf diodes inside the rf attenuator.

For this particular voltage value, the attenuators will attenuate and phase shift the

input signal by a certain amount. Now for the phase shifter, there is a particular

bias voltage that causes it to shift the phase of the incoming rf signal by an amount

equal and opposite from that due to the variable rf attenuator. Thus, the phase shift

from the variable attenuator can be compensated for by a particular bias voltage for

the phase shifter. In the same way we constructed the numerical transform pa(x) to

compensate for the non-linear amplitude response of the variable rf attenuator (see

Section 3.6.1), we can construct another transform pφ(x) to compensate for its phase

shift.

For each of the two channels, the phase compensation system includes an addi-

tional 12-bit DA converter and two 128×8-bit ßash memory chips which store the

148 CHAPTER 4. IMPROVEMENTS

conversion waveform pφ(x). The system�s inputs are a copy of the AWFG board�s in-

ternal sample clock and a copy of the 12-bit binary values x3 and x4 which the AWFG

board converts to an analog voltage for the F =3 and F =4 output channels. For the

F =3 channel, for instance, on every sample clock edge, the phase compensator uses

the 12-bits of x3 to index the two 8-bit memory chips in parallel. The two 8-bit

values from the contents of the two memory chips are combined into a single 12-bit

value pφ(x3) and 4 additional binary values. The 12-bit output pφ(x3) from the two

memory chips is then converted to an analog voltage ranging from −5 to +5 V. This
analog voltage goes to the F =3 phase shifter and biases it for the particular phase

value required to cancel the phase shift the F =3 variable rf attenuator applies when

it is biased with the individual amplitude control voltage pa3(x3). Note that even if

the attenuation through the phase shifter also varies somewhat with its control volt-

age, we can compensate for this variation by slightly modifying the transforms pa(x).

For this reason, the linearization of the amplitude was performed after installing the

phase shifters.

To determine the transforms pφ(x), we sample the phase of the variable rf atten-

uators φa(x) when its control voltage v(x = 0 . . . 4095) is ramped linearly. We also

determine the same curve φφ(x) for the phase shifter. By inverting this last function

we determine the digital control value X(φ) = φ−1φ which produces the phase shift

φ at the phase shifter. The phase transformation then becomes pφ(x) = X(φa(x))

for each possible value of x. To verify that this is in fact the correct transforma-

tion, we perform the same measurement but instead of a linear ramp for the phase

shifter�s control voltage we apply the transformed ramp v(pφ(x = 0 . . . 4095)). This

Þrst iteration cancels most but not all of the phase from the variable attenuators.

The phase error remaining after applying this transformed ramp we use to slightly

correct the phase transform. We arrive at the Þnal phase transformations pφ(x) af-

ter no more than two iterations. Figure 4.4 shows the corrected and uncorrected

phase response. The peak-to-peak variation of the corrected phase for each channel

is less than 100 mrad, or more than an order of magnitude better than the ∼ 1 rad
peak-to-peak uncorrected phase change.

This phase compensation system functions in a feed-forward manner in the sense

4.2. RF AMPLITUDE-DEPENDENT PHASE SHIFTS 149

Time (µs)

0 10 20 30 40 50

P
h
as

e
(r

ad
)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

F=3

max

min

int
en

sit
y c

on
tro

l

Time (µs)

0 10 20 30 40 50

F=4

min

max

int
en

sit
y c

on
tro

l

Figure 4.4: Correction of the rf-amplitude dependent phase shifts from the variable rf
attenuators. Over 50µs, the variable attenuators driving the F =3 and F =4 shaping AOMs are
ramped from maximum (min) to minimum (max) attenuation. The resulting phase of the rf output
relative to a Þxed 40 MHz reference is shown in thick gray. To reduce this phase variation, we insert
an rf phase shifter before each attenuator. We map out the phase versus control voltage response of
these phase shifters and invert the resulting functions. Then, with the uncorrected phase response
of the attenuators as an input, we apply the phase shifter transforms and determine the control
voltages required to make the phase shifters exactly cancel the phase response of the attenuators.
The variations with this feed forward system in place are shown in thin black. The corrected peak-
to-peak variations are over an order of magnitude smaller than the uncorrected responses.

that it does not detect the phase change but knows in advance what the phase change

will be. This works well as long as there is a one-to-one correspondence between

the digital control value x and the amplitude and phase values resulting when the

control voltages va(pa(x)) and vφ(pφ(x)) are applied to the variable rf attenuator and

phase shifter, respectively. In steady-state this is always true, but dynamically if the

amplitude control voltage va(pa(x)) changes slightly differently than does the phase

control voltage vφ(pφ(x), there will be a transient glitch as the phase shifter fails to

precisely cancel the phase shift from the variable attenuator. To minimize this effect,

we also tested the phase compensation system on the fastest possible ramp, when the

value x changes from 0 to 4095 in one sample clock cycle. By tuning the delay and

the time constant of the phase control voltage channels, we were able to reduce the

glitch to the same size or smaller than the 100 mrad remnant phase deviation left

over from the steady-state solution shown in Figure 4.4.

150 CHAPTER 4. IMPROVEMENTS

4.3 Beam collimation

The dependence on the Raman beam collimation is discussed in Section 6.1.1. By

taking more data and using a better collimation tester, we reduced the uncertainty

and eliminated a possible systematic error in our determination of the location of

the Gaussian focus of both beams. Originally, we used a shear-plate collimation

tester model 09SPM003 from Melles Griot. An incoming beam incident at 45◦ will

reßect off both surfaces of the shear plate. The interference pattern from these two

reßections can then be observed on a screen. In the direction of the shear, because

the thickness of the glass plate varies, the propagation path difference and thus the

phase between the two reßections changes across the beam. If the beam is exactly

collimated, the resulting fringes will appear exactly orthogonal to the shear direction.

If the beam is not collimated, the fringes appear to rotate about this direction, in one

direction for a diverging beam and in the other direction for a converging beam. This

collimation tester is extremely easy to use, because it produces a signal that is linearly

proportional to the deviation from collimation. However, its accuracy is limited by

how accurately the reference line is aligned to the shear direction of the plate. If the

reference is off or if the angle of incidence of the incoming beam is slightly wrong, the

collimation point can be systematically wrong.

A collimation tester with fewer potential systematic errors incorporates a parallel-

plate instead of a shear-plate. Just as with the shear-plate, the interference between

the reßection from both surfaces of the parallel-plate are observed on a screen. Unlike

the shear-plate, however, the fringes from this interference pattern do not appear

as lines. For an uncollimated incident beam, they appear as rings. As the beam

approaches collimation, these rings expand until one central fringe occupies the entire

region of overlap when the beam is perfectly collimated. If the central spot is always

dark, one can readily collimate the beam by minimizing the amount of light visible at

the screen. However, because this central spot can vary from bright to dark when the

propagation path difference between the two reßections changes by as little as half an

optical wavelength, in practice it is very difficult to keep the central spot dark. One

common solution is to dither the angle of incidence of the plate slowly back and forth.

4.3. BEAM COLLIMATION 151

Since the propagation path difference depends sensitively on the angle of incidence,

the interference phase difference shifts by several cycles. When the interference spot

appears to ßash on and off completely, the beam is collimated.

z-position of collimating lens (cm)

2 3 4 5 6

In
te

gr
at

ed
 l
ig

h
t

in
te

n
si

ty
 (

ar
b
)

0.0

0.5

1.0

collimation
point

Figure 4.5: Collimation of the bottom Raman beam. A four inch diameter 1.6 cm thick
precision parallel plate is placed in the bottom Raman beam above the vacuum chamber at an angle
of incidence of roughly 45◦. The incident Raman beam reßects off of both of the plate�s uncoated
surfaces onto a white screen placed to one side that is imaged by a video camera. Where the two
reßections overlap, they interfere and produce fringes whose spacing is linearly proportional to how
parallel the laser�s wavefronts are at the plate. A piezoelectric transducer (PZT) slightly varies the
incidence angle of the plate and thus adds a controllable propagation phase difference between the
two reßections. By controlling the voltage across this PZT, one can Þx the phase difference between
the reßections so that the center fringe is dark. If the laser�s incident wavefronts are parallel,
the entire overlap region will consist of one dark fringe and the integrated light intensity will be
minimized. As the wavefronts acquire some curvature, however, the spacing of the interference
fringes shrinks and the minimum achievable light intensity increases. By recording the integrated
video signal for different longitudinal positions of the collimating lens and Þtting these data with
the function A|z− z0|+B, we can determine the lens position z0 that collimates the beam to within
a statistical limit of ±0.014 cm, which corresponds to a lower limit for the radius of curvature of
∼27 km.

The method we use is slightly different, requires less operator skill, and is more

repeatable. We image the screen with a video camera and observe the video signal on

an oscilloscope. After capturing the entire screen of the video signal, we can integrate

to obtain a numerical value for the total light incident on the screen. By controlling

the incidence angle with a piezo-electric actuator, we can manually constrain the

152 CHAPTER 4. IMPROVEMENTS

interference phase so that the central fringe stays dark long enough for us to capture

the signal. We move the collimating lens toward and away from the source and at each

step, we Þx the lens, and acquire a total integrated light signal. As the lens moves

away from the collimation point in either direction, the fringes become smaller and

the minimum integrated light signal increases. The data from the bottom collimating

lenses is shown in Figure 4.5. Fitting these data by an absolute value function,

we obtain the position of the lens which minimizes the integrated light to within a

statistical limit of ±0.14 mm. The top collimating lens is aligned in the same manner

to a similar limit of ±0.17 mm. As a conservative upper limit, we estimated that both

lens are positioned to within ±0.2 mm, which corresponds to an uncertainty in the

position of the Gaussian focus of 6.2 m and a maximum inverse radius of curvature

of 5.2× 10−5m−1.

This collimation procedure is systematically limited only by the ßatness of the

parallel-plate. Our 4-inch diameter parallel plate comes from a collimation tester

originally sold by Blue Sky Research. Although, this company no longer makes beam

collimators, they referred us to the original optics designer who made the parallel

plates [49]. He estimates that it is ßat to better than 0.5µrad. Using the above

method to collimate a 1 cm Gaussian radius beam with a 0.5µrad wedged plate would

set the local radius of curvature to ∼ (1 cm)/(0.5µrad) = 20 000 m, approximately

the same as our statistical uncertainty.

4.4 Relative angular alignment of beams

The photon recoil measured in this experiment derives fundamentally from the stim-

ulated absorption of an optical photon with wavevector k1 from one laser and the

stimulated emission of another optical photon with wavevector k2 into another inde-

pendent laser beam. The Þrst process is absorption and the second process is emission,

so the effective wavevector determining the net momentum recoil of the atom is the

vector difference of the two wavevector

keff = (k1 − k2) (4.10)

4.4. RELATIVE ANGULAR ALIGNMENT OF BEAMS 153

Choose a coordinate system so that k1 = k1(0, 0, 1). Ideally, the second laser beam

exactly counterpropagates with respect to the Þrst k2 = −k2(0, 0, 1), so that the size
of keff is

|keff | = keff = |k1 − k2|

= |k1(0, 0, 1)− [−k2(0, 0, 1)]|

= |(0, 0, k1 + k2)|

= (k1 + k2) (4.11)

If, however, the second laser is slightly misaligned from the Þrst such that k2 =

−k2(sin θ, 0, cos θ), equation (4.11) becomes

k0eff = |k1(0, 0, 1) + k2(sin θ, 0, cos θ)|

= |(k2 sin θ, 0, k1 + k2 cos θ)|

= (k2
1
+ 2k1k2 cos θ + k

2
2)
1/2 (4.12)

Because the recoil frequency is proportional to k2eff , the fractional error in the recoil

measurement will be

(k02eff − k
2
eff)/k

2
eff =

h
(k2
1
+ 2k1k2 cos θ + k2 + 2)− (k1 + k2)2

i
/(k1 + k2)

2

= 2k1k2[cos θ − 1]/(k1 + k2)2

' 2k1k2[(1− θ2/2)− 1]/(k1 + k2)2

= 2k1k2[−θ2/2]/(k1 + k2)2

' −k2θ2/(2k)2

= −θ2/4 (4.13)

where the Þrst approximation assumes θ ¿ 1 and the second approximation assumes

that k1 ' k2 = k. Thus, a beam misalignment of only 63µrad will shift our measure-

ment of the recoil frequency down from the actual value by 1 ppb.

To guarantee that the beams are collinear to this limit or better, we align one

154 CHAPTER 4. IMPROVEMENTS

beam to the other using pinholes. A simpliÞed diagram of the beam path and relevant

optics are shown in Figure 3.11. Each beam emerges from its Þber, is focused by a

microscope objective to a Gaussian beam diameter of 114µm, near which it passes

through a pinhole of diameter 343µm. It then freely expands to a diameter of ∼2 cm
before it is collimated by a 2 m focal length lens. Between the two collimating lenses

the beams overlap at the atoms. The two pinholes provide two reference points so

that if it were not for the lenses, whenever both beams passed through both pinholes,

they must be overlapped everywhere. With the lenses between the pinholes, however,

this no longer holds true. Consider the case when the top pinhole is placed f − ²T
before the top lens and the bottom pinhole is placed f + ²B after the bottom lens.

In the limit of ²T ¿ f and the distance between the two lenses ' f , after both

lenses the image plane of the top pinhole is approximately f + ²T from the bottom

lens. If ²B = ²T, the bottom pinhole will be in the image plane of the top pinhole.

Consider now what happens when we control the input angle of the top beam to

try to overlap it with the bottom beam which already passes through both pinholes.

Because the two lenses image the pinholes on top of each other, no matter at what

angle the top beam passes through the top pinhole it will always make it through

the bottom pinhole. On Þrst glance, if the pinholes happen to image each other,

this alignment procedure seems to fail completely. However, it fails only if we ignore

where the top beam intersects the top lens. If we can center the top beam on the

top lens to within ∆x, then we can constrain the input angle to roughly < ∆x/f .

Since the ratio of the angle after the lens to the input angle is ²T/f , the angular

deviation between the lenses should be < ∆x²T/f
2. Since the confocal parameter for

a beam with a Gaussian waist diameter of 114µm is ∼ 11 mm, it is reasonable to
assume that ²T < 5 mm. Assuming we can spatially overlap the beams between the

lenses to within ∆x < 1 mm, this limits the angular error from the lenses imaging the

pinholes onto each other to < (1mm)(5mm)/(2m)2 = 2.5µrad. However, to avoid

this problem completely, we set the top pinhole as close as possible to the geometric

focus of the top lens and the bottom pinhole over 30 mm away from the geometric

focus of the bottom lens. To Þnd the geometric focus of the top lens, we measure

its focal length and then put the pinhole this exact distance away. To measure the

4.4. RELATIVE ANGULAR ALIGNMENT OF BEAMS 155

focal length of the lens we measure the distance from the lens where two incident

parallel 1 mm diameter beams from a helium-neon laser intersect. We Þnd the point

of intersection with a quadrant detector and then measure the distance to the detector

using two calibrated rods of lengths 37.000 and 39.000 inches and a precision caliper.

Since we know the lens is made from BK7 we can correct for the wavelength difference

between He-Ne and our wavelength of 894.6 nm. With our calculated value for the

focal length at 894.6 nm we again use the calibrated rods to set the pinhole this exact

distance from the lens. Accumulating all of the possible measurement uncertainties,

we estimate an error of ±0.5 mm in positioning this pinhole at the focus. For the

bottom pinhole, since we intentionally want to avoid the focus, we need only to use

the diverging beam size to guarantee that we are well away from the geometric focus

of the lens. With the bottom pinhole at least 30 mm away from the focus, even with

our ∼0.5 mm uncertainty in determining the correct position of the top pinhole, ²B

will always be much greater than ²T, thus insuring that the pinholes never lie in each

other�s image plane.

In fact, the limit from this effect is smaller than the fundamental limit of our

ability to center the beams on the pinhole. Because the top pinhole is so close to

the focus of the top lens, the bottom beam will almost always also pass through it.

Therefore, in order to make the beams parallel at the atoms, we need only direct

the top beam backwards through the bottom pinhole. At 30 mm from a Gaussian

focus diameter of 114µm, the beam diameter is roughly the same as the pinhole

diameter. We estimate that we can readily detect as small as a 5% drop in the

power transmitted through the pinhole. By numerically integrating the transmission

of a two-dimensional Gaussian through a circular aperture and inverting the resulting

curve, we estimate that a tranmission of 95% corresponds to a relative beam-pinhole

displacement of ∼0.3 of the pinhole and beam diameter which is ∼120µm, indicating
an error of around ±60µm. Over the 2 m focal length of the lens, this corresponds to

angular alignment error of ∼±30µrad, which is a an error in the recoil frequency of
−0.25 ppb, 64 times better than the previous limit with no pinhole.

156 CHAPTER 4. IMPROVEMENTS

4.5 Intensity matching

Effects which depend on the particular pulse shape may not cancel if the light level

from the two optical frequencies and two possible beam directions are not all equal.

Simulations indicate that if the difference frequency does not change to match the

Doppler shift due to the gravitational acceleration during the π/2-pulses, the atoms

will not be able to exactly follow the evolution of the dark state deÞned by the light.

At the end of a π/2-pulse, the atoms will be in a state with a slightly different phase

from the phase of the dark state. At the end of the interferometer the accumulated

phase from this effect will change the Þnal interferometer phase difference. Fortu-

nately, the conjugate interferometer exhibits exactly the same phase shift and the

effect cancels. However, an imbalance ∆I/I of the beam intensities can prevent this

effect from canceling exactly. During the second and third π/2-pulses, the roles of

the F =3 and F =4 light are opposite in the conjugate interferometer. If the amount

of F =3 light emerging from one Þber is not the same as the amount of F =4 light

emerging from the other Þber, the atomic state will slip away from the dark state by

a different amount for an interferometer and its conjugate. Because the phase slip

is not exactly the same, some of the effect remains after subtracting the Þnal phase

of the two interferometers. Simulations indicate that as much as 20 mrad of phase

difference remains if the difference frequency is not chirped to compensate gravity

and one of the four light levels (F =3 up, F =4 down, F =3 down, F =4 up) is 10%

lower than the three others. For imbalances less than roughly 50%, the remaining

uncanceled phase scales linearly with the fractional imbalance. Because the level of

cancelation in the experiment may be even less than the simulation indicates, we at-

tempt to avoid this problem by 1) chirping the difference frequency during the pulses

to match gravity (see Section 3.6.3) and 2) balancing the beam intensities to better

than 10%.

To balance the beam power levels, we measure the optical power in the center of

each beam using an EG&G Optoelectronics model FND-100 photodiode placed just

above the top window of the vacuum chamber. We program real interferometer pulse

shapes into the synthesizers and run interferometer 2 with no π-pulses. By measuring

4.6. CRYSTAL FILTERS 157

the light level at the end of the Þrst and third π/2-pulse and at the beginning of

the second and fourth π/2-pulse, we can directly observe the light levels for the

F =3 and the F =4 emerging from one of the Þbers. At these times during the π/2-

pulses, both the F =3 and F =4 beams are on at the same time. The Þnal phase

of the interferometer is most sensitive to deviations from the dark state during these

times, because at these points in the interferometers the dark state is a coherent

superposition of two pure states. To measure the remaining two light levels, we ßip

the photodiode to look at the other beam coming from the opposite direction. We

make slight adjustments to the λ/2-plate before the polarizing F =3/F =4 power

splitter and then use two of the variable switchyard controls to maximize the light

level when all of the four levels are equal to within ∼3%.

At early stages of this experiment, before the beam intensity balance was con-

trolled, we estimate that the imbalance could have been as high as 30%. By measur-

ing the beam balance several times during a long data taking run, we observed that

the beam balance drifts by as much as 10% over many hours. In addition to ran-

dom drift, because the atoms are inside the vacuum chamber and we are measuring

the light outside the chamber on the other side of the top window, any transmis-

sion loss through this window will result in a systematic imbalance between the top

and bottom beams. However, because this window is anti-reßection coated, it�s total

transmission loss will be less than ∼1%. Since this systematic imbalance is much less
than the peak-to-peak random drift, we did not attempt to compensate for it. Also,

since we are chirping the difference frequency to keep the atoms always in resonance,

an additional effect from any remaining beam imbalance should be further reduced.

4.6 Crystal Þlters

All of the precision frequencies in the experiment are derived from the LORAN C

reference signal at 10 MHz. This sinusoidal signal is passively quadrupled to generate

40 MHz, which is used to generate the 20 MHz TTL signal which replaces the internal

clock of the AWFG board. A copy of this 40 MHz signal is passively doubled again

to generate 80 MHz used to drive the F =3 AOMs of the switchyard. A copy of the

158 CHAPTER 4. IMPROVEMENTS

80 MHz is mixed with another copy of the 40 MHz signal to generate the 120 MHz for

the common switch AOM. A 100 MHz VCO is phaselocked directly to the 10 MHz

reference by dividing its output frequency by 10. This 100 MHz signal is mixed with

another copy of the 80 MHz signal to generate the 180 MHz reference for the tracer

phaselock. Since all of these reference frequencies are based on a multiplication of

the original 10 MHz reference, they all have some remnant amplitude modulation

sidebands at integer multiples of 10 MHz. This amplitude modulation is transferred

directly to the lasers via any of the AOMs which diffract the beams. As discussed in

Section 6.2.6, whenever the DDS�s output frequency tunes near one of these sidebands,

the two frequencies can mix down and add phase noise to the laser light at frequencies

that affect the transfer efficiency and possibly systematically alter the phase of the

interferometers. To minimize this affect we avoid tuning the DDS close to these �bad

frequencies�. As an addition precaution, we have installed crystal Þlters on the 40, 80,

and 180 MHz reference frequencies. These Þlters have resonances that are typically

less than 100 kHz wide, so all sidebands offset by integer multiples of 10 MHz are

signiÞcantly reduced.

4.7 Dynamic response of the Raman beam AOMs

As shown in Figure 4.6 when the 40 MHz signal going to the radio-frequency (rf)

ampliÞer driving the F =4 shaping AOM is switched on rapidly, the diffracted light

intensity ßuctuates repeatably in time. These ripples did not depend on where the

incident light beam passed through the AOM crystal. And, when we replaced the

model P300AM-33 TronTech ampliÞer with an IntraAction PA-1264 better designed

for switching, the ßuctuations went away. Because the F =3 shaping AOM exhibited

the same behavior, its TronTech ampliÞer was also replaced with one from IntraAc-

tion. Although they do not shape the adiabatic transfer pulses, we also veriÞed that

the switchyard AOMs did not produce this intensity ripple.

While it is not clear whether these repeatable intensity ßuctuations will system-

atically shift the interferometer phase, we swapped the ampliÞers in and out while

taking data and found that it did not signiÞcantly reduce the systematic phase shift

4.7. DYNAMIC RESPONSE OF THE RAMAN BEAM AOMS 159

Time after control signal (µs)
-10 0 10 20 30 40

D
if
fr

ac
te

d
 l
ig

h
t

in
te

n
si

ty
 (

ar
b
)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.6: Switching behavior of the F =4 shaping AOM. The intensity of the diffracted
order when the acousto-optic modulator is driven with the original radio-frequency (rf) ampliÞer
(wide gray line) exhibits ∼7% peak-to-peak ßuctuations on the time scale of several µs. As shown
by the thin dark line, when just the driving rf ampliÞer is replaced with one better designed for
switching, the ßuctuations vanish.

from the π/2-pulses discussed in Section 6.7.

Chapter 5

Results

5.1 Interferometer data

Using the accepted values for h̄/mCs and λ(CsD1) we can calculate an �accepted�

value for the recoil frequency frec deÞned in Section 1. As other more precise mea-

surements are made this accepted value will change. Since it allows us to more easily

compare data taken at different times, we do not update our value of frec to match

the current accepted value. Instead, we Þx the lab value of the recoil frequency to

a somewhat arbitrarily chosen value1 of fÞx = 15 006.278 875 Hz, which differs from

the real value by less than several hundred parts per billion (ppb). It is of course

the goal of this experiment to determine exactly how much this value differs from the

real value. In this work, recoil data will always be presented as a difference from this

Þxed value, ∆frec = fmeasuredrec − fÞx in units of Hz. Or, more commonly in units of
ppb, ∆frec = (f

measured
rec − fÞx)/fÞx × 109 = (fmeasuredrec /fÞx − 1)× 109

In the lab, we use this Þxed recoil frequency to program the frequencies of our

local oscillator, which is the difference frequency between the two Raman lasers for

each light pulse. We program the pulse shape and beam direction data for the desired

interferometer geometry into the synthesizers. We collect the atoms in a MOT and

launch them vertically. After the atoms enter the magnetically shielded region inside

the vacuum chamber, we trigger the programmed interferometer pulse sequence. The

1In fact, this value is close to the best accepted value as of March, 1998.

160

5.1. INTERFEROMETER DATA 161

pulses of light split and then recombine the atomic wavefunctions of the atoms. If the

two arms of the interferometer recombine coherently, the number of atoms emerging in

one of the ground states will vary according to the total phase difference between the

two arms of the interferometer. As discussed in Section 2.1, this Þnal phase difference

is zero only if we have the truly correct value for the recoil frequency (and possibly the

gravitational acceleration) programmed into our synthesizers. If we do not use the

correct value, then a different number of atoms will emerge from the interferometer.

In principle, when we detect the signal proportional to this number, we can deduce

the interferometer phase difference. However, in order to make this conversion, we

must know the contrast exactly, and we must also know that variations of the signal

result only from the interferometer phase difference and not from ßuctuations in

detection efficiency or in the number of atoms launched from the MOT. To make

the phase measurement independent of the contrast and hence much less sensitive to

signal amplitude ßuctuations, we must Þnd some way to scan across an entire fringe

period by adding a controllable amount to the interferometer phase difference. We

accomplish this by changing the Raman laser difference frequency of the Þnal two

π/2-pulses by a small amount fs. Because our lab-based frequency reference now

oscillates at a slightly different frequency between the Þnal two π/2-pulses, over the

time T a phase shift φ = 2πfsT will accrue. If before every launch we change the value

of fs by a fraction of the fringe spacing 1/T , we can trace out one or more fringes from

minimum to maximum value. Each data set for one interferometer geometry consists

of an array of 51 points [fs(i), a(i)], where fs(i) is the offset from the calculated center

frequency, a(i) is the signal size at that offset frequency, and i = 1, 2, . . . , 51. The

frequency span is always chosen to include exactly Þve fringes: fs(51)− fs(1) = 5/T .
A non-linear least-squares Þt routine (see Appendix C.2 for Þt program) using the

Levenberg-Marquardt method of root Þnding [50] Þts the data [φ(i) = 2πTfs(i), a(i)]

by the function

fÞt(φ) = A[1 + C sin(Bφ+D)] (5.1)

where A, B, C, and D are the adjustable parameters of the Þt. This function is

a sinusoid of amplitude AC about offset A with phase scaling factor B and phase

162 CHAPTER 5. RESULTS

offset D. The contrast deÞned as (amax − amin)/(amax + amin) is given simply by
((A + AC) − (A − AC))/((A + AC) + (A − AC)) = (2AC)/(2A) = C. In the limit
that we exactly know the fringe spacing 1/T , Þt parameter B should always be unity.

When we allow the Þt routine to adjust B, its value varies randomly by at most

±2% centered on 1. Since this ßuctuation is larger than any possible experimental

variation of the value T , we attribute it to the statistical limit of determining the

oscillation period of a sinusoid using only a Þnite number of points. For this reason

we set B = 1 and do not allow the Þt routines to vary it2. The Þnal parameter D

is the measurement result. It represents the amount of phase or frequency we must

shift our Þxed value for the recoil frequency to arrive at the actual value.

Of course, because of its dependence on detunings and particularly the local grav-

itational acceleration, the parameter D emerging from a single interferometer is not

enough to derive a sufficiently accurate value for the recoil shift (see equation (2.21)).

At the very least we must also measure the phase from the conjugate interferometer

geometry (2 with 1 and 4 with 3) in order to get a single measurement of the

recoil frequency. To get the best cancelation of the unwanted common dependencies,

we should measure both interferometer geometries simultaneously. Unfortunately,

because a dark-state transfer �π/2-pulse� cannot transfer atoms from a superposi-

tion state to both pure states simultaneously, only one interferometer geometry can

be constructed at one time. As a compromise, however, at each point we alternate

between interferometers. If we were taking data using interferometer geometries 1

and 2 , for instance, for the Þrst launch we would build 1 . For the next launch we

would reprogram all of the synthesizers to build to interferometer 2 . For the third

launch would reprogram the synthesizers back to 1 and so on. After 102 launches,

each time switching between interferometers 1 and 2 , we would have 51 points

from each interferometer taken at almost exactly the same time. Only ßuctuations

occurring on the time scale or faster than the launch repetition rate of 1/0.908 s,

would not cancel. On the other hand, because it takes at least 10 launches to acquire

a full fringe cycle, ßuctuations on the scale of ∼ 1 s or faster would appear as noise

2The possibility that an uncertainty in the value of T contributes to a systematic error is discussed
in Section 6.6.3.

5.1. INTERFEROMETER DATA 163

on the fringes and should not change the Þnal phase difference between the two inter-

ferometers. To achieve the best common-mode cancelation, all of our interferometer

data are taken either by switching between 1 and 2 and then between 3 and 4

or by alternating between all four interferometers 1 , 2 , 3 , 4 , 1 , 2 , 3 , 4 , etc.

We now present the data from a single set of interferometer fringes for three

representative conÞgurations: T = 5 ms with 30 π-pulses, T = 120 ms with 30 π-

pulses, and T = 120 ms with no π-pulses. In each case the data appear as we see

them on the computer screen. The vertical axis is the integrated signal from the

photomultiplier tube (PMT) that is proportional to the number of atoms in the F =4

state. Because of the magnetic sublevel sensitive transfer from the DF Raman laser

discussed in Section 3.1.6, this F =4 signal is proportional to the number of atoms

emerging from the interferometer in the F =3,mF =0 state. It is scaled to the Þt

parameter A from equation (5.1) of interferometer 1 . The horizontal axis is the two-

photon difference frequency offset of the third and fourth π/2-pulse from their center

frequencies giving by ±(N+1)fÞx, where the sign is determined by the interferometer

geometry and N is the number of π-pulses. This axis spans exactly Þve fringes, or

5/T .

Below the fringes are the resulting Þt parameters, A, C, and D from equation

(5.1) and the value of χ2. From the phase parameters D, we calculate the per recoil

frequency shift ∆f = −∆D/[2πT (N + 1)], which is the deviation from fÞx in Hz.

Averaging these corrections ∆fnorm and ∆finv from the normal and inverted interfer-

ometers, respectively, gives the result from a complete measurement of frec, given in

units of Hz and ppb relative to fÞx.

164 CHAPTER 5. RESULTS

Figure 5.1: Interferometer data for all four interferometers with T = 5 ms and N = 30
π-pulses.

f3,4 − (N+1)ffix (Hz)
-400 -200 0 200 400

0.0

0.5

f3,4 + (N+1)ffix (Hz)
-400 -200 0 200 400

P
op

u
la

ti
on

 (
ar

b
)

0.0

0.5

f3,4 − (N+1)ffix (Hz)
-400 -200 0 200 400

0.0

0.5

f3,4 + (N+1)ffix (Hz)
-400 -200 0 200 400

P
op

u
la

ti
on

 (
ar

b
)

0.0

0.5

1111 2222

3333 4444

Interferometer Geometry� ◦Fit

Parameter 1 Normal 2 3 Inverted 4

A (arb) 0.500 0(1 7) 0.342 0(1 7) 0.389 9(2 0) 0.456 2(2 0)

C (%) 20.49(47) 20.11(69) 20.23(74) 19.50(63)

D (rad) +1.456 7(23 3) +1.447 3(35 9) +1.537 7(36 9) +1.567 4(32 7)

χ2 1.068× 10−6 1.583× 10−6

∆f (Hz) −0.009 7(44 0) +0.030 6(50 6)

= +0.010 5(33 5) Hz
6666

1

2
(∆fnorm +∆finv)

= +349(1 117) ppb in fÞx

5.1. INTERFEROMETER DATA 165

Figure 5.2: Interferometer data for all four interferometers with T = 120 ms and N = 30
π-pulses.

f3,4 − (N+1)ffix (Hz)
-20 -15 -10 -5 0 5 10 15 20

0.0

0.5

f3,4 + (N+1)ffix (Hz)
-20 -15 -10 -5 0 5 10 15 20

P
op

u
la

ti
on

 (
ar

b
)

0.0

0.5

f3,4 − (N+1)ffix (Hz)
-20 -15 -10 -5 0 5 10 15 20

0.0

0.5

f3,4 + (N+1)ffix (Hz)
-20 -15 -10 -5 0 5 10 15 20

P
op

u
la

ti
on

 (
ar

b
)

0.0

0.5

1111 2222

3333 4444

Interferometer Geometry� ◦Fit

Parameter 1 Normal 2 3 Inverted 4

A (arb) 0.500 0(1 9) 0.355 3(1 9) 0.358 7(2 0) 0.490 0(2 0)

C (%) 17.22(53) 15.74(78) 16.83(79) 16.91(57)

D (rad) −1.862 4(32 8) −1.961 8(49 0) −1.413 3(49 4) −1.493 5(35 4)

χ2 3.564× 10−6 3.959× 10−6

∆f (Hz) −0.004 2(2 5) −0.003 4(2 6)

= −0.003 8(1 8) Hz
6666

1

2
(∆fnorm +∆finv)

= −128(60) ppb in fÞx

166 CHAPTER 5. RESULTS

Figure 5.3: Interferometer data for all four interferometers with T = 120 ms and N = 0
π-pulses.

f3,4 − (N+1)∆ffix (Hz)

-20 -15 -10 -5 0 5 10 15 20

0.0

0.5

f3,4 + (N+1)∆ffix (Hz)

-20 -15 -10 -5 0 5 10 15 20
P

op
u
la

ti
on

 (
ar

b
)

0.0

0.5

f3,4 − (N+1)∆ffix (Hz)

-20 -15 -10 -5 0 5 10 15 20

0.0

0.5

f3,4 + (N+1)∆ffix (Hz)

-20 -15 -10 -5 0 5 10 15 20

P
op

u
la

ti
on

 (
ar

b
)

0.0

0.5

1111 2222

3333 4444

Interferometer Geometry� ◦Fit

Parameter 1 Normal 2 3 Inverted 4

A (arb) 0.500 0(2 7) 0.540 1(2 7) 0.404 6(3 5) 0.415 1(3 5)

C (%) 19.42(78) 16.51(69) 23.08(1.25) 22.15(1.22)

D (rad) −1.916 4(38 5) −1.934 2(44 5) −0.931 9(53 4) −1.054 1(53 9)

χ2 1.345× 10−5 2.360× 10−5

∆f (Hz) −0.023 6(78 0) −0.162 0(100 7)

= −0.092 8(63 7) Hz
6666

1

2
(∆fnorm +∆finv)

= −3 093(2 122) ppb in fÞx

5.2. NOISE 167

We can use the results of Section (3.7.1) to estimate the full-width half-maximum

(FWHM) of the resonance lineshape that these fringes are superimposed on top of.

From Figure 3.33, the FWHM of 70µs long full intensity π-pulses is approximately

253 kHz. Since the π/2-pulses are 250/70 = 3.57 times longer and on average half

as intense, according to equation (3.23), they should be approximately (2(3.57))−
1
2 =

0.374 times as wide, or roughly 94.6 kHz. Even for the shortest interferometers

T = 5 ms, the total span 5/T = 5/5ms = 1 kHz is much smaller than this resonance

linewidth, and thus the curvature at the top of the lineshape is invisible in the data.

In Figure 5.1 we have measured the separation of the resonances to within roughly

0.15 Hz and thus identiÞed the center of each resonance to within approximately

1/
q
(2)(0.15Hz)/(95 kHz) = 1.1 × 10−6. The same number for the other two cases

are 5.9× 10−7 from Figure 5.2 with T = 120 ms and 30 π-pulses and 6.7× 10−7 from

Figure 5.3 with T = 120 ms and no π-pulses.

5.2 Noise

Random ßuctuations of the Þnal signal ultimately limit the precision with which we

can resolve the position of the fringes and determine the size of the recoil frequency.

For interferometer fringe signals of the form given in equation (5.1), there are three

general categories of noise: offset, contrast, and phase, corresponding to ßuctuations

of the parameters A, C, and D, respectively. Offset noise is a ßuctuation of the mean

value of the fringe signal that can be caused by variations in the number of atoms

launched from the MOT or small changes in the detection efficiency. It could also be

caused by variations in the efficiency of any of our adiabatic transfer π-pulses. Small

amounts of offset noise ∆A contribute a phase uncertainty of roughly ∆φ = ∆A/C,

where C is the interferometer contrast. Contrast noise is a variation of parameter

C. Fortunately, in the limit that the fringes can still be resolved, pure contrast noise

does not contribute to the Þnal phase uncertainty ∆φ. Finally, there is phase noise

which contributes directly to uncertainty of the Þnal signal.

As in Figure 5.2, the uncertainty∆D of the phase Þt parameterD after 51 launches

using a sensitive interferometer is typically less than 50 mrad, which is equivalent to

168 CHAPTER 5. RESULTS

an rms phase noise of roughly (50mrad)
√
51 ' 360 mrad per launch.

Launch signal

As described in Section 3.1.5 the most basic launch signal comes from a single pulse of

the probe laser. For magnetic sublevel sensitive detection (see Section 3.1.6), however,

we must add at least one Doppler-free (DF) π-pulse from the DF Raman laser and a

pulse from the clearing beam. The signal from a launch followed by pulses from the

three detection beams typically ßuctuates somewhere between 1.5% and 2.5%. By

temporarily removing the DF Raman transitions, we can verify that the DF Raman

transfer contributes roughly half, 1.1% to 1.8% of this root-mean-square (rms) offset

noise.

Signal background

In addition to the 51 fringe data points, we also take 3 background points to establish

a value for the true signal zero. To take a background point we detune the laser

difference frequency of the last two π/2-pulses by fs = fbkgnd = 1 MHz which is

much larger than the 100 kHz two-photon linewidth of these pulses and thus out of

resonance with the atoms. Because the Þnal two pulses do not address the atoms,

the only remaining signal is due to either 1) remnant cesium atoms from the launch,

2) trace amount of cesium vapor always in the vacuum chamber, or 3) scattering of

the probe beam into the photomultiplier tube.

By adding more π-pulses the signal can be made arbitrarily small, and conse-

quently the relative size of the background signal varies greatly. For most of the

data, however, this background is less than 10% of the signal level. The fractional

standard deviation of 50 background points taken one after the other is typically less

than 1.3%. If in the worst case this background is 30% of the signal, then background

ßuctuations will contribute no more than 0.3(1.3%) = 0.4% offset noise to the signal,

which is negligible compared to the noise on the launch signal

5.2. NOISE 169

Adiabatic transfer pulses

To investigate the amount of offset noise contributed by the adiabatic transfer π-

pulses, we set up a launch sequence similar to the one described in Section 3.7.1: one

velocity selecting π-pulse followed by N regular π-pulses, a clearing pulse, one DF

Raman π-pulse, and Þnally the detection probe pulse. For N >> 1, small variations

in the π-pulse efficiency can signiÞcantly vary the size of the Þnal signal. With 30

π-pulses, the adiabatic transfer π-pulses typically add from 1.5% to 2.9% rms offset

noise. This gives a total rms offset noise of 2.5% to 3.5%. With a worst case contrast

of 16%, this typical offset noise of around 3.0% corresponds to a phase noise of

0.03/0.16 ' 190 mrad, or just slightly over one third of the total phase noise.

The π/2-pulses indirectly contribute to the total noise. First, they establish the

interference contrast which determines how sensitive the Þtted phase uncertainty is to

offset noise. And more importantly, they are the vehicle by which the phase noise of

the lasers is transfered to the atomic wavefunctions. Motion of the laser wavefronts

applied both electronically by the frequency and phase locks and mechanically by

the motion of optics relative to the free falling atoms causes the interferometer phase

difference to ßuctuate from launch to launch. From the lock error signals we can set

lower limits on the contributions from the Raman phase lock loop (PLL), the tracer

PLL, and the vibration isolation (VI) system.

From the tracer and Raman PLL error signals we estimate lower limits of 6 mrad

and 14 mrad, respectively, on the rms phase noise greater than roughly 100 Hz. For

the VI system we take the closed loop error signal shown in Figure 3.17, apply the

sensitivity function in equation 3.18, and integrate from 0.01 to 100 Hz. This gives

a lower limit of 11 mrad on the rms phase noise due to motion of the interferome-

ter platform holding the top polarizing beamsplitter (PBS) cube. Even summed in

quadrature, these estimates are still too small to explain the ∼300 mrad not related
to offset noise.

One quite reasonable possibility that might account for the missing noise would be

if the true error signals from the various locks were signiÞcantly larger than the lock

error signal. Additional sources of noise that might make the true error signal of the

Raman PLL larger include 1) phase noise from the microwave reference or from the

170 CHAPTER 5. RESULTS

direct digital synthesizer (DDS), 2) noise from the detection and/or ampliÞcation of

the microwave beatnote, and 3) instabilities of the 9 GHz voltage controlled oscillator

(VCO) that are too fast for the Raman PLL, whose bandwidth is ∼ 200 kHz, to
correct.

The most likely culprit for increasing the true error signal of the tracer PLL

is the wavelength difference between the tracer and the Raman beams. Any mo-

tion or thermal variation of optics will cause an optical phase shift that depends on

the laser�s wavelength. Because the tracer and Raman laser wavelengths differ by

(2 nm)/(894.5 nm) ' 2.2%, the tracer PLL can reduce the phase noise of the Raman

beam by no more than this amount, even as the lock error signal goes to zero.

Another possible source of wavefront motion that the tracer PLL might not be able

to completely remove could be air currents from the room�s air conditioning system.

As air of different temperatures and densities moves across the beams it changes the

local index of refraction and thereby shifts the position of the laser wavefronts. To

minimize this effect, over the entire path length between the Þber outputs and the

vacuum chamber, plastic tubes and/or cardboard boxes are placed as close as possible

to the beams to shield both the Raman and tracer beams from any air currents.

Finally, for the VI system, there are numerous reasons why the lock error signal

may not represent the true motion of the interferometer platform. Besides the noise

ßoor of the accelerometer, because the accelerometer is not located exactly at the

top PBS cube, rotational motion such as the entire optical table or the VI support

structure tilting will not be exactly removed by the feedback system. Similarly, if

the accelerometer or the axis of the air bearing are misaligned from the Raman beam

direction, the motion detected by the sensor will not exactly match the motion of the

top PBS cube, and the feedback loop will not correctly cancel it out.

At separate times we have lowered the overall gain of each of these three feedback

loops, and each of the loop gains could be lowered by over a factor of 8 before the

Þt uncertainty ∆D of the Þnal interferometer phase increased noticeably. Given the

magnitude of each of these integrated error signals, this indicates that either 1) the

lock error signal is an accurate representation of the true error signal, or 2) the true

error signal is roughly 8 times larger than the lock error signal.

5.2. NOISE 171

We have investigated and improved each of these feedback systems and ultimately

achieved only marginal improvement of the Þnal phase uncertainty. From our general

experience running this experiment, it is clear that this Þnal uncertainty is not limited

by a single source of noise. Thus, improving the signal-to-noise by even less than a

factor of two would require redesigning and rebuilding a signiÞcant fraction of the

experiment.

Chapter 6

Checks for systematic errors

Proving that a measurement is correct to a certain level is an unending and somewhat

subjective process. One clearly inefficient approach is to turn every possible knob in

the experiment and verify that the Þnal result never changes. An alternate approach

is to think of all of the possible ways we could be systematically making the wrong

measurement and then either conduct tests for or convince ourselves through theo-

retical predictions that such each effect will be too small to make a difference. In the

end, both approaches are limited by our ability and the ability of our colleagues to

think of all of the possible knobs or different possible effects. Nevertheless, in this

section we group the possible systematic effects we have considered into general cat-

egories, discuss each effect, and present the experimental and/or theoretical reasons

for assigning a limit to how much it could affect the Þnal measurement result.

The photon recoil experiment provides many handles for testing potential system-

atic effects. Within a few seconds, we can alter the geometry of the atom interferom-

eter by changing the timing of the pulses, the number of π-pulses, the positions in the

fountain trajectories where the light-atom interactions occur, the intensity and shape

of the optical pulses, etc. We can also change the frequency offsets, polarization,

alignment and wavefront curvature of the laser beams and vary environmental factors

such as the magnetic bias Þeld. For each of these variables we use experimental tests,

theoretical predictions, and sometimes both to set limits on the possible measurement

error these variables will produce.

172

6.1. BEAMS 173

One of the most important variables we have is the free evolution time T . This is

the time between the Þrst and second π/2-pulses and between the third and fourth

π/2-pulses when the atoms evolve freely in a superposition of the hyperÞne ground

states. By varying T and using an analysis method that I developed, we can simul-

taneous measure and remove any Þxed phase error from the π/2-pulses. Because

the phase error from the π/2-pulses was the largest remaining systematic error, this

particular test above all others has made this measurement possible.

Many of the potential systematic effects are canceled because we always make two

measurements, one using an interferometer geometry which pushes the atoms down

and the other using the conjugate geometry which pushes the atoms up. As discussed

in Section 1.1, a single measurement of the recoil shift is the difference of these two

results, at which point many systematic errors subtract out. Also, we routinely change

the recoil direction of all of the interferometer pulses, thereby interchanging the role

of the up and down interferometers. The difference between the results from these

inverted interferometers provides another measurement of the recoil shift. Averaging

the results from the normal and inverted interferometers further reduces systematic

problems such as those that arise from the gravity gradient and from magnetic Þeld

shifts.

The results of this section are summarized at the end in Tables 6.2 and 6.3. We

Þnd a total systematic correction of +2.74 ppb to fÞx, or +82.23µHz. Summing the

systematic uncertainties in quadrature gives a total systematic uncertainty of 3.23 ppb

in the recoil frequency1.

6.1 Beams

The optical wavefronts act as the �spatial ruler� against which the evolution of the

atoms is compared. Consequently, our measurement is only as good as our ruler.

Anything which bends, shifts, or in some way distorts the position of the wavefronts

will affect the Þnal measurement. In Section 2.1 where we discussed how the lasers and

the atom�s free evolution contribute to the Þnal interferometer phase, we simpliÞed

1Remember that the uncertainty in α is half as much, or 1.62 ppb.

174 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

the problem by describing the lasers as plane waves with a single wavenumber keff .

Real lasers always have some Þnite spatial extent and propagate according to the wave

equation derived from Maxwell�s equations. The amplitude proÞle of the fundamental

TEM00 mode of a real Gaussian beam with wavenumber k = 2π/λ is described by

u(r, z) =
w0
w(z)

exp

"

−i (kz − Φ(z))− r2
Ã

1

w2(z)
+ i

k

2R(z)

!#

(6.1)

where

w2(z) = w20



1 +

Ã
λz

πw20

!2

 (6.2)

is the local 1/e beam radius,

R(z) = z



1 +

Ã
πw20
λz

!2

 (6.3)

is the local radius of curvature, and

Φ(z) = tan−1
Ã
λz

πw20

!

(6.4)

is the Guoy phase. Even located on axis (r = 0) exactly at the focus when z = 0

with no distortion, the wavefront spacing differs from k = 2π/λ because of this last

term. On axis, the local wavefront gradient will be modiÞed by

∆k = −
∂Φ

∂z
=

−1
1 + (z/z0)

2

1

z0
(6.5)

where

z0 =
πw20
λ

(6.6)

is the confocal parameter. Evaluating equation (6.5) at the focus when z = 0, the

fractional change in the wavenumber

∆k

k
= −

∂Φ

∂z

¯̄
¯̄
z=0

µ
1

k

¶
=

Ã
−λ
πw20

!Ã
λ

2π

!

=
−λ2

2π2w20
(6.7)

6.1. BEAMS 175

For our laser beams with λ = 894.60 nm and w0 = 0.9565 ± 0.074 cm, we have

∆k/k = −0.4432 ± 0.0069 ppb, which requires us to correct the recoil frequency
measurement by twice as much or +0.886 ± 0.014 ppb. Besides this fundamental

correction, there are many other ways in which the laser wavefronts we have in the

lab differ from the ideal. In this section, we will discuss these differences and the

issue of beam polarization.

6.1.1 Wavefront curvature

In Section 4.3 we discussed our improved method for positioning the collimating

lenses so that the 2 cm diameter Gaussian focus of each beam is no more than ∼6 m
away from the atoms. As one moves away from the focus of one of the beams, the

magnitude of the local wavefront gradient changes as shown in Figure 6.1. The change

is relatively small for movement along the axis of the beam compared to the much

more rapid change as one moves radially outward from the beam center. In order

to arrive at a reasonable upper limit for the maximum wavefront curvature change

the atoms will experience, we must estimate how the atoms move with respect to the

beam.

An early version of this experiment was severely limited by systematic wavefront

distortion because the Raman beams were horizontal and as the atoms fell transversely

across the wavefronts, they experienced large wavefront shifts [27, 51, 52]. To the

extent that our beams are aligned vertically with gravity, the center of the atomic

cloud does not move radially in the beam and therefore samples much less distortion.

Transverse motion

The atoms move transversely due to three possible misalignments: the initial launch

direction, the alignment of one Raman beam relative to the other, and the alignment

of both Raman beams to gravity. We attempt to launch the atoms as vertically as

possible. We move the probe beam to center it on the atom cloud as the atoms make

their Þrst pass through the detection region (early probe) on their way upward. We

then set the probe to ßash on when the atoms pass through the detection region on

176 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

Transverse position (mm)
-20 -15 -10 -5 0 5 10 15 20

L
on

gi
tu

d
in

al
 p

os
it
io

n
 (

m
)

-600

-400

-200

0

200

400

600

0.
4

0.
4

0.6

0.8
1.0

1.
2

1.41.21.00.8

0.6

0.
6

0.4

0.4

0.2

0.2

0.
2

0.2

0.
2

0.4

0.4

0.
4

0.6

0.6

0.6

0.
4

0.8

0.
8

1.0

1.0

1.2
1.4

Figure 6.1: Magnitude of the wavefront gradient for a 2w0 = 2.0 cm diameter Gaussian
beam in parts per billion (ppb) deviation from the gradient at the origin as a function of the
longitudinal displacement from the focus and the transverse displacement from the beam axis. The
gray ellipse at the origin indicates ten times the size of our uncertainty in locating the origin of the
beam.

their way back down (late probe). We optimize all of the available adjustments for the

fountain (see Section 3.1.4) to maximize this late probe signal. Although this signal

depends on many factors, it guarantees that the atoms are not being launched to

one side. From the accuracy with which we can use the early probe signal to overlap

the probe beam with the atoms, we estimate that the angle θL between the initial

launch direction and vertical is no more than 0.3 mrad. If the last interferometer

pulse occurs no more than 430 ms after the launch, the center of the atom cloud will

have shifted by ∆xL = vLθL(430ms) < 0.4 mm across the beam.

6.1. BEAMS 177

In addition to the initial launch direction, if the Raman beams are misaligned by

an angle θB with respect to each other, the velocity change vr from each momentum

recoil will have a non-zero transverse component. From equations (2.6), (2.23), and

(2.39) with the assumption that T 0 = NTππ, the difference in position at the last

π/2-pulse for the up and down interferometer is

∆z = z4(up)− z4(down) = vr[2(N + 1)T +NT 0] (6.8)

For θB ¿ 1, the difference in position across the beam is ∆x = ∆zθB. In Section

6.1.4 we report a long-term mean measurement error of −1.0 ppb due to relative
misalignment of the Raman beams. This error in the recoil shift corresponds to an

angle of θB = 63µrad. In the absolute extreme case with T = 160 ms and 50 π-pulses

∆z = 12 cm, so ∆xB = 12 cm(63µrad) = 7.6µm, which is small enough compared to

the other effects to be neglected.

The Raman beams are aligned to gravity using an Applied Geomechanics 755-1129

tilt sensor. This dual axis tilt sensor repeatably detects rotational displacements of

its case with respect to gravity with a precision better than 1µrad. Onto the bottom

of this sensor, we glued a high-quality 2 inch diameter dielectric mirror. The mirror

plus tilt sensor rest on three stainless steel balls glued to a ring which is mounted in

a 2 inch mirror mount. This setup allows us to position a downward facing reßective

surface so that is normal to gravity. The three balls deÞne a plane which can be tilted

with respect to a Þxed mount. Since the mirror rests on the three balls, the plane of

the mirror will be parallel to the three-point plane, limited only by surface roughness

of the mirror. By turning the mirror plus tilt sensor as a unit, we can rotate the

mirror surface with respect to the three-point plane. Since the tilt sensor is attached

rigidly to the mirror, if the three-point plane is not normal to gravity, the sensor

will detect a tilt as the two planes rotate with respect to each other. In fact, if the

outputs from the two orthogonal tilt sensors are plotted in an xy-plane, the readings

will trace out a circle as the unit is rotated. The radius of this circle represents how

much the three-point plane and mirror surface are tilted from perfectly horizontal.

The coordinates of the center of the circle represent the Þxed tilt offset between the

178 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

mirror surface and the sensor. Once we have measured this Þxed tilt offset, we no

longer need to rotate the mirror. We simply use the mirror mount controls to tilt

the mirror surface until the tilt sensor reproduces these Þxed values. At this point,

to the extent that the tilt sensor repeats, the mirror will be normal to gravity. By

recording the values from six different orientations equally spaced around a circle and

Þtting the results with two sinusoids separated in phase by 90◦, we determine the

sensor outputs when the surfaces are level to within a statistical limit of ∼100µrad.
By verifying that this measurement repeated to this accuracy several months later,

we also tested the sensor�s long term repeatability.

Now that we have a mirror surface which is normal to gravity (±50µrad), we

can make the bottom Raman beam vertical by forcing it to retro-reßect from this

horizontal surface. However, the direction of the Raman beam is determined by

mirrors which are rigidly attached to the optical table. The optical table ßoats on

pressurized air legs which rest on the ßoor. The ßoor itself tilts with respect to

gravity, and because of hysteresis in the passive displacement sensors which regulate

the air pressure to the table legs, the table surface tilts even more than the ßoor. On

a timescale of days, even with the experiment running, we have never observed the

optical table to tilt by more than 350µrad peak-to-peak. Every time we run, we reset

the table to its level point. With the table leveled, once every several weeks we check

the verticality of the bottom Raman beam. This alignment drifts by no more than

300µrad. Between the alignment of mirrors with respect to the optical table and the

drift of the table itself, we conservatively estimate that the Raman beams are never

more than θg = 500µrad misaligned from vertical. If the atom cloud is centered in

the beam at the time of the early probe, by the time of the last interferometer pulse

∆t = 400 ms later (assuming T = 160 ms and N = 50), the center of the atom cloud

will have moved by ∆xg =
1

2
g(∆t)2θg =

1

2
g(400ms)2(500µrad) = 1.1 mm.

Of the three possible sources of motion across the beam: 1) Raman beams mis-

aligned from vertical by θg, 2) launch off from vertical by θL, and 3) Raman beams

not parallel by θB, the largest is ∆xg ∼1 mm.

6.1. BEAMS 179

Longitudinal motion

The limit for the longitudinal distance along each Raman beam from the atoms to

the beam�s Gaussian focus is determined by how well we can position the collimating

lenses. From Section 4.3 we estimate an accuracy of ±0.2 mm, which corresponds to

an uncertainty in the focus position of 6.2 m.

Position of lens (mm)
-10 -5 0 5 10

∆k
/k

 (
p
p
b
)

0.00

0.02

0.04

0.06

0.08

0.10

0.4 mm

Figure 6.2: Magnitude of the wavefront gradient for a 2w0 = 2.0 cm diameter Gaussian
beam in parts per billion (ppb) deviation from the gradient at the origin. The gradient is calculated
at a distance of 2 m from the f = 2 m focal length collimating lens as a function of the longitudinal
position of the lens, where 0 represents perfectly collimated. The width of the gray bar at the origin
indicates the ±0.2 mm uncertainty in locating the collimation point of the lens.

As we move the collimating lens toward and away from the source, both the

position and size of the Gaussian focus change. Figure 6.2 plots how the magnitude

of the wavefront gradient at the atoms changes as we move the collimating lens.

Within the estimated measurement accuracy of ±0.2 mm for the lens placement

and a maximum off-axis displacement of 1 mm, the fractional wavefront gradient

error is < 0.01 ppb from Figure 6.1 and < 0.001 ppb from Figure 6.2. Since the

recoil frequency is proportional to k2eff , this corresponds to a measurement error of

0± 0.02 ppb.

Figure 6.3 provides experimental evidence that this effect is negligible. From

the ±0.2 mm uncertainty in determining the collimation point of the lens and the

180 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

measured sensitivity from this data, the error in frec due to both lenses could be at

most 0.054± 0.16 ppb, consistent with no effect at the pbb level.

Longitudinal displacement of lens
from set point (cm)

-5 -4 -3 -2 -1 0 1 2 3

f fff
re

c
/f fff

fi
x

−
1

(p
p
b
)

-250

-200

-150

-100

-50

0

Figure 6.3: Recoil frequency versus longitudinal displacement of the bottom collimating
lens from its set point. If one or both of the two f =2 m lenses that collimate the Raman beams
to a Gaussian diameter of ∼ 2 cm are not set correctly, the laser wavefronts at the atoms will be
curved and the local wavefront gradient which determines the size of the photon recoil will deviate
from the expected value. Here we test the sensitivity to this effect by intentionally moving the lens
away from the collimation point (see Section 4.3). The width of the vertical gray line represents
the ±0.2 mm uncertainty in determining this point. Fitting these data with a line gives intercept
−96.2±10.5 ppb and slope 1.37±3.90 ppb/cm, consistent with no effect. For a detailed explanation
of the graph symbols see [53].

6.1.2 Clipping

The sizes of our Raman beams are limited by the size of the smallest optic they

encounter and by the 2.0 inch diameter of the hole in the endcaps of the magnetic

shielding. The smallest Raman beam optics are the 2.0 inch polarizing beamsplitter

cubes and the top elliptical mirror which also has an effective size of 2.0 inches. To

6.1. BEAMS 181

test the effects of clipping, we installed in the top Raman beam a solenoid controlled

blade ∼ 21 cm before the top collimating lens. With current ßowing through the

solenoid, the blade was pushed into the beam to a repeatable distance of 8.3 mm

from the beam center. With the solenoid off, a spring retracted the blade well outside

of the beam. We took sensitive recoil data with T = 135 ms and 30 π-pulses, at each

point alternating the solenoid on or off. The presence of the blade shifted the Þnal

measurement by +18.3 ± 20.2 ppb, which is consistent with no effect. It is difficult

to know exactly how to scale this result to predict the size of the effect from the

clipping at 25.4 mm from the beam center. At worst, the effect is proportional to the

electric Þeld, which according to equation (6.1) scales as exp[−(r/w0)2], at a distance
r from the beam axis. Therefore, extrapolating the size of the effect at r1 = 8.3 mm

to r2 = 25.4 mm, we can reduce the size of the effect by

exp
h
−(r1/w0)2

i
/ exp

h
−(r2/w0)2

i
= exp

h
−(r2

1
− r22)/w

2
0

i

= exp
n
−
h
(8.3mm)2 − (25.4mm)2

i
/(9.6mm)2

o

' 520

and estimate an upper limit for the error from clipping the beams to be +0.035 ±

0.039 ppb, consistent with no effect and small enough to neglect.

Another possible source of beam clipping are cables used during setup or the beam

shielding tubes themselves. In general, the tubes prevent cables and other physical

objects from accidentally blocking part of the beam. As an additional precaution,

however, as part of the alignment process each time we take data, we use a video

camera to image the scattering of both Raman beams off of a white card placed

just above the top vacuum chamber window. In this image, we would immediately

recognize if either of the beams was obstructed in some way.

6.1.3 Speckle

By speckle we describe the appearance of a laser beam after it has passed through

or reßected off surfaces coated with small scatterers. Micro-defects in a dielectric

182 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

coating, thin Þlms, or dust particles could act as scattering centers with sizes ranging

from one to several hundred optical wavelengths. How each scatterer affects the

wavefronts of the lasers depends strongly on its size, shape, position relative to the

beam, and distance from the atoms. Because of the complexity, it would be intractable

to simulate this effect theoretically. Although we have not tested this effect with

our experiment, we can refer to previous tests performed by colleagues on a similar

apparatus measuring the local gravitational acceleration [54, 26]. Their experiment

also uses light pulses driving two-photon transitions between the two cesium hyperÞne

ground states to construct an atom interferometer which can then be used to make a

precision measurement. Like ours, their measurement depends directly on the quality

of the laser wavefronts. In their test for the importance of speckle they inserted

into their Raman beams a temporary glass plate onto which they placed varying

amounts of baby powder. Not only was the Þnal measurement independent to within

∼2 ppb of the amount of powder they added, but the contrast did not drop until the
powder noticeably altered the appearance of the transmitted beam. Consequently,

they estimated that the effect from any minute amounts of scatters on the optics

would be less than 0.1 ppb. Unlike our experiment where we use dark-state transfer,

their Raman lasers are tuned far away from resonance to avoid coupling to the short-

lived excited state. Consequently, they do not have two independent beam paths.

Their Raman beams copropagate through the vacuum chamber and then retroreßect

off of a single mirror. As a result, the effect from the powder in the beam path

may cancel to some degree, because their Raman beams encounter exactly the same

optics and scattering centers. On the other hand, to the extent that the scattering

process changes the spacing between optical wavefronts, the effect should not cancel.

It is not clear whether such wavefront distortions will cancel in our experiment with

some combination of the four fundamental interferometer geometries2, although the

discussion of clipping in Section 6.1.2 gives some indication of the size of the effect.

At this point, we can say that we use high quality optics ßat to better than λ/10

with a scratch-dig rating of 10-5 and that we inspect visually and clean all optics if

2Our previous work [9] states incorrectly that the effect of the distortion changes sign when the
beam direction is reversed.

6.1. BEAMS 183

necessary every time we take data. In addition, because the distortion of a scatterer

tends to propagate radially outward from the scatterer, the largest distortion occurs

as one travels across the wavefront and not longitudinally in the beam direction.

6.1.4 Relative angle

According to equation (4.13), a relative angular misalignment between the two beams

changes the measured recoil because it reduces the magnitude of keff . Our more precise

method for minimizing this misalignment using pinholes is discussed in Section 4.4.

To investigate the long term drift of this alignment we have observed the alignment

signal continuously for over one week. After converting the tranmission signal through

the bottom pinhole signal into a relative displacement and then into an a effective

change of the recoil shift, we plot the results in Figure 6.4.

With the long horizontal time scale, it is difficult to see, but several times during

this week, we realigned the top beam to the bottom beam just as we would do if we

were running the experiment and taking data. Each time we realigned the beams, they

immediately started drifting out of alignment. After studying their behavior shortly

after each of the Þve times we reset the alignment, we propose the following model

for approximating this behavior. Each time the beams were aligned, the alignment

seemed to drift away at a rate of roughly −1 ppb/hour until it reached a level of
approximately −1 ppb effective change in the recoil frequency measurement where it
seemed to hold roughly constant. The mean measurement error from this whole data

set is −1.02 ppb. In principle, we could correct all of our recoil data using this model.
All of the data taken within an hour of each realignment would be corrected by a

varying amount depending on when exactly it was taken. All of the remaining data

would be corrected by simply adding 1.0 ppb. However, because of the inaccuracy

involved in determining exactly how long after a particular realignment the data were

taken, the uncertainty of the actual mean value it settles to, and because the vast

majority of our data were taken over an hour after each realignment, we choose to

correct all of our data by +1.0 ppb with an associated uncertainty of−0.3 to +0.5 ppb.

184 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

Time (h)
0 48 96 144 192 240 288

∆f
re

c/
f
re

c
(p

p
b
)

-6

-5

-4

-3

-2

-1

0

mean = −1.02 ppb

Figure 6.4: Change in the recoil frequency frec due to a relative angular misalignment
of the Raman beams. Every 4 minutes we sample and record the transmission of the top Ra-
man beam backward through the bottom pinhole (see Figure 3.11). We calculate the tranmission
efficiency of a beam with Gaussian proÞle and diameter of ∼ 340µm through a circular pinhole of
roughly the same size as a function of the position displacement between the beam center and the
pinhole. By inverting this function, we convert our transmission data into a relative displacement
and with the 2 m focal length of the collimating lens into an angle θB. Using equation (4.13) we
convert θB into the relative change in frec which is the vertical axis. Five times during this over
13 day sample we realigned the top Raman beam as we would when running the experiment. The
mean and standard deviation of this entire data set are −1.02 ppb and 0.67 ppb, respectively.

6.1.5 Polarization

In the lab frame of reference the two Raman beams are intended to have exactly

the same perfectly circular polarization. If the beams are not perfectly �σ+ polarized,

they will couple other single-photon transitions besides ones that satisfy ∆mF =+1.

The mF =0 sublevels of the hyperÞne ground states will no longer be coupled to

only the F =30,mF =+1
0 excited state and the dark state, if one still exists, will be

a more complex mix of the ground state magnetic sublevels. In general, if either

one or both of the mF =0 ground states are coupled to another excited state, there

will be no purely dark state, because there is no general combination of the ground

states which simultaneously cancel the coupling to both excited states. Any atoms

that are transfered to an excited state via one of these addition couplings will then

6.1. BEAMS 185

spontaneously emit a photon and lose any phase information they carried. If the only

effect of additional couplings is to transfer of atoms out of the dark state, at worst

it will slightly reduce the transfer efficiency and possibly decrease the interferome-

ter contrast by increasing the incoherent background. On the other hand, a phase

shift might result if the original dark state is altered by the presence of couplings

to additional levels, either through an ac-stark shift or because the dark state now

includes ground state magnetic Þeld sensitive levels. In either case, because the shift

results from a coupling to a magnetic Þeld sensitive level, the shift will be linearly

proportional to the magnetic bias Þeld. By changing this bias Þeld, we can rule out

this effect (see Section 6.4).

Rotation of bottom λ/4-plate from set point (deg)

-6 -4 -2 0 2 4 6

f fff
re

c
/f fff

fi
x

−
1

(p
p
b
)

-250

-200

-150

-100

-50

0

Figure 6.5: Recoil frequency versus Raman beam polarization. The bottom λ/4-plate was
rotated about its axis to two values on either side of its set point where the contrast fell by more
than 40%. A line with intercept −116.6 ± 9.3 ppb and slope +4.9 ± 2.5 ppb/deg Þts these data
consisting of 117 total repetitions with T = 135 ms and 30 π-pulses. For a detailed explanation of
the graph symbols see [53].

With the magnetic bias at its normal value of ∼72 mG, we have checked for effects
from polarization impurity on two occasions by intentionally misaligning the bottom

λ/4-plate. These results are shown in Figures 6.5 and 6.6. Because we have not

186 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

Rotation of bottom λ/4-plate from set point (deg)

-6 -4 -2 0 2 4 6

f fff
re

c
/f fff

fi
x

−
1

(p
p
b
)

-250

-200

-150

-100

-50

0

Figure 6.6: Recoil frequency versus Raman beam polarization. The bottom λ/4-plate was
rotated about its axis to either side of its set point until the contrast dropped almost in half. A line
with intercept −156.5± 9.6 ppb and slope −6.8± 4.0 ppb/deg Þts these data consisting of 119 total
repetitions with T = 120 ms and 30 π-pulses. For a detailed explanation of the graph symbols see
[53].

proposed a speciÞc model for how the polarization impurity will shift the Þnal phase,

it is impossible to say whether any dependence will be linear or quadratic in its lowest

order. As a worst case estimate, though, we will look for a linear effect. Averaging

the two slopes from Figures 6.5 and 6.6 and combining their single-standard deviation

uncertainties in quadrature results in a slope of +1.6± 2.1 ppb/deg, consistent with

no effect.

Since the set point in Figures 6.5 and 6.6 is the best alignment point for the

waveplate, we must now estimate how accurately we can determine this point. As

discussed in Section 3.2.7, the beam polarization is set by passing each beam through

a polarizing beamsplitter (PBS) cube and then through a zero-order λ/4-plate. To

determine the set point for the waveplates we block the top beam and above the vac-

uum chamber place a mirror whose surface we set to be normal to the upward-going

bottom beam. We insert a non-polarizing beamsplitter (BS) in the bottom beam

6.1. BEAMS 187

before the collimating lens. This BS allows us to detect with a photodiode the light

returning from the retro-reßection back through the λ/4-plate and the PBS. If the

bottom λ/4-plate is set correctly, the returning light will be orthogonally linearly po-

larized with respect to the incoming beam after passing twice through the waveplate.

The PBS will reßect this orthogonally polarized light. Thus, the light returning to

the photodetector will be minimized when the waveplate is optimally oriented.

To Þrst order these waveplates can be modeled as a perfect crystal whose optic

axis lies in the plane of the plate and is oriented at an angle θ from the incoming

linear polarization. Because of the crystal�s birefringence, light passing through the

waveplate polarized along the optic axis (θ = 0) will experience a propagation phase

retardation or advance of φ with respect to light polarized orthogonal to the optic

axis (θ = π/2). In the lab frame with a basis deÞned by the two possible orthogonal

polarizations �x and �y of the incoming laser beam, this idealized waveplate transforms

the input polarization
³
x0

y0

´
according to

Ã
x1
y1

!

=



 cos2 θ + sin2 θe−iφ cos θ sin θ(1− e−iφ)
cos θ sin θ(1− e−iφ) cos2 θe−iφ + sin2 θ




Ã
x0
y0

!

(6.9)

A perfect λ/4-plate would thus have φ = π/2 at the operating wavelength and be

optimally positioned when θ = π/4. With an input polarization of
³
1

0

´
equation (6.9)

would become




1

2
(1− i) 1

2
(1 + i)

1

2
(1 + i) 1

2
(1− i)




Ã
1

0

!

=
1

2

Ã
1− i
1 + i

!

=
1

2
(1− i)

Ã
1

i

!

= �σ+ (6.10)

To minimize the light returning to the photodetector we turn the waveplate about

the beam axis so as to vary θ and slightly tilt the plate with respect to the beam to

vary φ. For small angles, changing the angle of incidence slightly varies the effective

thickness of the waveplate and thus the net propagation phase difference φ.

Once the bottom λ/4-plate is set, we remove the retroreßecting mirror and observe

the upward-going bottom beam after it passes through the top λ/4-plate and the top

PBS. By minimizing this transmitted signal, we optimize the two parameters θ and

188 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

φ for the top waveplate. Although this method of aligning the top waveplate using

the light polarization produced by the bottom waveplate may not result in the best

circular polarization of the top beam, it does insure that the polarization of the

top beam is as identical as possible to the polarization of the bottom beam. Well

matched polarizations between the top and bottom beams produce the best dark

state. By repeating this alignment procedure and comparing the resulting values of

θ, we estimate that we can set each waveplate to with in ±0.2◦. After aligning both

waveplates, the best ratio of minimum over maximum transmission through the PBS

we can achieve is better than 2× 10−3. Using equation (6.9), this extinction ratio is

equivalent to an angular misalignment of θ ∼ 0.97◦. By independently measuring the
isolation of the PBS cube to be < 5×10−4, we absolve the polarizer and conclude that

the light polarization is limited by the quality of the waveplate. From the repeatability

of our alignment procedure, we guess that the alignment limit is better than 2×10−3.

However, without further tests, a safe alignment uncertainty would be ±0.5◦.

Another possible systematic alignment error results from the possible birefrin-

gence of the vacuum chamber windows. To check for window birefringence we aligned

the bottom waveplate twice, once with the retro-reßecting mirror above the cham-

ber and once with the mirror below the chamber, and compared the two alignment

positions. The two alignments differ by approximately ∆θ = 0.685 ± 0.027◦ and

δφ = 0.15 ± 0.03◦, indicating some birefringence in one or both of the two vacuum

chamber windows. Because the atoms are located between the two vacuum windows,

the polarization impurity at the atoms will be largest if the top window produces all

of the birefringence. If the bottom window is solely to blame, then when the bottom

waveplate is set using a retro-reßecting mirror above the chamber, the waveplate will

compensate for the birefringence of the bottom window, so that the atoms experience

nearly circular polarized light. Because the birefringence of the windows most likely

results from atmospheric pressure and the metal vacuum ßange stressing the glass, we

assume that whatever birefringence the windows have is equally distributed between

the two windows. For this reason, we halve the value for ∆θ and ∆φ. However,

because both Raman beams contribute to the polarization impurity, we must then

double the effect. From equation (6.9) it can be shown that the polarization impurity

6.2. FREQUENCIES 189

of the electric amplitude scales linearly with small deviations from the correct value

of θ or 4φ. If we assume that there is some systematic effect due to polarization

impurity and that the effect is proportional to the intensity of light in the wrong

polarization, we can add the contributions of ∆θ and 4∆φ in quadrature to arrive at

an effective angular offset ∆θ0 = (∆θ)2+(4∆φ)2 = ±1.67(37)◦. If we assume that the

2×10−3 extinction limit is not due to polarization impurity, we can reduce this offset

to ∆θ0 = ±0.96(37)◦. Combining this offset with the mean slope from Figures 6.5

and 6.6, we assign a systematic uncertainty of ±2.0 ppb from polarization impurity.

A Þnal source of polarization impurity is a misalignment between the magnetic

bias Þeld and the beam direction. The magnetic Þeld generated by the bias and bias

trim coils serves to deÞne a quantization axis and to remove the degeneracy of the

magnetic sublevels. If the direction of this Þeld makes an angle ² with the beam

direction, the polarization that the atoms experience will be �σ+ + ²�Π. We have no

easy way of measuring or adjusting the direction of the magnetic bias Þeld. However,

as mentioned above, any effect from polarization impurity should depend linearly on

the size of the magnetic bias Þeld, so by varying the bias Þeld (see Section 6.4) we

can, in fact, test for this possible misalignment.

6.2 Frequencies

In the same way that the position of the laser wavefronts provide a reference to com-

pare with the atom�s spatial evolution, the laser frequencies are the local oscillator

to which we compare the time evolution of the atom�s internal states. To accu-

rately deÞne their wavelength, the two Raman beams must be frequency locked to

cesium. The difference of their frequencies which serves as the local oscillator for the

interferometer must be phase locked to a stable microwave reference. Furthermore,

because the two Raman beams counterpropagate, for every pulse we must change

the frequencies of each beam so that their difference compensates for the two-photon

Doppler shift which changes with the atom�s velocity as it recoils and accelerates due

to gravity. Between the Þrst and second and the third and fourth π/2-pulse, when

the atom freely evolves without light in a superposition state, it is most important

190 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

that the frequencies change in a phase stable and repeatable manner. The layout and

control of Raman laser frequencies is discussed in Section 3.3. In this section we are

concerned with how this process may go wrong and if it does, how it affects the Þnal

measurement.

6.2.1 Lock to cesium

We can use the cold atoms from the atomic fountain to test the long term accuracy of

our lock to cesium. By programming the Raman beams to ßash on a single velocity

selecting π-pulse, we can accurately determine the time in the trajectory when the

atoms reach the top of their trajectory and momentarily come to rest. The pre-

selection π-pulse uses dark-state adiabatic transfer to drive the atoms from the F =4

to F =3 ground state with a full width half maximum (FWHM) linewidth of ∼38 kHz
(see Figure 3.32), much smaller than the single-photon linewidth of 4.6 MHz. This

linewidth combined in quadrature with the effective frequency width of the atoms�

velocity distribution gives a total width of 76 kHz (see Figure 3.32). If we set the two-

photon difference frequency to resonance (i.e. with Doppler shift compensation set to

zero) and then vary the time of the pulse until the transfer efficiency is maximal,

this time will correspond to the top of the trajectory when the atoms have zero

mean velocity. Assuming perfect statistics from 50 points, the uncertainty of this

determination will be approximately ±[(76 kHz)/
√
8 ln 2]λeff/

√
50 = ±2.0 mm/s. We

then block the F =3 Raman beam, ßash on the F =4 light, and scan the Raman

Cs-lock offset frequency across the single-photon resonance. We Þt these data by

a Lorentzian lineshape and determine the center to about ±68 kHz. By repeating

this measurement after months and even several years, we conclude that the lock to

cesium3 is long-term accurate to within ±100 kHz.

If both Raman lasers are detuned by ∆ from the cesium transition as in equation

(2.68), the size of the recoil will change according to

∆keff/keff = +2∆/feff = +2∆ λeff/c = +2.98 ppb/MHz (6.11)

3Note that in order to measure the recoil frequency we do not need to know what the exact
transition frequency is, only that it is locked to cesium.

6.2. FREQUENCIES 191

Since the recoil shift is proportional to k2eff , the recoil frequency changes as

∆frec/frec = 2∆keff/keff = +4∆ λeff/c = +5.96 ppb/MHz (6.12)

Thus, if the both laser frequencies have detuning ∆ = 0 ± 100 kHz, the Þnal mea-

surement should be corrected by 0∓ 0.60 ppb.

6.2.2 Difference frequency

The laser difference frequency is used as the local oscillator which tracks the time-

dependent part of the atomic evolution. As discussed in Section 5.1, for each atomic

launch we slightly detune the two-photon difference frequency of the Þnal two π/2-

pulses from resonance by an amount δ = fs, allowing us to scan the phase φ = 2πfsT

across the fringes. If fs = 0 does not correspond to resonance, the numerical Þt

will incorrectly determine the phase zero point. However, any detuning present for

one interferometer will produce exactly the same phase shift for its conjugate and

will thereby cancel with the up/down difference. Two additional effects which might

also depend on two-photon detunings are a sloping background (Section 6.8.1) and

dispersive features (Section 6.5).

To verify that there is no effect from two-photon detunings, we vary δ for the Þnal

two π/2-pulses as far as approximately ±20 kHz. The results are shown in Figures 6.7

and 6.8. As a lowest order approximation to some δ-dependence, we Þt each of these

data sets with a line. Then, to arrive at a systematic error from this detuning, we esti-

mate the largest possible error in determining the resonance frequency. It is due to our

uncertainty in the local gravitational acceleration4 g. Our neighbors located ∼10 m
away within 1 m of the same elevation using another precision atom interferometry ap-

paratus have measured g = 9.799 33 · · · to better than 10 ppb [14, 26]. However, what

truly limits our knowledge of the acceleration due to gravity is an uncertainty in the

verticality of our Raman beams. In Section 6.1.1 we estimated that the Raman beams

4Even if our value for frec were incorrect by 200 ppb, after 50 π-pulses, this would be a frequency
error of only frec(N + 1)(∆frec/frec) = 15 kHz(50 + 1)200 ppb = 0.15 Hz.

192 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

Detuning of final two π/2-pulses (kHz)

-20 -10 0 10 20

f fff
re

c
/f fff

fi
x

−
1

(p
p
b
)

-250

-200

-150

-100

-50

0

Figure 6.7: Recoil frequency versus two-photon detuning of the last two π/2-pulses. A line
with intercept −104.0 ± 8.0 ppb and slope −0.29 ± 0.71 ppb/kHz Þts these data consisting of 86
total repetitions with T = 135 ms and 30 π-pulses. For a detailed explanation of the graph symbols
see [53].

are misaligned from vertical by at most θg = 0.5 mrad. To lowest order this misalign-

ment changes the value of g by ∆g/g = −θ2/2 = −(0.5mrad)2/2 = −125 ppb. If the
lasers are on resonance at the velocity-selecting π-pulse, they will be detuned by at

most g/λeff(T +T
0+T)(∆g/g) = (22MHz/s)(160+ 30+160ms)(125 ppb) = 0.96 Hz

at the last interferometer pulse. This maximum possible detuning times the mean

slope from the linear Þts in Figures 6.7 and 6.8 of +0.13 ± 0.41 ppb/kHz gives a

negligible error of (12± 39)× 10−5 ppb in determining frec.

We also varied the value of ḡ used to calculate the atomic trajectory by ±0.3%.

If this value does not match the actual gravitational acceleration g, the calculated

resonance frequencies for all of the pulses after the Þrst velocity-selecting π-pulse will

be wrong by 0.03(21.9MHz/s)(0.13 s) = 8.54 kHz on average for interferometers with

T = 120 ms, 30 π-pulses, and (ḡ/g− 1) = 0.3%. From all of the data taken when we

varied ḡ, the weighted mean variation in frec is −121.5 ± 30.9 ppb/(%g). Since our

6.2. FREQUENCIES 193

Detuning of final two π/2-pulses (kHz)

-20 -10 0 10 20

f fff
re

c
/f fff

fi
x

−
1

(p
p
b
)

-350

-300

-250

-200

-150

-100

-50

Figure 6.8: Recoil frequency versus two-photon detuning of the last two π/2-pulses. A line
with intercept −145.6 ± 5.1 ppb and slope +0.35 ± 0.51 ppb/kHz Þts these data consisting of 323
total repetitions with T = 135 ms and 31 π-pulses. For a detailed explanation of the graph symbols
see [53].

value for g can be wrong by no more than −125 ppb = −1.25× 10−5%, this slope is
equivalent to a negligible Þnal measurement error of +0.0015± 0.0004 ppb.

6.2.3 Difference frequency switching

As described in Section 3.3.1 the phase of the rf output of a direct digital synthesizer

(DDS) is compared with the phase of the mixed down beatnote between the two

Raman beams. The Raman phase lock loop (PLL) detects any change in this phase

difference and controls a 9 GHz voltage-controlled oscillator (VCO) to compensate.

With the synthesizer running at some constant output frequency f1, although the

short-term stability will be limited by the spectral purity of the synthesizer�s output,

the noise ßoor of the microwave beatnote, and the noise above ∼ 1 Hz inherent

in all electronics, the long-term stability of the phase difference between the two

194 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

Raman beams will be excellent. In fact, ultimately it will be limited only by the

long-term stability of the LORAN C time standard. It is another story entirely

when the synthesizer changes its output frequency to f2. Here we depend on the

synthesizer to change frequency in a repeatably phase continuous and predictable

way (see Section 4.1). We also require that all of the electronics that handle the

changing frequencies have no frequency dependent propagation delay. Consider how

such dispersive behavior affects the Þnal interferometer phase Φ. According to Section

2.1.1, the phase sensitivity of our four π/2-pulse interferometers is given by equation

(2.19): Φ = φ1 − φ2 + φ3 − φ4, where φi is the phase at the ith π/2-pulse. At each
π/2-pulse occuring at time ti, the DDS is set to output some frequency fi. Since the

synthesizer changes to the next frequency at times t12, t23, and t34, (see Figure 2.1)

the Þnal interferometer phase will be

Φ = f1(t12 − t1) + f2(t2 − t12) + f3(t34 − t3) + f4(t4 − t34) (6.13)

Consider Þrst a constant signal propagation delay td. Because of this delay, equation

(6.13) must be modiÞed by

∆Φ = td[(f1 − f2) + (f3 − f4)] (6.14)

which is proportional to the delay td and the two frequency differences. For our

interferometers, these frequency differences have opposite sign whenN is even and the

same sign with N is odd. They are all equal5 to ∆f12 = (−1)(N+1)∆f34 = ±g/λeffT ,
where the sign depends on the direction of the keff . For instance, for the normal

interferometers 1 and 2 with N = 0, equation (6.14) becomes

∆Φ = td[(g/λeffT)− (g/λeffT)] = 0 (6.15)

5This is not exactly true. Although the desired frequency shifts are equal, the synthesizer cannot
always output these exact frequencies. As discussed in Section 4.1, the frequencies it may output are
limited to integer multiples of fclk/2

32 = 0.232 Hz. Thus the frequency differences will be identical
to within 0.23 Hz. If the delay td is as long as 2 µs , an upper limit for the phase error from this
inexact cancelation is 2µs (0.23Hz) = 2.9µrad, which corresponds to less than 0.01 ppb and can be
ignored.

6.2. FREQUENCIES 195

If, however, the delay depends on the frequencies before and after the change, the

phase error ∆Φ will not in general vanish. Because f1 and f2 are the same for the

up and down interferometers, there will be some cancelation when the Þnal phase

shifts are subtracted. However, f3 and f4 are never the same and in fact can vary

arbitrarily depending on where in the atom�s trajectory the interferometers start. We

have extensively tested and veriÞed that the DDS changes frequency in a predictable

manner (see Section 4.1). The remaining sections of the Raman PLL which see chang-

ing frequencies have not been tested. These components include the rf part of the

PLL electronics up to and including the phase detector chip, the high-frequency beat-

note photodiode, ampliÞer, and microwave mixer before the Raman PLL box. The

components designed to operate at microwave frequencies can probably be absolved

because the sizes of the frequency changes we care about (∼ 4 MHz) are much less
then their maximum operating bandwidth. For the lower frequency rf components,

we can estimate the effect by modeling them as simple Þlters. A Þrst-order low pass

Þlter with corner frequency fc has transmission phase given by

φ = − tan−1
Ã
f

fc

!

= −



 f

fc
−
1

3

Ã
f

fc

!3
+
1

5

Ã
f

fc

!5
+ · · ·



 (6.16)

From equation (2.19), we have the change ∆φ in the Þnal interferometer phase dif-

ference for a four π/2-pulse interferometer

∆φ = φ(f1)− φ(f2) + φ(f3)− φ(f4) (6.17)

where fi is the laser difference frequency for the ith π/2-pulse. The frequency f2 of

the second π/2-pulse differs from f1 because of gravity: ∆f12 = f2− f1 = −kgT , and
similarly for last π/2-pulses: ∆f34 = +kgT , for the normal interferometers. Since

∆f34 = −∆f12 = ∆f , the linear term in equation (6.16) does not contribute to ∆φ.

Inserting the next order term proportional to (f/fc)
3 into equation (6.17) gives

∆φ =
1

3f 3c

h
f 3
1
− (f1 −∆f)3 + f 33 − (f3 +∆f)

3
i

196 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

=
(f 2
1
+ f23)∆f

3f 3c
+O(∆f 2) (6.18)

Since f1 is the same for the up and the down interferometer, the up/down difference

leaves only

∆φ '
f 23∆f

3f 3c
(6.19)

to lowest order in ∆f . For a representative case with T = 120 ms and 30 π-pulses,

∆f ' 2.6 MHz and the frequencies for the third π/2-pulse are f3(1) ' 13.1 MHz

and f3(2) ' 12.2 MHz for interferometers 1 and 2 , respectively. Thus, after the

up/down difference we have

∆φ '
[(13.1MHz)2 − (12.2MHz)2](2.6MHz)

3f 3c
=
19.7MHz3

f 3c
(6.20)

The closest Þlter element is the fc = 80 MHz bandwidth of the phase detector chip

in the Raman phaselock loop electronics (see Appendix B), giving a phase error of

∆φ = 19.7/803 = 39µrad, equivalent to an error in frec of 0.055 ppb. Since this

worst case estimate is much smaller than the 0.4 ppb limit from the DDS discussed

in Section 4.1, we neglect it.

For an experimental demonstration that the DDS no longer causes > 100 ppb

errors, consult Figure 6.18 where we varied the time in the atoms� trajectory when the

interferometer sequence occurs. The mean atomic velocity and therefore the difference

frequency required to correct for the Doppler shift changes with this interferometer

start time. Thus, for each of these points, the DDS had to output different frequencies.

The data in this Þgure are consistent with no variation, and thus we know that the

error due to DDS switching can be know larger than the peak-to-peak variation of

13.8± 24.9 ppb.

We also compare data taken with N and N+1 π-pulses. On six separate occasions

for a total of 186 repetitions we took data with both 31 and 30 π-pulses. We subtract

the results for N = 31 from the results for N = 30 and compute a weighted averaging

all of these differences, given frec(N=31)−frec(N=30) = −6.8±12.9 ppb, consistent
with no effect.

6.2. FREQUENCIES 197

6.2.4 Gravity chirp

Originally, the Raman beam frequency difference was held constant during the π/2-

pulses. Because gravity continues to change the atomic velocities throughout the

Tπ/2 = 250 µs long pulse, the lasers are resonant at only one time and then shift away

from resonance at a rate of ±g/λeff = ∓22 MHz/s, where the sign depends on the
direction of keff . To minimize the detuning from resonance, the frequencies were set

to be resonant at the center of the pulse. Thus, the phase shift at the beginning and

end of the π/2-pulses is

φ(Tπ/2) = ∓
1

2
2π

g

λeff

Ã
Tπ/2
2

!2
= ∓2.15 rad (6.21)

changing at a rate of

∂φ

∂t
(Tπ/2) = ∓2π

g

λeff

Ã
Tπ/2
2

!

= ∓17.2× 103 rad/s (6.22)

If the falling edge of the Þrst π/2-pulse is not the exact time reversal of the rising

edge of the second π/2-pulse such that the time when the dark-state projection oc-

curs differs by as little as 58 ns, there will be a φ1 − φ2 = 1 mrad phase error in

the Þnal interferometer phase difference, which corresponds to a 1.4 ppb error for

interferometers with T = 120 ms and 30 π-pulses. As mentioned in Section 4.5 this

asymmetry could occur if the beam intensities (F =3 up, F =4 down, F =3 down,

F =4 up) were not all equal.

To greatly reduce the size of this effect, we now linearly sweep the two-photon

difference frequency to cancel the Doppler shift due to gravity (see Section 3.6.3).

To test the importance of chirping the frequencies to stay resonant, we varied the

magnitude and even the sign of the chirp rate. From the slope of the linear Þt to

the data in Figure 6.9, not chirping produces an error of −22.1± 5.6 ppb. It should
be noted that when these data were taken, we were not using a common switch

AOM, so the sensitivity to the frequency chirp rate might have been greater. But,

even though we now use the common switch AOM to turn the two Raman beams on

198 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

Frequency sweep rate / (g/λeff)

-2 -1 0 1 2

f fff
re

c
/f fff

fi
x

−
1

(p
p
b
)

-250

-200

-150

-100

-50

0

Figure 6.9: Recoil frequency versus two-photon frequency sweep rate during each of the
four π/2-pulses. A line with intercept −83.1± 7.9 ppb and slope −22.1± 5.6 ppb/(g/λeff) Þts these
data consisting of 100 total repetitions with T = 135 ms and 31 π-pulses. For a detailed explanation
of the graph symbols see [53].

and off simultaneously, to minimize any potential error, we still chirp the difference

frequency.

6.2.5 Gravity gradient

The downward acceleration of an atom of mass m due to the attractive gravitational

force of the Earth can be written as

g =
Fg
m
= G

ME

r2
' G

ME

R2E
(6.23)

where G is Newton�s gravitational constant and ME is the mass of the earth. The

distance r ' RE = 6.38×10
6 m is the displacement between the atom and the Earth�s

center of mass. To the lowest two orders, the fractional change in g over a distance

6.2. FREQUENCIES 199

∆r in the lab

∆g

g
(∆r) =

1

g(RE)

Ã
∂g

∂r

¯̄
¯̄
RE

(∆r) +
1

2

∂2g

∂r2

¯̄
¯̄
RE

(∆r)2
!

=
R2E
GME

Ã

−
2GME

R3E
∆r +

1

2

6GME

R4E
(∆r)2

!

= −2
µ
∆r

RE

¶
+ 3

µ
∆r

RE

¶2
(6.24)

Over the maximum separation of∆z(up−down) ∼12 cm from equation (6.8) between
the up and down interferometers for T = 160 and N = 50, the value of g will differ

by at most ∆g/g = −2(12 cm)/(6380 km) = −38 ppb. From equation (2.21) for

interferometer 1 and equation (2.33) for interferometer 2 , this difference in the value

for g will shift the Þnal interferometer phase of the up/down difference by at most

−2(2πg/λeff)(∆g/g)(T + T 0)T = −4π(22MHz/s)(−38 ppb)(0.16 s + 0.03 s)(0.16 s) =
0.31 rad. Without the inverted interferometers which reverse the roles of the up

and down interferometers, this shift would cause an error of over 200 ppb. The

inverted interferometers have the exact same spatial separation between the Þnal

π/2-pulses, so the constant and linear gradient term of equation (6.24) both cancel

leaving only the second-order term. This term does not exactly cancel because both

inverted interferometers are ∆z(normal − inverted) = vr(2T + T
0) = 1.7 mm lower

than the normal interferometers, so for T = 160 ms with 50 π-pulses, the Þnal phase

difference from all four interferometers will be at most (0.34 rad(1.7mm)/(6380 km) =

9.1× 10−11 rad, which is negligible for this experiment.

6.2.6 Bad frequencies

When the DDS is set to 12 631 770 Hz, the Raman beam difference frequency will be

set to exactly the ground state hyperÞne splitting. Although this is a signiÞcant fre-

quency for the cesium atom, it is nothing special to the control electronics. Conversely,

there are frequencies which are signiÞcant to the control electronics but not especially

noteworthy from the cesium atom�s point of view. For example, when the beam di-

rection and the atom�s velocity are such that the Doppler shift is −2 631 770 Hz from

200 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

resonance, the DDS will be set to output 10.0 MHz, which is a frequency common in

the lab. The LORAN C time reference is distributed by a 10 MHz sinusoidal signal.

All of the Raman beam synthesizers are locked to copies of this signal. The switch-

yard and common switch AOM frequencies are also small integer multiples of this

frequency. Consequently, many of the rf sources exhibit small amounts of amplitude

modulation at 10 MHz. Via the AOMs, this modulation makes it onto the light and is

then converted back to an electronic signal at the high-frequency beatnote. It will still

be present on the mixed down version of the beatnote which the phaselock compares

to the output of the DDS. The phaselock electronics will interpret this modulation as

phase error oscillating at the frequency difference between the DDS output and the

nearest integer multiple of 10 MHz. For most DDS output frequencies, this amplitude

converted to phase modulation will occur at frequencies large enough to produce only

a small amount of random phase noise. However, when the DDS output frequency is

set near 10 MHz, this modulation can be slow and repeatable enough to consistently

change the Þnal interferometer phase difference. As discussed in Section 4.6, we have

greatly reduced this problem by installing crystal Þlters in many of the rf signal lines,

and have thus signiÞcantly reduced any 10 MHz sidebands. As an additional precau-

tion, we also avoid atomic trajectories where the center frequencies of the pulses need

to be tuned near one of these sensitive frequencies.

6.2.7 Computer arithmetic

A Þnal issue dealing vaguely with the laser frequencies concerns the numerical cal-

culation of the atomic trajectories. A single computer program (see Appendix C.1)

written in BASIC complied by version 4.50 of Microsoft�s QuickBasic for DOS pro-

grams all of the synthesizers and runs the entire experiment. It calculates the atomic

trajectories from which it computes the center frequencies for each of the pulses.

Even if one is careful to minimize error prone numerical arithmetic, the accuracy re-

quired to calculate the frequencies easily exceeds that of single precision ßoating point

arithmetic. Consequently, double precision is used for all variables involved in the

frequency calculation. As a check, we calculated the trajectory and center frequencies

6.3. ELECTRIC FIELDS 201

for several different interferometer conÞgurations using another computer running a

completely different program written in C instead of BASIC. With the same inputs,

the two computers agree to better than 1 mHz, which is sufficient for our purposes.

6.3 Electric Þelds

6.3.1 dc-Stark effect

By far the dominant source of external electric Þelds near the atoms are the lasers

themselves. However, if there is a static electric Þeld present, there will be a dc-stark

shift described by

∆fDC = αEE
2 (6.25)

where αE = −1.00×10−5Hz/(V/m)2 for cesium [55]. Since this shift is approximately
the same for both hyperÞne ground states, it changes only the Þnal interferometer

phase whenever the Þeld varies over the average separation ∆z = vr(T + T
0) between

the two interferometer paths. Just as we did in equation (6.33) for the spatial vari-

ations of the magnetic Þeld, substituting the lowest order term of equation (6.25)

which is not zero gives

∆fDC ' αE(2E0
∂E

∂z
∆z)

' 2αEE
2
0

∆z

d
(6.26)

where d is the approximate size of the object carrying a static charge. The electric

Þeld in units of V/m required to introduce a 1 ppb measurement error is therefore

E20 '
frec(N + 1)

109
d

2αEvr(T + T 0)

=
1

2× 109αE

(N + 1)

(T + T 0)

d

λeff

= 5× 10−5
(N + 1)

(T + T 0)

d

λeff
(6.27)

202 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

For typical sensitive interferometers with T = 120 with 30 π-pulses (implying T 0 '

20 ms), the electric Þeld E0 would have to be ∼ 160 V/m for the d ∼ 1 m vacuum

chamber and ∼ 35 V/m for the d ∼ 2 inch diameter aluminum cylinder holding the

magnetic bias coil windings. The aluminum cylinder is the physical object closest

to the atoms that might carry a charge6. However, because it is conducting and

electrically shorted to the vacuum chamber which is grounded, it is difficult to imagine

how such a static Þeld would develop or persist.

There is also a differential dc-stark effect which changes the ground state hyperÞne

splitting f34 by
∆f34
f34

= [−2.5× 10−20 (V/m)−2]E2 (6.28)

which for cesium gives ∆fhfs = [−2.3× 10−10Hz/(V/m)2]E2 [47]. The Þeld required
to change the recoil frequency by 1 ppb is

E2 =
2frecT

109
4.3× 109

(V/m)2

Hz

= 8.6frecT
(V/m)2

Hz
(6.29)

For T = 120 ms, this Þeld is ∼120 V/m, which is roughly the same limit we estimated
for the common mode dc-stark effect. In summary, shifts from static electric Þelds at

the ppb level are easily avoidable by using grounded metal vacuum chambers.

6.3.2 AC-Stark effect

For ac-stark shifts, we are concerned with shifts of the form

∆fAC =
Ω2

4∆
(6.30)

where Ω is the Rabi frequency deÞned in equations (2.66) and (2.67) from some

oscillating Þeld source such as a laser and ∆ is its detuning from resonance. During

the interferometers when the atoms are sensitive to frequency and phase shifts, all

6Because of the grounded vacuum chamber, free ions are not likely to be present in signiÞcant
quantities.

6.3. ELECTRIC FIELDS 203

of the lasers except the tracer and Raman lasers are mechanically shuttered (see

Figure 3.5). The slowing beam shutter blocks the trap and the repumping light to

the slowing beam path. The trap shutter blocks the remaining trap and repumping

light to the MOT. The Zeeman pumping beam shutter blocks this beam and its

accompanying repumping light. The probe shutter blocks the on-resonance probe

and clearing beams plus the far-detuned Doppler-free Raman beams. Besides the

light from the interferometer lasers, the only remaining light comes from the lights in

the room. Since the overhead lights are always off when we take data, the only other

sources of background light that might reach the atoms are the small quantities from

LED and LCD front panel displays, oscilloscopes, computer monitors, etc. Since they

are in general relatively weak and spectrally broad, the light shift from these sources

can be safely neglected.

Tracer laser

The tracer laser must be turned on before each interferometer pulse to give the tracer

phaselock feedback loop enough time to settle completely. To be safe, unless it is

already on, we turn the tracer on 1.8 ms before each π/2-pulse. Thus, between the

Þrst and second and third and fourth π/2-pulses when the atoms are freely evolv-

ing in a superposition state and the light is supposed to be off, the tracer is on

for 1.8 ms. If during this time, it were to perturb the ground state cesium levels,

a change in the Þnal measurement value might result. The tracer is roughly 100

times less intense than the Raman beams and it is detuned from resonance by no

less than ∆tracer = 748 GHz. It could therefore shift the F =3 ground state by

∆f3 =
1

4
1

100
(Ω = 2.5MHz)2/(748GHz) = 21 mHz. It would shift the F =4 state by

the same amount except for the detuning difference due to the hyperÞne splitting

f34. The net change in the difference frequency is thus (∆f34) = (f34/∆tracer)∆f3 =

(9.19GHz/748GHz)(21mHz) = 0.26 mHz. During each of the four 250 µs long π/2-

pulses, this shift from the tracer might cause a 2π(0.26mHz)(250µs) = 0.40µrad

phase shift. Even if the phase shift from each pulse accumulated and did not cancel,

it would change the measurement of the recoil frequency negligibly. If this ac-stark

shift were present for the whole time T and it did not cancel between interferometers,

204 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

f fff
re

c
/f fff

fi
x

−
1

(p
p
b
)

-200

-150

-100

-50

0

50

Switchyard? OFFOFF ON

Tracer
Power×20 ×20 ×0.2

(1) (2) (3)

Figure 6.10: AC-stark effect from the tracer laser. Here we compare 215 repetitions of
T = 120 ms with 40 π-pulses for three different conditions for the tracer laser. In cases (1) and (2),
we have ∼20 times more tracer light than normal, compared with case (3) where we used ∼5 times
less tracer power than normal. In cases (1) and (3), the tracer is switched off between the pulses
as normal. For case (2), however, the tracer is kept on the whole time. Thus, the total effect of
light shifts from the tracer should be approximately of 6700 times bigger for case (2) than for case
(3). Since these points differ by 10 ± 25 ppb, the ac-stark shift from the tracer must be less than
(1.5± 3.7)× 10−3 ppb. For a detailed explanation of the graph symbols see [53].

it would change the recoil measurement using 30 π-pulses by ∆f34/(frec(N + 1)) =

0.55 ppb. Since the tracer is on for only 1.8 ms out of the time T, for T = 120 ms, for

example, this error should be further reduced to 1.8/120(0.55 ppb) = 8.3× 10−3 ppb.

In addition, it should cancel with the up and down interferometer difference.

To verify that the tracer does not affect the measurement during the free-evolution

times, we take recoil data with the tracer off between the π/2-pulses as normal and

with the tracer on during the whole time. For T = 120 ms, this should increase any

ac-stark shift effect by a factor of ∼120/1.8 = 67. To further increase the size of the
effect, we temporarily replaced the tracer laser diode with Þber coupled light from

a third Ti-sapphire laser from another lab. After the top and bottom Þbers we had

approximately 20 times more light for use as a tracer laser. To make the comparison

as fair as possible, we tuned the Ti-sapphire output wavelength to within 0.01 nm

of the tracer laser diode�s output wavelength. Figure 6.10 shows the Þnal results

6.3. ELECTRIC FIELDS 205

for three experimental conditions: 1) 20 times more tracer power than normal but

off between the pulses as normal, 2) 20 times normal power and on the whole time,

and 3) 0.2 times normal power and switched off between pulses. The ac-stark shift

effect should be ∼ 100(67) = 6700 times larger for condition 2) than for condition

3), so since the difference between the resulting recoil values for these two conditions

is 10 ± 25 ppb, an experimental upper limit for the ac-stark shift from the tracer is

(1.5 ± 3.7) × 10−3 ppb. Note that this test also tends to rule out any effect from

glitches on the tracer phase lock loop (PLL) error signal due to Raman light leaking

onto the tracer photodiode.

Raman laser

The interferometer lasers are shut off with an isolation of better than 6× 10−10 (see

Table 3.1). Assuming a full intensity Rabi frequency of 2.5 MHz (see Appendix A.1.2)

and a representative detuning of∆ ∼1 MHz, according to equation (6.30) the ac stark
shift from one of the Raman beams would change the ground state hyperÞne splitting

by ∆f34 ' 4 mHz. If this shift were present during the whole time T when the atoms

are supposed to be evolving in the dark, the measured value of frec would change by

4 ppb for interferometers with T = 120 ms and 30 π-pulses. However, if some light

from the other Raman beam also leaked out of the Þber, it would shift the other

hyperÞne ground state by approximately the same amount and thus tend to greatly

reduce the change in ∆f34. In addition, if the light leakage is the same for the up and

down interferometers, the phase shifts will also be the same and tend to subtract out.

Unlike the tracer, we cannot as easily turn the Raman beams on and off or change

their intensities by orders of magnitude without adversely affecting the transfer ef-

Þciency. We can, however, signiÞcantly change the one-photon detuning ∆ and still

drive two-photon transitions. Figures 6.11 and 6.12 show the results from two sepa-

rate times when we varied the one-photon detuning of both beams. Combining the

slopes from these two data sets we have an upper limit of +0.16±1.02 ppb/MHz from

the effect of single-photon detuning errors. To estimate a Þnal measurement error,

we must also estimate an upper limit for ∆. This is determined by the long-term

accuracy of our lock to cesium described in Section 3.3.2. In Section 6.2.1 we explain

206 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

Single-photon detuning (MHz)

-10 -5 0 5 10

f fff
re

c
/f fff

fi
x

−
1

−
4 ∆

/f fff
ef

f
(p

p
b
)

-250

-200

-150

-100

-50

0

Figure 6.11: Recoil frequency versus the single-photon detuning of Raman lasers. The
vertical axis is corrected according to equation (6.12) for the +5.98 ppb/MHz change of the mo-
mentum recoil due to the change the laser frequency. The resulting data set consisting of 53 rep-
etitions with T = 120 ms and 30 π-pulses Þts a line with intercept −108.9 ± 9.3 ppb and slope
+0.20± 1.31 ppb/MHz, consistent with no effect. For a detailed explanation of the graph symbols
see [53].

how we arrive at the number of |∆| < 100 kHz. An ac-stark shift from the Raman

beams should be inversely proportional to the single-photon detuning from resonance.

Using the combined slopes from Figures 6.11 and 6.12 and the measured ±100 kHz

accuracy of the lock to cesium, we have an upper limit for the total ac-stark shift due

to the Raman beams of 0.016± 0.102 ppb.

6.4 Magnetic Þelds

The mF =0 magnetic sublevels are not completely insensitive to magnetic Þelds. The

term proportional to x2 in equation (3.19) gives the quadratic Zeeman shift of the

6.4. MAGNETIC FIELDS 207

Single-photon detuning (MHz)

-10 -5 0 5 10

f fff
re

c
/f fff

fi
x

−
1

−
4 ∆

/f fff
ef

f
(p

p
b
)

-250

-200

-150

-100

-50

0

Figure 6.12: Recoil frequency versus the single-photon detuning of Raman lasers. The
vertical axis is corrected according to equation (6.12) for the +5.98 ppb/MHz change of the mo-
mentum recoil due to the change the laser frequency. The resulting data set consisting of 165
repetitions with T = 135 ms and 30 π-pulses Þts a line with intercept −123.9 ± 9.1 ppb and slope
+0.10± 1.64 ppb/MHz, consistent with no effect. For a detailed explanation of the graph symbols
see [53].

ground state hyperÞne splitting

∆fB '
(gJ + gI)

2µ2B
2f34

B2

= (4.274 5× 10−4Hz/mG2)B2 (6.31)

To calculate exactly how this level shift would change the Þnal interferometer

phase, we would have to integrate this expression over the path traced out by the

interferometer, accumulating a phase shift both when the atoms are freely evolving in

a superposition state and also when they are in the same internal state but spatially

displaced. This calculation would be quite complex, because the atom�s position

depends strongly on when the interferometer pulses occur during the trajectory. So,

instead of attempting to calculate it exactly and correct the Þnal measurement, we

208 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

designed the magnetic bias Þeld (see Section 3.5) so that the effect for our atomic

trajectories would be small. In this section we predict and show experimentally that

the error due to magnetic Þeld inhomogeneities is on the order of a few ppb.

The spatial variation of the magnetic Þeld can be written

B(z) = B0 +
∂B

∂z
∆z + · · · (6.32)

Thus, B2 becomes

B2(z) =

Ã

B0 +
∂B

∂z
∆z + · · ·

!2

' B20 + 2B0
∂B

∂z
∆z (6.33)

A static magnetic Þeld uniform in space introduces an identical phase shift for both

conjugate interferometers. Thus, the phase shift from the B20 term in equation (6.33)

cancels in the up/down difference expression. The remaining term in equation (6.33)

will not in general cancel because the up and down interferometers trace out different

paths in space. To estimate how much phase shift this will cause, we refer to the

spatial dependence of the magnetic Þeld shown in Figure 3.19. The largest absolute

slope in this graph is approximately ∂B/∂z ≤ 0.15 mG/cm. For an extreme case

where T = 160 ms with 50 π-pulses, from equation (6.8) the up an down interferom-

eters are separated by ∆z ' 12 cm. If the linear magnetic Þeld gradient existed over

this entire range, the difference in the resonance frequency shift between the up and

down interferometers would change by

∆fB = ∆f(up)−∆f(down)

' αB2B0
∂B

∂z
∆z (6.34)

= (4.27× 10−4Hz/mG2)2(71.6mG)(0.15mG/cm)(13 cm)

= 0.12Hz (6.35)

6.4. MAGNETIC FIELDS 209

which is equivalent to a measurement error of

∆fB/(2(N + 1)frec) = 0.12Hz/(2(51)15 kHz) = 72 ppb (6.36)

Fortunately, we also have inverted interferometers which reverse the role of up and

down and thereby the sign of this effect. The normal/inverted values for ∆fB cancel

to the extent that the normal and inverted interferometers trace out the exact same

paths. For the extreme case with T = 160 ms and 50 π-pulses, the inverted interfer-

ometers occur ∆z(normal− inverted)=vr(2T + T 0) = 1.7 mm lower than the normal

interferometers, so the remaining error might be as large as 72 ppb(1.7mm)/(12 cm) =

1.0 ppb.

To experimentally verify this cancelation, we take data with different magnetic

bias Þeld values up to B0 = 2600 mG. From Figure 6.13 the opposite effects for the

normal (�) and inverted (◦) interferometer pairs is clear. Figure 6.14 shows the same
data but with the vertical axis ampliÞed to show cancelation from the normal/inverted

averaging (
6666
). For these data we altered the bias Þeld by changing the current to

the bias coil, but we did not change the currents to the two bias trim coils. Because

the bias trim coils are set for the normal operating Þeld level of B0 = 71.6 mG, as

the bias Þeld increases, the trim coils no longer correctly compensate to minimize the

Þeld variation within the magnetic shielding. As a result, the variation within the

shield ∼∂B/∂z also scales with the bias Þeld value B0. We would therefore expect a
quadratic dependence on B0.

In principle, both the linear and quadratic terms represent a measurement error

for non-zero bias Þeld values. To reduce the systematic uncertainty due to the linear

term, we took more data (see Figure 6.15) zooming in on the region from 0 to 600 mG.

Combining the slope from these data with the linear term from Figure 6.13 gives a Þnal

slope of −0.014±0.028 ppb/mG. Extrapolating to B0 = 0 from our normal operating
Þeld level of B0 = 71.6 mG gives errors of −1.0±2.0 ppb and +0.150±0.098 ppb from
the linear and quadratic terms, respectively. Since we expect a non-zero effect from

the magnetic Þeld, in addition to folding these error bars into the Þnal systematic

uncertainty, we also modify the Þnal value of frec by +1.0 − 0.15 = +0.85 ppb to

210 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

Magnetic Bias Field (mG)

0 500 1000 1500 2000 2500 3000

f fff
re

c
/f fff

fi
x

−
1

(p
p
b
)

-6000

-4000

-2000

0

2000

4000

6000

Figure 6.13: Recoil frequency versus magnetic bias Þeld. Both the normal interferometer
difference (solid circles �) and the inverted interferometer difference (hollow circles ◦), with all of the
recoils reversed, show a strong dependence on the magnetic bias Þeld. However, the effect is almost
exactly opposite in sign, so for the normal/inverted mean (solid triangles), the effect effectively
cancels. The Þt results using a second order polynomial of form ∆frec/frec = a0 + a1B0 + a2B

2
0 are

shown below. Note that for the mean of the normal and inverted interferometers, the coefficients a1
and a2 are consistent with zero.

a0 a1 a2
(ppb) (ppb/mG) (ppb/mG2)

1 − 2 � normal � −115(59) −0.081(107) −8.05(37)× 10−4

3 − 4 ◦ inverted ◦ −182(33) −0.003(060) +8.80(21)× 10−4

1

2

³
1 − 2 + 3 − 4

´

6666
normal/inverted

6666

−154(30) −0.022(054) +0.29(19)× 10−4

correct for this measured systematic error.

As discussed in Section 6.1.5, it is also possible that some of the mF 6=0 magnetic

Þeld sensitive sublevels could be included in the dark state. According to equation

(3.21), with a magnetic bias Þeld level of 72 mG, the frequency separation between the

F =3,mF =1 and F =4,mF =1 states differs from the F =3,mF =0→ F =4,mF =0

6.5. DISPERSION 211

Magnetic Bias Field (mG)

0 500 1000 1500 2000 2500 3000

f fff
re

c
/f fff

fi
x

−
1

(p
p
b
)

-200

-150

-100

-50

0

50

Normal Bias Field Level = 72 mG

Figure 6.14: Recoil frequency versus magnetic bias Þeld. This Þgure shows the same data
as in Figure 6.14 but with the vertical scale magniÞed by a factor of 48. The normal operating
magnetic bias Þeld level of 72 mG is shown in gray.

transition frequency f34 by ∆f34 = 50 kHz, which results in a Þnal interferometer

phase different by ∆φ = (2π)2∆f34T . This difference in phase is over 1000 rad even

for interferometers as short as T = 5 ms. Because of the spatial variation of the

magnetic Þeld, this phase shift can easily vary by 2π or more over the Þnite size of

the atom cloud. These different phase shifts from different regions of the cold atom

cloud will tend to counteract each other and wash out the effect.

6.5 Dispersion

Dispersion affects the recoil measurement by delaying (or advancing) the position of

the Raman beam wavefronts as the laser frequencies change. Dispersive media the

beams encounter include the optical glass the beams passes through, the background

gases in the vacuum chamber, and the cold cesium cloud.

A dispersive effect from the optical glass (primarily BK7 from Schott) that the

212 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

Magnetic Bias Field (mG)

0 100 200 300 400 500 600

f fff
re

c
/f fff

fi
x

−
1

(p
p
b
)

-200

-150

-100

-50

0

50

Normal operating
field level = 72mG

Figure 6.15: Recoil frequency versus magnetic bias Þeld. The normal operating magnetic
bias Þeld level of 72 mG is shown in gray. A line with intercept −117.9 ± 9.7 ppb and slope
−0.012 ± 0.033 ppb/mG Þts these data consisting of 359 total repetitions with T = 135 ms and 30
π-pulses. For a detailed explanation of the graph symbols see [53].

beams pass through can be neglected for two reasons. First, any disturbance of the

wavefront spacing is local to the particular optic and does not persist throughout the

space where the interferometers take place. Second, the glass material has no sharp

resonance features near the cesium wavelength. Similarly, non-cesium atoms in the

vacuum chamber will be so far out of resonance with the Raman lasers that their

dispersive effect over the relatively small range of frequencies we must tune to can be

neglected. We therefore need consider only the cesium atoms found in the vacuum

chamber.

When a laser detuned by ∆ from a single atomic resonance with linewidth Γ enters

a gas of that species, its wavenumber k changes by

f(∆) =
∆k

k
'
nσ

2

λ

2π

µ−2∆
Γ

¶
1

1 + (2∆/Γ)2
(6.37)

6.5. DISPERSION 213

assuming the transition is not greatly saturated. The absorption cross-section

σ = σ12 =
3λ2

2π
α(1→ 2) (6.38)

depends on the particular transition from state |1i to |2i being addressed. The

parameter α(1→ 2) discussed in Appendix A.2 is a constant representing the angular

part of the transition strength. Our lasers are tuned to the D1 F =30 excited state

of cesium, so we Þrst calculate the fractional change in the wavenumber due to the

F =3 → F =30 and F =4 → F =30 transitions with λ = 894.60 nm and linewidth

Γ = 2π(4.58MHz).

The values of α(1 → 2) = α(D1) for the cesium D1 line in Table A.3 assume the

atom is randomly oriented with respect to the light polarization, which is reasonable

for the atoms launched from the MOT. The resulting scattering cross-sections are

also shown in Table A.3.

To calculate the total wavenumber change we must convolve expression (6.37) with

the atomic velocity distribution, because an atom moving with non-zero velocity in

the beam direction will be Doppler shifted from resonance. The velocity distribution

expressed in terms of the Doppler shift ∆ = v/λ is given by

g(∆) =
λ

σv
√
2π
exp

Ã

−
λ2∆2

2σ2v

!

(6.39)

where σv is the rms velocity of the atoms. The convolution of equations (6.37) and

(6.39) is

F12(∆) =
Z +∞

−∞
f(∆−∆0)g(∆0)d∆0

= −A12
Z +∞

−∞

Ã
∆−∆0

Γ

!
1

1 + 2 (∆/Γ)2
exp

Ã

−
λ2∆02

2σ2v

!

d∆0 (6.40)

where

A12 =
nσ12λ

4π

λ

σv
√
2π

(6.41)

is a constant which depends on the initial and Þnal state.

214 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

6.5.1 Room temperature background gas

Since the background cesium atoms in the vacuum chamber are in thermal equilibrium

with the room, they must have a temperature of T = 273K + 20 degC = 293K

and consequently have an rms velocity of σv =
q
2kBT/m = 191 m/s. This rms

velocity corresponds to an effective Doppler full-width half-maximum (FWHM) of

∆v = σv/λ
√
8 ln 2 = 503 MHz for a laser tuned near the D1 transition at λ =

894.60 nm.

We use the background signal from the atom detection to estimate the density

of the room temperature cesium atoms in the vacuum chamber. This background

signal is ∼1100 times smaller than the peak ßuorescence signal from the atoms when
the probe laser is ßashed on at 520 ms (late probe) after the launch when the cold

atoms are passing through the detection region on their way downward. Because the

room temperature atoms have such a large effective Doppler width, only a fraction

of roughly Γ(λ/σv) = 5.23MHz/(503MHz) = 0.010 are detected by the probe pulse.

Another factor of 1

2
should also be included, because on average only half of the

atoms will be in the F =4 state addressed by the probe laser. This implies that the

density of the room temperature atoms is ∼1100(0.010)/2 = 5.7 times smaller than
the density of the cold atom cloud at the time of the late probe7.

To estimate the cold atom density at the late probe we assume a simple atomic

spatial distribution of a sphere whose radius is the
q
π/2 times the rms radius r(t)

of the atomic cloud. Inside the sphere all of the atoms distributed with a uniform

density of

n(t) =
3

4π

N0
³
r(t)

q
π/2

´3 =
3

π5/2
√
2

N0
r3(t)

= 0.1213
N0
r3(t)

(6.42)

N0 ' 1× 10
8 atoms start from the MOT in a ball of rms radius rMOT = 1.6 mm (see

Section 3.1.4). The rms velocity vMOT = 1.4 cm/s causes the cloud radius to expand

according to r(t) = rMOT + vMOTt. At the time of the late probe, the rms radius

of the cold atom cloud is thus r(0.52) = (0.16 cm) + (1.4 cm/s)(0.52 s) = 0.89 cm,

7Actually, it is even smaller because as we will show later, at the time of the late probe the atom
cloud is bigger than the probe beam, and thus the probe pulse does not detect all of the atoms in
the cloud.

6.5. DISPERSION 215

giving a density of nlateprobe ' 1.7× 10
7 cm−3 using equation (6.42). This cold atom

cloud density puts an upper limit on the room temperature cesium background of

nhotbkgnd < (1.7× 10
7 cm−3)/5.7 = 3.0× 106 cm−3.

With this cesium density nhotbkgnd, we can numerically evaluate the convolution

function F (∆) for each of the possible transitions. The presence of transitions to

the D1 F =30 excited state changes the laser wavenumber by a negligible fraction

∆k/k ' −1 × 10−3 ppb/MHz, with no change when the lasers are perfectly on
resonance. Even when the Raman lasers are detuned by up to ±2 MHz to correct

for the Doppler shift of the moving cold atom cloud, this contribution should still

remain negligible. From the D1 F =40 excited state the effect is roughly constant

at ∆k/k ' +0.032 ppb. Because the recoil measurement is proportional to k2eff , the

potential measurement error is 0.064 ppb, still too small to be of concern. Since the

D2 line is even farther detuned then the other D1 hyperÞne excited state, the effect

of the D2 transitions is also negligible.

6.5.2 Cold atom cloud

The cold atom cloud has a much smaller rms velocity. For σv = 1.6 cm/s (see

Section 3.1.4) equation (6.40) is plotted in Figure 6.16 for the Raman lasers cou-

pling to the D1 F =30 excited state. Because of the coherence between the light

Þelds and the atoms, in addition to the dependence on the single-photon detuning

∆, there will be Þner dispersive features that depend on the two photon detuning

δ. Instead of solving for the complete expression [56, 57], it is sufficient for our

purposes here to simply estimate the slope of these features near resonance. The

width of these two-photon features is determined by the effective Rabi frequency

Ωeff =
q
Ω21 + Ω

2
2 in equation (2.73) which should be compared with the width of the

single-photon feature that scales roughly as the natural linewidth Γ. The slope of

the two-photon dispersive features therefore should be approximately −Γ/Ωeff times
the ∼ −83 ppb/MHz slope at resonance in Figure 6.16. With the effective Rabi
frequency predicted in Appendix A.1.2 to be Ωeff ' 2.5 MHz, we estimate a slope

of roughly−(4.6MHz)/(2.5MHz)(−83 ppb/MHz) = +153 ppb/MHz for this higher

216 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

Detuning ∆ (MHz)

-15 -10 -5 0 5 10 15

∆k
/k

 (
p
p
b
)

-150

-100

-50

0

50

100

150

Figure 6.16: Wavelength change for a laser tuned to the F =30 excited state interacting with
a sample of cesium atoms whose rms velocity is 1.6 cm/s. We evaluate the convolution in equation
(6.40) of the dispersive lineshape in equation (6.37) with the atomic velocity distribution in equation
(6.39) for an atom density of 1× 108 cm−3.

order dispersion.

To determine how these dispersive features affect the Þnal measurement, we now

look more closely at the atoms in the cloud. Although the Þnal signal comes from

atoms in themF =0 states, there are atoms distributed throughout the other magnetic

sublevels. Because of the non-zero magnetic bias Þeld, these atoms are detuned from

two-photon resonance by δ = (50 kHz)mF , and thus they change the laser�s wavefront

spacing. However, because the initial distribution of atoms is symmetric about the

mF =0 state, the effect from the mF =+1 atoms tends to cancel the wavelength shift

from the mF =−1 atoms, and so on. It is only because of the two-photon transfer
pulses driven by �σ+ polarized light that this symmetry is broken. For this reason,

we neglect the initial distribution among magnetic sublevels and consider only the

change in this distribution due to the adiabatic transfer pulses.

At the beginning of each adiabatic transfer pulse, all of the atoms in the cloud

are projected into dark and bright states. The pulse transfers the subset of atoms

Ni(DS0) in the initial mF =0 dark state to the Þnal state with efficiency ²0, leaving

6.5. DISPERSION 217

Nf(DS0) = ²0Ni(DS0) atoms in the signal state. The number of atoms Ni(DS1) in

the mF =1 dark state are transferred with efficiency ²1, and similarly for the mF =2

dark state. We will neglect the fraction of atoms in the mF =+3 because they are

not coupled to the excited state via �σ+-polarized light. The fraction of atoms in the

mF <0 states we also neglect because optical pumping with �σ+-polarized light tends

to move atoms out of these states. According to the result derived in equation (2.84),

of the atoms in the mF =0 bright state, a fraction f0 = 1/7 fall back into the mF =0

dark state. In the same way, one can derive the fractions f1 = 1/5 and f2 = 5/19 for

the chance of the bright state atoms falling from the F =30,mF =+1
0 excited state

back into the mF =1 and mF =2 dark states, respectively. Thus, after the adiabatic

transfer pulse, the number of atoms in the mF =1 and mF =2 dark state is

Nf(DS1) = ²1Ni(DS1) + (1− ²0)f1Ni(DS0)

Nf(DS2) = ²2Ni(DS2) + (1− ²0)f2Ni(DS0) (6.43)

For these expressions, we have simpliÞed the problem by 1) assuming that all of the

atoms not transfered to the mF =0 dark state spent some time in a bright state and

2) that the light Þelds deÞne the same population ratios for the mF 6=0 states as they

do for the mF =0 state
8. The resulting atom number and densities are summarized

in Table 6.1 for a representative interferometer example: T = 120 ms and N = 30.

Since the atoms in the mF =0 state are on resonance, they do not contribute to

the dispersion. Atoms that remain in the bright state are rapidly pumped to the

F =4,mF =+4 state which is not coupled to the excited state by the �σ+ polarized

Raman beams. The only atoms that might contribute to the dispersive effect are

the atoms in the mF =+1 and mF =+2 states. From the 153 ppb/MHz slope the

dispersive features, detunings of δ1 = 50 kHz and δ2 = 100 kHz, and the mean

densities for a typical interferometer given in Table 6.1, we predict a change in the

8Because the ratio of the angular matrix elements (see Table A.2) coupling the F =3,mF =0
and F =4,mF =0 ground states to the F =3

0,mF =+1
0 excited state are not the same as those

for the F =3,mF =+1 and F =4,mF =+1 ground states, the mF =1 dark state will have different
F =3/F =4 population ratios than will the mF =0 dark state, and similarly for the mF =2 dark
state.

218 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

Adiabatic Transfer Pulse

[π]Sel [π/2]1 [π/2]2 [π]1 [π]30 [π/2]3 [π/2]4 Mean

t 129.98 133.35 253.62 255.09 274.97 277.97 398.24
V −1 2.5129 2.4241 0.8500 0.8410 0.7309 0.7160 0.3475 0.8680
² 0.5645 0.9380 0.4690 0.9380 0.9380 0.9380 0.4690

N0 0.5645 0.5295 0.2483 0.2329 0.0364 0.0341 0.0160
n0 1.4186 1.2836 0.2111 0.1959 0.0266 0.0244 0.0056 0.1575
N 0

0 0.4355 0.0350 0.2812 0.0154 0.0024 0.0023 0.0181 0.0281
n00 0.1563 0.1588 0.1086 0.1037 0.0240 0.0227 0.0116 0.0608
n0
1

0.2189 0.1657 0.1041 0.0124 0.0004 0.0006 0.0015 0.0154
n02 0.2880 0.0967 0.0754 0.0034 0.0005 0.0005 0.0017 0.0145

Table 6.1: Evolution of the atom density for an interferometer with T = 120 ms and 30 π-
pulses. The time in ms after the launch of the center of the velocity-selecting π-pulse, the π/2-pulses,
and the Þrst and last π-pulses are shown. Approximating the atom cloud�s spatial distribution
as a sphere, we use this time and the atoms� rms velocity to calculate the inverse of its volume
V −1. ² is the transfer efficiency of each pulse, including both the velocity selection factor for the
velocity-selecting π-pulse and the factor of two projection loss from the second and fourth π/2-pulses.
Accumulating this transfer efficiency, we calculate the fraction N0 of the initial atoms in the mF =0
dark state. The density n0 in cm

−3 of this signal state is then N0/V . We assume that 1 − ² of
the atoms entering every pulse are in the bright state with fraction N 0

0. According to the different
angular weighting factors, a fraction of these bright state atoms fall back into the mF =0, mF =+1,
and mF =+2 dark states (see equation (2.84)). Once in a dark state, they remain there ready to
be transfered by the next pulse. Because the mF 6= 0 states are Zeeman shifted out of resonance,
we modify the transfer efficiency for these states according to the two-photon resonance condition.
Thus, at the end of each pulse, each of the dark state densities n00, n

0

1, and n
0

2 has accumulated
contributions from 1) atoms that began the pulse in the bright state but then fell into that dark
state and 2) atoms that entered the pulse already in that dark state and were transfered by the pulse.
Because the atoms in the signal state, including both the interfering (n0) and phase randomized (n

0

0)
densities, are resonant, they contribute negligibly to the total dispersion. It is the atom densities
n01 and n

0

2 that are detuned from resonance by 50 kHz and 100 kHz, respectively, that change the
wavefront spacing of the Raman lasers.

lasers wavenumber of ∆k/k = 0.12 ppb and 0.22 ppb, for the mF =+1 and mF =+2

states, respectively. Since the recoil frequency is proportional to k2eff , the total change

∆k/k = 0.34 ppb must be doubled to arrive at predicted 0.68 ppb change in frec due

to the dispersive effect of the cold atoms. Because of the complexity of predicting

the exact error from this effect and because it is less than 1 ppb, we do not correct

our Þnal recoil but instead treat result as a rough estimate of the uncertainty due to

dispersion.

6.6. TIMING 219

The same process can be used to calculate the effect from transitions between

the ground states and the D1 F =40 excited state. Since both lasers are detuned by

∆ ' −1.17 GHz, there are no Þne two-photon dispersive features. For a density of
1× 108 cm−3, we predict a ∆k/k = +1.0 ppb relatively constant over the same range

of detunings shown in Figure 6.16. Reducing this effect by the mean densities of the

mF =+1 and mF =+2 states given in Table 6.1, we predict a change of 0.06 ppb in

the value of frec, which is small enough to be neglected.

As an experimental veriÞcation that dispersion should not be a problem, we took

recoil data while alternating on each launch between low and normal atom densities.

By opening the mechanical trap shutter later than normal we could reduce the number

of atoms launched by approximately a factor of 3.90 without signiÞcantly reducing the

signal-to-noise ratio. The recoil value when using a reduced density cold atom cloud

was shifted by +7.3 ± 10.5 ppb, consistent with no effect. Assuming the dispersive

effect is linearly proportional to the atomic density, this result gives a value of −(7.3±
10.5)/(1 − 1/3.90) = −9.8 ± 14 ppb for the change in the recoil value due to the
dispersive effect from the cold atom densities we typically take data with.

6.6 Timing

This experiment is fundamentally a pulsed measurement. It samples points equally

spaced in time deÞned by some oscillator. From these samples, we can calculate a

value for the recoil shift. In the lab there are many sources of noise both random

and periodic which may change the Þnal measurement result. In general, random

noise tends to make the result less precise but in the long term on average does not

affect the Þnal measurement value itself. Periodic noise, however, can systematically

change the measurement results if each sample point occurs at exactly the same

phase of this periodic disturbance. Besides reducing the magnitude of the noise, one

can also minimize its effect by insuring that the sample points are not phase stable

relative to any periodic disturbance. If the sample points occur irregularly along a

sinusoidal signal, for instance, although the Þnal signal may be noisier, on average the

Þnal measurement result will be unchanged. The two general types of noise we are

220 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

concerned with here come from 60 Hz oscillations of the line voltage and any periodic

ßuctuations synchronized with the pulsed atomic fountain.

6.6.1 60 Hz line noise

The master trigger for the entire experiment comes from a Stanford Research Systems

DG555 pulse generator. This device can be set to use its internal clock or the oscilla-

tions of the line voltage to restart itself. When the device is �line triggered�, on every

shot, the start trigger and consequently all of the different experimental stages occur

at exactly the same phase relative to the 60 Hz line oscillations. If some 60 Hz noise

from one of the power supplies were to perturb one of the phase sensitive devices such

as the LORAN C timebase itself and the experiment were to sample this disturbance

every time at the same point in its cycle, a systematic error could result.

To test for changes in the recoil measurement synchronized with the 60 Hz line

signal, we temporarily installed another DG555 pulse generator set to trigger on the

line voltage. This pulse generator produced a trigger signal which started the normal

master trigger generator. By varying the time delay of this pre-trigger signal in time

steps of (1/60Hz)/6 = 2.78 ms, we were able to change when the measurements oc-

curred in 60◦ steps relative to the phase of the 60 Hz line signal. The results are shown

in Figure 6.17. Both the peak-to-peak change and the sinusoidal Þt amplitude are

consistent with zero. The single-sine function may not model the actual disturbance

very well, but line noise generally does not involve many higher harmonics. To be safe,

we take data only when the master pulse generator is internally trigger by its internal

oscillator, which is not phaselocked to the line signal. We also choose the repetition

time of 0.908 s to be a non-integer multiple of 1/60 Hz: (0.908 s)(60Hz) = 5412
25
cycles.

6.6.2 Periodic ßuctuations synchronized with launch

Any connections between the generation of the MOT and launch and the genera-

tion of the interferometers are indirect at best. The vibration isolation (VI) system,

however, does serve as a mechanical connection to the phase of the Raman beams.

6.6. TIMING 221

Phase relative to line oscillations (deg)

0 60 120 180 240 300

f fff
re

c
/f fff

fi
x

−
1

(p
p
b
)

-250

-200

-150

-100

-50

0

Figure 6.17: Recoil frequency versus the phase of the 60 Hz line signal. By triggering
the master experiment trigger at Þxed times relative to the 60 Hz line signal, we can verify that
the Þnal measurement value is negligibly affected by 60 ßuctuations. The peak-to-peak variation of
all of the points is 38 ± 23 ppb, consistent with no effect. Fitting these data, which consist of 126
repetitions of interferometers with T = 120 ms and 30 π-pulses, with a 60 Hz sinusoidal function
gives an amplitude of 4.4±10.6 ppb, a phase of 58±138◦, and an offset of −126.4±7.5 ppb. Because
the Þt amplitude is consistent with zero and the Þt phase is essentially undetermined, we conclude
that the Þnal measurement value has no sinusoidal dependence on 60 Hz line noise. For a detailed
explanation of the graph symbols see [53].

The interferometer platform detects and corrects for any motion of the tracer beam

wavefronts relative to the motion of the beamsplitter cube. In the limit that the

beamsplitter cube accelerates uniformly with respect to the atoms, the atoms will

observe perfectly steady wavefronts. If the cube moves, the tracer feedback loop will

cause the Raman beam wavefronts to move in the same way. Random cube motion

will manifest as increased measurement noise. If the cube moves in a systematic and

repeatable way, however, the disturbance to the position of the laser wavefronts may

not average out of the Þnal interferometer phase. One possible way the experiment

might disturb itself in this manner is via changing magnetic Þelds from either the

MOT coils or the MOT trim coils. When the magnetic Þeld generated by these coils

222 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

changes, the magnetic force applied to any magnetic objects on the freely swinging VI

column also changes. Such a mechanical kick applied via a magnetic force may not be

completely removed by the vibration isolation feedback loop. Any remnant motion

of the interferometer platform would be periodic and exactly synchronized with the

measurement sampling. Thus, if there were a phase shift from this motion, it might

not average to zero after many repetitions. Because internally the accelerometer of

the VI system (see Section 3.4) uses magnetic force feedback to generate its output

signal, it is also possible that the changing magnetic Þeld might alter this output

signal without even moving the VI column. If this happened, the sensor would falsely

report some acceleration which the feedback loop would attempt to remove by driving

the solenoid actuator and inappropriately moving the VI column. To minimize this

particular effect, we installed a Magnetic Shield Corp. 35P70 magnetic shield around

the accelerometer [46]. A Þnal possible way through which the pulsing experiment

might affect the motion of the VI column is via the mechanical shutters.

To test all of these possibilities, we observe the error signal from the closed loop VI

system on an oscilloscope. With the experiment pulsing as normal and the oscilloscope

triggered with the experiment, we can average the time trace and greatly reduce

the amount of noise at frequencies not synchronized with the experiment pulsing at

1/(0.908 s) ' 1.10 Hz. For a sinusoidal acceleration a(t) given by

a(t) = a0 sin(ωt) (6.44)

the resulting velocity and position will be

v(t) =
a0
ω
cos(ωt) (6.45)

z(t) = −
a0
ω2
sin(ωt) (6.46)

Since the interferometers have wavefront position sensitivity given by equation (2.11),

the additional interferometer phase generated by this motion will be

∆φ = keff [z1 − z2 − z3 + z4]

6.6. TIMING 223

= −keff
a0
ω2
[sin(ωt1)− sin(ωt2)− sin(ωt3) + sin(ωt4)] (6.47)

Since the time origin is arbitrary, t2−t1 = t4−t3 = T , and assuming the π-pulses take
very little time t2 ' t3, equation (6.47) will have maximum absolute magnitude when

the oscillation period 2π
ω
= 2T . With appropriately chosen time origin and ω = π/T ,

equation (6.47) will have magnitude

∆φ ' keff
a0

(π/T)2
[2 + 2]

=
4keffa0T

2

π2
(6.48)

For T = 120 ms with 30 π-pulses a 0.7 mrad phase shift corresponds to a 1 ppb

change in the recoil shift. Solving equation (6.48) for the acceleration amplitude

a0, we can determine an upper limit for how much the beamsplitter cube on the VI

column would move in order to cause a 1 ppb shift in the Þnal measurement

a0 = ∆φ
π2

4keffT 2
= (0.7mrad)

π2

4(2.24× 106 1/m)(0.12 s)
= 5.37× 10−8m/s2 (6.49)

After averaging the VI closed loop error signal, the only response remaining comes

from the vertically oriented MOT trim coils. The other MOT trim coils, the MOT

coils themselves, and the mechanical shutters all produce no disturbance greater than

2 × 10−9m/s2 = 0.04 ppb. When the MOT trim coils switch, the vertical MOT

trim coil produces a fast transient response of size 3 × 10−8m/s2 that has died out

(< 1× 10−8m/s2 ' 0.2 ppb) by the time the interferometers occur.

As an addition veriÞcation that there is no systematic effect from some disturbance

synchronized with the experiment�s pulsing, we take data with and without the MOT

trim coils pulsing and also with the same interferometer sequence starting at different

times after the launch as shown in Figure 6.18. Both tests indicate no effect.

224 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

Interferometer sequence start time (ms)
100 150100 150

f fff
re

c
/f fff

fi
x

−
1

(p
p
b
)

-250

-200

-150

-100

-50

0

MOT trim coils
not pulsing

Figure 6.18: Recoil frequency for the same interferometer sequence starting at different
times in the fountain trajectory comparing with (left) and without (right) the MOT trim coils
pulsing. Both data sets were taken with T = 120 ms and 30 π-pulses. The Þnal recoil data (solid
triangles) on the left consisting of 48 repetitions have mean −108.8 ± 10.7 ppb and peak-to-peak
variation of 4.3 ± 23.1. The data on the right (with the MOT trim coils not pulsing) consist of 49
repetitions and have mean −99.7± 9.6 ppb and peak-to-peak variation of 4.8± 26.2. The difference
between the means of the two data sets is −9.0 ± 14.4 ppb, consistent with no difference. For a
detailed explanation of the graph symbols see [53].

6.6.3 Time resolution

A further issue related to timing concerns the dynamic range required of the synthe-

sizer which generates the pulse shapes. One of the most important systematic tests is

to vary T (see Section 6.7), the time between the π/2-pulses. We vary T and thereby

the total time for an interferometer ∼ 2T by almost two orders of magnitude. As
mentioned in Section 3.6, because of Þnite memory size and processing speed, it is

difficult to Þnd a device that can synthesize patterns of these widely varying time

lengths without changing the fundamental time resolution with which the pattern is

synthesized. If the pulse shapes for interferometers with T = 120 ms and T = 5 ms

were synthesized with different time resolutions, the pulse shapes might be different

enough that we could not safely compare their results. With the gate synthesizer

6.7. ADIABATIC TRANSFER 225

detailed in Section 3.6, which turns off the waveform synthesis clock when the light is

off, the exact same pulse shapes can be distributed over much larger time intervals.

What happens when the time between the Þrst two π/2-pulses (t2 − t1) is not
identical to the time between the Þnal two π/2-pulses (t4 − t3) is also an important
yet somewhat elusive issue. If the recoil from the Þrst three π/2-pulses is the same,

then the two interferometer paths will not intersect at the fourth π/2-pulse. In order

to interfere, the two interferometer paths must overlap in all aspects: momentum,

space, internal state, etc., so in principle, since the paths do not intersect in space,

there will be no interference. However, because the individual atomic wavefunctions

are spread in both position and momentum space and because the light pulses are not

instantaneous in time, the areas of overlap are not sharp. From the temperature of the

atoms launched from the MOT (see Section 3.1.4), according to the Heisenberg limit,

the spatial spread of the individual atomic wavefunctions can be no narrower then

roughly λ/4. At a relative speed of one two-photon recoil vr, the timing discrepancy

would have to be more than λ/(4vr) = 32µs for the interferometer paths to miss by

more than the spatial spread of the individual atomic wavefunctions. This should not

be a problem since the timing electronics driven mostly by 74LS- and 74F-series TTL

logic sets up on the order of a few ns. However, even though the two paths interfere

there can still be a phase error from some systematic timing discrepancy. In fact,

the phase error should scale roughly as k∆z = kvr∆t, where ∆t is the systematic

timing error. Fortunately, because the light pulses for the up and down conjugate

interferometers are driven in the same way by the same electronics, any timing error

should be exactly the same for the up and down interferometers and thus cancel

completely.

6.7 Adiabatic transfer

Because of its better π-pulse transfer efficiency, using adiabatic dark state transfer

to impart recoils has made this experiment possible. Where adiabatic transfer makes

things more difficult is with the π/2-pulses. The four π/2-pulse interferometer using

adiabatic transfer depends on a high degree of symmetry between the π/2-pulses:

226 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

time reversal between the π/2-pulse pairs, intensity balance between the two light

Þelds, simultaneity for the pulse edges, similarity between the pulse shapes of one

interferometer compared to the pulse shapes of its conjugate, etc. Any net systematic

phase shift from the π/2-pulses that does not cancel will change the measurement

result. Many of these potential problems have been discussed in other sections, but

because of the complexity of this issue, we have developed a technique for detecting

and simultaneously removing all errors from the π/2-pulses. As the π/2-pulses are

put closer together in time, the Þnal interferometer phase depends less on the atom�s

spatial and temporal evolution than it does on some Þxed phase error from the π/2-

pulses. In fact, according to equation (2.34), in the limit as T → 0, the Þnal phase

difference should vanish, because there is no time for the atomic superposition state

to evolve in the dark at a rate different from that of the local oscillator. If the Þnal

phase difference is not zero, it must be from some phase error φerr from the π/2-pulses.

For the real experiment, equation (2.52) must read

∆Φ = Φ
1

− Φ
2
= Φ

12
= −φerr − 4π(N + 1)(frec − fÞx)T (6.50)

In order to make a measurement of the recoil frequency independent of φerr, one Þrst

measures the Þnal interferometer phase difference with T = 0 and then with large

T . The Þnal phase difference for large T will include both the desired dependence

on frec − fÞx and on the phase error φerr from the π/2-pulses. By subtracting the

result from the Þrst measurement when T was zero, φerr can be removed. An even

better method is to take data at several values of T . According to equation (6.50),

the data plotted as phase versus T should lie on a line whose slope is the desired

measurement frec − fÞx and whose T = 0-axis intercept is the systematic error φerr
from the π/2-pulses. The beauty of this measurement approach is that it removes all

systematic phase errors due to the π/2-pulses, including problems from systematic

non-adiabaticities, rf-amplitude dependent phase shifts, and intensity imbalances.

The only errors it does not remove are phase errors that depend on T . However,

because the experiment uses the exact same pulse shapes independent of T (see

Section 3.6), it is difficult to imagine why errors from the π/2-pulses would vary with

6.7. ADIABATIC TRANSFER 227

T . Only problems that occur when the light is off should depend on T . Thus, in a

single stroke, albeit with slightly more data than originally anticipated, we measure

and remove all of the systematic measurement errors from the π/2-pulses.

Time between π/2-pulses (ms)

0 20 40 60 80 100 120 140

f fff
re

c
/f fff

fi
x

−
1

(p
p
b
)

-500

0

500

1000

1500

2000

2500

Figure 6.19: Recoil frequency versus the time T between the π/2-pulses, taken with 30
π-pulses. Because the interference fringe spacing is 1/T , the Þnal measurement resolution improves
linearly with T . Thus, even though each recoil measurement (sold triangles) consists of roughly the
same number of repetitions (129 in total), the uncertainty grows steadily larger as T shrinks. In
fact, in terms of determining frec from this graph, only the last value with T = 120 ms contributes.
For a detailed explanation of the graph symbols see [53].

To illustrate this process, consider the data shown in Figure 6.19 where we have

varied the value of T . As T shrinks the measurement uncertainty in frec increases,

because the measurement sensitivity increases linearly with T . Even with the large

error bar, the value 1808± 406 ppb for T = 5 ms appears dramatically inconsistent

with the other values. One might simply discard that value and use the others.

However, as shown in Figure 6.20a, when the same data are converted from fre-

quency to phase by multiplying by 4π(N + 1)T , the systematic error is evident. The

data all fall on a line, but the intercept which represents φerr is not zero. The slope of

this line divided by 4π(N+1) is the desired measurement ∆frec, which is independent

228 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

Time between π/2-pulses (ms)

0 20 40 60 80 100 120 140

4 π
(f fff

re
c−

 f fff
fi
x)

 T
 (
N

+1
)

 (
m

ra
d
)

-100

-50

0

50

(b)

(a)

Figure 6.20: Up/Down interferometer phase difference versus the time T between the
π/2-pulses, taken with 30 π-pulses. The points (a) shown in gray are the same data as shown in
Figure 6.19 but with the vertical axis converted to phase by multiplying by 4π(N + 1)T , where T
is the same horizontal axis. Note that unlike Figure 6.19, after converting to phase, all points have
roughly the same uncertainty. By Þtting each set of Þve points with a line, we can extract a value
for frec and value for a systematic phase error φerr according to ∆φ = φerr+4π(N + 1)(frec− fÞx)T
(see equation (6.50)). For data set (a) we have φerr = 42.1 ± 10.5 mrad for the intercept and
frec = −118.8 ± 28.8 ppb relative to fÞx from the slope. For data set (b) shown in black, which
consists of 242 repetitions, we switch the F =3 and F =4 light Þelds on and off exactly together
using the common switch AOM (see Section 3.2.4) instead of depending on the individual shaping
AOMs to switch identically as in (a). The linear Þt results for (b) are φerr = 4.9 ± 5.1 mrad for
the intercept and frec = −111.8± 12.4 ppb relative to fÞx from the slope. Note that the systematic
phase shift is no longer present when we use the common switch AOM. Also note that in spite of the
signiÞcant systematic phase shift in data (a), within their uncertainties, we extract the same value
for the recoil frequency as we do from (b). Thus, this method of converting to phase and Þtting
with a line removes the effect of the systematic phase error φerr from the data.

of the systematic phase error from the π/2-pulses.

When we discovered this systematic error and took more data (see Figure 7.1) to

verify that it repeated, we spent a great deal of time and effort attempting to discover

its source and remove it. Even though we were fairly conÞdent we could measure and

subtract it out using the �φ versus T� method, our concern was that because we did

6.8. INTERFEROMETERS 229

not understand the source of the systematic error, it might be causing other problems

we were not aware of and were not properly controlling. We knew the problem

had to come from the π/2-pulses, and we suspected that it came from the �phase-

sensitive� edges of the pulses when both light Þelds turn on or off together to deÞne

the superposition dark state. We reduced the variation in phase from the variable

rf attenuators used to shape the pulses (see Section 4.2), but the problem persisted.

Finally, by introducing the common switch AOM, we were able to remove the problem

and demonstrate that it did originate in the phase-sensitive edges. Figure 6.20a was

taken with the phase-sensitive edges switched using the shaping AOMs instead the

common switch AOM. Figure 6.20b is the exact same experimental condition except

that the phase-sensitive edges of the π/2-pulses are switched on and off using the

common switch AOM and not the shaping AOMs. Notice that the T = 0 intercept

corresponding to φerr is consistent with zero and disagrees with the intercept in Figure

6.20a by more than 3 standard deviations.

6.8 Interferometers

6.8.1 Sloping background

Whenever sinusoidal fringes are superimposed on a sloping background, the zero phase

parameter from the Þt may shift. If the background changes by a fraction s in units

of Hz−1, the phase zero point will shift by approximately s/(2πTC), where C is the

contrast of the fringes. In Section 6.2.2, we estimated that the maximum error we

could have in the two-photon difference frequency is on the order of δ ∼ 1 Hz. The
Þrst derivative of the normalized lineshape function in equation (3.22) for an adiabatic

transfer pulse is

∂g

∂δ
=

2
q
ln(2)

δ0
√
π

Ã

−8 ln(2)
δ

δ20

!

exp

Ã

−4 ln(2)
δ2

δ20

!

= −
16 ln(2)3/2
√
π

Ã
δ

δ30

!

exp

Ã

−4 ln(2)
δ2

δ20

!

230 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

' −
16 ln(2)3/2
√
π

Ã
δ

δ30

!

(6.51)

when δ ¿ δ0. Our π/2-pulses have a FWHM linewidth of δ0 = 95 kHz, so the shift

of the phase zero point will be

∆φ = −
16 ln(2)3/2
√
π

Ã
δ

δ30

!
1

2πTC

= −15.2
1Hz

95 kHz

1

2π(120ms)0.15
= 79µrad (6.52)

where we have assumed a conservative contrast of C = 0.15. If this slope were the

same for the up and down interferometers, the phase shift cancels. Even if it does

not cancel, however, it corresponds to a negligibly small error in the recoil frequency.

6.8.2 Fit routines and numerology

As discussed in Section 5.1, the Þt routines use the Levenberg-Marquardt root Þnding

method to minimize χ2 the sum of the square differences between the Þt function fÞt

and the data [φi, ai].

χ2 =
1

n− 3

nX

i=1

h
ai − fÞt(φi)

i2
(6.53)

where n is the number of data points. After determining the three Þt parameters

which minimize χ2, the Þt program checks each data point to see how it obeys the

relation ¯̄
¯ ai − fÞt(φi)

¯̄
¯

χ2
?
> 3 (6.54)

The program throws out all of the nbad points that satisfy relation (6.54) and then

reÞts the remaining n − nbad data points. These �3σ-points� which occur roughly
2% of the time are usually due to some failure in at least one of the loading, launch,

interferometer, or detection stages of the data taking process. Because this least-

squares method places more importance on points lying many standard deviations

away from the Þt function, it is important that we separate out data points that do

6.8. INTERFEROMETERS 231

not obey normally distributed statistics. Per convention, we choose three standard

deviations as the rejection threshold. A normal distribution expects just over two

3σ-points in a sample of 1000 points, our complete data set comprises over 10 000

sets of 51 point fringes, so we feel the threshold is justiÞed.

As an irrefutable veriÞcation that the Þt routines are doing what they are supposed

to, we tested them on some fabricated data. Andreas Wicht generated simulated

noiseless fringes with a shift that he chose but did not share with me. I ran these fake

fringe data through the Þt code as I normally would, and demonstrated that I could

consistently reproduce his original value. We also tested the data analysis process

on a set of simulated recoil data points with noise added to simulate the random

measurement noise in the actual experiment. This noise was generated by repeated

calls to a random number generator that outputs values normally distributed with

a given standard deviation around a given mean. By choosing reasonable standard

deviations for the parameters A ' 0.0805 ± 0.0026, C ' 0.1675 ± 0.0137, and D '

0±103 mrad of equation (5.1), we generated over 3000 fake data Þles each containing

four 50 point fringe scans, one for each interferometer. Using the Þt code given

in Appendix C.2, we Þt these data exactly as we would for real data, and then

compiled statistics. The resulting weighted mean differed from the original value

used to generate the data by 0.60 ppb with a 1.06 ppb uncertainty. We therefore

conclude that our data analysis process is trustworthy down to at least the one pbb

level.

6.8.3 Missed recoils

A crucial ingredient to the precision of our measurement is the addition of N π-pulses

in between the two sets of π/2-pulses. We demand that all of the atoms receive exactly

N additional two-photon recoils. A phase error results if some of the atoms miss one

or more momentum changing π-pulses. If an atom were to miss a π-pulse, it would

be in the bright state at the beginning of the next pulse. This next π-pulse would

then immediately drive single-photon transitions to the excited state from where the

atom would spontaneously emit a photon and fall back to one of the ground states

232 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

with randomized phase. On average these atoms will produce no net shift of the Þnal

interferometer phase. Further, because of the Þnite frequency width of a π-pulse, an

atom missing several momentum transfers would be far enough off-resonance that it

would no longer be addressed by succeeding π-pulses.

The most serious concern is that some of the atoms may experience a Doppler-

free transition induced by two copropagating beams. To minimize the amount of

copropagating light, we tilt all optics after and including the Þnal polarizers away from

normal incidence so that no back reßected light can illuminate the atoms. Besides

the Þnal polarizing beamsplitter cube, these optics include the λ/4-plates and the top

and bottom windows of the vacuum chamber, which are mounted at a 5◦ angle. We

also avoid applying π-pulses when the atoms are close to the top of their trajectory

where the resonance conditions for Doppler-sensitive and Doppler-free transitions

are degenerate. An atom that misses one momentum impulse will produce a Þnal

interferometer phase shifted by an amount ∆φ = 2πfrecT . We can slightly modify

the time T so that ∆φ is an integer multiple of 2π. With this choice of T , the fringe

pattern for a single missed recoil will be the same as the fringe pattern for no missed

recoils and will thus produce no net phase shift. If the fraction of atoms that miss a

recoil is small, then the fraction of atoms that miss two recoils is even smaller, and

so on. By canceling the effect of missing one recoil we remove the vast majority of

any phase shift from missed recoils.

As a check on our sensitivity to missed recoils, we look for this systematic effect

by adding 30 π-pulses at the top of the atomic trajectory so that the lasers are

tuned near the Doppler-free resonance. We then scan the time T over a range where

∆φ changes by 2π. The resulting Þt to a single sinusoid has an amplitude that is

consistent with zero. Normally, we set the time for the π-pulses so that they always

occur before the top of the trajectory when their resonance frequency is almost 4

π-pulse line halfwidths from the Doppler-free resonance9. Thus, in addition to the

9This is only strictly true for the up interferometers that use the π-pulses to cancel the effect
of gravity. For the down interferometers, the π-pulses push the atoms downward with an effective
acceleration of ∼ 2g. These atoms thus pass rapidly through the v = 0 point where Doppler-free
resonances are not suppressed. However, because these atoms are accelerated so rapidly downward,
no more than a few π-pulses are very close to the Doppler-free resonance.

6.8. INTERFEROMETERS 233

Time between π/2-pulses − 120 ms (µs)

-20 -10 0 10 20 30 40

f fff
re

c
/f fff

fi
x

−
1

(p
p
b
)

-250

-200

-150

-100

-50

0

Figure 6.21: Looking for missed recoils with 30 π-pulses placed at the exact top of the trajec-
tory when the resonance conditions for Doppler-free and Doppler-sensitive two-photon transitions
are degenerate. Atoms that undergo a Doppler-free transition gain no momentum from that π-pulse.
Consequently, the interferometer phase they produce is shifted by ∆φ = 2πfrecT . In this test con-
sisting of 66 repetitions, we varied T around 120 ms in small 60◦ steps of 1/(6frec) ' 11µs to look
for the presence of atoms missing one recoil, which would manifest itself as a sinusoidal ßuctuation
with a period of 1/frec. Fitting the data with a single sinusoid of this period gives an amplitude of
16.9 ± 16.5 ppb, a Þt phase of 53 ± 58◦, and an offset of −99.6 ± 12.1 ppb. Since the amplitude is
consistent with zero and the phase is barely determined for an experimental condition that is much
more sensitive than normal to Doppler-free transitions, we conclude that the Þnal measurement
value is not affected by missed recoils. For a detailed explanation of the graph symbols see [53].

suppression achieved from appropriately choosing a special value for T , we expect

additional reduction of at least a factor of 100 because of the detuning from the

Doppler-free resonance.

6.8.4 Sagnac effect

When an interferometer enclosing some non-zero spatial area A rotates with angular

velocity Ω in the plane of A relative to some absolute coordinate system, the Þnal

234 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

interferometer phase difference changes by

∆φ = 2
m

h̄
Ω ·A (6.55)

where m is the mass of the interfering particle [12]. Although some atom interfer-

ometer experiments are designed entirely to measure this very effect [15], for our

experiment it is an undesired systematic error. The Earth rotates with angular ve-

locity

|ΩE| = ΩE '
2π

(24 h)(3600 s/h)

Ã

1−
1

365.24 days/year

!

= 72.523µrad/s (6.56)

In our labs at Stanford located at θ = 37◦25044.400 = 0.653 2593 rad latitude, the

earth�s angular rotation vector is

ΩE = ΩE(cos θ �NS + sin θ �UP)

= (57.591 �NS + 44.078 �UP)µrad/s (6.57)

Since without a great deal more federal funding, we cannot turn off this rotation, we

must strive to minimize A and/or design the interferometers so that the effect cancels

when the results from the four different interferometers are combined. Ideally, the

atoms are launched vertically and the Raman beams are also aligned with g. In this

ideal case, the interferometers all take place on a vertical line, enclose no spatial area,

and thus produce Sagnac phase.

Now consider the general case when the launch and the Raman beams are not

vertical by angles θL and θg, respectively. Assume they are both misaligned in the

xz-plane. An example for the area opened with interferometer geometries 1 and 2

with no π-pulses when θL > θg > 0 is shown in Figure 6.22. To evaluate the area

enclosed by each of these interferometers we write

A =
¯̄
¯̄ 1

2
(r2S − r1)× (r2U − r1)

+ (r2S − r2U)× (r3U − r2U) (6.58)

6.8. INTERFEROMETERS 235

�

θ-θ-

θ3 θ3

� �

�

Figure 6.22: Spatial area enclosed by the interferometers due to misalignments in the
initial launch direction and the verticality of the Raman beams. The initial launch direction and
the Raman beams are misaligned from vertical by θL and θg, respectively. Here we have assumed
that both misalignments are in the xz-plane and without loss of generality that θL > θg > 0. In the

text we show that the areas enclosed by both interferometer geometries 1 and 2 are equal.

+
1

2
(r4 − r3U)× (r4 − r3S)

¯̄
¯̄

where riS = xiS �x + ziS �z = (xiS, ziS) is the two-dimensional position vector of the

atoms at the ith π/2-pulse along the shifted path, and similarly for the unshifted

path. Each line of equation (6.58) is the area from each one of the three intervals

(t1 → t2, t2 → t3, t3 → t4) of the four π/2-pulse interferometers. Since |r1 × r2| =

|x1z2 − x2z1|, this equation becomes

A =
¯̄
¯̄ 1

2

h
(x2S − x1)(z2U − z1)− (z2S − z1)(x2U − x1)

i

+
h
(x2S − x2U)(z3U − z2U)− (z2S − z2U)(x3U − x2U)

i
(6.59)

+
1

2

h
(x4 − x3U)(z4 − z3S)− (z4 − z3U)(x4 − x3S)

i ¯̄
¯̄

We now evaluate all of the positions (xi, zi) throughout the interferometer, similar to

equation (2.6) with the added complexity that the recoil direction and initial velocity

236 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

are misaligned by angles θg and θL. For the unshifted path,

z2U − z1 = v1T cos θL −
1

2
gT 2 (6.60)

x2U − x1 = vLT sin θL (6.61)

z3U − z2U = v1T
0 cos θL −

1

2
g(2TT 0 + T 02) (6.62)

x3U − x2U = vLT
0 sin θL (6.63)

z4 − z3U = v1T cos θL −
1

2
g(3T 2 + 2TT 0) (6.64)

x4 − x3U = vLT sin θL (6.65)

and for the shifted path

z2S − z1 = v1T cos θL + vrT cos θg −
1

2
gT 2 (6.66)

x2S − x1 = vLT sin θL + vrT sin θg (6.67)

z3S − z2S = v1T
0 cos θL −

1

2
g(2TT 0 + T 02) (6.68)

x3S − x2S = vLT
0 sin θL (6.69)

z4 − z3S = v1T cos θL − vrT cos θg −
1

2
g(3T 2 + 2TT 0) (6.70)

x4 − x3S = vLT sin θL − vrT sin θg (6.71)

Note that from equations (6.60), (6.61), (6.66), and (6.67)

z2S − z2U = vrT cos θg (6.72)

x2S − x2U = vrT sin θg (6.73)

In equations (6.60) through (6.71), we have left out the effect of the π-pulses, since

the π-pulses shift both interferometer paths identically and thus they do not open up

any area. Combining these equations into equation (6.59), the area A12 of the Þrst

time interval is

A12 =
¯̄
¯̄ 1

2

h
(vLT sin θL + vrT sin θg) (v1T cos θL −

1

2
gT 2)

6.8. INTERFEROMETERS 237

− (v1T cos θL + vrT cos θg −
1

2
gT 2) (vLT sin θL)

i¯̄
¯̄

=
1

2

¯̄
¯̄vrT

2(v1 sin θg cos θL − vL cos θg sin θL)−
1

2
vrgT

3 sin θg

¯̄
¯̄ (6.74)

and similarly, the remaining regions have areas

A23 =
¯̄
¯̄vrTT

0(v1 sin θg cos θL − vL cos θg sin θL)

− 1

2
vrgT (2TT

0 + T 02) sin θg

¯̄
¯̄ (6.75)

A34 =
1

2

¯̄
¯̄vrT

2(v1 sin θg cos θL − vL cos θg sin θL)

− 1

2
vrgT (3T

2 + 2TT 0) sin θg

¯̄
¯̄ (6.76)

Combining equations (6.74) through (6.76), the total area A = A12 + A23 + A34 is

thus

A
³
1
´
= vrT

h
(T + T 0)(v1 sin θg cos θL − vL cos θg sin θL)

− 1

2
g(2T 2 + TT 0 + T 02) sin θg

i
(6.77)

which does vanish if θL = θg = 0.

For the two paths of the conjugate interferometer 2 , we have

z3U − z2U = v1T
0 cos θL + vrT

0 cos θg −
1

2
g(2TT 0 + T 02) (6.78)

x3U − x2U = vLT
0 sin θL + vrT

0 sin θg (6.79)

z4 − z3U = v1T cos θL + 2vrT cos θg −
1

2
g(3T 2 + 2TT 0) (6.80)

x4 − x3U = vLT sin θL + 2vrT sin θg (6.81)

and for the shifted path

z3S − z2S = v1T
0 cos θL + vrT

0 cos θg −
1

2
g(2TT 0 + T 02) (6.82)

x3S − x2S = vLT
0 sin θL + vrT

0 sin θg (6.83)

238 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

z4 − z3S = v1T cos θL + vrT cos θg −
1

2
g(3T 2 + 2TT 0) (6.84)

x4 − x3S = vLT sin θL + vrT sin θg (6.85)

The expressions for the Þrst time interval between the Þrst two π/2-pulses have been

omitted because they are identical to equations (6.60), (6.61), (6.66), and (6.67) for

interferometer 1 . As a result, the area A12 given in equation (6.74) is also the same.

Because equations (6.72) and (6.73) are also the same for interferometer 2 the areas

A23 and A34 for the remaining regions are

A23 =
¯̄
¯̄vrTT

0(v1 sin θg cos θL − vL cos θg sin θL)

− 1

2
vrgT (2TT

0 + T 02) sin θg

¯̄
¯̄ (6.86)

A34 =
1

2

¯̄
¯̄vrT

2(v1 sin θg cos θL − vL cos θg sin θL)

− 1

2
vrgT (3T

2 + 2TT 0) sin θg

¯̄
¯̄ (6.87)

Combining equations (6.74), (6.86), and (6.87), the total area A = A12 + A23 + A34

for this interferometer is

A
³
2
´
= vrT

h
(T + T 0)(v1 sin θg cos θL − vL cos θg sin θL)

− 1

2
g(2T 2 + TT 0 + T 02) sin θg

i
(6.88)

identical to expression (6.77) for the total area enclosed by interferometer geometry

1 . For θL ¿ 1 and θg ¿ 1, this area becomes

A
³
1
´
= A

³
2
´
' vrT

h
(T + T 0)(v1θg − vLθL)−

1

2
g(2T 2 + TT 0 + T 02)θg

i
(6.89)

independent of the number of π-pulses. Assuming T = 135 ms and N = 30 (implying

T 0 = 24 ms), equation (6.89) becomes

A
³
1
´
= A

³
2
´

' (6.71mm/s)(135ms)
n
(135 + 24ms)

h
(1.76m/s)θg − (3.00m/s)θL

i

6.8. INTERFEROMETERS 239

− 1

2
(9.80m/s2)

h
2(135ms)2 + (135ms)(24ms) + (24ms)2

i
θg
o

= (0.906mm)

"

(0.279
mm2

mrad
)θg − (0.477mm2/mrad)θL − (0.197mm2/mrad)θg

#

= (0.074mm2/mrad)θg − (0.432mm2/mrad)θL (6.90)

We now insert upper limits for |θL| ≤ 0.3 mrad and |θg| ≤ 0.5 mrad from Section

6.1.1. As a worst case estimate, we further assume that the angles θL and θg are

opposite in sign and open in the plane in which the Earth�s rotation rate is non-zero.

A conservative value for the exposed spatial area of the interferometers is then

A
³
1
´
= A

³
2
´
= A = 0.179mm2 (6.91)

which produces a Sagnac phase of

∆φ = 2
m

h̄
ΩE ·A =

2

vrλeff
ΩE(NS)A

=
2(57.591µrad/s)(0.179mm2)

3.00× 10−9m2/s
= 6.87mrad (6.92)

To the extent that all of the variables in equations (6.77) and (6.88) are the same

for both the up and down interferometers, because of the up/down subtraction, there

will be no net contribution from the Sagnac effect. With many π-pulses, however,

there is a mechanism through which the effective transverse launch velocity vL sin θL '

vLθL varies between the up and down interferometers. Because the π-pulses of 2 push

the atoms up, it takes longer for the atomic cloud longer to reach the detection region

than it would with no π-pulses. For 30 π-pulses, the probe time must be delayed by

∼ 25 ms, or roughly +25/520 = +5.2%. Analogously, the π-pulses of interferometer
1 push the atoms down thereby advancing the probe time by the same amount. If

the atoms are launched with some non-zero transverse velocity vLθL, they will travel

farther off-axis for the up interferometers than they will for the down interferometers.

Or conversely, since the detection region is Þxed, the detection pulse after an up

interferometer will favor a different initial transverse velocity or launch angle θL than

240 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

0 60 120 180 240 300

f fff
re

c
/f fff

fi
x

−
1

(p
p
b
)

-250

-200

-150

-100

-50

0

Launch velocity angle θL = +3.0 mrad

0 60 120 180 240 300

f fff
re

c
/f fff

fi
x

−
1

(p
p
b
)

-250

-200

-150

-100

-50

0

Launch velocity aligned vertical (θL = 0)

Phase of table tilt relative to π-pulses (deg)
0 60 120 180 240 300

f fff
re

c
/f fff

fi
x

−
1

(p
p
b
)

-250

-200

-150

-100

-50

0

Launch velocity angle θL = −3.4 mrad

Figure 6.23: Sagnac effect due to a misalignment of the launch velocity. Recoil data
are taken while the optical table tilts sinusoidally with amplitude 312µrad and frequency 0.546 Hz
about an East-West axis, equivalent to an angular velocity ∼18.6 times that of the Earth. We offset
the time when the interferometers occur to six equally spaced points relative to a single period of
this sinusoidal tilting. From sinusoidal Þt amplitudes shown in following table, we see a clear effect
when the launch velocity is misaligned by θL = +3.0 mrad (top) and θL = −3.4 mrad (bottom) and
a result consistent with no effect when the launch is aligned vertical as normal (middle).

θL (mrad) Repetitions Amplitude (ppb) Phase (deg) Offset (ppb)
+3.0 84 65.0± 15.1 87.5± 13.6 −104.0± 10.8
0 96 20.7± 12.8 143.5± 34.0 −84.2± 8.8

−3.4 96 75.0± 14.6 −99.4± 11.4 −101.2± 10.4

6.8. INTERFEROMETERS 241

the same pulse occuring 50 ms earlier for a down interferometer. For 30 π-pulses, the

Sagnac effect due to a misaligned launch direction should cancel to only |{θL(down)−
θL(up)}|/θL ' 10.4%. For this example, the up/down cancelation reduces the worst

case estimation in equation (6.92), to 0.701 mrad equivalent to 0.89 ppb for T =

135 ms. Because the inverted interferometers 3 and 4 exchange the roles of the up

and down interferometers, for the exact same launch direction misalignment θL 6= 0,

these interferometers will produce the same Sagnac phase but opposite in sign from

the normal interferometers. Thus, this Sagnac effect will be further reduced down to

the difference in probe times between the normal and inverted interferometers, which

is ∼0.3% for interferometers with T = 135 ms and N = 30. Again, using the result

from equation (6.92), we have an error of 0.021 mrad or 0.026 ppb.

To verify this insensitivity to rotations, we took recoil data after intentionally

misaligning the launch and Raman beam directions. To additionally amplify the

effect we installed �pusher legs�10 on the optical table and rocked the table back and

forth with a sinusoidal signal. By varying the amplitude and sign of the sinusoidal

signal driving each of the pusher legs, we were able to produce rotational motion about

arbitrary axes. To avoid convolving in the Earth�s rotation, we programmed the legs

to rotate about an East-West axis, orthogonal to the local component of the Earth�s

rotation. We further constrained the three pushing strengths so that the rotation

axis was near the vibration isolation (VI) system, thus minimizing the amount of

translational motion the VI system would have to detect and remove. With the table

tilting sinusoidally with amplitude Θ0 = 312µrad and frequency ω/(2π) = 0.546 Hz,

we triggered the experiment at different points relative to this motion. At extreme

10The pusher legs were designed for use in the atom interferometry measurement of g (See [54, 26]).
They are constructed from 10 inch outer diameter hollow aluminum cylinders. The cylinders are
welded to hexagonal aluminum 1 inch thick base plates and Þlled with sand. The tops are made from
0.75 inch thick anodized aluminum optical breadboard with a clearance hole drilled in the center.
The clearance hole just passes a 1.5 inch diameter stainless steel post that is held to the top plate
by a Thor Labs post clamp attached to the underside of the top plate. On top of the 1.5 inch post
is the 2.5 inch diameter solenoid part of an audio speaker. The permanent magnet part of the audio
speaker is attached rigidly to the underside of the optical table. With the 1.5 inch post fully lowered,
the pusher leg can be slid under the optical table so that it is centered under the permanent magnet.
The 1.5 inch post is then raised until the coil completely vanishes in the permanent magnet. By
measuring the response for different post heights, the position of the coil relative to the permanent
magnetic can be optimized for maximum force.

242 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

tilt points, the rotational velocity is minimal but the table tilt is maximal. One

quarter of a cycle later, the reverse is true and the angular velocity maximizes to

ωΘ0 = (2π)(0.546Hz)(312µrad) = 1070 rad/s ' 18.6ΩE(NS). Recoil data taken with

table tilting are shown in Figures 6.23 and 6.24. Six different values for the experiment

trigger delay were chosen so that the center of interferometer π-pulses occurred at six

evenly spaced points relative to the tilt oscillation. In Figure 6.23 the probe beam

was displaced by −4.8, 0, and +4.2 mm in the North-South direction. With the probe
displaced by ∆x from center, the detection favors an atomic distribution whose initial

transverse velocity is ∆x/tprobe = (+4.0mm)/(0.52 s) = 8.1 mm/s. Relative to an

initial vertical launch velocity of 2.7 m/s, these probe positions correspond to initial

launch direction angles of θL = (8.1mm/s)/(2.7m/s) = +3.0 mrad (top), 0 mrad

(middle), and −3.4 mrad (bottom). In Figure 6.24, the probe beam is set back to its
center position, but the Raman beam direction tilted in the North-South direction by

θg = +2.8 mrad (top), 0 mrad (middle), and −2.8 mrad (bottom). For each graph
we Þt the six points from each condition with the function

(Amplitude) cos[φ+ (Phase)] + (Offset) (6.93)

Notice that when θL and θg change sign, the Þt phase changes by ∼180 deg , a clear
indication that we are observing a real effect. The amplitude of the sine-wave Þt when

θL and θg are non-zero allows us to estimate the size of the effect when everything

is aligned and the only tilt comes from the Earth�s rotation. Because our laboratory

angular velocity is ∼ 18.6 times the size of the Earth�s, we can reduce the estimate
for the systematic by this factor. Thus, if we can make the launch vertical to within

0.3 mrad (see Section 6.1.1), this alignment uncertainty coupled with the Earth�s

rotation will causes a systematic error of 0.0± 0.3 ppb. If we can make the Raman

beams vertical to within 0.5 mrad (see Section 6.1.1), the Sagnac shift this creates

changes the Þnal recoil measurement by at most 0.0± 1.0 ppb.

6.8. INTERFEROMETERS 243

0 60 120 180 240 300

f fff
re

c
/f fff

fi
x

−
1

(p
p
b
)

-250

-200

-150

-100

-50

0

Raman beams from
vertical θg = +2.8 mrad

0 60 120 180 240 300

f fff
re

c
/f fff

fi
x

−
1

(p
p
b
)

-250

-200

-150

-100

-50

0

Raman beams aligned vertical (θg = 0)

Phase of table tilt relative to π-pulses (deg)
0 60 120 180 240 300

f fff
re

c
/f fff

fi
x

−
1

(p
p
b
)

-250

-200

-150

-100

-50

0

Raman beams from
vertical θg = −2.8 mrad

Figure 6.24: Sagnac effect due to a non-verticality of the Raman beams. Recoil data
are taken while the optical table tilts sinusoidally with amplitude 312µrad and frequency 0.546 Hz
about an East-West axis, equivalent to an angular velocity ∼18.6 times that of the Earth. We offset
the time when the interferometers occur to six equally spaced points relative to a single period of
this sinusoidal tilting. From sinusoidal Þt amplitudes shown in following table, we see a clear effect
when the Raman beams are misaligned by θg = +2.8 mrad (top) and θg = −2.8 mrad (bottom) and
a result consistent with no effect when the beams is aligned vertical as normal (middle).

θg (mrad) Repetitions Amplitude (ppb) Phase (deg) Offset (ppb)
+2.8 114 96.6± 27.2 −133.6± 16.6 −115.6± 19.5
0 97 9.4± 8.4 91.7± 52.9 −73.5± 6.0

−2.8 116 105.0± 18.9 72.3± 10.6 −104.4± 13.6

244 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

6.9 Fundamental

6.9.1 Collisional shifts

In a dense gas of atoms, the mean Þeld atom-atom interaction energy causes a shift

∆f34 of the ground hyperÞne splitting. This splitting causes a measurement er-

ror of ∆f34/[(N + 1)frec]. This shift has been measured for the F =3,mF =0 and

F =4,mF =0 states of cesium to be ∆f34 = −16 mHz at an atomic density of
n = 1 × 109 cm−3 [58, 59]. Since all of the atoms in the cloud contribute to the

collisional shift, we use just the expansion factor row (V −1) in Table 6.1 to esti-

mate a mean density of ∼ 1 × 108 cm−3. At this density, the collisional shift will be

∆f34 = −1.6 mHz, leading to a measurement error of 3.4 ppb for interferometers
with 30 π/2-pulses. This effect is proportional to the atomic density. The light pulses

occur at the same time in the atom�s trajectory for the up and down interferometers.

Any variation in the atomic density throughout the interferometer should therefore be

the same for each interferometer and its conjugate. Thus, this collisional shift which

only changes the frequency between the hyperÞne ground states should subtract out

with the difference between the up and the down interferometers.

6.9.2 Relativity

All relativistic effects such as the second-order Doppler shift and time dilation effects

will be proportional to (v/c)2 where v is the atomic velocity and c is the speed of

light. The largest atomic velocities during the interferometers are ∼2 m/s, so these
effects enter at the 10−7 ppb level and can therefore be neglected. Refer to [60, 61, 62]

for relativistic calculations.

6.9. FUNDAMENTAL 245

6.9.3 Gravitational red shift

As a photon moves within a gravitational potential its energy changes according to

U = G
MEmγ

r
(6.94)

where G is Newton�s gravitational constant, ME is the mass of the Earth, r is the

distance between the photon and the Earth�s center of mass, and mγ = h̄ω0/c
2 is the

effective mass of the photon. To lowest order the fractional change in the photon�s

frequency ∆ω/ω is then

∆ω

ω
=

1

h̄ω0

∂U

∂r

¯̄
¯̄
RE

∆r =
1

h̄ω0

Ã

−
GME

R2E

!
h̄ω0
c2
∆r =

g

c2
∆r (6.95)

Even over the entire ∆r ' 30 cm length of the magnetic shielding, this effect ∆ω/ω =

(9.8m/s2)/(3.0× 108m/s)2(30 cm) = 3.2× 10−17 is too small to produce a signiÞcant

measurement error.

246 CHAPTER 6. CHECKS FOR SYSTEMATIC ERRORS

Table 6.2: Systematic Error Budget. Each systematic effect is discussed in the
section indicated in the Þrst column. A limit in ppb from experimental tests, theo-
retical calculations, or both is given, followed by the correction applied to Þnal value
for frec. The length of the bar at the end of each row is proportional to the square of
the uncertainty from each effect. These uncertainties are summed in quadrature to
produce the total Þnal systematic uncertainty.

Systematic Effect

Experiment

Limit

(ppb)

Theory

Limit

(ppb)

Correction

to frec
(ppb)

Beams

6.1 Guoy phase shift −0.89± 0.04 +0.89

6.1.1 Wavefront curvature 0.05± 0.16 < 0.04

6.1.2 Clipping +0.035± 0.039

6.1.3 Speckle < 0.1

6.1.4 Relative angle −1.0± 0.4 +1.0

6.1.5 Polarization ±(1.5± 2.0)

Frequencies

6.2.1 Lock to cesium < 0.6

6.2.2 Difference frequency < 0.002

6.2.3 Difference frequency
switching < 0.4

6.2.4 Gravity chirp < 0.002

6.2.5 Gravity gradient < 2× 10−7

6.2.6 Bad Frequencies 0

6.2.7 Computer arithmetic 0

Electric Fields

6.3.1 dc-Stark effect < 2× 10−4

6.3.2 ac-Stark from
tracer laser < 0.004 < 0.008

6.3.2 ac-Stark from
Raman lasers 0.016± 0.10

6.9. FUNDAMENTAL 247

Table 6.3: Systematic Error Budget continued. From both tables, we Þnd a total
systematic correction of +2.74 ppb of fÞx, or +82.23µHz. Summing the systematic
uncertainties in quadrature gives a total systematic uncertainty of 3.23 ppb.

Systematic Effect

Experiment

Limit

(ppb)

Theory

Limit

(ppb)

Correction

to frec
(ppb)

Magnetic Fields

6.4 Linear term −1.0± 2.0 +1.0

6.4 Quadratic term +0.150± 0.098 −0.15
Dispersion

6.5.2 Cold signal atoms 0

6.5.2 Cold background
atoms

−9.8± 14
< 0.7

6.5.1 Hot background gas < 0.06

Timing

6.6.1 Line noise 0

6.6.2 Synchronized
ßuctuations < 0.2

6.6.3 Time resolution 0

Adiabatic transfer

6.7 π/2-pulses See Figure 7.1

Interferometers

6.8.1 Sloping background 0

6.8.2 Fit routines
and numerology 0

6.8.3 Missed recoils < 0.02

6.8.4 Sagnac effect from
launch direction < 0.3

6.8.4 Sagnac effect from
beam direction < 1.0

Fundamental

6.9.1 Collisional shifts < 0.3

6.9.2 Relativity < 10−7

6.9.3 Gravitational
red shift < 0.001

Chapter 7

Determination of α

7.1 A Þnal value for frec

Over the several years during which we ran this experiment, testing it for systematic

problems, we accumulated a set {fi, σ(fi)} of over 10 000 different measurements of

frec. Each of these values for frec represents four measurements, one for each of

the four different interferometer geometries discuss in Section 2.1. Of these data, we

immediately reject the subset when we were amplifying some systematic effect beyond

its normal operating level. For example, we reject the data we took when we changed

the magnetic bias Þeld or rocked the optical table to look for the Sagnac phase. From

the remaining n = 4000 points, we can compute the weight mean

hfreci =

nX

i=1

fi
σ(fi)2

nX

i=1

1

σ(fi)2

(7.1)

and the statistical uncertainty of the mean

σ(hfreci) =

Ã
nX

i=1

1

σ(fi)2

!− 1
2

(7.2)

248

7.1. A FINAL VALUE FOR FREC 249

S
ys

te
m

at
ic

 p
h
as

e
er

ro
r

φ e
rr

 (
m

ra
d
)

-50

0

50

100

(from slope)

f fff
re

c
/f fff

fi
x

−
1

(p
p
b
)

-250

-200

-150

-100

-50

0

mean

−124.98(4.88)

(b)

+47.99(4.74)

(a) +22.17(3.76) (c) −10.04(2.42)

(from intercept)

Figure 7.1: Summary of the data taken by varying the time T between the π/2-pulses.
As described in Section 6.7, by varying the time T between the Þrst to second and third to fourth
π/2-pulses, converting the results to phase by multiplying by 4π(N+1)T , and Þtting with a line, we
reduce each data set into two values: (upper graph) an intercept φerr that represents the systematic
phase error from the π/2-pulses and (lower graph) a slope which gives a value of the frec that is
independent of this error φerr. This data summary displayed chronologically consists in total of 2 771
repetitions and can be divided into three groups (a), (b), and (c), separated by vertical lines. We
installed the common switch AOM (see Section 3.2.4) between data sets (a) and (b). We then took
data with the π/2-pulses switched on and off with (c) and without (b) this common switch AOM.
Comparing the mean intercepts shown in gray for (b) and (c), it is evident that although there still
seems to be a remaining phase error, using the common switch AOM clearly reduces its size. We use
the intercept values in each group to correct the data we took when we were not varying T . Another
value for frec can be derived from the slope data in the lower graph. The fact that the slopes from
different data groups are all internally consistent within their respective uncertainties indicates that
this �φ versus T� method does successfully remove the systematic errors from the π/2-pulses.

250 CHAPTER 7. DETERMINATION OF α

which will be proportional to σ/
√
n for equally weighted data σ(fi) = σ. For this

data set the uncertainty of the mean is 1.9 ppb. We can also compute the weighted

standard deviation

σ(frec) =

vuuuuuuut

nX

i=1

(fi − hfreci)2

σ(fi)2

nX

i=1

1

σ(fi)2

(7.3)

Unfortunately, these data must be corrected for the systematic phase shift from

the π/2-pulses discussed in Section 6.7. As part of identifying and Þxing this phase

error, we took data varying the free evolution time T on a number of occasions. We

Þt a line to each data subset where we varied T . As discussed in Section 6.7, the

slope of the line is a measurement of the recoil frequency and the intercept is the

systematic phase shift from the light pulses. By averaging the intercept values from

these data shown in upper graph of Figure 7.1, we can determine a mean intercept

hφerri. By rewriting equation (6.50) we can use this average intercept to correct all

of our measurements by an amount

∆frec =
−hφerri

4π(N + 1)T
(7.4)

Since the size of this correction depends on the particular values of T and N , we

have to correct each individual data point before averaging all of the data together.

Associated with this mean intercept is the statistical uncertainty of the mean σ(hφerri)

and the weighted standard deviation (deÞned in equation (7.3) for frec) σ(φerr), which

is equivalent to an uncertainty in frec of

σ(φerr)

4π(N + 1)T

Thus, the corrected data set now looks like

n
fi,σ(fi)

o
→





fi −

hφerri

4π(N + 1)T
,

vuutσ(fi)2 +

Ã
σ(φerr)

4π(N + 1)T

!2




(7.5)

7.1. A FINAL VALUE FOR FREC 251

which can be averaged with the new uncertainty values as weighting factors to give

a corrected weighted mean of

f (corrected)rec = 15 006.277 0653 (627) (407) (477)Hz (7.6)

where the numbers in parentheses () are the total uncertainty of the mean, the contri-

bution from the statistical, and the systematic uncertainties, equivalent to a fractional

uncertainty of 4.2, 2.7, and 3.2 ppb, respectively. The accuracy of this value requires

that the intercept values shown in the top graph of Figure 7.1 be constant. If these

values for φerr drift from data run to data run, the mean correction hφerri may not

accurately represent the phase error from the π/2-pulses for each data set. One pos-

sible source of drift is the position of the Raman beams relative to the AOM crystals.

Due to inhomogeneities of the sounds waves propagating through the AOM crystals,

the shape and timing of the off-to-on and on-to-off edges of the light pulses depend

on exactly where the beams pass through the individual AOM crystals. If from run

to run the Raman beams move relative to the AOM crystals, the exact pulse shape

and thus the net phase error φerr may change.

Another value for the recoil frequency that is much less sensitive to such long

term drifts can be computed from the subset of data shown in lower graph of Figure

7.1. These data which represent around 2 800 measurements of all four interferometer

geometries are the Þtted slopes from each of the data subsets for which we varied the

free evolution time T . From each slope value, we compute frec according to

frec − fÞx =
(slope)

4π(N + 1)
(7.7)

The mean of all of these converted slope values gives

f (slope)rec = 15 006.276 9996 (874) (732) (477) Hz (7.8)

with the uncertainties equivalent to a fractional error of 5.8 ppb total uncertainty,

4.9 ppb statistical, and 3.2 ppb systematic uncertainty. Although this value is roughly

30% statistically less certain than f (corrected)rec in equation (7.6), f (slope)rec will be our Þnal

252 CHAPTER 7. DETERMINATION OF α

value. Since it was measured simultaneously with φerr, the correction for phase errors

of the π/2-pulses is more reliable.

7.2 Determining α

Table 7.1: Current values used to calculate the Þne structure constant α from our
measurement of frec = h/mCs(1/λ

2
eff), where 1/λeff = [f(F =3 → 30) + f(F =4 →

30)]/c is the effective two-photon inverse wavelength of the two 6S1/2 to 6P1/2(F =3
0)

transitions. For comparison, the last row gives the current accepted value for α−1

Quantity Value Precision Source

Rydberg constant, R∞ 10 973 731.568 549(83) m−1 0.0076 ppb [3]

Cesium transitions:

f(F =3→ 30) 335 120 562 838(43) kHz

f(F =4→ 30) 335 111 370 206(43) kHz
0.13 ppb [63]

Cesium mass, mCs 132.905 451 931(27) amu 0.20 ppb [64]

Proton mass, mp 1.007 276 466 88(13) amu 0.13 ppb [3]

Proton/electron mass,
mp

me

1 836.152 6675(39) 2.1 ppb [3]

Fine structure constant, α−1 137.035 999 76(50) 3.6 ppb [3]

Using equation (1.2) and the current values given in Table 7.1 for the Rydberg

constant, the cesium and proton masses, the proton to electron mass ratio, and the

frequencies of our two recoil lasers, we calculate a value for the Þne structure constant

from our measurement of the recoil frequency frec. Using f
(slope)
rec in equation (7.8),

α−1 = 137.035 999 710(427)(401)(148) = α(CODATA)− 0.37 ppb (7.9)

7.2. DETERMINING α 253

where the uncertainties are equivalent to a 3.1 ppb total uncertainty, a 2.9 ppb un-

certainty from the uncertainty of f (slope)rec , and a 1.1 ppb total uncertainty from the

other measurements in Table 7.1. For comparison, this value is plotted in Figure 1.1

along with the results from the other techniques for measuring α.

Chapter 8

Future prospects

The several parts per billion uncertainty of our Þnal result is very close to the per-

formance limit of the current version of this experiment. Statistics and systematic

uncertainties contribute almost equally to the Þnal uncertainty. Because it would re-

quire running the experiment continuously for over one month, we cannot realistically

expect to improve the current statistical uncertainty by more than a factor of two.

There are several possibilities for improving the sensitivity of the measurement.

One of the most direct ways is to increase the size of the recoil, with multiple photon

processes, higher order scattering, or simply using a lighter atom. Other possibilities

involve different interferometer geometries, particularly those that enclose much larger

areas of phase space. Another completely different avenue might involve improving

the signal-to-noise ratio of the current experiment by inventing a new technique to

simultaneous measure the phase from both conjugate interferometers. If the same

light Þeld could simultaneously generate both interferometers, the Þnal phase differ-

ence from simultaneous interferometers would be much less sensitive to motion of

the optical wavefronts due to vibrations and electronic noise. Also, by measuring

the number of atoms in both hyperÞne states (instead of just one state) after the

Þnal interference point, the determination of the interferometer phase could made

less sensitive to amplitude ßuctuations of the Þnal detection signal.

In addition to the measurement sensitivity, the systematic uncertainty would also

254

255

have to be improved. Currently, this uncertainty is determined primarily by uncer-

tainties in the magnetic Þeld shifts, the Sagnac phase, the accuracy of our lock to the

atomic line, and the dependence on the laser beam polarization, all of which could

potentially be controlled to better than 1 ppb in a future version of this experiment.

What also should be addressed is the long term drift of the systematic phase shift φerr

from the π/2-pulses. Generating the π/2-pulses with off-resonant Raman transfer in-

stead of adiabatic passage may completely eliminate this problem. Other systematic

effects which might prove more difficult to control are collisional and dispersive effects

from the cold atoms, which according our theoretical estimates enter at around one

ppb in frec, or 0.5 ppb in α.

Appendix A

Transition strengths

The purpose of this section is to determine the saturation intensity and thereby the

Rabi frequency for the cesium transitions we use in our interferometers. We will

not derive the expressions from basic principles. Instead we focus on the often more

troublesome part of this exercise: correctly combining a consistent set of expressions.

After deriving an expression relating the Rabi frequency to the saturation intensity

for our particular choice of deÞnitions, we will discuss the different deÞnitions found

in the literature for the electric Þeld, Rabi frequency, and saturation intensity.

A.1 Rabi frequency

We wish to evaluate the strength of the coupling when an electric dipole allowed

transition between an atom�s internal electronic states |1i and |2i is driven by an

electric Þeld

E(t) = E cos(ωt) (A.1)

In this external electric Þeld, the atomic dipole d has energy −d ·E, so the transition
strength is

ρ2
12 = |h1|d · E|2i|

2 (A.2)

256

A.1. RABI FREQUENCY 257

with which is associated the Rabi frequency

Ω =
d · E

h̄
(A.3)

This transition matrix element in equation (A.2) can subdivided into radial and an-

gular parts. The angular part describes the coupling between different angular mo-

mentum states completely independent of the particular atomic species. However,

for every species there will always be one particular excited state to which only one

other angular momentum state is coupled. For this strongest �swing transition�, the

angular part of equation (A.2) will be unity and the radial part can be written simply

as

ρ2
12 = d

2E2 (A.4)

where size of the electric dipole can be written [65]

d2 =
3h̄

4k3
Γ (A.5)

where λ = (2π)/k is the transition wavelength and τ = 1/Γ is the excited state

lifetime. The saturation intensity Isat, deÞned as the electric Þeld intensity when one

quarter of the population is in the excited state, can also be written in terms of k

and Γ [65]

Isat =
h̄ck3Γ

12π
(A.6)

For our deÞnition of the electric Þeld, in MKS units the Þeld intensity is

I =
c

8π
E2 (A.7)

which can be written in terms of the Rabi frequency using equation (A.3)

I =
c

8π

h̄2Ω2

d2
(A.8)

258 APPENDIX A. TRANSITION STRENGTHS

Inserting expression (A.5) for the magnitude of the electric dipole, we have

I =
c

8π
h̄2Ω2

4k3

3h̄

1

Γ
(A.9)

which Þnally can be expressed in terms of the saturation intensity

I

Isat
= 2

Ω2

Γ2
(A.10)

A.1.1 Alternate deÞnitions

We now list alternative ways of deÞning the electric Þeld, Rabi frequency, and satu-

ration intensity and summarize them in Table A.1.

Electric Þeld

The electric Þeld is often deÞned as

E(t) = E0eiωt + complex conjugate (A.11)

In order for this expression to be equivalent to relation (A.1), we must have E0 = E/2

Rabi frequency

To simplify the expression for the Hamiltonian, the Rabi frequency is often written

as

Ω
0 =

d · E

2h̄
(A.12)

to represent the oscillation of the probability amplitude instead of the population.

Comparing this deÞnition with equation (A.3), we have Ω0 = Ω/2.

Saturation intensity

And Þnally, the saturation intensity is sometimes deÞned as twice the value given in

equation (A.6): I 0sat = 2Isat

A.1. RABI FREQUENCY 259

Electric Field
Rabi

frequency
Saturation
intensity

I
Isat

= (constant)
Ω
2

Γ
2

E = 2E0 Ω = 2Ω0 Isat =
1

2
I 0sat (constant)

Here Here Here 2
Here Here Elsewhere 1
Here Elsewhere Here 8
Here Elsewhere Elsewhere 4

Elsewhere Here Here 8
Elsewhere Here Elsewhere 4
Elsewhere Elsewhere Here 32
Elsewhere Elsewhere Elsewhere 16

Table A.1: Different conventions relating the Rabi frequency to the saturation intensity.
The Rabi frequency Ω is related to the intensity of the driving Þeld though I/Isat = (constant)Ω

2/Γ2,
where (constant) is a numerical factor whose value depends on the particular deÞnitions of the electric
Þeld, Rabi frequency, and saturation intensity. For the conventions given in equations (A.1), (A.3),
and (A.6) that we adopt, this constant is 2, as in equation (A.10). This table shows the different
values for this constant depending on the particular convention begin used.

A.1.2 Cesium

We now calculate the saturation intensity and Rabi frequency for the particular ce-

sium transitions we use for the interferometers. We start with the measured satura-

tion intensity for the cesium D2 F =4,mF =4 → F =5,mF =5 closed transition at

853.356 nm

Isat(D2) = 1.12
mW

cm2
(A.13)

From equation (A.6), the saturation intensity scales as Isat ∝ Γλ−3. The lifetimes of
the D1 and D2 excited states are 34.8 and 30.4 ns [66], respectively, so for the D1

transitions at ∼894.6 nm

Isat(D1) = Isat(D2)
µ
τD1

τD2

¶−1 ÃλD1
λD2

!−3

= 1.12
mW

cm2

µ
34.8

30.4

¶−1 µ 894.6

852.356

¶−3
= 0.846

mW

cm2
(A.14)

260 APPENDIX A. TRANSITION STRENGTHS

Since the saturation intensity also scales inversely with ρ2
12, we must also evaluate the

angular terms for the particular angular momentum states we are addressing. In the

weak magnetic Þeld limit, the angular momentum can be reduced to a total angular

momentum quantum number F and its component mF along the quantization axis

deÞned by the direction of the external magnetic Þeld. The angular part is given by

µ2 =
¯̄
¯
D
F1,mF1

¯̄
¯C(1)+1

¯̄
¯F2,mF2

E¯̄
¯
2

(A.15)

where C(∆L)p is the rank ∆L=1 Racah tensor with p = −1, 0,+1 for �σ−, �π, and �σ+
polarized light, respectively. In particular, for photons (∆L=1),

C
(1)
0 = cos(θ) (A.16)

C(1)±1 = ∓
1√
2
sin(θ)e±iφ (A.17)

where θ and φ are the angular coordinates for the radial vector. The cesium 6S1/2

ground state has spin quantum numbers L = 0, S = 1

2
, and J = L + S = 1

2
. The

cesium nucleus has spin quantum number I = 7
2
, so the total spin quantum number

for this state is F = J + I = 3 or 4, and similarly for the 6P1/2 D1 excited state,

except L = 1. From repeated applications of the Wigner-Eckhart theorem

¯̄
¯
D
F1,mF1

¯̄
¯C(1)+1

¯̄
¯F2,mF2

E¯̄
¯
2
=

(−1)F−mf



 F 0 1 F

−mF 0 q mF





δII0

√
2F + 1

√
2F 0 + 1 (−1)J+I+F

0+1





I J F

1 F 0 J 0




 (A.18)

δSS0

√
2J + 1

√
2J 0 + 1 (−1)L+S+J

0+1





S L J

1 J 0 L0






(−1)L> −L
q
L>

where () and {} are the Wigner 3-j and 6-j symbols, respectively, and L> is the

larger of L and L0 = L ± 1 [67]. Expression A.18 is evaluated for all of the allowed

A.1. RABI FREQUENCY 261

D1 transitions in Table A.2.

F1 → F2

mF1 mF2 3→ 3 3→ 4 4→ 3 4→ 4
−4 −4 1/9 16
−4 −3 7/36 28 1/36 4
−3 −4 7/36 28 1/36 4
−3 −3 1/16 9 7/144 7 7/144 7 1/16 9
−3 −2 1/48 3 1/144 1 7/48 21 7/144 7
−2 −3 1/48 3 7/48 21 1/144 1 7/144 7
−2 −2 1/36 4 1/12 12 1/12 12 1/36 4
−2 −1 5/144 5 1/48 3 5/48 15 1/16 9
−1 −2 5/144 5 5/48 15 1/48 3 1/16 9
−1 −1 1/144 1 5/48 15 5/48 15 1/144 1
−1 0 1/24 6 1/24 6 5/72 10 5/72 10
0 −1 1/24 6 5/72 10 1/24 6 5/72 10
0 0 1/9 16 1/9 16
0 +1 1/24 6 5/72 10 1/24 6 5/72 10

+1 0 1/24 6 1/24 6 5/72 10 5/72 10
+1 +1 1/144 1 5/48 15 5/48 15 1/144 1
+1 +2 5/144 5 5/48 15 1/48 3 1/16 9
+2 +1 5/144 5 1/48 3 5/48 15 1/16 9
+2 +2 1/36 4 1/12 12 1/12 12 1/36 4
+2 +3 1/48 3 7/48 21 1/144 1 7/144 7
+3 +2 1/48 3 1/144 1 7/48 21 7/144 7
+3 +3 1/16 9 7/144 7 7/144 7 1/16 9
+3 +4 7/36 28 1/36 4
+4 +3 7/36 28 1/36 4
+4 +4 1/9 16

Table A.2: The angular matrix elements:
¯̄
¯hF1,mF1|C

(1)
p |F2,mF2i

¯̄
¯
2
evaluated for

the cesium D1 transition, where C(1)p is the rank 1 Racah tensor with p = −1, 0,+1
for �σ−, �π, or �σ+ polarized light. Cesium has nuclear spin quantum number I = 7

2
,

so the possible values for F = I + J are 3 and 4. Both values in each column give
the value of the matrix element, but the second value is normalized to the smallest
matrix element in the entire manifold: 1/144.

262 APPENDIX A. TRANSITION STRENGTHS

For the D1 transition there is no swing state1 that couples to only one ground state.

Thus, the saturation intensity value from equation (A.14) corresponds to the total

coupling out of the excited state. The F =40,mF =+4
0 state, for instance, couples

to the F =4,mF =+4, F =4,mF =+3, and F =3,mF =+3 states with strengths, 16,

4, and 28, respectively, for a total of (16 + 4 + 28)/144 = 1/3. This sum over all

possible angular momentum couplings is the same for all excited states. Now for

our transitions between the F =4,mF =0 and F =3,mF =0 ground states and the

F =30,mF =+1
0 excited states, the angular matrix elements both happen to be 1/24,

so the saturation intensity for these transitions is

Isat(D1 :|3, 0i→ |30,+10i) = Isat(D1 :|4, 0i→ |30,+10i)

= Isat(D1)

Ã
µ2(|3, 0i→ |30,+10i)

µ2(|40, 40i→ |4, 4i) + µ2(|40, 40i→ |4, 3i) + µ2(|40, 40i→ |3, 3i)

!−1

= Isat(D1)
µ

6

16 + 4 + 28

¶−1
=

µ
0.846

mW

cm2

¶ µ
6

48

¶−1
= 6.768

mW

cm2
(A.19)

and similarly for the F =40,mF =+1
0 excited state

Isat(D1 :|3, 0i→ |40,+10i) = Isat(D1 :|4, 0i→ |40,+10i)

= Isat(D1)

Ã
µ2(|3, 0i→ |40,+10i)

µ2(|40, 40i→ |4, 4i) + µ2(|40, 40i→ |4, 3i) + µ2(|40, 40i→ |3, 3i)

!−1

= Isat(D1)
µ

10

16 + 4 + 28

¶−1
=

µ
0.846

mW

cm2

¶ µ
10

48

¶−1
= 4.061

mW

cm2
(A.20)

Our Raman lasers typically have a power of P ∼ 12 mW at the atoms. With a

Gaussian waist radius of w0 ' 0.96 cm, the peak intensity is

I =
P

πw20
=

12mW

π(0.96 cm2)
= 4.14mW/cm2 (A.21)

which gives saturation parameters s = I/Isat = 0.612 and 1.02 for the F =30 and

F =40 excited states, respectively. Using equation A.10, the typical Rabi frequencies

1For D2, the excited states F =50,mF =±5
0 are called �swing� states because they couple to only

the F =4,mF =±4 ground states.

A.2. PHOTON-CESIUM CROSS-SECTION 263

for our lasers are therefore

Ω(F =30) = Γ

s
I

2Isat
= 4.573MHz

s
0.612

2
= 2.53MHz (A.22)

Ω(F =40) = Γ

s
I

2Isat
= 4.573MHz

s
1.02

2
= 3.27MHz (A.23)

A.2 Photon-cesium cross-section

Using the angular matrix elements presented in Table A.2 and those for the D2

transition, we can calculate photon-cesium scattering cross-sections using

σ12 =
3λ2

12

2π

3

2F1 + 1

+F1X

m1=−F1

+F2X

m2=−F2

¯̄
¯
D
F1,m1

¯̄
¯C(1)+1

¯̄
¯F2,m2

E¯̄
¯
2

(A.24)

due the presence of some atomic transition with wavelength λ12 between states |1i and

|2i. In this equation we assume the atom is equally likely to be in any of the magnetic

sublevels and without loss of generality, that the incident light is �σ+ polarized. The

cross-sections for the cesium transitions are summarized in Table A.3

F1 F2 λ12 (nm)
3λ2

12

2π
(cm2) 2F1+1

XX
σ12 (cm

2)

3 3 894.581 3.821× 10−9 7 7/36 1.838× 10−10

3 4 894.578 3.821× 10−9 7 7/12 5.515× 10−10

4 3 894.606 3.821× 10−9 8 14/27 4.290× 10−10

4 4 894.603 3.821× 10−9 8 10/27 3.064× 10−10

3 2 852.336 3.469× 10−9 7 5/9 4.769× 10−10

3 3 852.335 3.469× 10−9 7 7/12 5.007× 10−10

3 4 852.335 3.469× 10−9 7 5/12 3.576× 10−10

4 3 852.357 3.469× 10−9 8 14/81 1.298× 10−10

4 4 852.357 3.469× 10−9 8 14/27 3.894× 10−10

4 5 852.356 3.469× 10−9 8 88/81 8.160× 10−10

Table A.3: Photon-atom scattering cross-sections σ12 for each of the cesium transitions with
wavelength λ12 between states with total angular momentum quantum numbers F1 and F2. The
double sum (

PP
) indicates the sum over magnetic sublevels as in equation (A.24).

Appendix B

Phase lock loop electronics

The electronics for the Raman and tracer phase lock loops (PLLs) are designed to

detect the phase difference between two sinusoidal radio frequency (rf) inputs and

produce a control voltage proportional to this difference. For the tracer PLL, this

output signal sets the frequency of a 100 MHz voltage controlled oscillator (VCO) that

generates the rf signal for the F =4 switchyard AOMs (see Section 3.2.5). The Raman

PLL controls a 9.3 GHz VCO that drives the 9 GHz electro-optic modulator (EOM)

used to generate F =3 light from F =4 light. For each PLL, one rf inputs comes from a

precision reference oscillator, while the other input comes from a photodiode detecting

the beat signal between two lasers, 180 MHz for the tracer PLL and 9.280 GHz mixed

down to 12.631 77 MHz for the Raman PLL.

To reduce the sensitivity to amplitude ßuctuations, a comparator Þrst converts

the sinusoidal signal into an ECL square wave. A phase detector chip (MC12040

and AD9901 for the Raman and tracer PLLs, respectively) produces an ECL output

signal that oscillates at the input frequency and whose duty cycle is proportional to

the phase delay between the rising edges of the two input square waves. By Þltering

this signal with an RC Þlter (τ ' 140 ns), we generate an analog error signal that we

then transform using proportional and integral gains that are set to achieve optimal

steady-state and dynamic performance. To prevent fast switching signals in the digital

components from leaking over and disturbing the slower analog electronics, we build

these two sections on separate boards, connected only by a single twisted pair.

264

265

' "

� ��

�
*

�
)#

��
�

)#
��

�

− −�
4−−�
4

− −�
4

�	
�

C
	�

C

<
*

"'
'(

C

"
#"

"
#"

"
#"

"
#"

++)
4 − −)
4

− −�
4−−�
4

/
�

�

/
�

�
��

�	
	�

��
�	

	�

C (" �	

� �'

'

��
�

�
��

�
*

��
�0

��
�

− +

�	
#�

�
��

�

C
	�

")
��

+ − −�
)4

+�
)4

− +

− +

�	
	,

�#
	�

�
�

#	
�

�	
	

:
9

�

	(

�

-
�

�)
'

-
�

�)
'

�'
#�

�

− +

��
,

-
�

�)
'

��

�	
@�

6
��

#
)�

�

#
)�

�

�'
#�

�

�2

C

�
-
�

�)
'

"
#"

>
��

��
:

��
��

��

9
��

��
�1

;
6
�,

6
�

��
��

3�
��

��
$

��
�

�
��

��
�

�
��

,
��

��
��

�1
 $

��
�

��
��

3�
��

��
;

��
��

�

-
��

��
��

3
*

��
�
�

-
�0

�
;

�
�;

��

��
#	

�

)#
��

�

)#
��

�

�C
�

�C
�

<
�
�1

�3
7

��
��

*
�3

��
�1

�
��

��

�
�
��

�
-
�0

�
-
��

,

�
-
-
�

>
1�

0�
��

�
�0

�

�
*

�
!

 :
9

��
	

	
��

�
/

��
��

 �
-
-

�
*

�
!

 <
*

""
	�

 �
��

 �
��

0�
�

�
-
-

Appendix C

Computer code

C.1 AltInt.BAS

The AltInt code written in BASIC and compiled by Microsoft QuickBasic 4.5 under

DOS controls the entire experiment. It is separated by function into four modules.

The main module, AltInt, calculates the atomic trajectories, computes the two-photon

resonance conditions accounting for gravity and photon recoils, generates the adia-

batic transfer pulse shapes for the selected interferometer(s), and programs all of the

remote devices via general purpose interface bus (GPIB) connections.

266

C.1. ALTINT.BAS 267

’Program AltIntXX ---- Creates Doppler-sensitive interferometer sequences
’ using adiabatic transfer pulses. It allows velocity
’ preselection with any number of complete transfer
’ pulses with keff fixed upward. Then it creates either
’ two pairs of beamsplitter pulses separated by an
’ arbitrary number of complete transfer pulses, or simply
’ just a sequence of complete transfer pulses. For the
’ present vertical Raman beams, we must shift the Raman
’ beam detuning about 21.9 kHz/ms to compensate for the
’ frequency shift from gravity. The final pulse can leave
’ the signal atoms off in either the |3,0> or the |4,0>
’ state. Because of the large number of atoms remaining
’ in the outer magnetic sublevels, either one or two
’ DF Raman transitions should be used to detect only atoms
’ in m=0.
’ This program allows point-by-point interleaving of
’ measurements taken for the four interferometers created
’ by addressing different states after the first beamsplit-
’ ter pair, and by switching the direction of keff for
’ every pulse after the preselection pulse(s).
’ AltInt4X programs, as AltInt30, use the two analog
’ outputs of the Keithley PCIP-AWFG/2 arbitrary waveform
’ generator for the F=3 and F=4 intensity controls, and
’ four of the digital channels for the common intensity
’ control, the strobe signal for the FSK synthesizer, and
’ up and down control signals for the orientation of keff.
’ The feed forward patterns are still created with an
’ HP33120A synthesizer. The data-collection function
’ Scan% is contained in an independent module Data4X.BAS,
’ and the plotting and fitting routines are in PF4X.BAS.
’ The XMS routines are contained in XMAW.C.
’ AltInt43 is modified from AltInt41 by creating along
’ with the feed forward pattern a similar pattern for the
’ tuning voltage of the double-passed AO in the Cs lock.
’ This pattern is stored on a 2nd HP33120A synthesizer and
’ is used to shift the one-photon detuning of the Raman
’ beams to compensate for Doppler shifts at every pulse.
’
’ The flow of the program is as follows:
’
’ (1) Menu for adjusting waveform parameters
’ (2) Simultaneously create list of pulse center times
’ and frequencies, and generate the gate, FF,
’ and Cs lock waveforms
’ (3) Download gate waveform
’ (4) Create AWFG waveforms (F=3, F=4, F=3+4, keff up,
’ keff down, and FSK strobe)
’ (5) Save AWFG waveform to XMS
’ (6) Download FF and Cs lock patterns to synthesizers
’ (7) Repeat (4)-(6) for all interferometers in sequence
’ (8) Use Scan function to collect data
’ (9) Complete the data file
’ (10) Use Plot routine to plot and fit the data
’ (11) Return to Menu
’Revision History:
’43 3/8/97 Convert the variables Tc(), dTc, g0 which are used to trace
’ the atomic trajectory (position, velocity) from single to double
’ precision.
’44 3/13/97 Use external trigger instead of line trigger for the main
’ launch time base.
’50 7/23/97 Incorporate new direct digital synthesizer (ADS-431).
’ - iMult=2 --> iMult=1 new synthesizer is not multiplied
’ - fstep=0.00532.. --> fstep=0.432
’ - reverse polarity of FSK STROBE line (AWFG:X0)
’51 7/24/97 Add another control line, AWFG:Y0, to control the RESET line
’ of the ADS-431 synthesizer to zero the phase of the frequency
’ output.
’52 10/30/97 Same as version 50, except that:
’ - ADS-431 synthesizer clocks at 1000 instead of 928 MHz
’ - FSK STROBE line back to original polarity: active LOW
’ - added variable PfPi2&(m,i) to store the frequencies of

’ all the Pi/2-pulses so that the phase error of the ADS
’ synthesizer can be compensated for in Function Scan
’ of DATA??.BAS
’53 11/ 6/97 Add "autokey" feature. Save tRam# (Raman sequence start
’ time) and ak$ (autokey string) to INI file. tRam# is no longer
’ loaded from the SRS pulser. It is now set before the gate
’ waveform is generated and downloaded. tRam# is set initially
’ to the value in the INI file and from then on to the value set
’ in the menu.
’ 3/ 3/98 Update the value of h/mCs using the new value of the Cesium
’ mass.
’54 3/11/98 Fix bug in my earlier patch that sends the frequencies of
’ the Pi/2 pulses to the Function SCAN(), so that the correct
’ frequencies are matched with the correct pattern.
’55 3/26/98 Add menu command ’L’ so that the trigger mode (LINE,INTERNAL,
’ EXTERNAL) can be changed from the main menu. Load the trigger
’ mode from the "ini" file. Store the trigger mode in the "ini"
’ and output data files.
’ Move the SUB CheckName() and FUNCTION FlnmAdj() to an external
’ file fnXX.bas to leave more room for code in AltIntXX.BAS
’ Immediately after an output data file has been saved, add a
’ call to a new function FileCopy() which copies this file to an
’ alternate storage location set inside FileCopy(). In so doing,
’ we should now be able to look at the data as it comes in.
’ Start the experiment pulsing only when the patterns begin to
’ be downloaded, not when the program first starts.
’60 4/15/98 Introduce TrgMod$(0..4) which contains the text representation
’ of the trigger mode.
’ Move SUB Menu and modules specific to it to an external module
’ MENU10.BAS.
’ Improve "plot file" option from main menu.
’61 6/17/98 Add chirp control signal to AWFG:Y3. This signal active for
’ 1ms and goes inactive when the 3+4 control shuts off at the end
’ of each Pi2 pulse. Introduce variable iTcp in clock() which
’ represents the # of additional FF points required to extend the
’ the gate signal for the Pi2 pulse out to 1ms. Modify Pi2Pi2(),
’ PulseAS(),PulseSA(). Since the recoil direction changes between
’ Pi2-pulses 3 and 4 and I would consequently have to change the
’ chirp direction within a pattern, chirp only during Pi2-pulses
’ 3 and 4.
’62 7/28/98 Add second chirp control so that we can chirp during all 4
’ Pi2-pulses. Chirp controls are now driven by AWFG:Y2 when keff
’ UP and AWFG:Y1 when keff DOWN.
’ Fix bug in version 61 so that a T=1ms pattern can chirp.
’ Add variable kg0# for chirp rate in Hz/s. Include kg0# in
’ output and input config files. The DS345 can chirp for 1ms at
’ the fastest, so the chirp must start 1ms before the end of each
’ Pi/2 pulse. This means that the frequency of the light will
’ have been shifted by the chirping shaping-AOs by an amount
’ kg0# * (1ms - TpiH). Correct the frequencies of each Pi/2 for
’ this "chirp shift".
’ Initialize two new SRS DS345 synthesizers, mAdSnth4() for
’ chirping UP and mAdSnth5() for chirping DOWN.
’ 11/ 5/98 Change linearization lookup-table filenames from aolin3/4.bin
’ to l3/4.bbn so that different tables cannot be used without
’ recompiling.
’ Add code to Pi2Pi2() so that if only the F=3 light is chirped,
’ the Cs offset lock will not be changed.
’63 11/ 6/98 Add global variable "rimb", the imbalance factor, which scales
’ the intensity of one beam for the Pi2 pulses. PulseAS()
’ and PulseSA() now expect yA and yB instead of just y0 to
’ represent the intensity scaling factor. The value is stored to
’ the output file and can be accessed with ’s’ from the menu
’64 11/24/98 Modify the chirp trigger timing so that the chirp triggers
’ occur (1ms - TdS) before the end of the Pi/2-pulses, instead of
’ just 1ms before the end. If TdS, which nominally controls the
’ delay between pulse end and frequency strobe + beam switch, is
’ set large enough, the pulses will definitely be finished when
’ the chirping synthesizer resets from Fstop to Fstart.
’65 2/ 2/99 Modify the AltInt63’s imbalance factor patch to allow the TOP
’ and BOT beam intensities to be control independently, so that

’ the overal Rabi frequency can be preserved. Replace global
’ variable "rimb" with "rtp" and add "rbt" for the scaling factor
’ for the BOT beam intensities of the Pi/2-pulses.
’67 3/ 3/99 The chirp trigger occurs abs(dTon) too early for the 2nd and
’ 4th Pi/2-pulses, because I was incorrectly determining the
’ first sample point for those pulses. Correct Clock(), Pi2Pi2(),
’ and PulseSA().
’68 3/ 3/99 Add global variables "yTt1H" and "iTtyH" for the time spent
’ (in fraction of pulse length and in # of AWFG samples) on
’ pure-state transitions during the pi/2-pulses, so that the
’ phase-sensitive and pure-state transition times can be varied
’ independently. Modify Clock(), PulseAS() and PulseSA().
’69 3/10/99 To fix mismatch between actual length of pi/2-pulses and
’ estimated length: redefine iTpiHC in Clock() and iC in
’ PulseSA().
’70 8/ 8/00 Change sign of Cs lock offset AO: fScCs = -25000 --> +25000
’ in CsBin$().
’71 3/ 1/01 Break CsBin$() into two functions: CsTBL%(f#) which converts
’ the frequency f# to an integer from -2047 to +2047 which
’ represents the voltage (on an 11Vpp scale not including the dc
’ offset) required to set the Cs lock to frequency f# from
’ resonance and ItoS$() which converts a 2-byte integer to a string
’ containing those two bytes. Replace the code which slowly moves
’ the synthesizer output by downloading an 8-point arbitrary
’ wavfeform with a new subroutine SetCsOFF(f!) which changes the
’ dc offset.
’72 7/25/01 EXACTLY the same as ALTINT71.BAS, but DATA55.BAS has been
’ corrected into DATA56.BAS.
’
’*70:$INCLUDE: ’e:\lab\inc\nihpdas.inc’
’*70:$INCLUDE: ’e:\lab\inc\xmaw.inc’
’*71b
’$INCLUDE: ’inc\nihpdas.inc’
’$INCLUDE: ’inc\xmaw.inc’
’*71e

DEFINT I-N
DEFSNG A-H, O-Z

DECLARE SUB AWFG (ix, iy)
DECLARE SUB basdasg (iMode, BYVAL dummy%, nErr)
DECLARE SUB BinCon (f#, fRndB&, fRnd#)
DECLARE SUB CheckName (Flnm$, iMode)
DECLARE SUB Clock (iMode)
DECLARE SUB menu (fi$)
DECLARE SUB PiPulse (N, iFFpi, iG, iTpi)
DECLARE SUB Pi2Pi2 (iArmI)
DECLARE SUB Plot (mode, FlnmP$, psc)
DECLARE SUB PulseAB (if3(), if4(), iTt1, iTd, iTt2, Y)
DECLARE SUB PulseAS (if3(), if4(), ike)
DECLARE SUB PulseSA (if3(), if4(), ike)
DECLARE SUB SetCsOFF (f!)
DECLARE FUNCTION RdInit% (a$)
DECLARE FUNCTION Clear$ ()
DECLARE FUNCTION ItoS$ (i%)
DECLARE FUNCTION CsTBL% (f#)
DECLARE FUNCTION Fctr$ (fRnd#)
DECLARE FUNCTION FFbin$ (fRnd#)
DECLARE FUNCTION FlnmAdj$ (Flnm$, path$, ext$)
DECLARE FUNCTION FileCopy% (src$, dst$)
DECLARE FUNCTION FSKdrive% (iMode, f#, nElem&, FLckHDL&, lFSK&)
DECLARE FUNCTION iwf (x, a, if3(), Cwf())
DECLARE FUNCTION msec$ (t#)
DECLARE FUNCTION Scan% (mSt(), sh$, df$(), bl$(), pr$(), fCAve#(), fBack&(), nFSK0, iUp)
DECLARE FUNCTION Tcorr (T1, t0#, u#, du#)
DECLARE FUNCTION Tctr$ (t#)
DECLARE FUNCTION Tdet$ (t)
DECLARE FUNCTION Trnd (t#)
DECLARE FUNCTION usec$ (t#)
DECLARE FUNCTION zFmt$ (z)
DECLARE FUNCTION IncFN$ (f$)

’Constants for the cesium lock AO tuning voltage calibration table
CONST finit = "AltInt71.ini" ’File for initialization data
CONST vflnm = "e:\lab\cshp.bin"
CONST f21 = 2000# ’Scale factor from 2-photon detunings (Hz) to 1-photon (kHz)

’Miscellaneous constants
CONST fCent = 12631770# ’Offset frequency for the DF 0->0 transition
CONST iMult = 1 ’Multiplication factor on output of DDS-1EB synthesizer
CONST sgndet = 1 ’Sign of the detuning of the EOM from the u-wave reference
’ (This is also the sign of absolute light shift with DDS frequency.)
’CONST zpr = .086 ’Vertical position (m) of probe region relative to trap
’New probe position as of 3/3/98:
CONST zpr = .081 ’Vertical position (m) of probe region relative to trap
CONST yMax = 2047 ’Arbitary pattern maximum
CONST fFmt = "#########.###"
CONST COM1% = &H8, COM0% = &HFFF7 ’Turn ON or OFF common intensity switch
CONST BS0% = &HFFF9 ’Turn OFF both beam switch bits
CONST STR1% = &H1, STR0% = &HFFFE ’Turn ON or OFF frequency strobe
CONST CHPU1% = &H4, CHPU0% = &HFFFB ’Turn ON or OFF chirp UP control
CONST CHPD1% = &H2, CHPD0% = &HFFFD ’Turn ON or OFF chirp DOWN control
CONST nAWFG0 = 1 ’Extra AWFG point at start of pattern
CONST Scrn = 12 ’Screen mode
CONST ipl = 0 ’Print error messages?

’70:$INCLUDE: ’e:\lab\inc\AltInt.inc’
’*71:
’$INCLUDE: ’inc\AltInt.inc’

’$DYNAMIC

’free up memory for NI-DAQ DOS functions
heap.size = SETMEM(-7000)

 ’Initialize Variables

 ’GPIB addressing arrays
 mAdSnth1(0).primad = 27: mAdSnth1(0).secad = -1 ’SRS synth (gate signal)
 mAdSnth1(1).primad = -1
 mAdSnth2(0).primad = 29: mAdSnth2(0).secad = -1 ’HP synth (feed forward)
 mAdSnth2(1).primad = -1
 mAdSnth3(0).primad = 28: mAdSnth3(0).secad = -1 ’HP synth (Cs detuning)
 mAdSnth3(1).primad = -1
 mAdSnth4(0).primad = 26: mAdSnth4(0).secad = -1 ’SRS synth (chirp UP)
 mAdSnth4(1).primad = -1
 mAdSnth5(0).primad = 25: mAdSnth5(0).secad = -1 ’SRS synth (chirp down)
 mAdSnth5(1).primad = -1
 mAdSRSP1(0).primad = 22: mAdSRSP1(0).secad = -1 ’SRS pulser (DF Raman 1&2)
 mAdSRSP1(1).primad = -1
 mAdSRSP2(0).primad = 23: mAdSRSP2(0).secad = -1 ’SRS pulser (shutter/blast/probe)
 mAdSRSP2(1).primad = -1
 mAdSRSP3(0).primad = 24: mAdSRSP3(0).secad = -1 ’SRS pulser (Raman start)
 mAdSRSP3(1).primad = -1
 mAdAux(0).primad = 13: mAdSRSP3(0).secad = -1 ’Auxillary device
 mAdAux(1).primad = -1
 mTerm(0) = -1: mTerm(1) = -1: mTerm(2) = -1 ’GPIB terminator array

 iTrgMod = 4 ’Experiment trigger mode: 0=internal, 1=external, 4=line
 iTM = 0 ’Experiment pulsing? (0=NO, -1=YES)
 TrgMod$(0) = "INTERNAL": TrgMod$(1) = "EXTERNAL": TrgMod$(4) = " LINE "
 d = CHR$(13) + CHR$(10)
 nErr = 0 ’ error return variable
 iAuto = 0 ’0 -> return to menu after each freq scan
 ’Scan modes
 Auto$(0) = "single": Auto$(1) = "auto without save": Auto$(2) = "auto save"
 Fix$(-1) = "temporally": Fix$(0) = "spatially"

 ’AutoKey variables:
 ak$ = ""
 doak% = 0
 iak% = 1

268 APPENDIX C. COMPUTER CODE

’*63,*65b
 rtp! = 1!
 rbt! = 1!
’*63,*65e

 ’Commands for auxillary device:
 iauxmx = 0
’ AuxS$(1) = ";DT2,1," + "0.5927" + ";"
’ AuxS$(2) = ";DT2,1," + "0.7451" + ";"
’ AuxS$(3) = ";DT2,1," + "0.8974" + ";"
’ AuxS$(4) = ";DT2,1," + "0.1357" + ";"
’ AuxS$(5) = ";DT2,1," + "0.2880" + ";"
’ AuxS$(6) = ";DT2,1," + "0.4404" + ";"
’ AuxS$(1) = ";SPFR " + "20000000.0000" + ";"
’ AuxS$(2) = ";SPFR " + "20005476.9758" + ";"
’ AuxS$(3) = ";SPFR " + "19994523.0242" + ";"
’ AuxS$(4) = ";SPFR " + "20010953.9516" + ";"
’ AuxS$(5) = ";SPFR " + "19989046.0484" + ";"
 AuxS$(1) = ";OFFS .15"
 iaux = 1

 SCREEN Scrn: CLS : COLOR 15 ’Bright white

 PRINT "Resetting the GPIB driver."
 CALL kreset(0, nErr) ’Reset the driver
 IF nErr THEN PRINT "kreset: Error #"; nErr: iQuit = -1
 PRINT "Setting GPIB timeout = 10 seconds."
 CALL kto(0, nErr, 180) ’Set time out to 10 seconds
 IF nErr THEN PRINT "kto: Error #"; nErr: iQuit = -1

 PRINT "Initializing the A/D board."
 ’Initialize DAS-16 using mode 0
 iParlst(0) = &H300: iParlst(1) = 7: iParlst(2) = 1: iMode = 0: nErr = 0
 ’DAS I/O Address;Interrupt level;D.M.A. level;initialize mode;error
 CALL basdasg(iMode, VARPTR(iParlst(0)), nErr)
 IF nErr <> 0 THEN PRINT "BASDASG mode 0: Error #"; nErr: iQuit = -1

 ’Set DAS-16 programmable timer to 50000 Hz (assuming 10MHz jumper)
 iParlst(0) = 2: iParlst(1) = 100: iMode = 17
 ’product = 200;timer set mode
 CALL basdasg(iMode, VARPTR(iParlst(0)), nErr)
 IF nErr <> 0 THEN PRINT "BASDASG mode 17: Error #"; nErr: iQuit = -1

 ’Set the DAS-16 channel limits using mode 1
 iParlst(0) = 0: iParlst(1) = 0 ’lower limit; upper limit
 CALL basdasg(1, VARPTR(iParlst(0)), nErr)
 IF nErr <> 0 THEN PRINT "BASDASG mode 1: Error #"; nErr: iQuit = -1

 PRINT "Initializing the digital I/O and DDS synthesizer boards."
 nErr = FSKdrive%(0, fCent / iMult, nElem&, FLckHDL&, lFSK&)
 IF nErr THEN PRINT "FSKdrive mode 0: Error #"; nErr: iQuit = -1

 PRINT "Initializing XMS driver for AWFG patterns"
 nErr = XMSInit
 IF nErr THEN PRINT "XMSInit: Error #"; nErr: iQuit = -1

 PRINT "Loading initial configuration from ’"; finit’"’."
 a$ = pinit + finit
 IF RdInit%(a$) THEN SYSTEM
 ’Find first available file name
 sDate$ = LEFT$(DATE$, 6) + RIGHT$(DATE$, 2)
 Flnm$ = "SC" + LEFT$(sDate$, 2) + MID$(sDate$, 4, 2) + "00.DAT"
 PRINT "Checking the filename."
 CALL CheckName(Flnm$, 0)
 FilePrfx$ = LEFT$(Flnm$, 2)

 PRINT "Calculating waveform parameters."
 CALL Clock(0) ’Determine waveform parameters

 PRINT "Loading the Cs lock AO tuning voltage calibration data."
 DEF SEG = VARSEG(iCs(0, 0))

 BLOAD vflnm, VARPTR(iCs(0, 0))
 DEF SEG

’*70b
’ PRINT "Setting the Cs lock offset to"; fOffCs; "kHz."
’ ’Program an 8 point pattern to VOLATILE memory to set the output level
’ ’Set Trigger Source = Bus for triggering via software control
’ outexpr = HPInit$ + CsData$
’ c$ = Csbin$(0#) ’New Cs lock setting
’ FOR N = 1 TO 8 ’Generate waveform description
’ outexpr = outexpr + c$
’ NEXT N
’ ’Select volatile arbitrary waveform for fast control of DC output level
’ ’Trigger pattern and tell HP to wait for completion of trigger
’ outexpr = outexpr + CsSel$ + Trig$
’ ’Download waveform for this output level
’ l& = LEN(outexpr)
’ CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth3(0), mTerm(0))
’ IF nErr THEN PRINT "Cs synth: Error #"; nErr: iQuit = -1
’*70e
’*71b
 ’Initialize Cs lock synthesizer:
 outexpr = HPInit$ + ":VOLT:OFFS?"
 ’Save Settings to #3, Recall Settings from #1
 ’Set Trigger Source = Bus for triggering via software control
 ’Set byte order for binary transfer to NORMAL
 ’Query the dc offset value
 l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth3(0), mTerm(0))
 IF nErr THEN PRINT "Cs synth: Error #"; nErr: iQuit = -1
 inexpr = STRING$(30, 32)
 CALL kenterStr(0, nErr, SSEGADD&(inexpr), 30, 0, mAdSnth3(0), mTerm(0))
 IF nErr THEN PRINT "Read Cs offset Error #"; nErr: iQuit = -1
 vCsOFF0 = VAL(inexpr) ’this prorgam assumes that this dc offset
 ’ value is the voltage required to put the
 ’ Cs lock on resonance
 PRINT "Setting the Cs lock offset to"; fOffCs; "kHz."
 CALL SetCsOFF(fOffCs)
’*71e

 ’Initialize Chirp synthesizers:
 outexpr = ";*SAV 9;*RCL 1;": l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth4(0), mTerm(0))
 IF nErr THEN PRINT "Chirp UP device: Error #"; nErr: iQuit = -1
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth5(0), mTerm(0))
’ IF nErr THEN PRINT "Chirp DOWN device: Error #"; nErr: iQuit = -1

 ’Initialize Auxillary device(s):
’ outexpr = ";RC7;": l& = LEN(outexpr) ’SRS Pulser: recall setting 7
’ outexpr = ";*SAV 9;*RCL 1;": l& = LEN(outexpr)
’ CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdAux(0), mTerm(0))
’ outexpr = ";FUNC 0;AMPL 0 VP;FREQ 0.001;": l& = LEN(outexpr)
 ’set output to 0 Vpp sine wave with freq 0.001 Hz
’ CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdAux(0), mTerm(0))
’ l& = LEN(AuxS$(1))
 ’set offset to 0.15 Volts = 0.3 V for HighZ
’ CALL koutputStr(0, nErr, SSEGADD&(AuxS$(1)), l&, 0, mAdAux(0), mTerm(0))
’ IF nErr THEN PRINT "Aux. Device: Error #"; nErr: iQuit = -1

50 ’Restore DF Raman pulse times for SRS pulser#2
 outexpr = ";ST9;RC1;": l& = LEN(outexpr) ’Recall 0-pulse DF Raman time
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSRSP1(0), mTerm(0))
 IF nErr THEN PRINT "DF Raman timing: IEEE Error #"; nErr: iQuit = -1

 ’Restore shutter, blasting, and probe times for SRS pulser#3
 outexpr = ";ST9;RC1;": l& = LEN(outexpr) ’Recall 0-pulse times
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSRSP2(0), mTerm(0))
 IF nErr THEN PRINT "Probe timing: Error #"; nErr: iQuit = -1

 ’Read in the Raman sequence start time (needed for Menu)
’ outexpr = "DT2": l& = LEN(outexpr) ’Request Raman sequence trigger time

’ CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSRSP3(0), mTerm(0))
’ IF nErr THEN PRINT "Read trigger timing request: Error #"; nErr: iQuit = -1
’ inexpr = STRING$(30, 32) ’Read in trigger time
’ CALL kenterStr(0, nErr, SSEGADD&(inexpr), 30, 0, mAdSRSP3(0), mTerm(0))
’ IF nErr THEN PRINT "Read trigger timing: Error #"; nErr: iQuit = -1
’ tRam# = VAL(RIGHT$(inexpr, LEN(inexpr) - 2)) ’Raman trigger time in sec.

 IF iQuit THEN ’I/O errors occurred
 PRINT "Press any key to continue, Q to return to system."
 DO: a$ = INKEY$: LOOP WHILE a$ = ""
 IF UCASE$(a$) = "Q" THEN nErr = XMSFree(-1): SYSTEM
 iQuit = 0
 END IF

 COLOR 15 ’Bright white for menu
’ IF iAuto = 0 THEN CALL Menu(finit) ’Menu for scan parameters
 CALL menu(finit) ’Menu for scan parameters

 ’The frequencies are always recalculated in case tRam# or Tpr changes
 fList$(0) = " Pulse Tc(ms) Freq.(Hz) Freq.(Hz) Freq.(Hz) Freq.(Hz) "
 CLS : PRINT fList$(0) ’Prepare for list of frequencies

 ’Determine which sequences require an amplitude pattern to be created
 iArb = 0 ’Need at least one pattern?
 FOR j = 1 TO nSeq
 m = mSeq(j)
 IF NOT iMem(m) THEN ’This pattern not in memory -> create and load
 iDwn(m) = -1: iArb = -1 ’Set download flag
 END IF
 mSt(j) = m - (m = 0) ’FF pattern storage locations
 NEXT j
 iMod = 0: iModH = 0 ’Reset modification flags after updating memory flags

 ’Determine actual exit state from pulse sequence
 IF iINT(0) THEN ’Only pi pulses
 iArm = (-1) ^ (nPiP + nPi) ’Exit in |4> for even number of pulses
 ELSE ’Last pulses are beamsplitters
 iArm = iArmI ’Exit in selected state
 END IF

 ’Collect information needed to determine atomic trajectories

 IF iArm = 1 THEN ’Read in the 1st DF Raman time for 0 photon recoils
 outexpr = ";DT2;": l& = LEN(outexpr) ’Request DF Raman time
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSRSP1(0), mTerm(0))
 IF nErr THEN PRINT "IEEE Error #"; nErr: iQuit = -1
 inexpr = STRING$(30, 32) ’Read in DF Raman time
 CALL kenterStr(0, nErr, SSEGADD&(inexpr), 30, 0, mAdSRSP1(0), mTerm(0))
 IF nErr THEN PRINT "IEEE Error #"; nErr: iQuit = -1
 Tdf1(0) = VAL(RIGHT$(inexpr, LEN(inexpr) - 2))
 END IF

 ’Read in the blasting time for 0 photon recoils
 outexpr = ";DT3;": l& = LEN(outexpr) ’Request blasting time
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSRSP2(0), mTerm(0))
 IF nErr THEN PRINT "IEEE Error #"; nErr: iQuit = -1
 inexpr = STRING$(30, 32) ’Read in blasting time
 CALL kenterStr(0, nErr, SSEGADD&(inexpr), 30, 0, mAdSRSP2(0), mTerm(0))
 IF nErr THEN PRINT "IEEE Error #"; nErr: iQuit = -1
 Tbl(0) = VAL(RIGHT$(inexpr, LEN(inexpr) - 2))

 ’Read in the 2nd DF Raman time for 0 photon recoils
 outexpr = ";DT5;": l& = LEN(outexpr) ’Request DF Raman time
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSRSP1(0), mTerm(0))
 IF nErr THEN PRINT "IEEE Error #"; nErr: iQuit = -1
 inexpr = STRING$(30, 32) ’Read in DF Raman time
 CALL kenterStr(0, nErr, SSEGADD&(inexpr), 30, 0, mAdSRSP1(0), mTerm(0))
 IF nErr THEN PRINT "IEEE Error #"; nErr: iQuit = -1
 Tdf2(0) = VAL(RIGHT$(inexpr, LEN(inexpr) - 2))

 ’Finally, read in the probe time for 0 photon recoils

 ’ This, in combination with tRam# and the initial detuning give all the
 ’ information necessary to calculate the probe time for any sequence
 outexpr = ";DT5;": l& = LEN(outexpr) ’Request probe time
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSRSP2(0), mTerm(0))
 IF nErr THEN PRINT "IEEE Error #"; nErr: iQuit = -1
 inexpr = STRING$(30, 32) ’Read in probe time
 CALL kenterStr(0, nErr, SSEGADD&(inexpr), 30, 0, mAdSRSP2(0), mTerm(0))
 IF nErr THEN PRINT "IEEE Error #"; nErr: iQuit = -1
 Tpr(0) = VAL(RIGHT$(inexpr, LEN(inexpr) - 2))

 IF iQuit THEN ’I/O errors occurred
 PRINT "Press any key to continue, Q to return to system."
 DO: a$ = INKEY$: LOOP WHILE a$ = ""
 IF UCASE$(a$) = "Q" THEN nErr = XMSFree(-1): SYSTEM
 iQuit = 0
 END IF

 ’Calculate the atomic trajectories for all pulse sequences, yielding the
 ’ Raman detuning needed to compensate for gravity and recoils.
 ’The trajectories through interferometers are calculated for a fictitious
 ’ atom with a momentum which is the average of the two paths. Such an
 ’ atom will be spatially overlapped with the two paths at the final
 ’ interferometer vertex, so as long as the recoil is handled correctly at
 ’ that point, the trajectory calculation is valid.
 ’The gating control is common to all interferometers, so it is generated
 ’ along with the frequency sequences.

 ’Initialize variables common to all four patterns
 ’ Create first gate pulse for preselection strobe
 iwfG(0) = 0: iwfG(1) = 0: iwfG(2) = 1: iwfG(3) = yMax ’Gate OFF->ON
 iGi = 4 ’Index for gate waveform coordinate list
 IF iGs > 1 THEN iwfG(4) = iGs: iwfG(5) = yMax: iGi = 6
 iFSK = 0 ’Pointer for FSK pattern (Pulse counter)
 i0&(0) = 0 ’First AWFG sample for preselection strobe
 iG = iGs + 1 ’Gate sample counter
 nOffG = 1 ’Counter of OFF gate samples
 iFF = iFFs ’Pointer for FF pattern
 Tc#(0) = iFFs * Tff# ’End of FF pts for preselection strobe
 nByte$ = LTRIM$(STR$(2 * nFF)) ’Number of binary bytes for FF string
 ndig$ = CHR$(48 + LEN(nByte$)) ’Number of digits in length of data
 FFdata$ = ":DATA:DAC VOLATILE, #" + ndig$ + nByte$

 ’Initialize variables for the individual patterns
 m = 1 ’Pointer for pattern storage
 FOR j = 0 TO 4
 IF iINT(j) THEN ’This pattern appears in sequence
 ’Express all pulse times relative to the Raman trigger, tRam
 ’ Before pulses, trajectories same for all sequences
 Tpr(m) = Tpr(0) - tRam#
 IF NOT iFix THEN
 IF iArm = 1 THEN Tdf1(m) = Tdf1(0) - tRam#
 Tbl(m) = Tbl(0) - tRam#: Tdf2(m) = Tdf2(0) - tRam#
 END IF
 ’fOffP is the resonance frequency of an atom at the trigger time for
 ’ a beam with keff directed upward. The atoms are initially in F=4
 ’ after Zeeman pumping, which gives the sign of the recoil shift.
 ’Initial velocity after 1st strobe pulse
 v0#(m) = fOffP / keff + vR / 2 - g0# * Tc#(0)
 ’Initial position after 1st strobe pulse
 z0(m) = zpr + ((v0#(m) - g0# * (Tpr(m) - Tc#(0))) ^ 2 - v0#(m) ^ 2) / 2 / g0#
 zmin(m) = 1: zmax(m) = 0 ’Preset extreme points of trajectory
 ’Clear waveform patterns
 iSt(m, 0) = 1 ’Start out in |4,0> state
 ik(m, 0) = 1 ’1st preselection pulse has keff up
 END IF
 m = j + 1 ’For j>0, store seq #m in mem #j
 NEXT j

 ’Generate description for preselection pi pulses"
 iRev = 0 ’Don’t switch keff sign between preselection pi’s
 iExt = iFF0 ’Extra delay before starting pattern

C.1. ALTINT.BAS 269

 FOR N = 1 TO nPiP
 CALL PiPulse(N, iFFpiP, iGpiP, iTpiP)
 IF CSRLIN > 26 THEN ’Refresh the screen for more frequencies
 PRINT : PRINT "Press any key to continue.";
 IF (NOT doak%) THEN DO WHILE INKEY$ = "": LOOP
 CLS : PRINT fList$(0)
 END IF
 iExt = 0 ’Only delay before 1st pi pulse
 NEXT N

 ’After preselection, flip keff for int’s 3 and 4"
 IF iINT(3) THEN ik(3, iFSK) = -ik(3, iFSK)
 IF iINT(4) THEN ik(4, iFSK) = -ik(4, iFSK)

 ’PRINT "->"; ik(1,iFSK); ik(2,iFSK); ik(3,iFSK); ik(4,iFSK)

 IF iINT(0) = 0 THEN ’Generate 1st pi/2 pair
 CALL Pi2Pi2(0) ’0 -> Pick upper or lower trajectory, depending on m
 iExt = 0 ’Extra delay completed
 FOR j = 1 TO nSeq ’step through all sequences
 IF (iINT(j)) THEN
 CALL BinCon(fC#(mSeq(j), 0), PfPi2&(j, 1), fRnd#)
 ’save frequency of first Pi/2-pulse
 CALL BinCon(fC#(mSeq(j), 1), PfPi2&(j, 2), fRnd#)
 ’save frequency of second Pi/2-pulse
 END IF
 NEXT j
 END IF

 ’Generate main pi pulses"
 iRev = -1 ’Alternate keff sign for main pi pulses
 FOR N = 1 TO nPi
 CALL PiPulse(N, iFFpi, iGpi, iTpi)
 IF CSRLIN > 26 THEN ’Refresh the screen for more frequencies
 PRINT : PRINT "Press any key to continue.";
 IF (NOT doak%) THEN DO WHILE INKEY$ = "": LOOP
 CLS : PRINT fList$(0)
 END IF
 iExt = 0 ’Only delay before 1st pi pulse
 NEXT N

 IF NOT iINT(0) THEN ’Generate 2nd pi/2 pair
 CALL Pi2Pi2(iArmI) ’iArmI -> Exit state - independent of m
 FOR j = 1 TO 4 ’step through all
 IF (iINT(j)) THEN ’ active interferometers
 CALL BinCon(fC#(j, 0), PfPi2&(j, 3), fRnd#)
 ’save frequency of third Pi/2-pulse
 CALL BinCon(fC#(j, 1), PfPi2&(j, 4), fRnd#)
 ’save frequency of fourth Pi/2-pulse
 END IF
 NEXT j
 END IF
 nFSK = iFSK + 1 ’Total number of frequencies in list (+1 for fCent)
 IF nFSK <> nFreq THEN PRINT "WARNING! nFSK="; nFSK; "nFreq="; nFreq: DO: LOOP WHILE INKEY$ = ""
 nFSK0 = iFSK - 2 - iINT(0) ’Index for first FSK element to be scanned

 ’Finish up gate control for final beam switch at end of next FF point
 ’ Find gate sample for final beam switch
 iFF = iFF + 1: i0G = INT(fSampG# * iFF * Tff#) - 1
 iwfG(iGi) = iG: iwfG(iGi + 1) = 0: iGi = iGi + 2 ’OFF
 IF i0G - iG > 1 THEN iwfG(iGi) = i0G - 1: iwfG(iGi + 1) = 0: iGi = iGi + 2
 iwfG(iGi) = i0G: iwfG(iGi + 1) = yMax ’ON
 iwfG(iGi + 2) = i0G + 1: iwfG(iGi + 3) = 0: iGi = iGi + 4 ’OFF
 IF iGi > iGiMax THEN PRINT "Error: iGi="; iGi; "iGiMax="; iGiMax: DO: LOOP WHILE INKEY$ = ""

 ’Prepare for list of state selection/detection pulses
 fList$(nFSK) = " Pulse T (ms) T’(ms) T’(ms) T’(ms) T’(ms) "
 IF iArm = 1 THEN ’Include 1st DF Raman pulse from 4->3
 nList = nFSK + 5
 fList$(nList - 3) = " Tdf:"
 ELSE ’No 1st DF Raman pulse

 nList = nFSK + 4
 END IF
 fList$(nList - 2) = " Tbl:"
 fList$(nList - 1) = " Tdf:"
 fList$(nList) = " Tpr:"

 ’Prepare for list of atomic positions
 fList$(nList + 1) = " Pulse z (cm) z (cm) z (cm) z (cm) "
 fList$(nList + 2) = " Min: "
 fList$(nList + 3) = " Max: "
 nListZ = nList + 3
 IF NOT iINT(0) THEN
 nListZ = nListZ + 4
 fList$(nList + 4) = "pi/2 pair:": fList$(nList + 6) = fList$(nList + 4)
 fList$(nList + 5) = STRING$(10, 32): fList$(nList + 7) = STRING$(10, 32)
 END IF

 IF iFix THEN ’Tdf and Tbl at same time for all sequences
 ’Open probe shutter at end of FF pattern
 Tsh = Trnd(tRam# + nFF * Tff#)
 m = mSt(1) ’Store Tdf and Tbl in location for 1st point
 Tdf2(0) = Tdf2(0) - Tbl(0) ’Blasting -> DF#2 spacing
 IF iArm = 1 THEN
 Tbl(0) = Tbl(0) - Tdf1(0) ’DF#1 -> blasting spacing
 ’1st DF pulse 2ms after probe shutter opens
 Tdf1(0) = Trnd(Tsh + .002#)
 Tbl(0) = Trnd(Tdf1(0) + Tbl(0))
 df$(m) = ";DT2,1," + STR$(Tdf1(0)) ’DF#1: A = T0 + Tdf1(0)
 ELSE
 Tbl(0) = Tsh + .002 ’Blasting pulse 2ms after probe shutter opens
 df$(m) = ""
 END IF
 bl$(m) = ";DT3,1," + STR$(Tbl(0)) ’blasting: B = T0 + Tbl(0)
 Tdf2(0) = Tbl(0) + Tdf2(0) ’Add blasting -> DF#2 spacing
 df$(m) = df$(m) + ";DT5,1," + STR$(Tdf2(0)) ’DF#2: C = T0 + Tdf2(0)
 ELSE
 Tsh = Tpr(0) ’Tsh will be shifted to 2ms before the earliest pulse
 END IF

 ’List unadjusted times for all state selection/detection pulses
 IF iArm = 1 THEN ’1st DF Raman pulse
 fList$(nList - 3) = fList$(nList - 3) + Tdet$(Tdf1(0))
 END IF
 fList$(nList - 2) = fList$(nList - 2) + Tdet$(Tbl(0))
 fList$(nList - 1) = fList$(nList - 1) + Tdet$(Tdf2(0))
 fList$(nList) = fList$(nList) + Tdet$(Tpr(0))

 ’Finish up FSK data, FF, and cesium lock patterns
 IF iFF <> nFF THEN ’Wrong number of FF points
 PRINT "Error: iFF="; iFF; ", nFF="; nFF
 PRINT "Press any key to continue, Q to return to system."
 DO: a$ = INKEY$: LOOP WHILE a$ = ""
 IF UCASE$(a$) = "Q" THEN nErr = XMSFree(-1): SYSTEM
 iAuto = 0
 END IF
 ’Switch back to fCent, with the FF at zero, so cavity settles
 ’ Set the cesium lock at its user-selected offset-frequency
 m = 1 ’Pointer for pattern storage
 FOR j = 0 TO 4 ’Step through all possible patterns
 IF iINT(j) THEN ’This pattern appears in sequence
 ’Include iFFs/1 FF points at start/end at fCent
 ’Find binary representation of nearest accessible frequency
 ’CALL BinCon(-fCent, fRndB&, fRnd#) ’f=0 to check jitter
 CALL BinCon(0#, fRndB&, fRnd#) ’f=fCent for experiment
 ’Update FF string and FSK array
 b$ = FFbin$(fRnd#) ’New FF value
 c$ = ItoS$(CsTBL%(fRnd# / f21)) ’New Cs lock setting
 FOR N = 1 TO iFFs ’Add points during preselection strobe
 FF$(m) = b$ + FF$(m)
 Cs$(m) = c$ + Cs$(m)
 NEXT N

 FF$(m) = FF$(m) + b$
 Cs$(m) = Cs$(m) + c$
 IF LEN(FF$(m)) <> 2 * nFF THEN ’Wrong length for FF$
 PRINT "Error: LEN(FF$("; m; ")="; LEN(FF$(m)); ", nFF="; nFF
 DO: LOOP WHILE INKEY$ = ""
 iAuto = 0: GOTO 70
 END IF
 FSK&(iFSK, m) = fRndB& ’fCent
 FSK&(nFreq, m) = FSK&(0, m) ’Copy preselection for rotation

 ’Calculate background and average scan frequencies
 CALL BinCon(fC#(m, 0) + fBackOff, fBack&(m, 0), fRnd#)
 IF NOT iINT(0) THEN CALL BinCon(fC#(m, 1) + fBackOff, fBack&(m, 1), fRnd#)
 fCAve#(m) = (fC#(m, 0) + fC#(m, 1 + iINT(0))) / 2
 ’Data will be plotted vs. average offset frequency

 ’Add offset tRam# and round detection pulse times
 ’Generate commands for changing pulser times and list the times
 IF NOT iFix THEN ’Change Tdf and Tbl
 Tbl(m) = Trnd(tRam# + Tbl(m))
 bl$(m) = ";DT3,1," + STR$(Tbl(m)) ’blasting: B = T0 + Tbl(m)
 fList$(nList - 2) = fList$(nList - 2) + Tdet$(Tbl(m))
 Tdf2(m) = Trnd(tRam# + Tdf2(m))
 df$(m) = ";DT5,1," + STR$(Tdf2(m)) ’DF #2: C=T0+Tdf2(m)
 fList$(nList - 1) = fList$(nList - 1) + Tdet$(Tdf2(m))
 IF iArm = 1 THEN ’Include DF Raman # 1: A = T0 + Tdf1(m)
 Tdf1(m) = Trnd(tRam# + Tdf1(m))
 df$(m) = df$(m) + ";DT2,1," + STR$(Tdf1(m))
 fList$(nList - 3) = fList$(nList - 3) + Tdet$(Tdf1(m))
 IF Tdf1(m) < Tsh THEN Tsh = Tdf1(m) ’Tsh before Tdf1
 ELSE
 IF Tbl(m) < Tsh THEN Tsh = Tbl(m) ’Tsh before Tbl
 END IF
 END IF
 Tpr(m) = Trnd(tRam# + Tpr(m))
 pr$(m) = ";DT5,1," + STR$(Tpr(m)) ’probe: C = T0 + Tpr(m)
 fList$(nList) = fList$(nList) + Tdet$(Tpr(m))
 ’Update list of pulse positions
 fList$(nList + 2) = fList$(nList + 2) + zFmt$(zmin(m))
 fList$(nList + 3) = fList$(nList + 3) + zFmt$(zmax(m))
 IF j > 0 THEN ’List beamsplitter positions
 FOR k = 0 TO 3
 fList$(nList + 4 + k) = fList$(nList + 4 + k) + zFmt$(zi(m, k))
 NEXT k
 END IF
 ELSE
 IF j > 0 AND NOT iINT(0) THEN ’Leave a blank column
 IF iArm = 1 THEN fList$(nList - 3) = fList$(nList - 3) + STRING$(14, 32)
 FOR k = 0 TO 2
 fList$(nList - k) = fList$(nList - k) + STRING$(14, 32)
 NEXT k
 FOR k = 2 TO 7
 fList$(nList + k) = fList$(nList + k) + STRING$(8, 32)
 NEXT k
 END IF
 END IF
 m = j + 1 ’For j>0, store seq #m in mem #j
 NEXT j
 ’Generate command for probe shutter and list the time
 IF NOT iFix THEN Tsh = Trnd(Tsh - .0025#) ’Round Tsh
 fList$(nFSK + 1) = " Tsh:" + Tdet$(Tsh)
 ’shutter: A = T0 + Tsh
 sh$ = ";DT2,1," + STR$(Tsh)

 iUp = 0 ’Update AWFG, FF, Cs detuning and pulse times between launches?
 FOR j = 2 TO nSeq
 IF mSt(j) <> mSt(1) THEN iUp = -1 ’More than one pattern occurs
 NEXT j

 ’Print list of state selection/detection pulses and positions
 PRINT fList$(nFSK)

 FOR j = nFSK + 1 TO nListZ
 PRINT fList$(j)
 IF CSRLIN > 24 AND j < nListZ AND j <> nList THEN ’Fill screen with list
 PRINT : PRINT "Press any key to continue.";
 IF (NOT doak%) THEN DO WHILE INKEY$ = "": LOOP
 CLS
 IF j < nList THEN
 PRINT fList$(nFSK) ’Print detection pulse header
 ELSE
 PRINT fList$(nList + 1) ’Print header for positions
 END IF
 END IF
 NEXT j
 nList = nListZ

 IF (NOT doak%) THEN
 PRINT : INPUT "Are these frequencies satisfactory? (Y/n)"; a$
 IF UCASE$(a$) = "N" THEN iAuto = 0: iQuit = -1
 END IF
 CLS ’Prepare for list of download status information

 ’Start the experiment pulsing
 outexpr = ";TM" + RIGHT$(STR$(iTrgMod), 1) + ";": l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSRSP3(0), mTerm(0))
 IF nErr THEN PRINT "Trigger pulser: Error #"; nErr: iQuit = -1
 iTM = -1 ’Experiment triggered

 ’Set Raman start time on SRSP4: A = T0 + tRam#
 outexpr = ";DT2,1," + STR$(CSNG(tRam#)) + ";": l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSRSP3(0), mTerm(0))
 IF nErr THEN PRINT "IEEE Error #"; nErr

 ’Set the chrip rate:
 a$ = STR$(19000000# + CLNG(1000 * (1000000# + kg0# * .001 / 4)) / 1000)
 a$ = ";SPFR " + a$ + ";": l& = LEN(a$)
 CALL koutputStr(0, nErr, SSEGADD&(a$), l&, 0, mAdSnth4(0), mTerm(0))
 IF nErr THEN PRINT "Chirp UP dev: IEEE Error #"; nErr
 a$ = STR$(19000000# + CLNG(1000 * (1000000# - kg0# * .001 / 4)) / 1000)
 a$ = ";SPFR " + a$ + ";": l& = LEN(a$)
 CALL koutputStr(0, nErr, SSEGADD&(a$), l&, 0, mAdSnth5(0), mTerm(0))
’ IF nErr THEN PRINT "Chirp DOWN dev: IEEE Error #"; nErr

 IF iArb AND NOT iQuit THEN ’Download new gate pattern

 PRINT "Recalling default synthesizer settings."
 ’Restore settings for gate signal
 outexpr = ";*SAV 9;*RCL 1;FSMP" + STR$(fSampG#): l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth1(0), mTerm(0))
 IF nErr THEN PRINT "Gate synth:Error #"; nErr: iQuit = -1
 ’Set repetition rate for Cs lock detuning control (already initialized)
 outexpr = ":FREQ" + STR$(1 / (Tff# * nFF))
 l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth3(0), mTerm(0))
 IF nErr THEN PRINT "Cs synth: Error #"; nErr: iQuit = -1
 ’Restore settings for Feed Forward control
 outexpr = HPInit$ + outexpr
 l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth2(0), mTerm(0))
 IF nErr THEN PRINT "FF synth: Error #"; nErr: iQuit = -1

 ’Calculate checksum for gate contol
 isum& = 0
 FOR j = 0 TO iGi - 1
 isum& = isum& + iwfG(j)
 NEXT j
 isum& = isum& AND &HFFFF&
 iwfG(iGi) = isum& + (isum& > &H7FFF) * &H10000

 IF NOT iQuit THEN
 PRINT "Writing gate waveform."

270 APPENDIX C. COMPUTER CODE

 ’Prepare SRS Synth #5 to receive arbitrary waveform
 outexpr = "LDWF?1," + LTRIM$(STR$(iGi / 2)): l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth1(0), mTerm(0))
 IF nErr THEN PRINT "Gate synth: Error #"; nErr: iQuit = -1

 ’Wait for SRS Synth #5 to be ready for download
 inexpr = STRING$(30, 32)
 CALL kenterStr(0, nErr, SSEGADD&(inexpr), 30, 0, mAdSnth1(0), mTerm(0))
 IF nErr THEN PRINT "Gate synth: Error #"; nErr: iQuit = -1
 IF VAL(inexpr) <> 1 THEN PRINT "Gate synthesizer not ready": iQuit = -1

 ’Download gate waveform to SRS Synth #5
 CALL koutputBuf(0, nErr, iwfG(0), 2 * iGi + 2, 0, mAdSnth1(0), mTerm(0))
 IF nErr THEN PRINT "Gate synth: Error #"; nErr: iQuit = -1
 END IF
 END IF

 ’Erase arrays no longer needed for frequency list
’ ERASE iwfG, v0#, z0, zmax, zmin, zi, Tdf1, Tbl, Tdf2, Tc#

 IF UCASE$(INKEY$) = "Q" THEN
 iQuit = -1
 doak% = 0
 END IF

 ’Dynamically dimension arrays for AWFG pattern generation
 DIM if3(1000), if4(1000)

 IF NOT iQuit THEN ’Generate AWFG waveforms

 IF iArb THEN
 PRINT "Loading AO calibration tables."
 DEF SEG = VARSEG(if3(0)) ’F=3 AO
 BLOAD "E:\LAB\l3.bbn", VARPTR(if3(0))
 DEF SEG
 DEF SEG = VARSEG(if4(0)) ’F=4 AO
 BLOAD "E:\LAB\l4.bbn", VARPTR(if4(0))
 DEF SEG
 PRINT "Creating, downloading, and saving AWFG waveforms."
 END IF

 ’Create any necessary amplitude patterns and download them
 y0 = 1 ’Main pulse intensity at maximum
’*63b
 yA = 1
 yB = 1
’*63e
 nArb = 0 ’Number of F=3 and 4 arbitrary patterns
 nArbFF = 0 ’Number of FF patterns downloaded
 iyC = CSRLIN ’Base cursor line for reporting pattern status
 iyC2 = iyC - iArb ’Base cursor line for FF status
 m = 1 ’Counter for pattern storage
 j = 0 ’Counter for sequence #
 DO ’Step through sequences
 LOCATE iyC, 1
 IF iDwn(j) THEN ’Create AWFG pattern
 PRINT "Creating AWFG waveform for m ="
 LOCATE iyC, 32 + 2 * nArb: PRINT m
 ’If AWFG pattern #j is already stored, then free memory
 nErr = XMSFree(j)
 ’Allocate XMS memory for jth AWFG pattern
 nErr = XMSAlloc(j, lArb&)
 IF nErr THEN PRINT "XMSAlloc: Error #"; nErr
 ’Select jth pattern for storing data
 nErr = XMSSelect(j)
 IF nErr THEN PRINT "XMSSelect: Error #"; nErr

 ’The first sample is loaded when the START bit is set high,
 ’ without waiting for the gate, so send extra point
 ia = 0: ib = 0: xDig% = 0 ’All outputs OFF (STROBE active LOW)

’62:
 yDig% = CHPU1 OR CHPD1 ’All outputs OFF (chirps active HIGH)
’ ia = 0: ib = 0: xDig% = 1 ’All outputs OFF (STROBE active HIGH)
 iAWFG = -nAWFG0 ’AWFG pattern pointer (0 -> 1st good sample)
 DO WHILE iAWFG < 0
 CALL AWFG(ia, ib)
 LOOP
 ’Create preselection strobe
 ’ Turn on beam switch and strobe
 xDig% = 4 + ik(m, 0) ’0011->keff down, 0101->up; strobe active LOW
’ xDig% = 3 + ik(m, 0) ’0010->keff down, 0100->up; strobe active HIGH
 FOR i = 1 TO iTs - 1 ’Hold strobe active
 CALL AWFG(ia, ib)
 NEXT i
 ’ Strobe will be turned off by first pulse

 ’Set pi pulse times for preselection
 iTt1X = iTt1P: iTdX = iTdP: iTt2X = iTt2P: yX = yP
 FOR iFSK = 1 TO nFSK - 1
 IF iFSK = nPiP + 1 THEN ’Set pi pulse times for main pi’s
 iTt1X = iTt1: iTdX = iTd: iTt2X = iTt2: yX = y0
 END IF
 ’Create digital output mask for AWFG Channel X
 xDig% = 3 + ik(m, iFSK - 1)
 ’2->keff down, 4->up; strobe OFF (active LOW)
’ xDig% = 4 + ik(m, iFSK - 1)
 ’0011->keff down, 0101->up; strobe OFF (active HIGH)
 IF ipl THEN
 PRINT "Pulse"; iFSK; ": i0="; i0&(iFSK); "iAWFG="; iAWFG;
 PRINT "ik="; iSt(m, iFSK); "xDig="; xDig%
 END IF
 IF iSt(m, iFSK - 1) = 0 THEN ’Atom in 3+4
 iRev = (iSt(m, iFSK) = 1)
 IF iRev THEN ’Pulse from 3+4 -> 4
’*63,*65b
 yA = y0 * rtp!
 yB = y0 * rbt!
’*63,*65e
 CALL PulseSA(if4(), if3(), ik(m, iFSK - 1))
 ELSE ’Pulse from 3+4 -> 3
’*63,*65b
 yA = y0 * rbt!
 yB = y0 * rtp!
’*63,*65e
 CALL PulseSA(if3(), if4(), ik(m, iFSK - 1))
 END IF
 ELSE
 iRev = (iSt(m, iFSK - 1) = 1)
 IF iRev THEN ’Atom in F=4
 IF iSt(m, iFSK) = -1 THEN ’Pulse from 4 -> 3
 CALL PulseAB(if4(), if3(), iTt1X, iTdX, iTt2X, yX)
 ELSE ’Pulse from 4 -> 3+4
’*63b
 yA = y0 * rtp!
 yB = y0 * rbt!
’*63e
 CALL PulseAS(if4(), if3(), ik(m, iFSK - 1))
 END IF
 ELSE ’Atom in F=3
 IF iSt(m, iFSK) = 1 THEN ’Pulse from 3 -> 4
 CALL PulseAB(if3(), if4(), iTt1X, iTdX, iTt2X, yX)
 ELSE ’Pulse from 3 -> 3+4
’*63b
 yA = y0 * rbt!
 yB = y0 * rtp!
’*63e
 CALL PulseAS(if3(), if4(), ik(m, iFSK - 1))
 END IF
 END IF
 END IF
 NEXT iFSK

 ’Finish up end of AWFG pattern
 ia = 0: ib = 0
 DO WHILE iAWFG < lArb& - nAWFG0 - 1 ’Count extra point at start
 CALL AWFG(ia, ib)
 LOOP
 xDig% = 0 ’Turn off beam switch (STROBE active LOW)
’ xDig% = 1 ’Turn off beam switch (STROBE active HIGH)
 CALL AWFG(ia, ib)
 IF iErr THEN PRINT "XMSPut2: Error #"; iErr
 iMem(j) = -1 ’Set pattern storage flag for valid pattern
 nArb = nArb + 1
 END IF
 IF UCASE$(INKEY$) = "Q" THEN
 iQuit = -1
 doak% = 0
 END IF

 IF iINT(j) AND NOT iQuit THEN ’Download FF and Cs pattern
 IF CSRLIN > iyC2 THEN iyC2 = CSRLIN
 LOCATE iyC2, 1: PRINT "Writing feed forward pattern for m ="
 LOCATE iyC2, 37 + 2 * nArbFF: PRINT m
 outexpr = FFdata$ + FF$(m): l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth2(0), mTerm(0))
 IF nErr THEN PRINT "FF synth: Error #"; nErr: iQuit = -1

 iyC3 = CSRLIN
 PRINT "Writing Cs lock detuning pattern for m ="
 LOCATE iyC3, 41 + 2 * nArbFF: PRINT m
 outexpr = FFdata$ + Cs$(m)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth3(0), mTerm(0))
 IF nErr THEN PRINT "Cs synth: Error #"; nErr: iQuit = -1

 ’Save patterns as ARB_m
 outexpr = "DATA:COPY ARB_" + CHR$(48 + m): l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth2(0), mTerm(0))
 IF nErr THEN PRINT "FF synth: Error #"; nErr: iQuit = -1
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth3(0), mTerm(0))
 IF nErr THEN PRINT "Cs synth: Error #"; nErr: iQuit = -1

 nArbFF = nArbFF + 1 ’Advance pattern counter
 IF UCASE$(INKEY$) = "Q" THEN
 iQuit = -1 ’Don’t store any more
 doak% = 0
 END IF
 IF ipl THEN
 PRINT "Press any key to continue."
 DO: a$ = UCASE$(INKEY$): LOOP WHILE a$ = ""
 iQuit = (a$ = "Q")
 CLS
 END IF
 END IF
 m = j + 1 ’For j>0, store FF seq #m in mem #j
 j = j + 1 ’Advance sequence
 LOOP WHILE j <= 4 AND NOT iQuit
 END IF

 ’Erase arrays for FSK/AWFG pattern generation
 ERASE iDwn, iSt, ik, if3, if4, i0&, FF$, Cs$
’ ERASE if3, if4
’ ERASE FF$, Cs$

 IF iArm = -1 AND NOT iQuit THEN ’Eliminate the 1st DF Raman pulse
 outexpr = ";DT3,2,0": l& = LEN(outexpr) ’B = A + 0
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSRSP1(0), mTerm(0))
 IF nErr THEN PRINT "DF Raman pulser:Error #"; nErr: iQuit = -1
 END IF

 IF iQuit GOTO 70

 ’Collect data

 ’Function Scan%() collects data and saves it in file Flnm$.
 ’ Scan%() returns the value 0 if the routine finished collecting
 ’ data, and -1 if the user Quit the routine prematurely.

 ’Note the starting date and time for collecting data
 sDate$ = LEFT$(DATE$, 6) + RIGHT$(DATE$, 2): T1$ = TIME$
 iQuit = Scan%(mSt(), sh$, df$(), bl$(), pr$(), fCAve#(), fBack&(), nFSK0, iUp)
 IF iQuit THEN
’ iAuto = 0 ’Display the menu
 doak% = 0
 ELSE
 IF iAuto <> 1 THEN ’Complete saving the file
 T2$ = TIME$ ’Stop time for data taking
 IF iAuto = 0 THEN ’Allow user to add comments
 BEEP: BEEP: BEEP
 LOCATE 7, 1: PRINT STRING$(19, 32): LOCATE 7, 1
 INPUT "Comments"; Cmmnt
 END IF

 ’Parameters for Plot subroutine only
’ nSumm = 32 + 11 * iInt(0)
’*55 nSumm = 32 + 11 * iINT(0) + 1 ’added line for the trigger mode
’*62 nSumm = 32 + 11 * iINT(0) + 2 ’added line for chirp rate
 nSumm = 32 + 11 * iINT(0) + 3 ’added line for imbalance factor
 IF (iauxmx > 0) THEN nSumm = nSumm + 1

 PRINT #1, nList; d; nSumm

 ’Save times and frequencies of pulses
 FOR j = 0 TO nList
 PRINT #1, fList$(j)
 NEXT j

 ’Save program parameters
 PRINT #1, "Data collected by AltInt71.BAS from "; T1$; " to "; T2$; " on "; sDate$
 IF (iauxmx > 0) THEN
 PRINT #1, "Auxillary device sequence"; iaux; " ’"; AuxS$(iaux); "’"
 END IF
 PRINT #1, "Experiment trigger: "; TrgMod$(iTrgMod)
 PRINT #1, "Preselection offset ="; fOffP; "Hz with Raman trigger time = "; msec$(tRam#)
 PRINT #1, "Span ="; fspan; "Hz, Scan offset ="; fOff; "Hz"
 PRINT #1, LTRIM$(STR$(nRpt)); " repetitions at"; nSteps; "pts"
 PRINT #1, LTRIM$(STR$(nBlk)); " background samples detuned"; fBackOff; "Hz"
 PRINT #1, "Exit interferometers in state |"; CHR$(51 + (1 + iArmI) / 2); ">"
 PRINT #1, "DF Raman and blasting pulses are fixed "; Fix$(iFix)
 PRINT #1, "Cs lock detuning ="; fOffCs; "kHz, Gravitational acceleration g = "; g0#
 PRINT #1, "Chirp rate ="; kg0#; "Hz/s"
 PRINT #1, "Imbalance factors: TOP ="; rtp!; ", BOT ="; rbt!
 PRINT #1, " Pi Pulse Parameters "
 PRINT #1, "Delay time before starting the sequence = "; usec$(CDBL(Tstart))
 PRINT #1, LTRIM$(STR$(nPiP)); " "; usec$(iTpiP / fSamp#); " preselection pi pulses"
 PRINT #1, LTRIM$(STR$(nPi)); " "; usec$(iTpi / fSamp#); " main pi pulses spaced "; usec$(Tff#
* iFFpi); " apart"
 PRINT #1, "Fast transitions in "; usec$(iTt1P / fSamp#); "/"; usec$(iTt1 / fSamp#)
 PRINT #1, "Delays between turn-on and turn-off times = "; usec$(iTdP / fSamp#); "/"; usec$(iTd
 / fSamp#)
 PRINT #1, "Duration of frequency strobes = "; usec$(iTs / fSamp#)
 PRINT #1, "Delay between pulses and frequency strobes = "; usec$(iTdS / fSamp#)
 PRINT #1, "AWFG sample period = "; usec$(nCl / fCl)
 PRINT #1, "Rate parameters for pulse transitions ="; STR$(Cwf(0)); ","; Cwf(2)
 PRINT #1, "Equal intensity level is"; CINT(exp2 * xAmp); "% of full power"
 PRINT #1, "Relative intensity of preselection pulses is"; CINT(exp2 * yP); "% of full power"
 IF NOT iINT(0) THEN
 PRINT #1, " Pi/2 Pulse Parameters "
 PRINT #1, usec$(iTpiH / fSamp#); " pi/2 pulses spaced "; msec$(iTint& / fSamp#); " apart"
 PRINT #1, "Fast transitions in "; usec$(iTt1H / fSamp#); "/"; usec$(iTtyH / fSamp#)
 PRINT #1, "Delays between turn-on and turn-off times = "; usec$(iTdH / fSamp#)
 PRINT #1, "Time at equal intensities with common control on = "; usec$(iTon1 / fSamp#)
 PRINT #1, "Time at equal intensities with individual controls on = "; usec$(iTon2 / fSamp#)
 PRINT #1, "Rate parameters for pulse transitions ="; STR$(CwfH(0)); ","; CwfH(2)
 PRINT #1, "Equal intensity level is"; CINT(exp2 * xAmpH); "% of full phase"

C.1. ALTINT.BAS 271

 PRINT #1, "Phaselock settling time between pi/2’s = "; usec$(iTpl / fSamp#)
 PRINT #1, "Minimum time for which tracer is OFF between pi/2’s = "; usec$(CDBL(TbMin))
 PRINT #1, "Minimum time for which gate is OFF between pi/2’s = "; usec$(CDBL(TgMin))
 END IF
 PRINT #1, "Comments:"; Cmmnt
 CLOSE #1
 PRINT "File saved."
 IF (FileCopy%(Flnm$, a$) = 0) THEN
 PRINT "File ’"; Flnm$; "’ copied to ’"; a$; "’."
 ELSE
 PRINT "File ’"; Flnm$; "’ NOT copied!"
 END IF
 END IF
 END IF

70 ’Erase the frequency list arrays
’ ERASE FSK&, fList$

 IF NOT iQuit THEN
 IF iAuto = 0 THEN ’Allow plotting and fitting of this data
 a$ = FlnmAdj$(Flnm$, "E:\LAB\DAT\", "DAT")
 CLS : CALL Plot(0, a$, psc)’Mode 0 -> Don’t print frequency list
 END IF
 IF iAuto <> 1 THEN ’File has been saved -> Increment file number
 Flnm$ = IncFN$(Flnm$)
 CALL CheckName(Flnm$, 1)
 FilePrfx$ = LEFT$(Flnm$, 2)
 END IF
 END IF

 iQuit = 0 ’Clear Quit flag
 GOTO 50 ’Return to menu

 END

160 iErr = -1
 RESUME NEXT

9999 PRINT "Undetermined error."
 PRINT "Press any key to return to menu."
 DO: a$ = INKEY$: LOOP WHILE INKEY$ = ""
 RESUME 10000
10000 GOTO 70

REM $STATIC
SUB AWFG (ia, ib)
’ ***** Writes data to AWFG board *****
’
’ This subroutine is called by the routines PulseAB, PulseAS,
’ and PulseSA to save x and y channel data for the AWFG patterns. Those
’ routines send two integer values, but don’t specify which is the x
’ value and which is the y value. The common variable iRev indicates
’ whether the order of the two values are inverted. The common variables
’ variables xDig% and yDig% control the digital outputs of the AWFG.
’ Once the order of the data is determined, it is written to XMS
’ memory using routine XMSPut2.
’

 CONST ASL4& = &H10

 ’Determine the order of the data, shift the bits for the analog output
 ’ to bits 15-4, and add the digital bits from 3-0
 IF iRev THEN
 x& = ASL4 * ib OR xDig%
 Y& = ASL4 * ia OR yDig%
 ELSE
 x& = ASL4 * ia OR xDig%
 Y& = ASL4 * ib OR yDig%
 END IF
 iErr = XMSPut2(x&, Y&) ’Use common error variable iErr to read remotely
 iAWFG = iAWFG + 1 ’Increment point counter

END SUB

SUB BinCon (f#, fRndB&, fRnd#)
’The DDS-1EB synthesizer has accesible output frequencies of 25 MHz/2^32.
’ This subroutine calculates the binary representation of the exact output
’ frequency nearest to the desired frequency "freq". The subroutine also
’ returns the actual value of the output frequency.
’

’CONST fstep = iMult * 5.820766091346741D-03 ’Step size for multiplied DDS-1EB
CONST fstep = iMult * 1000000000# / 2147483648# ’Step size for ADS-431 clocking at 1 GHz

 fRndB& = CLNG((fCent + sgndet * f#) / fstep) ’Binary repr. of output freq
 fRnd# = sgndet * (fstep * fRndB& - fCent) ’Actual output frequency

END SUB

SUB Clock (iMode) ’iMode = -1 -> Print warning message for FF too long
’ Clock -- Subroutine to determine the timing and resolution of the various
’ waveform patterns.
’ Since the feed forward (FF) control needs four different patterns--
’ one for each interferometer--it requires an HP synthesizer so that the
’ patterns can be stored in memory. The HP synthesizers can only be
’ programmed in point mode, so to achieve reasonable download times, we
’ wish minimize the number of FF points. The next lowest resolution
’ pattern is the gating waveform from the SRS synthesizer. This can be
’ programmed in vector mode, so it can be divided into 16300 time steps,
’ but these time steps must cover the entire 300ms+ of the interferometer
’ patterns. The AWFG patterns for the F=3, 4, 3+4 amplitude controls,
’ the beam switching control, and the frequency strobe have the highest
’ resolution, with over 32000 points spread out only over the time that
’ the gate signal is high.
’ For each pulse, this routine determines the maximum number of FF
’ points that will be required, then locates the pulses in the nearest
’ preceding block of gate pulses of sufficient duration. It maximizes
’ the resolution of the AWFG pattern, subject to the constraint on the
’ maximum pattern length.
’
 CONST nFFmax = 500 ’Total number of FF steps (limited for download time)
 CONST fClFF = 40000000# ’Clock rate (Hz) for HP synth (FF pattern)
 CONST fClG = 40000000# ’Clock rate for SRS synth (AWFG gate signal)
 CONST nSRS = 16300 ’Maximum number of pts for SRS synthesizer
 CONST nAWFG = 32767 ’Maximum number of pts for PCIP-AWFG
 ’CONST nAWFG = 8191 ’Maximum number of pts for PCIP-AWFG
 CONST Tffmin = .0002 ’Minimum time step for FF pattern
 CONST TgMax = .00005 ’Maximum gate sample size--safety buffer for rounding
 CONST TplPi = .0002 ’Minimum Raman phaselock settling times before pi’s
 CONST pl = 0 ’Print calculated parameter values?

 iErr = 0 ’Clear error flag
 IF pl THEN CLS ’Clear screen before listing parameters
 ’Determine which interferometers occur in the sequence
 ERASE iINT ’Clear all waveform flags
 FOR j = 1 TO nSeq
 iINT(mSeq(j)) = -1 ’-1 -> Interferometer occurs
 NEXT j
 ii = 1 + iINT(0) ’ii = 1 -> include pi/2’s

 ’Check for overflow of frequency list array
 nFreq = nPiP + nPi + 4 * ii + 1 ’# of frequencies (+1 for fCent)
 IF nFreq > nFSKmax THEN
 iErr = -1
 LOCATE 27, 1: PRINT "Requires"; nFreq; "different frequencies -- only"; nFSKmax; " available."
; Clear$;
 LOCATE 28, 1: PRINT "Press any key to continue.";
 DO: LOOP WHILE INKEY$ = ""
 LOCATE 28, 1: PRINT STRING$(30, 32);
 EXIT SUB
 END IF
 IF pl THEN PRINT "nFreq="; nFreq

 ’Check for insufficient time for pi pulses
 TspMin = Tpi + TdS + Ts + TplPi + TgMax
 IF Tsp < TspMin THEN
 iErr = -1
 LOCATE 27, 1: PRINT "Requires at least "; usec$(CDBL(TspMin)); " spacing of pi pulses."; Clear
$;
 LOCATE 28, 1: PRINT "Press any key to continue.";
 DO: LOOP WHILE INKEY$ = ""
 LOCATE 28, 1: PRINT STRING$(30, 32);
 EXIT SUB
 END IF

 ’Determine size of time steps for FF pattern.
 ’ Try to set Tff to a submultiple of Tsp such that fewer than nFFmax
 ’ points are needed.
 ’Find upper limit on the number iFFpi of FF points per main pi pulse
 ’ Include 1 extra at start and end to switch back to fCent
 iFFpi = INT((nFFmax - nPiP - 2) / (nPi + 2 * ii * Tint / Tsp + 1))
 IF iFFpi < 1 THEN iFFpi = 1 ’Need at least one
 ’It should not be necessary to have better resolution than Tffmin
 iFFpimax = INT(Tsp / Tffmin) + 1
 IF iFFpi > iFFpimax THEN iFFpi = iFFpimax
 DO ’Calculate exact number of FF steps required for this value of iFFpi
 ’Choose Tff#*iFFpi as close to Tsp as possible
 Tff# = CLNG(fClFF * Tsp / iFFpi) / fClFF
 ’Determine the number of FF steps for each pulse
 ’ FF steps for initial strobe for preselection - (>=2 gate samples)
 iFFs = INT(Ts + 2 * TgMax / Tff#) + 1
 ’ FF steps per preselection pi
 TspPmin = TpiP + TdS + Ts + TplPi + TgMax
 iFFpiP = INT(TspPmin / Tff#) + 1
 IF nPiP > 0 THEN ’Include extra time before 1st preselection pi
 ’# of FF steps before preselection
 iFF0 = INT((Tstart + TspPmin) / Tff#) + 1 - iFFpiP
 ELSE
 IF iINT(0) THEN ’Include extra time before 1st main pi
 ’# of FF steps before main pi
 iFF0 = INT((Tstart + TspMin) / Tff#) + 1 - iFFpi
 ELSE ’Include full time Tstart before pi/2’s
 iFF0 = INT(Tstart / Tff# + .995)
 END IF
 END IF
 ’# of FF steps for 1st and 3rd pi/2’s
 iFFH1 = INT((Tpl + TpiH + Tint / 2 + TgMax) / Tff#) + 1
 ’# of FF steps for 2nd and 4th pi/2’s
 iFFH2 = INT((Tint / 2 + TpiH + TdS + Ts + TgMax) / Tff#) + 1
 ’Total FF points - Add 1 at end for fCent
 nFF = iFFs + iFF0 + nPiP * iFFpiP + nPi * iFFpi + 2 * ii * (iFFH1 + iFFH2) + 1
 ’Try to have less than nFFmax points
 iRpt = (nFF > nFFmax AND iFFpi > 1)
 iFFpi = iFFpi + iRpt ’Decrement iFFpi to decrease nFF
 ’The HP33120A synthesizers require at least 8 points
 IF nFF < 8 THEN iRpt = -1: iFFpi = iFFpi - iRpt
 LOOP WHILE iRpt

 IF nFF > nFFmax AND iMode THEN ’Print warning message
 LOCATE 27, 1: PRINT "Warning! Requires"; nFF; "FF points -- only"; nFFmax; " recommended.";
 Clear$;
 FOR idel = 1 TO 100: NEXT idel
’ DO: LOOP WHILE INKEY$ = ""
 END IF

 IF pl THEN
 PRINT "iFFs="; iFFs; "iFF0="; iFF0; "iFFpiP="; iFFpiP; "iFFpi="; iFFpi;
 PRINT "iFFH1="; iFFH1; "iFFH2="; iFFH2; "nFF="; nFF; "Tff="; Tff#
 END IF

 ’Determine sample rates for PCIP-AWFG/2 and SRS (gate signal).
 ’ The goal is to achieve the highest possible resolution for the
 ’ AWFG board, subject to the constraint that its sample rate must be an

 ’ integer multiple of the SRS sample rate.
 ’Calculate lower limit for # of clock cycles per sample on AWFG
’*60 nCl = INT(fCl * (nPiP * TpiP + nPi * Tpi + 4 * ii * TpiH) / nAWFG) + 1
 nCl = INT(fCl * (nPiP * TpiP + nPi * Tpi + 4 * ii * .001) / nAWFG) + 1
 ’If user requests lower resolution, then increase sample period
 IF nCl < nClMin THEN nCl = nClMin
 ’To count samples for pi/2’s, we must first determine whether the beam
 ’ switching and gate are turned off between the pi/2 pulses.
 ’Switch off the tracer if it can be safely turned back on after the
 ’ midpoint between the pi/2’s, and it can be off at least TbMin.
 iOffB = ((Tpl < Tint / 2) AND (Tint - Tpl - TdS > TbMin))
 dTon = ABS(xTon1 - xTon2) * TpiH ’Extra duration of pi/2’s into center
 ’Switch off the gate if it can be off at least TgMin.
 IF iOffB THEN
 ’Gate OFF between 1st pi/2 and center?
 iOffG(1) = ((Tint / 2 - dTon > TgMin) AND (Tint / 2 - TdS - Ts > TgMin))
 ’Gate OFF between strobe and beeam switch?
 iOffG(2) = (Tint / 2 - dTon - Tpl - Ts > TgMin)
 ’Gate OFF between beam switch and 2nd pi/2?
 iOffG(3) = (Tpl - dTon > TgMin)
 ELSE
 ’Gate OFF between 1st pi/2 and center?
 iOffG(1) = (Tint / 2 - dTon > TgMin)
 ’Gate OFF between strobe and 2nd pi/2?
 iOffG(2) = (Tint / 2 - dTon - Ts > TgMin)
 iOffG(3) = 0 ’Never three OFF times
 END IF
’*62:
 iOffG(1) = iOffG(1) AND (Tint / 2 - .001 + TpiH > TgMin)
 ’if chirp for 2nd Pi/2 pulse must start before center, don’t gate OFF
 DO ’Determine the exact number of AWFG points for this value of nCl
 ’We first need the gate sample rate so we know how many extra points
 ’ are needed around the AWFG pulses because of the worse resolution
 ’ of the gate signal.
 ’Calculate ratio of minimum gate sample period (Tff#*nFF/nSRS) to AWFG
 ’ sample period, and round up to the next integer.
 iCl& = INT(Tff# * nFF / nSRS * fCl / nCl) + 1 ’-> Tgate = Tawfg*iCl&
 ’Since fClG is a multiple of fCl, it is possible to achieve this
 ’ value of Tgate with an integral number of gate clock cycles.
 fSampG# = fClG / CINT(fClG * iCl& * nCl / fCl) ’Gate sampling rate
 fSamp# = fCl / nCl ’AWFG sampling rate
 ’Count exact number of gate samples with gate ON. This determines
 ’ the exact number of samples for the AWFG patterns
 ’ Calculate integer number of AWFG samples nearest to requested times
 ’ At least one step is required for all transition times
 iTt1P = fSamp# * xTt1 * TpiP: IF iTt1P = 0 THEN iTt1P = 1
 iTt1 = fSamp# * xTt1 * Tpi: IF iTt1 = 0 THEN iTt1 = 1
 iTt1H = fSamp# * xTt1H * TpiH: IF iTt1H = 0 THEN iTt1H = 1
’*68:
 iTtyH = fSamp# * yTt1H * TpiH: IF iTtyH = 0 THEN iTtyH = 1
 ’ At least two steps required for strobe pulse
 iTs = fSamp# * Ts + 1: IF iTs = 1 THEN iTs = 2
 ’Non-transition times may be zero
 iTdP = CINT(fSamp# * xTd * TpiP)
 iTd = CINT(fSamp# * xTd * Tpi)
 iTdH = CINT(fSamp# * xTdH * TpiH)
 iTon1 = CINT(fSamp# * xTon1 * TpiH)
 iTon2 = CINT(fSamp# * xTon2 * TpiH)
 iTon = iTon2 + iTt1H
 idTon = iTon2 + iTt1H - iTon1 - 1 ’Difference of iTon’s
 IF idTon > 0 THEN iTon = iTon1 + 1
 iTdS = CINT(fSamp# * TdS) ’# pts between pulses and strobe
 iTpl = CINT(fSamp# * Tpl) ’# pts needed for phaselock settling
’*61 iTpl0 = CINT(fSamp# * (Tpl - .001 + TpiH))
’*64:
 iTpl0 = CINT(fSamp# * (Tpl - (.001 - TdS) + TpiH))
 ’# pts needed for phaselock settling
’*61 iTcp = CINT(fSamp# * (.001 - TpiH))
’*64:
 iTcp = CINT(fSamp# * ((.001 - TdS) - TpiH))
 ’# additional pts for chirp control signal

272 APPENDIX C. COMPUTER CODE

 iTint2& = CLNG(fSamp# * Tint / 2) ’# pts between pi/2 and midpoint
 iTint& = 2 * iTint2& ’# pts between pi/2’s (must be even)
 ’Spend remainder of time on slow transitions, but at least 1 point
 iTt2P = CINT(fSamp# * TpiP) - 2 * (iTt1P + iTdP): IF iTt2P < 1 THEN iTt2P = 1
 iTt2 = CINT(fSamp# * Tpi) - 2 * (iTt1 + iTd): IF iTt2 < 1 THEN iTt2 = 1
’*67 iTt2H = CINT(fSamp# * TpiH) - iTt1H - iTdH - iTon: IF iTt2H < 1 THEN iTt2H = 1
 iTt2H = CINT(fSamp# * TpiH) - iTtyH - iTdH - iTon: IF iTt2H < 1 THEN iTt2H = 1
 ’Calculate total steps per pulse.
 ’ These are the pulse durations used to calculate the center times
 ’ and frequencies, so they shouldn’t include TdS and Ts, when the
 ’ light is off.
 iTpiP = 2 * (iTt1P + iTdP) + iTt2P: iTpi = 2 * (iTt1 + iTd) + iTt2
’*67 iTpiH = iTt1H + iTdH + iTt2H + iTon
 iTpiH = iTtyH + iTdH + iTt2H + iTon

 ’Determine number of "ON" gating samples
 ’ For pi pulses
 iGs = INT((iTs - .5) / iCl&) + 1 ’First gate pulse for presel. strobe
 iGpiP = INT((iTpiP + iTdS + iTs - .5) / iCl&) + 1 ’Preselection
 iGpi = INT((iTpi + iTdS + iTs - .5) / iCl&) + 1 ’Main pi’s
 ’ For pi/2 pairs, first find the absolute position relative to center
 ’ of all transitions in #AWFG samples. These coordinates are rounded
 ’ to gate samples to determine when the gate must be ON. Later, the
 ’ coordinates will be corrected for the OFF gate samples, thereby
 ’ giving the correct coordinates in the actual AWFG waveform.
 IF NOT iINT(0) THEN
’*60 iAH&(0) = -iTint2& - iTpiH ’First sample of 1st pi/2
 iAH&(0) = -iTint2& - iTpiH - iTcp ’First sample of 1st pi/2
 iTadj = ABS(idTon): IF (iTadj < iTdS + 1) AND iOffB THEN iTadj = iTdS + 1
 iAH&(1) = -iTint2& + iTadj ’First sample after 1st pi/2
 iAH&(2) = 0 ’First sample of strobe
 iAH&(3) = iTs ’First sample after strobe
’*60 iAH&(5) = iTint2& - iTpl ’First sample after beam switch ON
 iAH&(5) = iTint2& - iTpl0 ’First sample after beam switch ON
 iAH&(4) = iAH&(5) - 1 ’Last sample before beam switch
’*60 iAH&(6) = iTint2& - ABS(idTon) ’First sample of 2nd pi/2
’*66 iAH&(6) = iTint2& - iTcp - ABS(idTon) ’First sample of 2nd pi/2
 iAH&(6) = iTint2& - iTcp ’First sample of 2nd pi/2
 iAH&(7) = iTint2& + iTpiH + iTdS + iTs’First sample after 2nd pi/2
 ’If intensity controls are on, turn on tracer also
 IF iAH&(4) > iAH&(6) THEN iAH&(4) = iAH&(6): iAH&(5) = iAH&(4) + 1
 ’Round each of these AWFG coordinates to gate coordinates
 FOR j = 0 TO 7 STEP 2
 iGH(j) = INT(iAH&(j) / iCl&) ’Round down
 iGH(j + 1) = INT((iAH&(j + 1) - .5) / iCl&) + 1 ’Round up
 NEXT j
 IF NOT iOffB THEN iGH(4) = iGH(6): iGH(5) = iGH(6) ’No beam switch
 ’Calculate the total number of ON gate samples for pi/2 pair
 iGHtot& = iGH(7) - iGH(0) ’Total gate samples for pi/2 sequence
 FOR j = 1 TO 3 ’Subtract samples with gate OFF
 ’If after rounding, the gate isn’t turned off anymore, then
 ’ correct logical variables so the gate signal can be generated.
 iOffG(j) = (iOffG(j) AND (iGH(2 * j - 1) < iGH(2 * j)))
 iGHtot& = iGHtot& + iOffG(j) * (iGH(2 * j) - iGH(2 * j - 1))
 NEXT j
 END IF

 ’Find total ON gate samples, which also gives total AWFG samples
 ’ Add one extra for beam switching off at end
 nOnG& = iGs + nPiP * iGpiP + nPi * iGpi + 2 * ii * iGHtot& + 1
 lArb& = nOnG& * iCl& + nAWFG0 ’Total length of AWFG pattern
 IF lArb& > nAWFG THEN nCl = nCl + 1
 LOOP WHILE lArb& > nAWFG

 ’Find # AWFG points in pi/2 before common switch OFF
’*68 iTpiHC = iTpiH - iTon + iTon1 + 1
 iTpiHC = iTpiH - iTon + iTon1

 IF NOT iINT(0) THEN ’Correct AWFG coordinates iAH& for OFF gate samples
 iAH0& = iAH&(0) ’Save offset from center of 1st point for SUB Pi2Pi2
 iAH&(0) = 0 ’1st pi/2 -> Take i0& (iAH0&) as origin

 iAH&(1) = iAH&(1) - iAH0&
’*66 iAH1& = iAH&(6) + ABS(idTon) ’2nd pi/2 -> Take i0& (iAH1&) as origin
 iAH1& = iAH&(6) + iTcp ’2nd pi/2 -> Take i0& (iAH1&) as origin
 FOR i = 2 TO 7 ’Step through coordinates iAH&(2)-iAH&(7)
 FOR j = 1 + i \ 2 TO 3 ’Step through OFF periods
 iAH&(i) = iAH&(i) - iOffG(j) * iCl& * (iGH(2 * j) - iGH(2 * j - 1))
 NEXT j
 iAH&(i) = iAH&(i) - iAH1&
 NEXT i
 END IF

 IF pl THEN
 PRINT "iOffB="; iOffB; "iOffG="; iOffG(1); iOffG(2); iOffG(3)
 PRINT "iCl="; iCl&; "fSampG="; fSampG#; "fSamp="; fSamp#
 PRINT "iTs="; iTs; "iTdS="; iTdS; "iTpl="; iTpl; "iTint="; iTint&
 PRINT "iTpiP="; iTpiP; ":iTt1P="; iTt1P; "iTdP="; iTdP; "iTt2P="; iTt2P
 PRINT "iTpi="; iTpi; ":iTt1="; iTt1; "iTd="; iTd; "iTt2="; iTt2
 IF NOT iINT(0) THEN
 PRINT "iTpiH="; iTpiH; ":iTt1H="; iTt1H; "iTdH="; iTdH; "iTt2H="; iTt2H; "iTon1="; iTon1
; "iTon2="; iTon2; "iTon="; iTon
 PRINT "iTadj="; iTadj
 PRINT "iAH0="; iAH0&; "iAH1="; iAH1&
 PRINT "iAH()="; : FOR i = 0 TO 7: PRINT iAH&(i); : NEXT i: PRINT
 PRINT "iGH()="; : FOR i = 0 TO 7: PRINT iGH(i); : NEXT i: PRINT
 PRINT "iGHtot="; iGHtot&; "iTpiHC="; iTpiHC; "iTpiHB="; iTpiHB
 END IF
 PRINT "iGs="; iGs; "iGpiP="; iGpiP; "iGpi="; iGpi; "nOnG="; nOnG&; "lArb="; lArb&

 PRINT "Press any key to continue.": DO: LOOP WHILE INKEY$ = ""
 CLS
 END IF

END SUB

FUNCTION CsTBL% (f#)
’***** Function to determine the HP synthesizer amplitude setting (-2047 to
’ +2047) required to provide a Cs lock AO tuning voltage that
’ achieves the requested offset frequency from 60 MHz - fOffCs, the
’ AO frequency required for the F=4 light to be on the DF resonance
’ including the correction for an offset fOffCs in the Cs lock.
’****WRONG****
’ The HP synthesizer should be set for 10 Vpp, with a 5 V offset.
’ The integer amplitude is expressed as two ASCII characters as
’ required for downloading arbitrary waveforms.
’****WRONG****
’ This code (orginally CsBin$()) assumed the HP Cs lock synthesizer
’ was set so that its amplitude = 11Vpp and its offset was set so
’ that the Cs lock was on resonance.
’*71b
’ While the lookup table still assumes 11Vpp, the code no longer
’ requires the synthesizer to be set that way. In the global
’ variable "sCsAMP" it keeps track of the vertical scale the
’ synthesizer is set and scales the results of the table lookup
’ accordingly.
’*71e
’*70b
’ The absolute frequency of the two Raman beams is controlled by a single
’ AO and is referenced to the saturation spectroscopy signal from a Cs cell.
’ This Cs lock AO is double passed and thus shifts the pump beam from the
’ probe beam by 2 x fAO, where fAO is the frequency of the RF to the AO with
’ the sign of the shift included. Since the pump and probe beam
’ counterpropogate through the Cs cell, only atoms at rest will be resonant
’ with both beams, and only if the absolute frequency of the laser is set to
’ fCs - fAO, where fCs is the natural Doppler free transition frequency of
’ the Cs line we are locking to.
’ Before we added the 120MHz switching AO, fAO was +60MHz, so the laser was
’ locked to fCs - 60MHz. Increasing the AO frequency fAO thus decreased the
’ absolute laser frequency, hence the negative sign in fScCs.
’ To compensate for the 120MHz switching AO, we changed the sign of the Cs
’ lock AO from +60MHz to -60MHz. The laser will now be locked to fCs + 60MHz,
’ and increasing the AO frequency will increase the absolute laser frequency.

’*70e
’*71b
’ The original function CsBin$() is now broken up into two functions: this
’ one (CsTBL%()) and ItoS$(), which converts a 2-byte integer to a 2-character
’ string of those two bytes. Additionally, the result of the lookup table is
’ now modified using two global variables "iCsOFF" and "sCsAMP". "iCsOFF"
’ is an integer in the same scale as the lookup table output which represents
’ the current dc voltage offset of the HP synthesizer. Before any non-zero
’ lock offset (fOFFCs) was programmed into the arbitrary waveform pattern.
’ Now, the dc offset value is changed, and consequently the output of the
’ lookup table which represents the absolute frequency must have this offset
’ value removed. "iCsOFF" is that value that is subtract away. "sCsAMP" is
’ the current amplitude scale the HP synthesizer is set to (11.000 Vpp, for
’ instance). Because this amplitude is no longer constant, the program must
’ keep track of what it is set to and rescale the output of the lookup table
’ which assumed 11Vpp.
’*71e
’
’*69 CONST fScCs = -25000 ’Scale frequency (in kHz) for table storage
 ’Negative because fAO > 60 MHz shifts F=4 light below resonance
’*70:
 CONST fScCs = 25000 ’Scale frequency (in kHz) for table storage
 ’Positive becase increasing fAO increases the absolute laser frequency (see above)
 CONST pl% = 0

 ’Convert f# to a scaled integer as used for the calibration table
 iFreq = CINT(&H8000& * (f# + fOffCs) / fScCs)

 IF iFreq < iCs(1, 0) OR iFreq > iCs(1, nDiv) THEN
 PRINT "Cs lock out of range. Press any key to continue."
 DO: LOOP WHILE INKEY$ = ""
 IF iFreq < iCs(1, 0) THEN
 j = 0
 ELSE
 j = nDiv
 END IF
 ELSE ’Perform a binary search of the table for the frequency interval
 ’ containing the desired frequency iFreq
 j = INT(nDiv / 2)
 jStep = INT((j + 1) / 2)
 DO WHILE jStep > 0
 IF pl% THEN PRINT "j="; j; "jStep="; jStep; "iFreq="; iFreq; "iCs="; iCs(1, j)
 IF iFreq < iCs(1, j) THEN
 j = j - jStep
 IF j < 0 THEN j = 0
 ELSE
 j = j + jStep
 IF j > nDiv THEN j = nDiv
 END IF
 jStep = INT((jStep - (jStep > 1)) / 2)
 LOOP
 ’Make sure j is lower limit of range
 IF (iFreq < iCs(1, j) AND j > 0) OR (j = nDiv) THEN j = j - 1
 IF pl% THEN
 PRINT "j="; j; "jStep="; jStep; "iFreq="; iFreq; "iCs="; iCs(1, j)
 END IF
 END IF

 ’Interpolate the table values to find the D/A setting iVout that gives
 ’ the closest available frequency
 iFreq1 = iCs(1, j): iFreq2 = iCs(1, j + 1)
 v1 = iCs(0, j): v2 = iCs(0, j + 1)
 v% = (v1 * (iFreq2 - iFreq) + v2 * (iFreq - iFreq1)) / (iFreq2 - iFreq1)
’*71:
 v% = CINT((v% - iCsOFF) * 11! / sCsAMP)
 IF v% < -2047 OR v% > 2047 THEN
 PRINT "Extrapolation out of range. Press any key to continue."
 DO: LOOP WHILE INKEY$ = ""
 IF v% < -2047 THEN
 v% = -2047
 ELSE

 v% = 2047
 END IF
 END IF

 CsTBL% = v%

 IF pl% THEN
 PRINT "iFreq1="; iFreq1; "iFreq2="; iFreq2; "v1="; v1; "v2="; v2; "v%="; v%
 PRINT "Press any key to continue."
 DO: a$ = UCASE$(INKEY$): LOOP WHILE a$ = ""
 IF a$ = "Q" THEN SYSTEM
 END IF

END FUNCTION

FUNCTION Fctr$ (r#)
’ ***** Rounds frequencies to the nearest 0.01 Hz *****
’
’ Takes a real number in Hz and returns a string with the frequency
’ rounded to the nearest 0.01 Hz. The string has the format used for
’ adiabatic transfer pulse center frequencies in fList$, the list of
’ pulse times and frequencies.
’
 a$ = LTRIM$(STR$(CLNG(ABS(exp2 * r#)))): l = LEN(a$)
 IF l < 3 THEN a$ = STRING$(3 - l, 48) + a$: l = 3
 IF r# < 0 THEN a$ = "-" + a$: l = l + 1
 Fctr$ = STRING$(13 - l, 32) + LEFT$(a$, l - 2) + "." + RIGHT$(a$, 2)

END FUNCTION

FUNCTION FFbin$ (f#)
’***** Function to convert frequencies |f#|<=5 MHz to the arbitrary pattern
’ amplitude range -2047 to +2047. The integer amplitude is then
’ expressed as two ASCII characters.
’
 CONST fSc = -yMax / 5000000# ’Scale frequency for FF patterns

 ’Max. pattern amplitudes +-2047 <-> +-10 MHz shifts)
 FFb& = CLNG(fSc * f#) AND &HFFFF&
 ’Convert FFb& to two bytes and express as ASCII characters
 Fl% = FFb& AND &HFF: fH% = INT(FFb& / &H100)
 FFbin$ = CHR$(fH%) + CHR$(Fl%) ’FF sequence data

END FUNCTION

FUNCTION ItoS$ (i%)
’Convert i% to two bytes and express as ASCII characters
’This function was originally part of the CsBin$() function.
 li& = CLNG(i%) AND &HFFFF&
 lsb% = li& AND &HFF
 msb% = INT(li& / &H100)
 ItoS$ = CHR$(msb%) + CHR$(lsb%) ’Cs detuning sequence data

 IF pl% THEN
 PRINT "li&="; li&; "lsb%="; lsb%; "msb%="; msb%
 PRINT "Press any key to continue."
 DO: a$ = UCASE$(INKEY$): LOOP WHILE a$ = ""
 IF a$ = "Q" THEN SYSTEM
 END IF
END FUNCTION

FUNCTION iwf (t, a, ifa(), b())
’ ***** Generates the shaping function for the pulses *****
’
’ The pulse shape is generated using a 1001 element linearization table
’ ifa which has values corresponding to a 12-bit D/A conversion.
’
 IF t < .5 THEN
 u = exp3 * a * (EXP(b(0) * t) - 1) * b(1)
 ELSE
 u = exp3 * a * (1 - (EXP(b(2) * (1 - t)) - 1) * b(3))

C.1. ALTINT.BAS 273

 END IF
’ u = t * exp3 ’ use linear changes
 i = INT(u)
 IF i < 0 THEN i = 0
 IF i > 999 THEN i = 999

 ’Linearly interpolate between table elements
 iwf = (i + 1 - u) * ifa(i) + (u - i) * ifa(i + 1)

’ iwf = CINT(4095 * u / exp3) ’Allows direct look at shapes

END FUNCTION

FUNCTION msec$ (t#)
’ ***** Rounds times to the nearest 0.0001 ms *****
’
’ Takes a real number in seconds and returns a string with the time
’ expressed in ms, rounded to the nearest 0.1 us.
’
 a$ = LTRIM$(STR$(CLNG(exp7 * t#))): l = LEN(a$)
 IF l < 5 THEN a$ = STRING$(5 - l, 48) + a$
 msec$ = LEFT$(a$, LEN(a$) - 4) + "." + RIGHT$(a$, 4) + " ms"

END FUNCTION

SUB Pi2Pi2 (iArmX)
’ ***** Generates a pair of pi/2 pulses *****
’
’ This subroutine steps through the feed forward pattern, generating
’ that pattern along with the frequency list. First, it determines the
’ nearest gate sample. Then it calculates the pulse start times and
’ center times. The center times determine the pulse frequencies and
’ feed forward settings. The start times are saved in an array for
’ future use in generating the AWFG patterns.
’
CONST pl% = 0 ’Print diagnostic messages?

 iFSK = iFSK + 1 ’Increment pulse counter for 1st pi/2
 IF pl% THEN PRINT "Pulse"; STR$(iFSK); ":";
 ’Find gate sample starting closest to FF point between pi/2’s
 i1G = CINT(fSampG# * (iFF + iExt + iFFH1) * Tff#)
 i0G = i1G + iGH(0) ’1st ON gate sample for this pulse
 i0&(iFSK) = iCl& * i1G + iAH0&
 ’Start index for 1st sample of 1st pi/2 pulse
’*60 Tc#(1) = (i0&(iFSK) + iTpiH / 2#) / fSamp# ’Exact center time for 1st pi/2
 Tc#(1) = (i0&(iFSK) + iTcp + iTpiH / 2#) / fSamp# ’Exact center time for 1st pi/2
’*66 i0&(iFSk + 1) = i0&(iFSk) + iTpiH + iTint& ’Starting index for 2nd pi/2
 i0&(iFSK + 1) = i0&(iFSK) + iTcp + iTpiH + iTint&
 ’Starting index for 2nd pi/2
 Tc#(2) = (i0&(iFSK + 1) + iTpiH / 2#) / fSamp# ’2nd pi/2
’*66 Tc#(2) = (i0&(iFSK + 1) + iTcp + iTpiH / 2#) / fSamp# ’2nd pi/2
 ’List Tc for both pi/2’s
 fList$(iFSK) = "pi/2 pair:" + Tctr$(Tc#(1))
 fList$(iFSK + 1) = STRING$(10, 32) + Tctr$(Tc#(2))
 FOR m = 1 TO 4 ’Step through all possible patterns
 IF iINT(m) THEN ’This pattern appears in sequence
 ’Determine trajectory change for the two pi/2’s
 ’Recoil sign set by state and keff direction
 dv# = -ik(m, iFSK - 1) * iSt(m, iFSK - 1) * vR / 2
 ’Determine exit state for 2nd pi/2
 iSt(m, iFSK) = 0 ’Atoms enter superposition state
 IF iArmX = 0 THEN ’Choose branch to match physical trajectory
 IF (m AND 2) = 2 THEN ’Int’s #2 & 3 follow upper trajectory
 iSt(m, iFSK + 1) = ik(m, iFSK - 1) ’Upper trajectory
 ELSE
 iSt(m, iFSK + 1) = -ik(m, iFSK - 1) ’Lower trajectory
 END IF
 ELSE ’Force user selected exit state for 2nd pi/2 pair
 iSt(m, iFSK + 1) = iArmX
 END IF
 ik(m, iFSK) = ik(m, iFSK - 1) ’Same keff sign for both pi/2’s

 n1 = iExt + iFFH1 ’FF points for 1st pi/2
 FOR j = 0 TO 1 ’Calculate changes for both pi/2’s
 ’Calculate the adjusted probe, blasting and DF Raman times
 ’New position at pulse center
 dTc# = Tc#(j + 1) - Tc#(j)
 z0(m) = z0(m) + v0#(m) * dTc# - g0# * dTc# ^ 2 / 2
 ’Save positions for beam splitters
 zi(m, j + 2 * ABS(iArmX)) = z0(m)
 ’New velocity at pulse center
 vSgn = v0#(m) > 0 ’Remember initial sign of v0#(m)
 v0#(m) = v0#(m) - g0# * dTc#
 IF j = 0 THEN v0#(m) = v0#(m) + dv# ’Add recoil for 1st pi/2
 ’Update extremes of trajectory
 IF vSgn AND v0#(m) < 0 THEN ’Trajectory peaked between pulses
 zpk = z0(m) + v0#(m) ^ 2 / 2 / g0# ’Peak height
 IF zpk > zmax(m) THEN zmax(m) = zpk
 ELSE ’Check for peak at center time of pulse
 IF z0(m) > zmax(m) THEN zmax(m) = z0(m)
 END IF
 IF z0(m) < zmin(m) THEN zmin(m) = z0(m) ’Check for minimum z
 IF NOT iFix THEN ’Calculate change of Tdf and Tbl
 IF iArm = 1 THEN ’Include 1st DF Raman pulse
 ’Adjusted DF Raman #1 time
 Tdf1(m) = Tcorr(Tdf1(m), Tc#(j + 1), v0#(m), dv#)
 END IF
 ’Adjusted blowaway time
 Tdf1(m) = Tcorr(Tbl(m), Tc#(j + 1), v0#(m), dv#)
 ’Adjusted DF Raman time
 Tdf2(m) = Tcorr(Tdf2(m), Tc#(j + 1), v0#(m), dv#)
 END IF
 ’Adjusted probe time
 Tpr(m) = Tcorr(Tpr(m), Tc#(j + 1), v0#(m), dv#)

 ’Calculate and list frequency of (j + 1)th pi/2
 fC#(m, j) = ik(m, iFSK) * keff * v0#(m) ’Includes Doppler shift and recoil
’*62b Correct frequencies for chirp:
’ CALL BinCon(fC#(m, j), fRndB&, fRndCs#)
 ’If we are chirping only the F=3 light, don’t include the
 ’frequency offset in the Cs lock offset, since the freq of
 ’the F=4 hasn’t changed. fRndCs# does not include this
 ’offset while fRnd# does.
’ fC#(m, j) = fC#(m, j) + ik(m, iFSK) * kg0# * (.001 - TpiH / 2)
’*62e
’*64:
 fC#(m, j) = fC#(m, j) - ik(m, iFSK) * kg0# * ((.001 - iTdS / fSamp#) - iTpiH / fSamp#
 / 2)
 ’Find binary representation of nearest accessible frequency
 CALL BinCon(fC#(m, j), fRndB&, fRnd#)
 fList$(iFSK + j) = fList$(iFSK + j) + Fctr$(fRnd#)
 FSK&(iFSK + j - 1, m) = fRndB&
’ IF pl% THEN PRINT (fCent + sgndet * fRnd#) / iMult;
 IF pl% THEN PRINT (fCent + sgndet * fRnd#);
 ’Update FF list
 b$ = FFbin$(fRnd#) ’New FF value
 c$ = ItoS$(CsTBL%(fRnd# / f21)) ’New Cs detuning value
’*62:
’ c$ = Csbin$(fRndCs# / f21) ’New Cs detuning value
 FOR N = 1 TO n1
 FF$(m) = FF$(m) + b$
 Cs$(m) = Cs$(m) + c$
 NEXT N
 n1 = iFFH2 ’FF points for 2nd pi/2

 ’Flip dv# to exit with no net recoil if leaving in same state
 IF j = 0 AND iSt(m, iFSK + 1) = iSt(m, iFSK - 1) THEN dv# = -dv#
 NEXT j

 v0#(m) = v0#(m) + dv# ’Add recoil from 2nd pi/2
 IF iArmX = 0 THEN ’Switch keff sign (1st pi/2 pair)
 ik(m, iFSK + 1) = -ik(m, iFSK)
 ELSE ’No change of keff sign (2nd pi/2 pair)

 ik(m, iFSK + 1) = ik(m, iFSK)
 END IF
 ELSE ’Leave space in frequency lists
 fList$(iFSK) = fList$(iFSK) + STRING$(14, 32)
 fList$(iFSK + 1) = fList$(iFSK + 1) + STRING$(14, 32)
 END IF
 NEXT m

 IF pl% THEN PRINT
 ’Update number of OFF gate samples before pi/2 sequence
 nOffG = nOffG + i0G - iG
 ’Correct i0& for the OFF gate samples
 i0&(iFSK) = i0&(iFSK) - nOffG * iCl& ’Start of 1st pi/2
 ’Update gate waveform for 1st pi/2
 iwfG(iGi) = iG: iwfG(iGi + 1) = 0: iGi = iGi + 2
 IF i0G - iG > 1 THEN iwfG(iGi) = i0G - 1: iwfG(iGi + 1) = 0: iGi = iGi + 2
 iwfG(iGi) = i0G: iwfG(iGi + 1) = yMax: iGi = iGi + 2
 iG = i0G ’Update gate sample pointer to start of 1st pi/2
 ’Update gate waveform for any gate=OFF times
 FOR j = 1 TO 3 ’Step through three possible OFF periods for gate
 IF iOffG(j) THEN ’Turn gate OFF and then back ON
 IF i1G + iGH(2 * j - 1) - iG > 1 THEN ’Repeat ON
 iwfG(iGi) = i1G + iGH(2 * j - 1) - 1: iwfG(iGi + 1) = yMax
 iGi = iGi + 2
 END IF
 iwfG(iGi) = i1G + iGH(2 * j - 1): iwfG(iGi + 1) = 0: iGi = iGi + 2
 IF iGH(2 * j) - iGH(2 * j - 1) > 1 THEN ’Repeat OFF
 iwfG(iGi) = i1G + iGH(2 * j) - 1: iwfG(iGi + 1) = 0
 iGi = iGi + 2
 END IF
 iwfG(iGi) = i1G + iGH(2 * j): iwfG(iGi + 1) = yMax
 iG = iwfG(iGi): iGi = iGi + 2
 ’Update number of OFF gate samples
 nOffG = nOffG + iGH(2 * j) - iGH(2 * j - 1)
 END IF
 NEXT j
 ’Finish up gate waveform for 2nd pi/2
 IF i1G + iGH(7) - iG > 1 THEN ’Repeat ON
 iwfG(iGi) = i1G + iGH(7) - 1: iwfG(iGi + 1) = yMax
 iGi = iGi + 2
 END IF
 iG = iwfG(iGi - 2) + 1 ’Update gate sample counter
 ’Correct i0& for 2nd pi/2 for the OFF gate samples
 i0&(iFSK + 1) = i0&(iFSK + 1) - nOffG * iCl& ’Start of 2nd pi/2

 PRINT fList$(iFSK) ’Print frequencies for 1st pi/2
 iFSK = iFSK + 1 ’Increment pulse counter for 2nd pi/2
 PRINT fList$(iFSK) ’Print frequencies for 2nd pi/2
 iFF = iFF + iExt + iFFH1 + iFFH2 ’Advance FF sequence pointer
 Tc#(0) = Tc#(2) ’Update pulse center time corresponding to v0#()

END SUB

SUB PiPulse (nPiX, iFFX, iGX, iTX)
’
’ This subroutine steps through the feed forward pattern, generating
’ that pattern along with the frequency list. First, it determines the
’ previous gate sample. Then it calculates the pulse start time and
’ center time. The center time determines the pulse frequency and
’ feed forward setting. The start time is saved in an array for future
’ use in generating the AWFG patterns.
’
CONST pl% = 0 ’Print diagnostic messages?

 iFSK = iFSK + 1 ’Advance pulse counter
 IF pl% THEN PRINT "Pulse"; STR$(iFSK); ":";
 ’Find 1st gate sample after end of gate block for this pulse
 i1G = INT(fSampG# * (iFF + iExt + iFFX) * Tff#)
 i0G = i1G - iGX ’1st "ON" gate sample for this pulse
 i0&(iFSK) = iCl& * i1G - iTX - iTdS - iTs ’1st AWFG sample for this pulse
 Tc#(1) = (i0&(iFSK) + iTX / 2#) / fSamp# ’Exact center time for this pulse

 ’List Tc
 fList$(iFSK) = " pi #" + RIGHT$(STR$(nPiX), 2) + ":" + Tctr$(Tc#(1))

 m = 1 ’Pointer for pattern storage
 FOR j = 0 TO 4 ’Step through all possible patterns
 IF iINT(j) THEN ’This pattern appears in sequence
 ’Calculate the adjusted probe, blasting and DF Raman times
 iSt(m, iFSK) = -iSt(m, iFSK - 1) ’Atoms switch states
 ’Recoil sign set by state and keff direction
 dv# = -ik(m, iFSK - 1) * iSt(m, iFSK - 1) * vR
 ’New position at pulse center
 dTc# = Tc#(1) - Tc#(0)
 z0(m) = z0(m) + v0#(m) * dTc# - g0# * dTc# ^ 2 / 2
 ’New velocity at pulse center
 vSgn = v0#(m) > 0 ’Remember initial sign of v0#(m)
 v0#(m) = v0#(m) - g0# * dTc# + dv#
 ’Update extremes of trajectory
 IF vSgn AND v0#(m) < 0 THEN ’Trajectory peaked between pulses
 zpk = z0(m) + v0#(m) ^ 2 / 2 / g0# ’Peak height
 IF zpk > zmax(m) THEN zmax(m) = zpk
 ELSE ’Check for peak at center time of pulse
 IF z0(m) > zmax(m) THEN zmax(m) = z0(m)
 END IF
 IF z0(m) < zmin(m) THEN zmin(m) = z0(m) ’Check for minimum z
 IF NOT iFix THEN ’Calculate change of Tdf and Tbl
 IF iArm = 1 THEN ’Include 1st DF Raman pulse
 ’Adjusted DF Raman #1 time
 Tdf1(m) = Tcorr(Tdf1(m), Tc#(1), v0#(m), dv#)
 END IF
 ’Adjusted blowaway time
 Tbl(m) = Tcorr(Tbl(m), Tc#(1), v0#(m), dv#)
 ’Adjusted DF Raman time
 Tdf2(m) = Tcorr(Tdf2(m), Tc#(1), v0#(m), dv#)
 END IF
 ’Adjusted probe time
 Tpr(m) = Tcorr(Tpr(m), Tc#(1), v0#(m), dv#)

 ’Calculate frequency for pulse, including Doppler shift and recoil
 fC#(m, 0) = ik(m, iFSK - 1) * keff * (v0#(m) - dv# / 2)
 ’Find binary representation of nearest accessible frequency
 CALL BinCon(fC#(m, 0), fRndB&, fRnd#)
 fList$(iFSK) = fList$(iFSK) + Fctr$(fRnd#)
 FSK&(iFSK - 1, m) = fRndB&
’ IF pl% THEN PRINT (fCent + sgndet * fRnd#) / iMult;
 IF pl% THEN PRINT (fCent + sgndet * fRnd#);
 ’Update FF list
 b$ = FFbin$(fRnd#) ’New FF value
 c$ = ItoS$(CsTBL%(fRnd# / f21)) ’New Cs detuning value
 FOR N = 1 TO iExt + iFFX
 FF$(m) = FF$(m) + b$
 Cs$(m) = Cs$(m) + c$
 NEXT N

 IF iRev THEN ’Main pi’s -> switch keff sign
 ik(m, iFSK) = -ik(m, iFSK - 1)
 ELSE ’Preselection pi’s -> don’t switch keff sign
 ik(m, iFSK) = ik(m, iFSK - 1)
 END IF
 ELSE ’Leave space in frequency list
 IF j > 0 AND NOT iINT(0) THEN fList$(iFSK) = fList$(iFSK) + STRING$(14, 32)
 END IF
 m = j + 1 ’For j>0, store seq #m in mem #j
 NEXT j

 PRINT fList$(iFSK) ’Print frequencies for this pulse
 IF pl% THEN PRINT
 ’Update gate waveform
 iwfG(iGi) = iG: iwfG(iGi + 1) = 0: iGi = iGi + 2 ’OFF
 IF i0G - iG > 1 THEN iwfG(iGi) = i0G - 1: iwfG(iGi + 1) = 0: iGi = iGi + 2
 iwfG(iGi) = i0G: iwfG(iGi + 1) = yMax: iGi = iGi + 2 ’ON
 IF iGX > 1 THEN iwfG(iGi) = i1G - 1: iwfG(iGi + 1) = yMax: iGi = iGi + 2

274 APPENDIX C. COMPUTER CODE

 ’Update number of OFF gate samples
 nOffG = nOffG + i0G - iG
 ’Correct i0& for the OFF gate samples
 i0&(iFSK) = i0&(iFSK) - nOffG * iCl&
 iG = i1G ’Advance gate sample counter
 iFF = iFF + iExt + iFFX ’Advance FF pointer
 Tc#(0) = Tc#(1) ’Update pulse center time corresponding to v0#()

END SUB

SUB PulseAB (ifa(), ifb(), iTt1X, iTdX, iTt2X, yX)
’ ***** Generates an adiabatic transfer pulse from state a to b *****
’
’ The pulse is generated using timing data from the calling program,
’ along with the shaping defined by the function iwf(). The data is
’ written to XMS memory by calling AWFG(). Other XMS routines will later
’ transfer the waveform from XMS memory to the PCIP-AWFG board.
’
 ia = 0: ib = 0 ’Start with both beams off
 DO WHILE iAWFG < i0&(iFSK) ’Beams off until start of pulse
 CALL AWFG(ia, ib)
 LOOP
 xDig% = xDig% OR COM1 ’Turn on common intensity control
 FOR j = 1 TO iTt1X ’Turn on F=b light first
 x = j / iTt1X
 ib = iwf(x, yX, ifb(), Cwf())
 CALL AWFG(ia, ib)
 NEXT j
 FOR j = 1 TO iTdX ’Wait before turning on F=a light
 CALL AWFG(ia, ib)
 NEXT j
 FOR j = 1 TO iTt2X ’Turn F=b off, F=a on
 x = j / iTt2X
 ia = iwf(x, yX, ifa(), Cwf())
 ib = iwf(1 - x, yX, ifb(), Cwf())
 CALL AWFG(ia, ib)
 NEXT j
 FOR j = 1 TO iTdX ’Wait before turning off F=a light
 CALL AWFG(ia, ib)
 NEXT j
 FOR j = 1 TO iTt1X - 1 ’Turn off F=a light last
 x = j / iTt1X
 ia = iwf(1 - x, yX, ifa(), Cwf())
 CALL AWFG(ia, ib)
 NEXT j
 ia = 0: xDig% = xDig% AND COM0 ’Turn off F=a and common control
 FOR j = 0 TO iTdS ’Wait before strobe pulse
 CALL AWFG(ia, ib)
 NEXT j
 ’Turn on strobe
 xDig% = xDig% OR STR1 ’STROBE active LOW
’ xDig% = xDig% AND STR0 ’STROBE active HIGH
 FOR j = 1 TO iTs - 1 ’Leave strobe active
 CALL AWFG(ia, ib)
 NEXT j
 ’Strobe and beam switch will be changed by next pulse
 IF iAWFG MOD iCl& <> iCl& - 1 THEN PRINT "PulseAB Error: iAWFG mod"; iCl&; "="; iAWFG MOD iCl&

END SUB

’*61 SUB PulseAS (ifa(), ifb())
’62:
SUB PulseAS (ifa(), ifb(), ike)
’ ***** Generates an adiabatic pulse from |a> to |a>+|b> *****
’*62 - direction given by "ike"
’
’ The pulse is generated using timing data from the calling program,
’ along with the shaping defined by the function iwf(). The data is
’ written to XMS memory by calling AWFG(). Other XMS routines will later
’ transfer the waveform from XMS memory to the PCIP-AWFG board.
’

CONST pl = 0 ’Print diagnostic messages?

’*60 iC = i0&(iFSK) + iTpiHC ’AWFG index for common switch
 iC = i0&(iFSK) + iTcp + iTpiHC ’AWFG index for common switch
 iBS = iOffB AND (i0&(iFSK) + iAH&(1) - 1) ’AWFG index for beam switch
 ia = 0: ib = 0 ’Start with both beams off
 DO WHILE iAWFG < i0&(iFSK)
 CALL AWFG(ia, ib)
 LOOP
’ PRINT iAWFG, "Chirp TRIG active"
’*62b
 ’turn ON chirp control:
 IF (ike = 1) THEN
 yDig% = yDig% AND CHPU0 ’keff UP
 ELSEIF (ike = -1) THEN
 yDig% = yDig% AND CHPD0 ’keff DOWN
’*63:
 SWAP yA, yB
 END IF
 DO WHILE iAWFG < (i0&(iFSK) + iTcp) ’Beams off until start of pulse
 CALL AWFG(ia, ib)
 LOOP
’*62e
 xDig% = xDig% OR COM1 ’Turn on common intensity control
’ PRINT iAWFG, "F=3&4 ON, start B ON"
 IF pl > 10 THEN
 PRINT "iBS="; iBS; "iAWFG="; iAWFG; "iOffB="; iOffB; "iC="; iC; "iInd="; iInd; ""
 PRINT "i0&="; i0&(iFSK)
 FOR j = 0 TO 7
 PRINT "i0&+iAH"; j; "="; i0&(iFSK) + iAH&(j)
 NEXT j
’ PRINT "xDig0="; xDig0%; "xDig="; xDig%
 END IF
’*67 FOR j = 1 TO iTt1H ’Turn on F=b light first
 FOR j = 1 TO iTtyH ’Turn on F=b light first
’*67 X = j / iTt1H
 x = j / iTtyH
’*62 ib = iwf(X, y0, ifb(), CwfH())
’*63:
 ib = iwf(x, yB, ifb(), CwfH())
 CALL AWFG(ia, ib)
 NEXT j
’ PRINT iAWFG, "B ON, hold"
 FOR j = 1 TO iTdH ’Wait before turning on F=a light
 CALL AWFG(ia, ib)
 NEXT j
’ PRINT iAWFG, "Start B down to 50%, A up to 50%"
 FOR j = 1 TO iTt2H ’Shift F=b down and F=a up to the 50% phase point
’*62 ia = iwf(.5 * j / iTt2H, y0, ifa(), CwfH())
’*63:
 ia = iwf(.5 * j / iTt2H, yA, ifa(), CwfH())
’*62 ib = iwf(1 - .5 * j / iTt2H, y0, ifb(), CwfH())
’*63:
 ib = iwf(1 - .5 * j / iTt2H, yB, ifb(), CwfH())
 CALL AWFG(ia, ib)
 NEXT j
 ’Finish up pulse for individual AO’s

’ PRINT iAWFG, "A,B @ 50%, hold"
 FOR j = 1 TO iTon2 ’Keep both at present level
 IF iAWFG = iC THEN
 xDig% = (xDig% AND COM0) ’Turn off common control
’*62:
 yDig% = yDig% OR (CHPU1 OR CHPD1) ’Turn OFF chirp control
’ PRINT iAWFG, "F=3&4, Chirp TRIG OFF"
 END IF
 IF iAWFG = iBS THEN xDig% = (xDig% AND BS0) ’Turn off tracer
 CALL AWFG(ia, ib)
 NEXT j
’ PRINT iAWFG, "Start A,B OFF"
 FOR j = 1 TO iTt1H ’Turn both off together from the 50% phase point

 IF iAWFG = iC THEN
 xDig% = (xDig% AND COM0) ’Turn off common control
’*62:
 yDig% = yDig% OR (CHPU1 OR CHPD1) ’Turn OFF chirp control
’ PRINT iAWFG, "F=3&4, Chirp TRIG OFF"
 END IF
 IF iAWFG = iBS THEN xDig% = (xDig% AND BS0) ’Turn off tracer
 x = .5 * (1 - j / iTt1H)
’*62 ia = iwf(X, y0, ifa(), CwfH()): ib = iwf(X, y0, ifb(), CwfH())
’*63:
 ia = iwf(x, yA, ifa(), CwfH()): ib = iwf(x, yB, ifb(), CwfH())
 CALL AWFG(ia, ib)
 NEXT j
’ PRINT iAWFG - 1, "A,B OFF"

 DO WHILE iAWFG <= iC OR iAWFG <= iBS ’Wait to turn off tracer and common
 IF iAWFG = iC THEN
 xDig% = (xDig% AND COM0) ’Turn off common control
’*62:
’ PRINT iAWFG, "F=3&4, Chirp TRIG OFF"
 yDig% = yDig% OR (CHPU1 OR CHPD1) ’Turn OFF chirp control
 END IF
 IF iAWFG = iBS THEN xDig% = (xDig% AND BS0) ’Turn off tracer
 CALL AWFG(ia, ib)
 LOOP

 IF iAWFG <> i0&(iFSK) + iAH&(1) THEN
 PRINT "PulseAS Error: iAWFG="; iAWFG; ", End at"; i0&(iFSK) + iAH&(1)
 PRINT "Press any key to continue.": DO: LOOP WHILE INKEY$ = ""
 END IF
 IF pl THEN PRINT "->"; xDig%

END SUB

’*61 SUB PulseSA (ifa(), ifb())
’*62:
SUB PulseSA (ifa(), ifb(), ike)
’ ***** Generates an adiabatic pulse from |a> to |a>+|b> *****
’*62 - direction given by "ike"
’
’ The pulse is generated using timing data from the calling program,
’ along with the shaping defined by the function iwf(). The data is
’ written to XMS memory by calling AWFG(). Other XMS routines will later
’ transfer the waveform from XMS memory to the PCIP-AWFG board.
’
CONST pl = 0 ’Print diagnostic messages?

 ’Beams off until start of pulse (Correct start time for indiv. controls)
’*68 iC = i0&(iFSK) + iTpiH - iTpiHC ’AWFG index for common switch
 iC = i0&(iFSK) + iTpiH - iTpiHC - 1 ’AWFG index for common switch
’*66 iC = i0&(iFSK) + iTcp + iTpiH - iTpiHC ’AWFG index for common switch
 iInd = iC - idTon ’AWFG index for individual controls
 iBS = iOffB AND (i0&(iFSK) + iAH&(4)) ’AWFG index for beam switch

 xDig0% = xDig% ’Save setting of beam switch
 IF iOffB THEN xDig% = (xDig% AND BS0) ’Start with tracer OFF
 IF pl > 10 THEN
 PRINT "iBS="; iBS; "iAWFG="; iAWFG; "iOffB="; iOffB; "iC="; iC; "iInd="; iInd; ""
 PRINT "i0&="; i0&(iFSK)
 FOR j = 0 TO 7
 PRINT "i0&+iAH"; j; "="; i0&(iFSK) + iAH&(j)
 NEXT j
’ PRINT "xDig0="; xDig0%; "xDig="; xDig%
 END IF

 ’Fill up to strobe pulse
 ia = 0: ib = 0
’*63:
 IF (ike = -1) THEN SWAP yA, yB
 DO WHILE iAWFG < i0&(iFSK) + iAH&(2)
’*62b

 IF (iAWFG = (i0&(iFSK) + iAH&(6))) THEN ’turn ON chirp control
 IF (ike = 1) THEN
 yDig% = yDig% AND CHPU0 ’keff UP
 ELSEIF (ike = -1) THEN
 yDig% = yDig% AND CHPD0 ’keff DOWN
 END IF
’ PRINT iAWFG, "Chirp TRIG active"
 END IF
’*62e
 CALL AWFG(ia, ib)
 LOOP
 ’Create strobe pulse
 xDig% = xDig% OR STR1 ’STROBE active LOW
’ xDig% = xDig% AND STR0 ’STROBE active HIGH
 FOR i = 1 TO iTs - 1
’*62b
 IF (iAWFG = (i0&(iFSK) + iAH&(6))) THEN ’turn ON chirp control
 IF (ike = 1) THEN
 yDig% = yDig% AND CHPU0 ’keff UP
 ELSEIF (ike = -1) THEN
 yDig% = yDig% AND CHPD0 ’keff DOWN
 END IF
’ PRINT iAWFG, "Chirp TRIG active"
 END IF
’*62e
 CALL AWFG(ia, ib)
 NEXT i
 ’Turn off strobe
 xDig% = xDig% AND STR0 ’STROBE active LOW
’ xDig% = xDig% OR STR1 ’STROBE active HIGH
 ’Fill up to when individual controls turn on
 DO WHILE iAWFG < iInd
 IF iAWFG = iBS THEN xDig% = (xDig% OR xDig0%) ’Turn on tracer
 IF iAWFG = iC THEN
 xDig% = (xDig% OR COM1) ’Turn on common control
’ PRINT iAWFG, "F=3&4 OFF->ON"
 END IF
’*62b
 IF (iAWFG = (i0&(iFSK) + iAH&(6))) THEN ’turn ON chirp control
 IF (ike = 1) THEN
 yDig% = yDig% AND CHPU0 ’keff UP
 ELSEIF (ike = -1) THEN
 yDig% = yDig% AND CHPD0 ’keff DOWN
 END IF
’ PRINT iAWFG, "Chirp TRIG active"
 END IF
’*62e
 CALL AWFG(ia, ib)
 LOOP
’ PRINT iAWFG, "Start both ON to 50%"
 FOR j = 1 TO iTt1H ’Turn both up to the 50% phase point
 IF iAWFG = iBS THEN xDig% = (xDig% OR xDig0%) ’Turn on tracer
 IF iAWFG = iC THEN xDig% = (xDig% OR COM1) ’Turn on common control
 x = .5 * j / iTt1H
’*62 ia = iwf(X, y0, ifa(), CwfH()): ib = iwf(X, y0, ifb(), CwfH())
’*63:
 ia = iwf(x, yA, ifa(), CwfH()): ib = iwf(x, yB, ifb(), CwfH())
 CALL AWFG(ia, ib)
 NEXT j
’ PRINT iAWFG, "both @ 50%, hold"
 FOR j = 1 TO iTon2 ’Both held constant
 IF iAWFG = iBS THEN xDig% = (xDig% OR xDig0%) ’Turn on tracer
 IF iAWFG = iC THEN xDig% = (xDig% OR COM1) ’Turn on common control
 CALL AWFG(ia, ib)
 NEXT j
’ IF pl > 10 THEN PRINT "->"; xDig%
 IF iAWFG <= iBS THEN
 PRINT "Error: Beam not switched on by iAWFG="; iAWFG
 PRINT "Press any key to continue.": DO: LOOP WHILE INKEY$ = ""
 END IF
 IF iAWFG <= iC THEN

C.1. ALTINT.BAS 275

 PRINT "Error: Common switch still off by iAWFG="; iAWFG
 PRINT "Press any key to continue.": DO: LOOP WHILE INKEY$ = ""
 END IF
’ PRINT iAWFG, "Start A OFF, B up to 100%"
 FOR j = 1 TO iTt2H ’Turn F=a off, F=b up to 1
’*62 ia = iwf(.5 * (1 - j / iTt2H), y0, ifa(), CwfH())
’*63:
 ia = iwf(.5 * (1 - j / iTt2H), yA, ifa(), CwfH())
’*62 ib = iwf(.5 * (1 + j / iTt2H), y0, ifb(), CwfH())
’*63:
 ib = iwf(.5 * (1 + j / iTt2H), yB, ifb(), CwfH())
 CALL AWFG(ia, ib)
 NEXT j
’ PRINT iAWFG, "A OFF, B @ 100%, hold"
 FOR j = 1 TO iTdH ’Wait before turning off F=b light
 CALL AWFG(ia, ib)
 NEXT j
’ PRINT iAWFG, "Start B OFF"
’*67 FOR j = 1 TO iTt1H - 1’Turn off F=b light last
 FOR j = 1 TO iTtyH - 1 ’Turn off F=b light last
’*67 X = 1 - j / iTt1H
 x = 1 - j / iTtyH
’*62 ib = iwf(X, y0, ifb(), CwfH())
’*63:
 ib = iwf(x, yB, ifb(), CwfH())
 CALL AWFG(ia, ib)
 NEXT j
 ib = 0: xDig% = xDig% AND COM0 ’Turn off F=b and common control
’*62:
 yDig% = yDig% OR (CHPU1 OR CHPD1) ’Turn OFF chirp control
’ PRINT iAWFG, "A, B, F=3&4, Chirp TRIG OFF"
 FOR j = 0 TO iTdS ’Wait before strobe pulse
 CALL AWFG(ia, ib)
 NEXT j
 ’Turn on strobe
 xDig% = xDig% OR STR1 ’STROBE active LOW
’ xDig% = xDig% AND STR0 ’STROBE active HIGH
 FOR j = 1 TO iTs - 1 ’Leave strobe active
 CALL AWFG(ia, ib)
 NEXT j
 ’Strobe will be turned off, and beams switched by next pulse
 IF iAWFG <> i0&(iFSK) + iAH&(7) - 1 THEN
 PRINT "PulseSA Error: iAWFG="; iAWFG; ", End at"; i0&(iFSK) + iAH&(7) - 1
 PRINT "Press any key to continue.": DO: LOOP WHILE INKEY$ = ""
 END IF
END SUB

FUNCTION RdInit% (a$)
’ ***** Read in initialization data *****
 fp0$ = FilePrfx$ ’Need to recheck file names?
 ON ERROR GOTO 160
 iErr = 0
 OPEN a$ FOR INPUT AS 1
 IF iErr THEN
 LOCATE 28, 1: PRINT a$; " not found. Press any key to continue.";
 DO: LOOP WHILE INKEY$ = ""
 LOCATE 28, 1: PRINT Clear$;
 RdInit% = -1
 ELSE
’*54 INPUT #1, FilePrfx$, fOffP, fspan, fOff, nSteps, nRpt, nBlk, fBackOff
 INPUT #1, b$, fOffP, fspan, fOff, nSteps, nRpt, nBlk, fBackOff
 INPUT #1, fOffCs, nSeq
 FOR j = 1 TO nSeq: INPUT #1, mSeq(j): NEXT j
 INPUT #1, iArmI, iFix, g0#, ysc, yysc, Tstart, nPiP, TpiP, nPi, Tpi, Tsp
 INPUT #1, xTt1, xTd, Ts, TdS, nClMin, Cwf(0), Cwf(2), xAmp, yP, Tint, TpiH
 INPUT #1, xTt1H, xTdH, xTon1, xTon2, CwfH(0), CwfH(2), xAmpH, Tpl
’*68: add yTt1H
 INPUT #1, TbMin, TgMin, tRam#, ak$, iTrgMod, kg0#, yTt1H
’*54 iMod = -1 ’Set modification flag
’*65b
 rtp! = 1! ’Set intensity scaling factors to 1

 rbt! = 1!
’*65e

 ’Calculate other pulse shape parameters
 Cwf(1) = xAmp / (EXP(Cwf(0) / 2) - 1)
 Cwf(3) = (1 - xAmp) / (EXP(Cwf(2) / 2) - 1)
 CwfH(1) = xAmpH / (EXP(CwfH(0) / 2) - 1)
 CwfH(3) = (1 - xAmpH) / (EXP(CwfH(2) / 2) - 1)

 RdInit% = 0
 END IF
 CLOSE 1
 ON ERROR GOTO 0

 IF FilePrfx$ <> fp0$ THEN ’Need to create and check file name
 ’Add date to prefix to get filename
 sDate$ = LEFT$(DATE$, 6) + RIGHT$(DATE$, 2)
 Flnm$ = FilePrfx$ + LEFT$(sDate$, 2) + MID$(sDate$, 4, 2) + "00.DAT"
 IF fp0$ <> "" THEN CLS ’Clear when in Menu
 PRINT "Checking the filename."
 CALL CheckName(Flnm$, 0)
 FilePrfx$ = LEFT$(Flnm$, 2)
 IF fp0$ <> "" THEN CLS ’Clear when in Menu
 END IF

END FUNCTION

SUB SetCsOFF (f)
’ Set the Cs lock offset to "f". First, use CsTBl%() to calculate what
’ voltage is required to produce this frequency. Try to set the dc offset
’ of the synthesizer to this value. Because if the design of the HP
’ synthesizer, not all dc offsets are possible. The dc offset must obey
’ these two rules: 1) OFF + AMP/2 < 10V
’ 2) OFF <= 2*AMP
’ where AMP is the amplitude setting (11.000 Vpp, for instance). If required
’ offset value violates these rules, first try to reduce the amplitude
’ setting. This will work up until OFF = 8.000 (and AMP = 4.000 Vpp), which
’ is the absolute maximum.
’ Note that this means that the dc offset of the synthesizer "vCsOFF" does
’ NOT always correspond to the offset frequency "fOffCs". However, any
’ leftover difference will automatically be taken care of in the arbitrary
’ waveform pattern, so the actual lock frequencies during the pulses are
’ still correct.

 vCsOFFold = iCsOFF / (2 * 2047) * 11 + vCsOFF0 ’ previous offset voltage
 sCsAMPold = sCsAMP
’ PRINT "vCsOFF0 ="; vCsOFF0; ", fOFFCs ="; fOFFCs; ", f ="; f; "; iCsOFF = "; iCsOFF; "; sCsAMP =
"; sCsAMP
’ PRINT "vCsOFFold ="; vCsOFFold;
 fOffCs = f ’ new offset frequency
 ’ In order to get the correct value from CsTBL%(), we must temporarily set
 ’the offset and scaling to 0 and 11Vpp.
 sCsAMP = 11! ’lookup table assumes amplitude scaling of 11 Vpp
 iCsOFF = 0 ’lookup table assumes no offset
 iCsOFF = CsTBL%(0#)
 ’integer from Cs lookup table required to set Cs detuning to f
 vCsOFF = iCsOFF / (2 * 2047) * 11 + vCsOFF0
 ’convert this integer to a real voltage
 IF ((vCsOFF + sCsAMP / 2) > 10!) THEN ’violates rule #1?
 sCsAMP = INT((10! - vCsOFF) * 2) ’Yes -> try lower amplitude setting
 IF (vCsOFF > sCsAMP * 2) THEN ’violates rule #2?
’ PRINT "iCsOFF = "; iCsOFF
 vCsOFF = 8! ’Yes -> give up and set to max
 sCsAMP = 4!
 iCsOFF = (vCsOFF - vCsOFF0) * (2 * 2047) / 11
 END IF
 IF (sCsAMP <> sCsAMPold) THEN ’new value different from old?
 ’Yes -> change amplitude to new value
 outexpr = ":FUNC:SHAP SIN;:VOLT" + STR$(sCsAMP) + ";:FUNC:SHAP USER"
 ’output to SINE-wave mode
 ’amplitde to "sCsAMP"

 ’output back to ARB mode
’ PRINT "outexpr="; outexpr
 l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth3(0), mTerm(0))
 sCsAMPold = sCsAMP
 END IF
 END IF
 IF (vCsOFF <> vCsOFFold) THEN ’new value different from old?
 ’Yes -> change dc offset to new value
 vstp = .1 ’maximum voltage step size
 IF (vCsOFF < vCsOFFold) THEN vstp = vstp * -1 ’step down
 N = INT((vCsOFF - vCsOFFold) / vstp) ’number of steps
’ PRINT "vCsOFF0 ="; vCsOFF0; "fOffCs = "; fOFFCs; "; iCsOFF = "; iCsOFF; "; vCsOff = "; vCsOFF; ";
 sCsAMP = "; sCsAMP; ""
’ PRINT "outexpr="; outexpr
 FOR i = 1 TO N ’change offset in steps of vstp
 v = vCsOFFold + i * vstp ’so that lock does not see a large jump
 v = CINT(1000! * v) / 1000
 outexpr = ":VOLT:OFFS" + STR$(v)
 ’offset to "v"
 l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth3(0), mTerm(0))
 FOR l& = 1 TO 20000: NEXT l& ’delay
 NEXT i
 ’set offset to final value
 v = CINT(1000! * vCsOFF) / 1000
 outexpr = ":VOLT:OFFS" + STR$(v)
 l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth3(0), mTerm(0))
 END IF
 IF (sCsAMP <> sCsAMPold) THEN ’new value different from old?
 ’Yes -> change amplitude to new value
 ’First, program an 8 point pattern to VOLATILE memory to set the output
 ’level to the offset value so that changing the amplitude scale does
 ’not temporarily produce a pattern with large changes which might knock
 ’out the lock
 ’Set Trigger Source = Bus for triggering via software control
 outexpr = CsData$
 c$ = ItoS$(CsTBL%(0#)) ’New Cs lock setting
 FOR N = 1 TO 8 ’Generate waveform description
 outexpr = outexpr + c$
 NEXT N
 ’Select volatile arbitrary waveform for fast control of DC output level
 ’Trigger pattern and tell HP to wait for completion of trigger
 outexpr = outexpr + CsSel$
 ’Download waveform for this output level
 l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth3(0), mTerm(0))
 outexpr = ":FUNC:SHAP SIN;:VOLT" + STR$(sCsAMP) + ";:FUNC:SHAP USER"
 ’output to SINE-wave mode
 ’amplitde to "sCsAMP"
 ’output back to ARB mode
’ PRINT "outexpr="; outexpr
 l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth3(0), mTerm(0))
 END IF

’ PRINT "Press any key to continue."
’ DO: a$ = UCASE$(INKEY$): LOOP WHILE a$ = ""
’ IF a$ = "Q" THEN SYSTEM
END SUB

FUNCTION Tcorr (T1, t0#, u0#, du#)
’ ***** Corrects trajectory for momentum recoils *****
’
’ This function corrects times in the atomic trajectory for the effect
’ of photon recoils. It considers an atom that experiences a recoil du#
’ at time t0#, when its velocity is u0#, and calculates the corrected time
’ Tcorr that an atom passes through a fixed point which it would cross
’ at time t1 if undeflected.
’

 dt = T1 - t0#: dt2 = dt - u0# / g0#
 Tcorr = T1 + SQR(dt2 ^ 2 + 2 * du# * dt / g0#) - dt2

END FUNCTION

FUNCTION Tctr$ (t#)
’ ***** Rounds times to the nearest 0.0001 ms *****
’
’ Takes a real number in seconds and returns a string with the time
’ expressed in ms, rounded to the nearest 0.0001 ms. The string has the
’ format used for adiabatic transfer pulse center times in fList$, the
’ list of pulse times and frequencies.
’
 a$ = LTRIM$(STR$(CLNG(exp7 * t#))): l = LEN(a$)
 IF l < 5 THEN a$ = STRING$(5 - l, 48) + a$: l = 5
 Tctr$ = STRING$(8 - l, 32) + LEFT$(a$, l - 4) + "." + RIGHT$(a$, 4) + " "

END FUNCTION

FUNCTION Tdet$ (t)
’ ***** Rounds times to the nearest 0.01 ms *****
’
’ Takes a real number in seconds and returns a string with the time
’ expressed in ms, rounded to the nearest 0.01 ms. The string has the
’ format used for detection pulse times in fList$, the list of pulse
’ times and frequencies.
’
 a$ = LTRIM$(STR$(CLNG(exp5 * t))): l = LEN(a$)
 IF l < 3 THEN a$ = STRING$(3 - l, 48) + a$: l = 3
 Tdet$ = STRING$(10 - l, 32) + LEFT$(a$, l - 2) + "." + RIGHT$(a$, 2) + STRING$(3, 32)

END FUNCTION

FUNCTION Trnd (t#)
’ ***** Rounds times to the nearest 0.01 ms *****
’
’ Rounds a time in seconds to the nearest 0.01 ms. This is used for
’ delay times sent to the SRS pulse generators.
’
 Trnd = CLNG(exp5 * t#) / exp5

END FUNCTION

FUNCTION usec$ (t#)
’ ***** Rounds times to the nearest 0.1 us *****
’
’ Takes a real number in seconds and returns a string with the time
’ expressed in us, rounded to the nearest 0.1 us.
’
 a$ = LTRIM$(STR$(CLNG(exp7 * t#))): l = LEN(a$)
 IF l < 2 THEN a$ = "0" + a$: l = 2
 usec$ = LEFT$(a$, l - 1) + "." + RIGHT$(a$, 1) + " us"

END FUNCTION

FUNCTION zFmt$ (z)
’ ***** Rounds positions to the nearest 0.1 cm *****
’
’ Takes a real number in meters and returns a string with the position
’ expressed in cm, rounded to the nearest 0.1 cm. The string has the
’ format used for atomic positions in fList$.
’
 a$ = LTRIM$(STR$(CLNG(exp3 * z))): l = LEN(a$)
 zFmt$ = STRING$(7 - l, 32) + LEFT$(a$, l - 1) + "." + RIGHT$(a$, 1)

END FUNCTION

276 APPENDIX C. COMPUTER CODE

C.1.1 Menu.BAS

The Menu module of the AltInt code provides the operator interface. With this code,

the operator can set all of the input parameters that determine exactly when and

how the data are taken: the span and offset of the frequency scan, the interferometer

sequence start time, the single-photon detuning, the number, shape, and duration of

the adiabatic transfer pulses, the time between π/2-pulses, etc.

’ MenuXX.Bas
’ Menu subroutine for the AltIntXX.BAS program
’
’Revision History:
’10 4/13/98 Removed from AltInt56.BAS
’11 7/28/98 Add chirp rate, kg0#, to menu, option "h". Also include kg0#
’ in paramaters stored to config file.
’ Move "iFix" option to "j", gravity option to "g", main plot
’ scale to "k", inset plot scale to "K".
’12 11/ 6/98 Add menu option ’s’ to allow the intensity imbalance factor
’ "rimb" to be changed from.
’13 2/ 2/99 Change menu option ’s’ to ask for both BOT and TOP intensity
’ scaling factors.
’15 3/ 3/99 Change menu option ’ph’ to include the times for both
’ phase-sensitive and pure-state fast transitions. Save the
’ new global variable "yTt1H" to config files.
’16 3/ 1/01 Change menu option ’c’ to accomodate the Cs lock routine:
’ SetCsOFF(f!) which sets the Cs lock offset to f. Remove
’ code which slowly changes output Cs lock synthesizer output
’ value and replace with a signle call to SetCsOFF(). Add a
’ call to SetCsOFF() after a configuration file is loaded
’ (option ’m’) in case the Cs offset value changes.
’
’$INCLUDE: ’e:\lab\inc\nihpdas.inc’

DEFINT I-N
DEFSNG A-H, O-Z

DECLARE SUB CheckName (Flnm$, iMode)
DECLARE SUB menu (fi$)
DECLARE FUNCTION Clear$ ()
DECLARE FUNCTION CsTBL% (f#)
DECLARE FUNCTION FileCopy% (src$, dst$)
DECLARE FUNCTION FlnmAdj$ (Flnm$, path$, ext$)
DECLARE FUNCTION IncFN$ (filen$)
DECLARE FUNCTION ItoS$ (i%)
DECLARE FUNCTION msec$ (t#)
DECLARE FUNCTION RdInit% (a$)
DECLARE FUNCTION usec$ (t#)
’AutoKey functions:
DECLARE FUNCTION getak$ ()
DECLARE FUNCTION iptak$ (q$)

’*15:$INCLUDE: ’e:\lab\inc\altint.inc’
’*16:
’$INCLUDE: ’inc\altint.inc’

’$DYNAMIC

’Labels used by CheckName()
165 iErr = -1
 RESUME NEXT
’Labels used by FileCopy()
350 iErr = 1 ’error opening input or output file
 RESUME NEXT
360 iErr = -1 ’normal termination
 RESUME NEXT

REM $STATIC
SUB CheckName (Flnm$, iM)
’********* Finds first available file name *********
’
 ON ERROR GOTO 165
 iErr = 0
 iyC = CSRLIN
 DO
 OPEN "e:\lab\dat\" + Flnm$ FOR INPUT AS 1
 CLOSE 1
 IF iErr = 0 THEN
 IF (iM = 0) THEN LOCATE iyC, 1: PRINT Flnm$; " found"
 Flnm$ = IncFN$(Flnm$)

 END IF
 LOOP WHILE (iErr = 0) AND (UCASE$(INKEY$) <> "Q")

 IF (iM = 0) THEN PRINT Flnm$; " not found"
 ON ERROR GOTO 0

END SUB

FUNCTION Clear$
’ ***** Creates a string of spaces to the end of the screen
 Clear$ = STRING$(80 - POS(0), 32)

END FUNCTION

FUNCTION FileCopy% (src$, dst$)
’ Copy a srouce file "srcpath+src$" to destination file "dst$"=
’"dstpath+src$", where "srcpath" and "dstpath" are an internal
’constants.

CONST srcpath = "e:\lab\dat\"
CONST dstpath = "g:\hmdat\incoming\"

 iErr = 0
 ON ERROR GOTO 350
 f$ = srcpath + src$
 dst$ = dstpath + src$
’ PRINT f$; " --> "; dst$
 OPEN f$ FOR INPUT AS 50
 IF (iErr <> 0) THEN
 FileCopy% = 1
 CLOSE #50
 EXIT FUNCTION
 END IF
 OPEN dst$ FOR OUTPUT AS 51
 IF (iErr <> 0) THEN
 FileCopy% = 2
 CLOSE #50
 CLOSE #51
 EXIT FUNCTION
 END IF
 ON ERROR GOTO 360
 iErr = 0
 DO
 LINE INPUT #50, a$
 IF (iErr = 0) THEN PRINT #51, a$
 LOOP WHILE (iErr = 0)
 CLOSE #50
 CLOSE #51
 FileCopy% = 0
END FUNCTION

FUNCTION FlnmAdj$ (B$, path$, ext$)
’ ***** Adds path and extension to file names as needed *****
’
 a$ = B$
 ’Add extension if necessary
 j = 1: l = LEN(a$)
 DO WHILE MID$(a$, j, 1) <> "." AND j < l: j = j + 1: LOOP
 IF j = l THEN a$ = a$ + "." + ext$

 ’Add path if necessary
 j = 1
 DO WHILE MID$(a$, j, 1) <> "\" AND j < l: j = j + 1: LOOP
 IF j = l THEN a$ = path$ + a$

 FlnmAdj$ = a$
END FUNCTION

FUNCTION getak$
’LOCATE 23, 1
’PRINT "doak%="; doak%; ", iak%="; iak%; ", ak$=’"; ak$; "’"

C.1. ALTINT.BAS 277

IF doak% THEN
 a$ = MID$(ak$, iak%, 1)
 iak% = iak% + 1
 IF (a$ = "\") AND (iak% <= LEN(ak$)) THEN
 a$ = MID$(ak$, iak%, 1)
 iak% = iak% + 1
 SELECT CASE a$
 CASE "n": a$ = CHR$(13) ’newline
 CASE "t": a$ = CHR$(9) ’tab
 END SELECT
 END IF
 IF iak% > LEN(ak$) THEN doak% = 0
ELSE
 DO: a$ = INKEY$: LOOP WHILE a$ = ""
END IF
getak$ = LEFT$(a$, LEN(a$))

END FUNCTION

FUNCTION IncFN$ (f$)
 iFNbr = VAL(MID$(f$, 7, 2)) ’File number
 IF iFNbr < 99 THEN ’Increment file number
 IncFN$ = LEFT$(f$, 6) + RIGHT$(STR$(iFNbr + 101), 2) + RIGHT$(f$, 4)
 ELSE ’Increment file prefix
 a$ = LEFT$(f$, 2)
 IF (a$ = "ZZ") THEN
 a$ = "AA"
 ELSEIF (RIGHT$(a$, 1) = "Z") THEN
 a$ = CHR$(ASC(LEFT$(a$, 1)) + 1) + "A"
 ELSE
 a$ = LEFT$(a$, 1) + CHR$(ASC(RIGHT$(a$, 1)) + 1)
 END IF
 IncFN$ = a$ + MID$(f$, 3, 4) + "00" + RIGHT$(f$, 4)
 END IF
END FUNCTION

FUNCTION iptak$ (q$)
PRINT q$;
’LOCATE 23, 1
’PRINT "doak%="; doak%; ", iak%="; iak%; ", ak$=’"; ak$; "’"
IF doak% THEN
 i = iak%
 l = LEN(ak$)
 DO
 WHILE ((i <= l) AND (MID$(ak$, i, 1) <> "\")): i = i + 1: WEND
 i = i + 2
 LOOP WHILE ((i <= l) AND (MID$(ak$, i - 1, 1) <> "n"))
 a$ = MID$(ak$, iak%, i - iak% - 2)
 IF (i > l) THEN
 doak% = 0
 ELSE
 iak% = i
 END IF
ELSE
 INPUT "", a$
END IF
iptak$ = LEFT$(a$, LEN(a$))

END FUNCTION

SUB menu (finit$)
’ ***** Menu subroutine for scan parameters *****
’
’ The menu is divided into two parts. First general parameters
’ for the interferometer selection and the frequency scan are
’ selected. Then a submenu allows selection of specific values
’ for the adiabatic transfer pulse timing and parameters.
’
CONST fOffPmax = 5000000! ’Maximum detuning from resonance

DIM mSave(1 TO 4)

1000 CLS
1005 i1 = 5
 IF iModH THEN i1 = 1 ’If pi/2’s modified, all interferometers bad
 IF iMod THEN i1 = 0 ’If pi’s modified, all sequences bad
 FOR i = i1 TO 4: iMem(i) = 0: NEXT i ’Clear int. flags

 LOCATE 1, 1
 PRINT " 1 File name is "; Flnm$; Clear$;
 PRINT "2/@ decrement/INCREMENT filename by one"; Clear$;
 PRINT "3/# run/CHANGE autokey string ’"; ak$; "’"; Clear$;
 PRINT " 4 Raman sequence trigger time is "; msec$(tRam#); Clear$;
 PRINT " 5 Preselection offset frequency is"; CSNG(fOffP / exp3); "kHz"; Clear$;
 PRINT " 6 Frequency span is"; fspan; "Hz"; Clear$;
 PRINT " 7 Offset frequency for scan is"; fOff; "Hz"; Clear$;
 PRINT " 8 Number of points is"; nSteps; Clear$;
 PRINT " 9 Number of signal reads/step is"; nRpt; Clear$;
 PRINT " a Number of background readings is"; nBlk; Clear$;
 PRINT " b Raman beam detuning for background readings is"; CSNG(fBackOff / exp3); "kHz"; Clea
r$;
 PRINT " c Cs lock detuning from DF resonance is"; fOffCs; "kHz"; Clear$;
 PRINT " d Interferometer sequence (1-4):";
 FOR j = 1 TO nSeq: PRINT mSeq(j); : NEXT j: PRINT Clear$;
 PRINT " e Waveform sequences in synthesizer memory (0-4):";
 FOR j = 0 TO 4
 IF iMem(j) THEN PRINT j;
 NEXT j
 PRINT Clear$;
 PRINT " f Exit interferometers in state |"; CHR$(51 + (1 + iArmI) / 2); ">"; Clear$;
 PRINT " g Gravitational acceleration, g ="; g0#; "m/s2"; Clear$;
 PRINT " h Chirp rate during Pi/2 pulses is"; kg0#; "Hz/s"; Clear$;
 PRINT " i Scan mode is "; Auto$(iAuto); Clear$;
 PRINT " j DF Raman and blasting pulses are fixed "; Fix$(iFix); Clear$;
 PRINT "k/K Scale multiplier for main/INSET screen plot is"; ysc; "/"; yysc; Clear$;
 PRINT "l/L "; : IF iTM THEN PRINT "Stop"; ELSE PRINT "Start";
 PRINT " experiment triggering/SET to "; TrgMod$(iTrgMod); Clear$;
 PRINT Clear$;
 PRINT "m/M Load/SAVE initial settings"; Clear$;
 PRINT " o Plot a stored file"; Clear$;
 PRINT " p Edit Raman pulse descriptions"; Clear$;
 PRINT "r/R AuxDev next/DOWNLOAD:"; iaux; "/"; iauxmx; "’"; AuxS$(iaux); "’"; Clear$;
 PRINT " ESC End session"; Clear$;
 LOCATE 27, 1: PRINT "Change any (# or RET)?"; Clear$;
’ DO: a$ = INKEY$: LOOP WHILE a$ = ""
 a$ = getak$
 LOCATE 27, 1

 SELECT CASE ASC(a$)
 CASE 27 ’ESC
’*16:
 CALL SetCsOFF(0!) ’return Cs lock to 0 detuning
 nErr = XMSFree(-1) ’Free XMS memory allocated for AWFG patterns
 SYSTEM
 CASE 13 ’CR
 EXIT SUB
 CASE 49 ’1
’ INPUT "Enter file prefix or RET:"; a$
 a$ = iptak$("Enter file prefix or RET:")
 a$ = RTRIM$(LTRIM$(a$))
 IF LEN(a$) >= 2 THEN
 MID$(Flnm$, 1, 2) = UCASE$(LEFT$(a$, 2))
 MID$(Flnm$, 7, 2) = "00"
 CLS : CALL CheckName(Flnm$, 0): CLS ’Check file name
 FilePrfx$ = LEFT$(Flnm$, 2)
 END IF
 CASE 50 ’2
 Flnm$ = LEFT$(Flnm$, 6) + RIGHT$(STR$(VAL(MID$(Flnm$, 7, 2)) + 99), 2) + RIGHT$(Flnm$, 4)
 CASE 64 ’@
 Flnm$ = LEFT$(Flnm$, 6) + RIGHT$(STR$(VAL(MID$(Flnm$, 7, 2)) + 101), 2) + RIGHT$(Flnm$, 4)
 CASE 51 ’3
 IF ak$ <> "" THEN

 doak% = -1 ’enable autokey mode
 iak% = 1 ’autokey pointer
 END IF
 CASE 35 ’#
 a$ = iptak$("Enter new autokey sequence: ")
 IF a$ <> "" THEN ak$ = LEFT$(a$, LEN(a$))
 CASE 52 ’4
’ INPUT "Enter Raman sequence trigger time (#ms or RET):"; a$
 a$ = iptak$("Enter Raman sequence trigger time (#ms or RET):")
 ar = VAL(a$) / exp3
 IF a$ <> "" AND ar > 0 THEN
 LOCATE 27, 1: PRINT "Adjust preselection offset frequency (Y/n)?"; Clear$;
’ DO: a$ = UCASE$(INKEY$): LOOP WHILE a$ = ""
 a$ = UCASE$(getak$)
 IF a$ <> "N" THEN ’Check whether this tRam# gives a reasonable fOffP
 xSave = fOffP: fOffP = fOffP - keff * g0# * (ar - tRam#)
 IF ABS(fOffP) < fOffPmax THEN
 tRam# = ar
 ELSE
 fOffP = xSave
 END IF
 ELSE ’Change tRam without adjusting fOffP
 tRam# = ar
 END IF
 END IF
 CASE 53 ’5
’ INPUT "Enter preselection offset frequency (#kHz or RET):"; a$
 a$ = iptak$("Enter preselection offset frequency (#kHz or RET): ")
 ar = exp3 * VAL(a$)
 IF a$ <> "" AND ABS(ar) < fOffPmax THEN fOffP = ar
 CASE 54 ’6
’ INPUT "Enter frequency span (#Hz or RET):"; a$
 a$ = iptak$("Enter frequency span (#Hz or RET): ")
 IF a$ <> "" THEN fspan = VAL(a$)
 CASE 55 ’7
’ INPUT "Enter scan offset frequency (#Hz or RET):"; a$
 a$ = iptak$("Enter scan offset frequency (#Hz or RET): ")
 IF a$ <> "" THEN fOff = VAL(a$)
 CASE 56 ’8
’ INPUT "Enter number of points in scan (# or RET):"; a$
 a$ = iptak$("Enter number of points in scan (# or RET): ")
 IF a$ <> "" THEN nSteps = VAL(a$)
 CASE 57 ’9
’ INPUT "Enter number of signal reads/step (# or RET):"; a$
 a$ = iptak$("Enter number of signal reads/step (# or RET): ")
 IF a$ <> "" THEN nRpt = VAL(a$)
 IF nRpt < 1 THEN nRpt = 1
 CASE 97 ’a
’ INPUT "Enter number of background readings (# or RET):"; a$
 a$ = iptak$("Enter number of background readings (# or RET): ")
 IF a$ <> "" THEN nBlk = VAL(a$)
 IF nBlk < 2 THEN nBlk = 2
 CASE 98 ’b
’ INPUT "Enter Raman beam detuning for background measurements (#kHz or RET):"; a$
 a$ = iptak$("Enter Raman beam detuning for background measurements (#kHz or RET): ")
 IF a$ <> "" THEN fBackOff = exp3 * VAL(a$)
 CASE 99 ’c
’ INPUT "Enter Cs lock detuning (#kHz or RET):"; a$
 a$ = iptak$("Enter Cs lock detuning (#kHz or RET): ")
 IF a$ <> "" THEN
’*15 fOff0 = fOffCs ’Old offset
 fOffCs = CINT(VAL(a$)) ’New offset
’*16:
 CALL SetCsOFF(fOffCs)
’*15b
’ ’Gradually shift the Cs detuning to fOffCs
’ FOR i = nFstep - 1 TO 0 STEP -1
’ fout# = (fOff0 - fOffCs) * i / nFstep
’ ’Create waveform to set tuning voltage
’ c$ = ItoS$(CsTBL(fout#)) ’New Cs lock setting
’ outexpr = CsData$

’ FOR n = 1 TO 8
’ outexpr = outexpr + c$
’ NEXT n
’ ’For first step, set Trig. Source = Bus and select VOLATILE arb
’ IF i = nFstep - 1 THEN outexpr = ":TRIG:SOUR BUS;" + outexpr + CsSel$
’ ’Send trigger and wait for completion
’ outexpr = outexpr + Trig$
’ ’Download waveform for this output level
’ l& = LEN(outexpr)
’ CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth3(0), mTerm(0))
’ IF nErr THEN PRINT "Cs synth: Error #"; nErr
’ NEXT i
’*15e
 END IF
 CASE 100 ’d
’ INPUT "List up to 4 interferometers in desired order (1,2,3,4; 0 -> none):"; a$
 a$ = iptak$("List up to 4 interferometers in desired order (1,2,3,4; 0 -> none): ")
 IF a$ <> "" THEN
 FOR i = 1 TO 4
 mSave(i) = mSeq(i): mSeq(i) = 0 ’Save old sequence then clear
 NEXT i
 nSave = nSeq: nSeq = 0: i = 1
 DO WHILE i <= LEN(a$) AND nSeq < 4
 ia = VAL(MID$(a$, i, 1))
 IF ia > 0 AND ia < 5 THEN nSeq = nSeq + 1: mSeq(nSeq) = ia
 i = i + 1
 LOOP
 IF nSeq = 0 THEN nSeq = 1
 CALL Clock(-1) ’Check nFreq, nFF limits with change of sequences
 IF iErr THEN ’Restore previous sequence
 FOR i = 1 TO 4: mSeq(i) = mSave(i): NEXT i
 nSeq = nSave
 CALL Clock(0)
 END IF
 END IF
 CASE 101 ’e
’ INPUT "List the valid waveforms in memory (0-4):"; a$
 a$ = iptak$("List the valid waveforms in memory (0-4): ")
 iMod = 0: iModH = 0 ’Clear modification flags
 IF a$ <> "" THEN
 FOR i = 0 TO 4: iMem(i) = 0: NEXT i ’Clear all memory flags
 i = 1
 DO WHILE i <= LEN(a$)
 ia = VAL(MID$(a$, i, 1))
 IF ia > 0 AND ia < 5 THEN
 ’Set memory flag if pattern #ia exists in XMS memory
 IF XMSSelect(ia) = 0 THEN iMem(ia) = -1
 END IF
 i = i + 1
 LOOP
 END IF
 CASE 102 ’f
 iArmI = -iArmI: iModH = -1
 CASE 103 ’g
’ INPUT "Enter gravitational acceleration (#m/s^2 or RET):"; a$
 a$ = iptak$("Enter gravitational acceleration (#m/s2 or RET): ")
 ar# = VAL(a$): IF a$ <> "" AND (ar# >= 0) THEN g0# = ar#
 CASE 104 ’h
 a$ = iptak$("Enter chirp rate (#Hz/s or RET): ")
 ar# = VAL(a$): IF a$ <> "" THEN kg0# = ar#
 CASE 105 ’i
 iAuto = (iAuto + 1) MOD 3
 CASE 106 ’j
 iFix = NOT iFix
 CASE 107 ’k
’ INPUT "Enter main scale multiplier (# or RET):"; a$
 a$ = iptak$("Enter main scale multiplier (# or RET): ")
 ar = VAL(a$): IF ar <> 0 THEN ysc = ar
 CASE 75 ’K
’ INPUT "Enter inset scale multiplier (# or RET):"; a$
 a$ = iptak$("Enter inset scale multiplier (# or RET): ")

278 APPENDIX C. COMPUTER CODE

 ar = VAL(a$): IF ar <> 0 THEN yysc = ar
 CASE 108 ’l
’ outexpr = ";TM;": l& = LEN(outexpr) ’Request present trigger mode
’ CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSRSP3(0), mTerm(0))
’ IF nErr THEN PRINT "IEEE Error #"; nErr
’ inexpr = STRING$(30, 32) ’Read in trigger mode
’ CALL kenterStr(0, nErr, SSEGADD&(inexpr), 30, 0, mAdSRSP3(0), mTerm(0))
’ IF nErr THEN PRINT "IEEE Error #"; nErr
’ iTM = (VAL(inexpr) <> 2)
 ’Toggle between trigger mode set by iTrgMod and SingleShot (TM2)
 iTM = NOT iTM ’Flip state of iTM
 IF iTM THEN
 outexpr = ";TM" + RIGHT$(STR$(iTrgMod), 1) + ";"
 ELSE
 outexpr = ";TM2;"
 END IF
 l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSRSP3(0), mTerm(0))
 CASE 76 ’L
 IF iTrgMod = 0 THEN
 iTrgMod = 1
 ELSEIF iTrgMod = 1 THEN
 iTrgMod = 4
 ELSEIF iTrgMod = 4 THEN
 iTrgMod = 0
 END IF
 IF iTM THEN
 outexpr = ";TM" + RIGHT$(STR$(iTrgMod), 1) + ";"
 l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSRSP3(0), mTerm(0))
 END IF
 CASE 109 ’m
 PRINT "Enter file to load (RET for "; finit$; " or Q to quit): ";
’ INPUT a$: a$ = UCASE$(a$)
 a$ = UCASE$(iptak$(""))
 IF a$ <> "Q" THEN
 IF a$ = "" THEN a$ = finit$
 a$ = FlnmAdj$(a$, pinit, "INI")
 IF (RdInit%(a$) = 0) THEN
 CALL Clock(0) ’Recalculate waveform parameters
 iMod = -1
’*16:
 CALL SetCsOFF(fOffCs)
 END IF
 END IF
 iak% = 1 ’autokey pointer
 CASE 77 ’M
 PRINT "Enter file to save (RET for "; finit$; " or Q to quit): ";
’ INPUT a$: a$ = UCASE$(a$)
 a$ = UCASE$(iptak$(""))
 IF a$ <> "Q" THEN
 IF a$ = "" THEN a$ = finit$
 a$ = FlnmAdj$(a$, pinit, "INI")
 ’Write data
 OPEN a$ FOR OUTPUT AS 1
 PRINT #1, FilePrfx$; d; fOffP; d; fspan; d; fOff; d; nSteps; d; nRpt
 PRINT #1, nBlk; d; fBackOff; d; fOffCs; d; nSeq
 FOR j = 1 TO nSeq: PRINT #1, mSeq(j): NEXT j
 PRINT #1, iArmI; d; iFix; d; g0#; d; ysc; d; yysc; d; Tstart; d; nPiP
 PRINT #1, TpiP; d; nPi; d; Tpi; d; Tsp; d; xTt1; d; xTd; d; Ts; d; TdS
 PRINT #1, nClMin; d; Cwf(0); d; Cwf(2); d; xAmp; d; yP; d; Tint; d; TpiH
 PRINT #1, xTt1H; d; xTdH; d; xTon1; d; xTon2; d; CwfH(0); d; CwfH(2)
 PRINT #1, xAmpH; d; Tpl; d; TbMin; d; TgMin; d; tRam#; d; ak$
’*14 PRINT #1, iTrgMod; d; kg0#
 PRINT #1, iTrgMod; d; kg0#; d; yTt1H
 CLOSE 1
 END IF
 CASE 111 ’o
 CLS : LOCATE 1, 1
’ INPUT "Name of file to be plotted is "; FlnmP$: FlnmP$ = UCASE$(FlnmP$)
’ a$ = UCASE$(iptak$("Name of file to be plotted is "))

 IF (FlnmP$ = "") THEN FlnmP$ = LEFT$(Flnm$, 6) + RIGHT$(STR$(VAL(MID$(Flnm$, 7, 2)) + 99), 2) +
 RIGHT$(Flnm$, 4)
 PRINT "Name of file to be plotted is (";
 PRINT USING "\ \"; FlnmP$; : PRINT "):";
 DO
 DO: a$ = INKEY$: LOOP WHILE (a$ = "")
 i = ASC(a$)
 IF (i = 0) THEN
 SELECT CASE (ASC(MID$(a$, 2, 1)))
 CASE 75 ’left arrow
 FlnmP$ = LEFT$(FlnmP$, 6) + RIGHT$(STR$(VAL(MID$(FlnmP$, 7, 2)) + 99), 2) + RIGHT$(FlnmP$
, 4)
 CASE 77 ’right arrow
 FlnmP$ = LEFT$(FlnmP$, 6) + RIGHT$(STR$(VAL(MID$(FlnmP$, 7, 2)) + 101), 2) + RIGHT$(FlnmP
$, 4)
 CASE 115 ’CTRL-left arrow
 FlnmP$ = LEFT$(FlnmP$, 6) + RIGHT$(STR$(VAL(MID$(FlnmP$, 7, 2)) + 90), 2) + RIGHT$(FlnmP$
, 4)
 CASE 116 ’CTRL-right arrow
 FlnmP$ = LEFT$(FlnmP$, 6) + RIGHT$(STR$(VAL(MID$(FlnmP$, 7, 2)) + 110), 2) + RIGHT$(FlnmP
$, 4)
 END SELECT
 LOCATE 1, 32
 PRINT FlnmP$;
 END IF
 LOOP WHILE (i = 0)
 IF (i <> 13) THEN
 LOCATE 1, 47
 PRINT a$;
 INPUT ; "", c$
 FlnmP$ = a$ + c$ + RIGHT$(Flnm$, 4)
 END IF
 PRINT
 CALL PLOT(-1, FlnmAdj$(FlnmP$, "E:\LAB\DAT\", "DAT"), psc)
 ’Mode -1 -> Print frequency list
’ PRINT "Filename ="; FlnmP$
 CASE 114 ’r
 iaux = iaux + 1
 IF (iaux > iauxmx) THEN iaux = 1
’ PRINT "Bias field (0.1 = 2mA) ["; AuxS$(iaux); "] ";
’ LOCATE 27, 38
’ a$ = iptak$("")
’ ar = VAL(a$)
’ IF ((ar >= 0) AND (ar <= 5)) THEN AuxS$(iaux) = MID$(AuxS$(iaux), 1, 6) + STR$(ar)
 CASE 82 ’R
 IF (iauxmx > 0) THEN
 l& = LEN(AuxS$(iaux))
 CALL koutputStr(0, nErr, SSEGADD&(AuxS$(iaux)), l&, 0, mAdAux(0), mTerm(0))
 IF nErr THEN PRINT "Aux. dev: IEEE Error #"; nErr
 END IF
 CASE 115 ’s
 PRINT "Intensity scaling for TOP beam of Pi/2-pulses (# or RET) ["; rtp!; "]: ";
 LOCATE 27, 66
 a$ = iptak$("")
 ar = VAL(a$)
 IF ((ar > 0) AND (ar <= 1)) THEN
 rtp! = ar
 iMod = -1
 END IF
 LOCATE 27, 1
 PRINT "Intensity scaling for BOT beam of Pi/2-pulses (# or RET) ["; rbt!; "]: ";
 LOCATE 27, 66
 a$ = iptak$("")
 ar = VAL(a$)
 IF ((ar > 0) AND (ar <= 1)) THEN
 rbt! = ar
 iMod = -1
 END IF
’ CASE 116 ’t
’ a$ = iptak$("Enter maximum number of auxillary device sequences(# or RET):")
’ ar = VAL(a$)

’ IF (a$ <> "") AND (ar >= 0) AND (ar <= 6) THEN
’ iauxmx = ar
’ iaux = 1
’ END IF
’ CASE 84 ’T
’ PRINT "Enter auxillary device sequence #"; iaux; "string: ";
’ i = 1
’ b$ = ""
’ DO
’ a$ = getak$
’ IF (ASC(LEFT$(a$, 1)) <> 13) THEN
’ MID$(b$, i, 1) = a$
’ i = i + 1
’ END IF
’ LOOP WHILE (ASC(LEFT$(a$, 1)) <> 13)
’ IF b$ <> "" THEN AuxS$(iaux) = b$
 CASE 112 ’p
 CLS ’ ***** Menu for editing Raman pulse descriptions *****
1200 LOCATE 1, 1
 PRINT " Pi Pulse Parameters "
 PRINT " 1 Delay time before starting the sequence is "; usec$(CDBL(Tstart)); Clear$;
 PRINT " 2 Number of preselection pi pulses is"; nPiP; Clear$;
 PRINT " 3 Total time for a preselection pi pulse is "; usec$(iTpiP / fSamp#); Clear$;
 PRINT " 4 Number of main pi pulses is"; nPi; Clear$;
 PRINT " 5 Total time for a main pi pulse is "; usec$(iTpi / fSamp#); Clear$;
 PRINT " 6 Spacing of main pi pulses is "; usec$(iFFpi * Tff#); Clear$;
 PRINT " 7 Times spent on fast transitions are "; usec$(iTt1P / fSamp#); "/"; usec$(iTt1 / fSa
mp#); Clear$;
 PRINT " 8 Delays between turn-on and turn-off times are "; usec$(iTdP / fSamp#); "/"; usec$(i
Td / fSamp#); Clear$;
 PRINT " 9 Duration of frequency strobes is "; usec$((iTs - 1) / fSamp#); Clear$;
 PRINT " a Delay between pulses and frequency strobes is "; usec$(iTdS / fSamp#); Clear$;
 PRINT " b AWFG sample period is "; usec$(nCl / fCl); Clear$;
 PRINT " c Rate parameters for pulse transitions are"; STR$(Cwf(0)); ","; Cwf(2); Clear$;
 PRINT " d Equal intensity level is"; CINT(exp2 * xAmp); "% of full power"; Clear$;
 PRINT " e Relative intensity of preselection pulses is"; CINT(exp2 * yP); "% of full power";
Clear$;
 PRINT " Pi/2 Pulse Parameters "
 PRINT " f Time between pi/2 pulses is "; msec$(iTint& / fSamp#); Clear$;
 PRINT " g Total time for a pi/2 pulse is "; usec$(iTpiH / fSamp#); Clear$;
 PRINT " h Time for fast transitions is "; usec$(iTt1H / fSamp#); "/"; usec$(iTtyH / fSamp#);
Clear$;
 PRINT " i Delays between turn-on and turn-off times are "; usec$(iTdH / fSamp#); Clear$;
 PRINT " j Time at equal intensities with common control on is "; usec$(iTon1 / fSamp#); Clear
$;
 PRINT " k Time at equal intensities with individual controls on is "; usec$(iTon2 / fSamp#);
Clear$;
 PRINT " l Rate parameters for pulse transitions are"; STR$(CwfH(0)); ","; CwfH(2); Clear$;
 PRINT " m Equal intensity level is"; CINT(exp2 * xAmpH); "% of full power"
 PRINT " n Phaselock settling time for pi/2’s is "; usec$(iTpl / fSamp#); Clear$;
 PRINT " o Minimum time for switching tracer OFF between pi/2’s is "; usec$(CDBL(TbMin)); Clea
r$;
 PRINT " p Mininum time for which gate is OFF between pi/2’s is "; usec$(CDBL(TgMin)); Clear$;
 LOCATE 28, 1: PRINT Clear$;
 LOCATE 28, 1: PRINT "Change any (# or RET)?"
’ DO: a$ = INKEY$: LOOP WHILE a$ = ""
 a$ = getak$
 LOCATE 28, 1

 SELECT CASE ASC(a$)
 CASE 27 ’ESC
 GOTO 1000
 CASE 13 ’CR
 GOTO 1000
 CASE 49 ’1
’ INPUT "Enter the delay time before starting the sequence (#us or RET):"; a$
 a$ = iptak$("Enter the delay time before starting the sequence (#us or RET): ")
 IF a$ <> "" THEN
 xSave = Tstart: Tstart = VAL(a$) / exp6: CALL Clock(-1)
 IF iErr THEN Tstart = xSave: CALL Clock(0) ELSE iMod = -1
 END IF

 CASE 50 ’2
’ INPUT "Enter number of preselection pi pulses (# or RET):"; a$
 a$ = iptak$("Enter number of preselection pi pulses (# or RET): ")
 n = INT(VAL(a$))
 IF a$ <> "" AND n >= 0 THEN
 nSave = nPiP: nPiP = n: CALL Clock(-1)
 IF iErr THEN nPiP = nSave: CALL Clock(0) ELSE iMod = -1
 END IF
 CASE 51 ’3
’ INPUT "Enter the total time for a preselection pi pulse (#us or RET):"; a$
 a$ = iptak$("Enter the total time for a preselection pi pulse (#us or RET): ")
 IF a$ <> "" THEN
 xSave = TpiP: TpiP = VAL(a$) / exp6: CALL Clock(-1)
 IF iErr THEN TpiP = xSave: CALL Clock(0) ELSE iMod = -1
 END IF
 CASE 52 ’4
’ INPUT "Enter number of main pi pulses (# or RET):"; a$
 a$ = iptak$("Enter number of main pi pulses (# or RET): ")
 n = INT(VAL(a$))
 IF a$ <> "" AND n >= 0 THEN
 nSave = nPi: nPi = n: CALL Clock(-1)
 IF iErr THEN nPi = nSave: CALL Clock(0) ELSE iMod = -1
 END IF
 CASE 53 ’5
’ INPUT "Enter the total time for a main pi pulse (#us or RET):"; a$
 a$ = iptak$("Enter the total time for a main pi pulse (#us or RET): ")
 IF a$ <> "" THEN
 xSave = Tpi: Tpi = VAL(a$) / exp6: CALL Clock(-1)
 IF iErr THEN Tpi = xSave: CALL Clock(0) ELSE iMod = -1
 END IF
 CASE 54 ’6
’ INPUT "Enter the time between main pi pulses (#us or RET):"; a$
 a$ = iptak$("Enter the time between main pi pulses (#us or RET): ")
 IF a$ <> "" THEN
 xSave = Tsp: Tsp = VAL(a$) / exp6: CALL Clock(-1)
 IF iErr THEN Tsp = xSave: CALL Clock(0) ELSE iMod = -1
 END IF
 CASE 55 ’7
’ INPUT "Enter fractional time spent on fast transitions (0-.5 or RET):"; a$
 a$ = iptak$("Enter fractional time spent on fast transitions (0-.5 or RET): ")
 ar = VAL(a$)
 IF a$ <> "" AND ar >= 0 AND ar <= .5 THEN
 xSave = xTt1: xTt1 = ar: CALL Clock(-1)
 IF iErr THEN xTt1 = xSave: CALL Clock(0) ELSE iMod = -1
 END IF
 CASE 56 ’8
’ INPUT "Enter fractional delays between turn-on and turn-off (0-.5 or RET):"; a$
 a$ = iptak$("Enter fractional delays between turn-on and turn-off (0-.5 or RET): ")
 ar = VAL(a$)
 IF a$ <> "" AND ar >= 0 AND ar <= .5 THEN
 xSave = xTd: xTd = ar: CALL Clock(-1)
 IF iErr THEN xTd = xSave: CALL Clock(0) ELSE iMod = -1
 END IF
 CASE 57 ’9
’ INPUT "Enter the duration of frequency strobes (#us or RET):"; a$
 a$ = iptak$("Enter the duration of frequency strobes (#us or RET): ")
 IF a$ <> "" THEN
 xSave = Ts: Ts = VAL(a$) / exp6: CALL Clock(-1)
 IF iErr THEN Ts = xSave: CALL Clock(0) ELSE iMod = -1
 END IF
 CASE 97 ’a
’ INPUT "Enter the delay between pulses and frequency strobes (#us or RET):"; a$
 a$ = iptak$("Enter the delay between pulses and frequency strobes (#us or RET): ")
 IF a$ <> "" THEN
 xSave = TdS: TdS = VAL(a$) / exp6: CALL Clock(-1)
 IF iErr THEN TdS = xSave: CALL Clock(0) ELSE iMod = -1
 END IF
 CASE 98 ’b
’ INPUT "Enter the minimum number of 200ns clock cycles per AWFG point (# or RET):"; a$
 a$ = iptak$("Enter the minimum number of 200ns clock cycles per AWFG point (# or RET): ")
 n = INT(VAL(a$))

C.1. ALTINT.BAS 279

 IF a$ <> "" AND n >= 1 THEN nClMin = n: CALL Clock(-1)
 iMod = -1 ’Changing nClMin can’t cause an error
 CASE 99 ’c
’ INPUT "Enter the 1st rate parameter (>0 or RET):"; a$
 a$ = iptak$("Enter the 1st rate parameter (>0 or RET): ")
 IF a$ <> "" THEN
 Cwf(0) = VAL(a$): Cwf(1) = xAmp / (EXP(Cwf(0) / 2) - 1)
 iMod = -1
 END IF
 LOCATE 28, 1: PRINT Clear$; : LOCATE 28, 1
’ INPUT "Enter the 2nd rate parameter (>0 or RET):"; a$
 a$ = iptak$("Enter the 2nd rate parameter (>0 or RET): ")
 IF a$ <> "" THEN
 Cwf(2) = VAL(a$): Cwf(3) = (1 - xAmp) / (EXP(Cwf(2) / 2) - 1)
 iMod = -1
 END IF
 CASE 100 ’d
’ INPUT "Enter the fractional power at equal intensity point (0-1 or RET):"; a$
 a$ = iptak$("Enter the fractional power at equal intensity point (0-1 or RET): ")
 ar = VAL(a$)
 IF a$ <> "" AND ar >= 0 AND ar <= 1 THEN
 xAmp = ar: Cwf(1) = xAmp / (EXP(Cwf(0) / 2) - 1)
 Cwf(3) = (1 - xAmp) / (EXP(Cwf(2) / 2) - 1)
 iMod = -1
 END IF
 CASE 101 ’e
’ INPUT "Enter the fractional intensity for preselection pulses (0-1 or RET):"; a$
 a$ = iptak$("Enter the fractional intensity for preselection pulses (0-1 or RET): ")
 ar = VAL(a$): IF a$ <> "" AND ar > 0 AND ar <= 1 THEN yP = ar: iMod = -1
 CASE 102 ’f
’ INPUT "Enter the time between pi/2 pulses (#ms or RET):"; a$
 a$ = iptak$("Enter the time between pi/2 pulses (#ms or RET): ")
 IF a$ <> "" THEN
 xSave = Tint: Tint = VAL(a$) / exp3
 LOCATE 28, 1
 q$ = UCASE$(iptak$("Should this value be rounded to the nearest missed recoil overlap (Y/n)
? "))
 IF q$ <> "N" THEN Tint = CLNG(fmr * Tint) / fmr
 CALL Clock(-1)
 IF iErr THEN Tint = xSave: CALL Clock(0) ELSE iModH = -1
 END IF
 CASE 103 ’g
’ INPUT "Enter the total time for a pi/2 pulse (#us or RET):"; a$
 a$ = iptak$("Enter the total time for a pi/2 pulse (#us or RET): ")
 IF a$ <> "" THEN
 xSave = TpiH: TpiH = VAL(a$) / exp6: CALL Clock(-1)
 IF iErr THEN TpiH = xSave: CALL Clock(0) ELSE iModH = -1
 END IF
 CASE 104 ’h
’ INPUT "Enter fractional time spent on fast transitions (0-.5 or RET):"; a$
 a$ = iptak$("Frac. time for phase sensitive fast transitions (0-.5 or RET): ")
 ar = VAL(a$)
 IF a$ <> "" AND ar >= 0 AND ar <= .5 THEN
 xSave = xTt1H: xTt1H = ar: CALL Clock(-1)
 IF iErr THEN xTt1H = xSave: CALL Clock(0) ELSE iModH = -1
 END IF
 LOCATE 28, 1: PRINT Clear$; : LOCATE 28, 1
 a$ = iptak$("Frac. time for pure-state fast transitions (0-.5 or RET): ")
 ar = VAL(a$)
 IF a$ <> "" AND ar >= 0 AND ar <= .5 THEN
 xSave = yTt1H: yTt1H = ar: CALL Clock(-1)
 IF iErr THEN yTt1H = xSave: CALL Clock(0) ELSE iModH = -1
 END IF
 CASE 105 ’i
’ INPUT "Enter fractional delays between turn-on and turn-off (0-.5 or RET):"; a$
 a$ = iptak$("Enter fractional delays between turn-on and turn-off (0-.5 or RET): ")
 ar = VAL(a$)
 IF a$ <> "" AND ar >= 0 AND ar <= .5 THEN
 xSave = xTdH: xTdH = ar: CALL Clock(-1)
 IF iErr THEN xTdH = xSave: CALL Clock(0) ELSE iModH = -1
 END IF

 CASE 106 ’j
’ INPUT "Enter fractional time with common control on (0-1 or RET):"; a$
 a$ = iptak$("Enter fractional time with common control on (0-1 or RET): ")
 ar = VAL(a$)
 IF a$ <> "" AND ar >= 0 AND ar <= 1 THEN
 xSave = xTon1: xTon1 = ar: CALL Clock(-1)
 IF iErr THEN xTon1 = xSave: CALL Clock(0) ELSE iModH = -1
 END IF
 CASE 107 ’k
’ INPUT "Enter fractional time with individual controls on (0-1 or RET):"; a$
 a$ = iptak$("Enter fractional time with individual controls on (0-1 or RET): ")
 ar = VAL(a$)
 IF a$ <> "" AND ar >= 0 AND ar <= 1 THEN
 xSave = xTon2: xTon2 = ar: CALL Clock(-1)
 IF iErr THEN xTon2 = xSave: CALL Clock(0) ELSE iModH = -1
 END IF
 CASE 108 ’l
’ INPUT "Enter the 1st rate parameter (>0 or RET):"; a$
 a$ = iptak$("Enter the 1st rate parameter (>0 or RET): ")
 IF a$ <> "" THEN
 CwfH(0) = VAL(a$): CwfH(1) = xAmpH / (EXP(CwfH(0) / 2) - 1)
 iModH = -1
 END IF
 LOCATE 28, 1: PRINT Clear$; : LOCATE 28, 1
’ INPUT "Enter the 2nd rate parameter (>0 or RET):"; a$
 a$ = iptak$("Enter the 2nd rate parameter (>0 or RET): ")
 IF a$ <> "" THEN
 CwfH(2) = VAL(a$): CwfH(3) = (1 - xAmpH) / (EXP(CwfH(2) / 2) - 1)
 iModH = -1
 END IF
 CASE 109 ’m
’ INPUT "Enter the fractional power at equal intensity point (0-1 or RET):"; a$
 a$ = iptak$("Enter the fractional power at equal intensity point (0-1 or RET): ")
 ar = VAL(a$)
 IF a$ <> "" AND ar >= 0 AND ar <= 1 THEN
 xAmpH = ar: CwfH(1) = xAmpH / (EXP(CwfH(0) / 2) - 1)
 CwfH(3) = (1 - xAmpH) / (EXP(CwfH(2) / 2) - 1)
 iModH = -1
 END IF
 CASE 110 ’n
’ INPUT "Enter the phaselock settling time (#us or RET):"; a$
 a$ = iptak$("Enter the phaselock settling time (#us or RET): ")
 IF a$ <> "" THEN
 xSave = Tpl: Tpl = VAL(a$) / exp6: CALL Clock(-1)
 IF iErr THEN Tpl = xSave: CALL Clock(0) ELSE iModH = -1
 END IF
 CASE 111 ’o
’ INPUT "Enter the minimum time for which tracer is OFF (#us or RET):"; a$
 a$ = iptak$("Enter the minimum time for which tracer is OFF (#us or RET): ")
 IF a$ <> "" THEN
 xSave = TbMin: TbMin = VAL(a$) / exp6: CALL Clock(-1)
 IF iErr THEN TbMin = xSave: CALL Clock(0) ELSE iModH = -1
 END IF
 CASE 112 ’p
’ INPUT "Enter the minimum time for which gate is OFF (#us or RET):"; a$
 a$ = iptak$("Enter the minimum time for which gate is OFF (#us or RET): ")
 IF a$ <> "" THEN
 xSave = TgMin: TgMin = VAL(a$) / exp6: CALL Clock(-1)
 IF iErr THEN TgMin = xSave: CALL Clock(0) ELSE iModH = -1
 END IF

 END SELECT
 GOTO 1200

 END SELECT
 GOTO 1005

END SUB

280 APPENDIX C. COMPUTER CODE

C.1.2 Data.BAS

Once all of the input parameters are chosen in the Menu module, the patterns are

generated, and the external devices programmed, the Data module of the AltInt code

actually acquires the data. It programs the analog-to-digital (AD) pc-board inside

the computer to sample the photomultiplier tube (PMT) signal when the probe laser

is gated on. It steps through the different frequencies and interferometer geometries

of the scan, graphically displaying the data on the computer as it goes. And Þnally,

when the scan ends, it saves the data and all of the input parameter settings to the

computer�s hard drive.

’Program DataXX.BAS
’ This module contains the Scan% function used to collect the A/D data.
’ It is modified from DATA41.BAS by rounding frequencies sent to the data
’ file to 0.1 mHz instead of 1 mHz and by transferring FSKDrive from
’ AltInt41 since the Cs lock tuning routines caused OUT OF MEMORY error.
’Revision History:
’43 2/25/97 Frequency offset values stored in sig(1..nSeq,1,1..nSteps)
’ modified to compensate for the phase shift from the 1.05us
’ delay when the DDS changes frequencies.
’50 7/23/97 Incorporate new direct digital synthesizer (ADS-431).
’ fstep=0.00532.. --> fstep=0.432
’52 10/30/97 Same as version 50, except that:
’ - ADS-431 synthesizer clocks at 1000 instead of 928 MHz
’ - COMMON SHARED variable PfPi2&(m,i) stores the binary
’ representation of the Pi/2-pulse center frequencies.
’ The function Scan uses this variable to calculate
’ cor#(m,n), the correction to the each frequency point
’ due to the known phase error and fixed FSK delay of the
’ ADS synthesizer
’ - polarity of the REQ1 line of the AT-DIO-32F board is
’ reversed (now active on RISING) because polarity of
’ STROBE line to synthesizer, which is the same signal
’ reversed
’53 2/12/98 Change method of scaling data so that the units are no
’ longer arbitrary. In previous versions, the data taken by
’ the AtoD PCboard were not converted to volts and were
’ arbitrarily multiplied by scaling factors ’ysc’ and ’yysc’,
’ one for the main plot and one for the inset plot. The data
’ are now plotted and stored in volts. The scale factors define
’ the scale size for the plots. Thus, ysc=0.1 implies that the
’ top of the screen is B+0.1Volt and the zero-line is B, where
’ B is the background value. Similarly for yysc and the inset
’ plot.
’ This version now displays the vertical scale in the top center
’ of the screen and the offset in the lower right corner of each
’ subscreen.
’ The k0 parameter is decremented by one before saving it to the
’ data file, so that k0 is now defined to be the largest integer
’ such all of the data points when multiplied by 10^k0 fit on the
’ SCREEN with vertical scale ysc.
’54 4/ 2/98 Add code to acquire data from the tilt sensor on channels
’ 2 and 3 of DAS-16 board. Two tilt values (one for each channel)
’ are acquired for each valid data point (including background
’ points). These values are averaged, converted to volts, and
’ stored in the output file.
’56 7/25/01 When the interferometer sequence was something atypical (i.e.
’ not 12, 34, or 1234, the correction for the ADS-431 synthesizer
’ was calculated wrong, because in two places I incorrectly indexed
’ frequencies with the sequence number ’j’ instead of the
’ interferometer reference number ’m’. After fixing this problem,
’ I checked the code by comparing the correction frequencies for
’ "atypical" sequences 1122 and 3344 with the "typical" sequence
’ 1234 that we trust.
’
’*54:$INCLUDE: ’e:\lab\inc\nihpdas.inc’
’*54:$INCLUDE: ’e:\lab\inc\xmaw.inc’
’*55b
’$INCLUDE: ’inc\nihpdas.inc’
’$INCLUDE: ’inc\xmaw.inc’
’*55e

DEFINT I-N

DECLARE SUB basdasg (iMode, BYVAL dummy%, nErr)
DECLARE SUB BinCon (f#, fRndB&, fRnd#)
DECLARE FUNCTION Scan% (mSt(), sh$, df$(), bl$(), pr$(), fCAve#(), fBack&(), nFSK0, iUp)
DECLARE FUNCTION FSKdrive% (iMode, f#, lBuf&, FLckHDL&, nElem&)
DECLARE FUNCTION ADSPhase# (pf AS LONG)

’$INCLUDE: ’e:\lab\inc\altint.inc’

’$DYNAMIC

REM $STATIC
FUNCTION ADSPhase# (pf AS LONG)
’ JMH 10/30/97
’ Assume bit "b" (b=1..32, 32 is MSB) of the 32-bit frequency word "pf"
’incurs a delay of: T0 + (37-b)*Tclk, where T0 is some arbitrary fixed delay
’independent of "b" and Tclk = 1/Fclk is the clock period. Ignorning the
’fixed delay T0, this implies that bit "b" produces a phase shift of
’(37-b)/2^(32-b) cycles. This function returns the sum
’Sum[(37-B)/2^(32-B),{B}] where {B} is the set of all bits in "pf" which are
’ON

DIM B AS INTEGER
DIM phi AS DOUBLE
DIM ul AS LONG

 ul = pf
 phi = 0
 FOR B = 0 TO 30
 IF ((ul MOD 2) = 1) THEN phi = phi + (36 - B) / 2 ^ (31 - B)
 ul = FIX(ul / 2)
 NEXT B
 ADSPhase# = phi

END FUNCTION

FUNCTION FSKdrive% (op AS INTEGER, rf AS DOUBLE, lnBuf AS LONG, iHDL AS LONG, lnFSK AS LONG)
’ Control routine for DDS synthesizer ver. 2.0 JMH 8/96
’ Since the frequency strobe for the DDS synthesizer is now controlled by
’ the AWFG board, that board is controlled via register commands to output
’ a pulse that latches in the center frequency for Reset mode.
’ Parameters:
’ op - selects an operation:
’ 0: configure AT-DIO-32F board, and set output frequency of DDS-1 to rf
’ - all input parameters, except rf, are ignored
’ 1: arm AT-DIO-32F board for DMA transfers
’ 2: disarm DMA transfers
’ - all input parameters ignored
’ rf - frequency (Hz) to which the synthesizer is set upon reset
’ lnBuf - size of frequency data buffer (number of 32-bit elements)
’ iHDL - pointer to the frequency data buffer
’ lnFSK - number of 32-bit entries in frequency data buffer
’ - must be smaller than lnBuf to allow for memory page alignment
’ Returns:
’ 1, on success
’ 0, on any error condition
’
DIM en AS INTEGER ’error code returned by NI-DAQ routines
DIM devcod AS INTEGER ’device code returned by Init.DA.Brds()
DIM aOff AS LONG ’page alignment offset returned by Align.DMA.Buffer

DIM i AS INTEGER
DIM ln AS LONG

’Register addresses for the AT-DIO-32F board:
CONST diodev% = 2 ’device number of AT-DIO-32F board
CONST dioaddr% = 576 ’(0x0240) base address of AT-DIO-32F board
CONST aCFG1% = dioaddr ’Configuration and Status Register Group (16-bit)
CONST aCFG2% = dioaddr + 2
CONST aCFG3% = dioaddr + 4
CONST aCFG4% = dioaddr + 20
CONST aPTA% = dioaddr + 6 ’Digital I/O Port Register Group (8- or 16-bit)
CONST aPTB% = dioaddr + 7
CONST aPTC% = dioaddr + 8
CONST aPTD% = dioaddr + 9

’Register addresses for the PCIP-AWFG board:
CONST awfgaddr% = 800 ’(0x0320) base IO address for the PCIP-AWFG board
CONST aXL% = awfgaddr ’x-channel data
CONST aXH% = awfgaddr + 1

C.1. ALTINT.BAS 281

CONST aYL% = awfgaddr + 2 ’y-channel data
CONST aYH% = awfgaddr + 3
CONST aCON% = awfgaddr + 4 ’Control/Status
CONST aDAC% = awfgaddr + 5 ’Load DAC address
CONST aSYS% = awfgaddr + 6 ’Load System address
CONST aSCL% = awfgaddr + 8 ’End of Scan address
CONST aSCH% = awfgaddr + 9
CONST aCT0% = awfgaddr + 12 ’Number of scans counter
CONST aCT1% = awfgaddr + 13 ’Clock divider 1
CONST aCT2% = awfgaddr + 14 ’Clock divider 2
CONST a8254% = awfgaddr + 15 ’8254 Control/Status

’Miscellaneous constants
’CONST fstep = 5.827066091346741D-03 ’Synthesizer step size (DDS-1)
CONST fstep = 1000000000# / 2147483648# ’Synthesizer step size (ADS-431)

CONST pl = 1 ’level of diagnostic printing (0=none)

SELECT CASE op

CASE 0 ’Reset

 IF pl > 1 THEN PRINT "Initializing AT-DIO-32F board for 32-bit DMA transfer."
 en% = Init.DA.Brds(diodev, devcod%)
 IF (en%) THEN
 PRINT "FSKdrive: Error after calling Init.DA.Brds: "; en%
 FSKdrive = 1
 EXIT FUNCTION
 END IF

 IF pl > 0 THEN PRINT "Setting DDS board to initial conditions:"
 IF pl > 0 THEN PRINT " - Amplitude = 0.6 Vpp (MAX)"
 CFG1 = 0
 OUT aCFG1, CFG1: OUT aCFG1 + 1, INT(CFG1 / &H100)
 ’0000 0000 0000 0000
 ’Group 1 DMA disabled, Group 1 interrupt disabled, TDELAY1 = 0 ns,
 ’ Port B handshaking disabled, Port A handshaking disabled, REQ1 active high,
 ’ Port A not double-buffered, Group 1 level sensitive, ACK1 active high,
 ’ ACK1 = 0, OUT1 = 0
 CFG2 = 0
 OUT aCFG2, CFG2: OUT aCFG2 + 1, INT(CFG2 / &H100)
 ’0000 0000 0000 0000
 ’Group 2 DMA disabled, Group 2 interrupt disabled, TDELAY2 = 0 ns,
 ’ Port D handshaking disabled, Port C handshaking disabled, REQ2 active high,
 ’ Port C not double-buffered, Group 2 level sensitive, ACK2 active high,
 ’ ACK2 = 0, OUT2 = 0
 CFG3 = &H7F00
 OUT aCFG3, CFG3: OUT aCFG3 + 1, INT(CFG3 / &H100)
 ’0111 1111 0000 0000
 ’Port B not double-buffered, Port D writes, Port B writes, 32-bit transfer mode,
 ’ Port C writes, Port A writes, Counter 2 counts Counter 3,
 ’ Counter 1 counts Counter 3, no double DMA mode, Counter 3 interrupt disabled,
 ’ Counter 2 disconnected, Counter 1 disconnected, Counter 2 disabled,
 ’ Counter 1 disabled, Group 2 DMA terminal counts disabled,
 ’ Group 1 DMA terminal counts disabled
 CFG4 = 0
 OUT aCFG4, CFG4: OUT aCFG4 + 1, INT(CFG4 / &H100)
 ’0000 0000 0000 0000
 ’Add TDELAY2 before ACK2 pulse, Add TDELAY1 before ACK1 pulse,
 ’ Port D not double-buffered, Version C option disabled
 ’
 ’NOTE that the above configurations will be overwritten by the
 ’National Instruments library routines called below.
 ’
 IF pl > 0 THEN PRINT " - Phase = 0"
 ’Set and latch in phase = 0, latch in amplitude settings:
 OUT aPTA, 0: OUT aPTB, 0: OUT aPTC, 0: OUT aPTD, 0
 CFG1 = CFG1 OR 1
 OUT aCFG1, CFG1 ’Set OUT1 high
 FOR i = 1 TO 1000: NEXT i ’Delay while filter capacitors charge
 CFG1 = CFG1 AND &HFE

 OUT aCFG1, CFG1 ’Set OUT1 low

 ’Write the frequency data
 IF (rf < 0) OR (rf > 1.25E+07) THEN
 ln = CLNG(1E+07 / fstep) ’Default to 10 MHz
 IF pl > 0 THEN PRINT " - Frequency = 10,000,000.000 Hz"
 ELSE
 ln = CLNG(rf / fstep)
 IF pl > 0 THEN
 PRINT " - Frequency = ";
 PRINT USING "#,###,###.###"; rf;
 PRINT " Hz"
 END IF
 END IF
 OUT aPTA, ln AND &HFF ’Write 4 lowest bits
 ln = INT(ln / &H100)
 OUT aPTB, ln AND &HFF
 ln = INT(ln / &H100)
 OUT aPTC, ln AND &HFF
 ln = INT(ln / &H100)
 OUT aPTD, ln AND &HFF
 FOR i = 1 TO 1000: NEXT i ’Wait while filter capacitors charge

 ’Now use Channel X bit #0 of the AWFG to create a strobe pulse.
 ’ When the program is compiled, the pulse is high for about 350us.
 ’ First reset the AWFG board.
 iCON = 8 ’LONG=0/2CH=0/200NS=0/RESET=0/XCLK=1/GATEN=0/NSCN=0/RUN=0
 OUT aCON, (iCON OR &H10) ’Reset
 OUT aCON, iCON ’Set control register
 FOR i = 0 TO 2 ’Write data L->H->L
 ’Reset system memory pointer to start of pattern
 OUT aSCL, 0: OUT aSCH, 0: OUT aDAC, 0: OUT aSYS, 0
 ’Write 0, 1, 0
 OUT aXL, (i AND 1): OUT aXH, 0
 ’Need to run in order to latch in new DAC value
 OUT aCON, (iCON OR 1) ’Run
 OUT aCON, iCON ’Stop
 NEXT i

 ’Program AT-DIO-32F board:
 en% = DIG.Grp.Config(diodev, 1, 4, 0, 1)
 ’32-bit transfer using single-buffered handshaking
 IF (en%) THEN
 PRINT "FSKdrive: Error after calling DIG.Grp.Config: "; en%
 FSKdrive = 1
 EXIT FUNCTION
 END IF
’ en% = DIG.Grp.Mode(deviceNumber,group,signal,edge,reqPol,ackPol,ackDelayTime)
’ en% = DIG.Grp.Mode(diodev, 1, 0, 0, 0, 0, 0)
 ’ Leading-edge sensitive, REQ signals active on falling,
 ’ ACK signals active on falling, ACK delay time = 0 ns
 en% = DIG.Grp.Mode(diodev, 1, 0, 0, 1, 0, 0)
 ’ Leading-edge sensitive, REQ signals active on rising,
 ’ ACK signals active on falling, ACK delay time = 0 ns
 IF (en%) THEN
 PRINT "FSKdrive: Error after calling DIG.Grp.Mode: "; en%
 FSKdrive = 1
 EXIT FUNCTION
 END IF
 en% = DIG.Block.PG.Config(diodev, 1, 2, 1, 4, 100, 0)
 ’ Enable single-buffered output, REQ originates externally,
 ’ [reqInterval timebase = 1ms], [reqInterval = 100 x timebase],
 ’ external gate disabled
 IF (en%) THEN
 PRINT "FSKdrive: Error after calling DIG.Block.PG.Config: "; en%
 FSKdrive = 1
 EXIT FUNCTION
 END IF

CASE 1 ’Arm for DMA transfer

 IF pl > 1 THEN PRINT "Page-aligning the memory buffer."
 en% = Align.DMA.Buffer(diodev, 13, iHDL, lnFSK, lnBuf, aOff)
 IF (en%) THEN
 PRINT "FSKdrive: Error after calling Align.DMA.Buffer: "; en%
 FSKdrive = 1
 EXIT FUNCTION
 END IF
 IF (aOff <> 0) THEN
 PRINT "FSKdrive: WARNING! Align.DMA.Buffer shifted FSK buffer to offset = "; aOff
 END IF
 IF pl > 1 THEN PRINT "Installing DMA driver."
 en% = DIG.Block.Out(diodev, 1, iHDL, lnFSK)
 IF (en%) THEN
 PRINT "FSKdrive: Error after calling DIG.Block.Out: "; en%
 FSKdrive = 1
 EXIT FUNCTION
 END IF

CASE 2

 en% = DIG.Block.Clear(diodev, 1)
 IF (en%) THEN
 PRINT "FSKdrive: Error after calling DIG.Block.Clear: "; en%
 FSKdrive = 1
 EXIT FUNCTION
 END IF
 FSKdrive = 0
 EXIT FUNCTION

 IF pl > 1 THEN PRINT "Pattern completed."

END SELECT

END FUNCTION

’ Function Scan% ---
’ Collects the A/D data as the frequencies are scanned for an interfero-
’ meter or pi pulse sequence. The data-taking cycle is as follows:
’
’ (1) Set detection pulse times
’ (2) Select FF, Cs detuning, and AWFG waveforms for next pulse sequence
’ (3) Update FSK array for next frequency
’ (4) Copy FSK array to DMA buffer
’ (5) Wait until end of FSK pattern
’ (6) Start detection at rising edge of IP0
’ (7) Collect PMT readings through A/D #0
’ (8) Process and plot new data
’ (9) Repeat (1)-(8) until end of scan, periodically taking background
’ readings
’ (10) Save data
’
FUNCTION Scan% (mSt(), sh$, df$(), bl$(), pr$(), fCAve#(), fBack&(), nFSK0, iUp)

’Register addresses for the PCIP-AWFG board:
CONST awfgaddr% = 800 ’(0x0320) base IO address for the PCIP-AWFG board
CONST aXL% = awfgaddr ’x-channel data
CONST aXH% = awfgaddr + 1
CONST aYL% = awfgaddr + 2 ’y-channel data
CONST aYH% = awfgaddr + 3
CONST aCON% = awfgaddr + 4 ’Control/Status
CONST aDAC% = awfgaddr + 5 ’Load DAC address
CONST aSYS% = awfgaddr + 6 ’Load System address
CONST aSCL% = awfgaddr + 8 ’End of Scan address
CONST aSCH% = awfgaddr + 9
CONST aCT0% = awfgaddr + 12 ’Number of scans counter
CONST aCT1% = awfgaddr + 13 ’Clock divider 1
CONST aCT2% = awfgaddr + 14 ’Clock divider 2
CONST a8254% = awfgaddr + 15 ’8254 Control/Status

’Miscellaneous constants
CONST exp2 = 100#, exp3 = 1000#

CONST smask = "##.##^^^^", fmask = ",########Hz"
CONST sigexp = " ##.#####^^^^", pcnt = " _+_-####.###%"
CONST fFmt = "#########.####", tFmt = "####.###ms"
CONST fCent = 28000000# ’Frequency for the DF 0->0 transition
CONST nCyc = 2 ’Number of data cycles before saving data
CONST nStat = 9 ’Lines of statistics output to file (except for backgrounds)
CONST nXpts = 640, nYpts = 480 ’Screen plot dimensions
CONST fCl = 5000000# ’AWFG maximum sample rate
CONST fstep = 1000000000# / 2147483648# ’Synthesizer step size (ADS-431)
CONST Tdds = 2.7E-08 ’delay between FSK request and
 ’ actual frequency change (sec)
CONST diodev% = 2 ’device number of AT-DIO-32F board
CONST ipl = 0 ’Print error messages?

’$DYNAMIC
DIM sig(1 TO nSeq, 1 TO 2, nSteps) ’Sig (int#,freq/signal,pt#)
DIM cor#(1 TO nSeq, nSteps) ’correction to sig(int#,1,pt#)
DIM Bck4(1 TO nSeq, nBlk), AveBck4(1 TO nSeq) ’Bck(int#,bckgnd#)
DIM sMax(1 TO nSeq), sMin(1 TO nSeq) ’Extreme signals
DIM fMax(1 TO nSeq), fMin(1 TO nSeq) ’Location of extreme signals
DIM fs#(1) ’Temporary storage of rounded frequencies
DIM Ave(1 TO nSeq), sd(1 TO nSeq), frac(1 TO nSeq) ’Signal statistics
DIM dum, SCX, SCY, sum, sum2
DIM iAptr, FHDL%, FLckHDL&, AHDL%, ALckHDL&
DIM m, m2, iyC, ixC, nRptCnt, i, ii, j, jj, k, iBlk, NxtBlk
DIM iElem&, iDir, nErr, iPlot, fRndB&, iBck, iBckStp, ia, iX, nWait, iValid
DIM arb$, aFlnm AS STRING
DIM Tint#

DIM tltxs AS LONG, tltys AS LONG ’accumulators for tilt averages
 tltxs = 0: tltys = 0
 ntlt = 0 ’number of tilt samples acquired

 Tint# = nCl * iTint& / fCl

 PRINT "Initializing the AWFG board."
 ’Determine the control register setting iCON and the clock divider iDiv
 IF nCl = 1 THEN
 ’iCON = &H64 ’2CH/200ns/EXT GATE
 iCON = &H66 ’2CH/200ns/EXT GATE/NSCN
 ’iCON = &H60 ’2CH/200ns
 iDiv = 2 ’Minimum setting without disabling 8254 outputs
 ELSE ’Don’t set 200ns bit
 ’iCON = &H44 ’2CH/EXT GATE
 iCON = &H46 ’2CH/EXT GATE/NSCN
 ’iCON = &H40 ’2CH
 iDiv = nCl
 END IF
 OUT aCON, iCON ’Set control register
 OUT a8254, &H74 ’Program 8254 Counter #1 for internal timebase divider
 OUT aCT1, iDiv MOD &H100 ’Low byte
 OUT aCT1, INT(iDiv / &H100) ’High byte
 ’Calculate End of Scan Address
 iSCL = (lArb& - 1) MOD &H100: iSCH = INT((lArb& - 1) / &H100)

 PRINT "Selecting output waveforms."
 IF NOT iUp THEN ’Select AWFG pattern if not done within loop
 nErr = XMSSendBuff%(mSeq(1)) ’Copy waveform #j from XMS to AWFG board
 IF nErr THEN PRINT "XMSSendBuff: Error #"; nErr
 END IF
 ’Feed Forward control
 outexpr = "FUNC:USER ARB_" + CHR$(48 + mSt(1)) + ";SHAP USER;:TRIG:SOUR EXT"
 l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth2(0), mTerm(0))
 IF nErr <> 0 THEN PRINT "FF Synth: Error #"; nErr
 ’Cs detuning control
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth3(0), mTerm(0))
 IF nErr <> 0 THEN PRINT "Cs Synth: Error #"; nErr

 PRINT "Allocate memory for DMA transfers from A/D board."
 ’Allocate an array of 16-bit (2 byte) data for storage of A/D data.

282 APPENDIX C. COMPUTER CODE

 ’ This buffer must have 2*nSamp elements so it can be aligned to avoid
 ’ page crossings.
 nByte = 2: lBuf& = 2 * nSamp: nElem& = nSamp: memType = 1: memSrce = 0
 nErr = NI.DAQ.Mem.Alloc%(AHDL%, nByte, lBuf&, memType, memSrce)
 IF nErr <> 0 THEN PRINT "NI.DAQ.Mem.Alloc%: Error #"; nErr
 nErr = NI.DAQ.Mem.Lock%(AHDL%, ALckHDL&)
 IF nErr <> 0 THEN PRINT "NI.DAQ.Mem.Lock%: Error #"; nErr
 ’Find starting segment iAptr to avoid page crossing
 nErr = Align.DMA.Buffer(diodev, 11, ALckHDL&, nElem&, lBuf&, aOff&)
 IF nErr THEN PRINT "Align.DMA.Buffer: Error #"; nErr
 iAptr = ALckHDL& / &H10000 ’Strip off segment from ALckHDL&
 iAptr = iAptr + INT((aOff& + .5) / 8) ’Shift 1 seg/16 bytes(8 elem)
 IF ipl THEN PRINT "AHDL="; AHDL%; "ALckHDL="; HEX$(ALckHDL&); "aOff="; HEX$(aOff&); "iAptr="; HE
X$(iAptr)

 PRINT "Allocate memory for DMA transfers to FSK synthesizer."
 ’Allocate an array of 32-bit (4 byte) data for the FSK buffer.
 ’ Each measurement, one of the four FSK patterns will be copied into
 ’ this buffer. This buffer must be twice as long as the pattern
 ’ (2*nFSK elements) so it can be aligned to avoid page crossings for
 ’ DMA transfers.
 nByte = 4: lBuf& = 2 * nFSK: nElem& = nFSK: memType = 1: memSrce = 0
 nErr = NI.DAQ.Mem.Alloc%(FHDL%, nByte, lBuf&, memType, memSrce)
 IF nErr <> 0 THEN PRINT "NI.DAQ.Mem.Alloc%: Error #"; nErr: STOP
 nErr = NI.DAQ.Mem.Lock%(FHDL%, FLckHDL&)
 IF nErr <> 0 THEN PRINT "NI.DAQ.Mem.Lock%: Error #"; nErr: STOP
 IF ipl THEN PRINT "FHDL="; FHDL%; "FLckHDL&="; HEX$(FLckHDL&)

 PRINT "Setting pulse times."
 m = mSt(1) ’First sequence
 ’Set shutter, blasting, and probe times for SRS pulser#3
 outexpr = sh$ ’Always set the shutter time
 ’Set the blasting time if not usually set
 IF NOT iUp OR iFix THEN outexpr = outexpr + bl$(m)
 ’Set the probe time if not usually set
 IF NOT iUp THEN outexpr = outexpr + pr$(m)
 l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSRSP2(0), mTerm(0))
 IF nErr <> 0 THEN PRINT "IEEE Error #"; nErr

 ’Set DF Raman pulse time for SRS pulser#2
 ’Set the DF Raman pulse time(s) if not usually set
 IF NOT iUp OR iFix THEN
 outexpr = df$(m): l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSRSP1(0), mTerm(0))
 IF nErr <> 0 THEN PRINT "IEEE Error #"; nErr
 END IF

 ’Prepare to start
 CLS : COLOR 7 ’Light white for writing on plot

 LOCATE 28, CINT(41 - LEN(Flnm$) / 2): PRINT Flnm$;

 LOCATE 1, 38: PRINT USING "#^^^^V"; ysc; ’display main plot scale
 LOCATE 1, 59: PRINT USING "#^^^^V"; yysc; ’display inset plot scale
 ’Draw plot borders and center lines
 IF iINT(0) THEN ’Single plot
 LOCATE 30, 1: PRINT "Tpr="; : PRINT USING tFmt; exp3 * Tpr(1);
 LINE (0, 384)-(639, 384), 15: LINE (320, 0)-(320, 479), 15
 SCX = (nXpts - 1) / nSteps: SCY = nYpts - 1
 ELSE ’Four plots
 FOR m = 1 TO 4
 IF iINT(m) THEN
 iyC = 15 * INT((m + 1) / 2): ixC = 46 - 40 * (m MOD 2)
 LOCATE iyC, ixC: PRINT "Tpr="; : PRINT USING tFmt; exp3 * Tpr(m);
 END IF
 NEXT m
 LINE (320, 0)-(320, 479), 9: LINE (0, 240)-(639, 240), 9
 LINE (0, 192)-(639, 192), 15: LINE (0, 432)-(639, 432), 15
 LINE (160, 0)-(160, 479), 15: LINE (480, 0)-(480, 479), 15
 SCX = (nXpts - 1) / (2 * nSteps): SCY = (nYpts - 1) / 2

 END IF
 ’Statistics labels
 FOR j = 1 TO nSeq
 iyC = 15 * INT((mSt(j) + 1) / 2) - 13: ixC = 41 - 40 * (mSt(j) MOD 2)
 LOCATE iyC, ixC: PRINT "Sig=";
 LOCATE iyC + 1, ixC: PRINT "Max=";
 LOCATE iyC + 2, ixC: PRINT "Min="
 NEXT j
 LINE (0, 0)-(639, 479), 9, B ’Border box
 SCXi = .2 * (nXpts - 1) / nSamp: SCYi = .2 * (nYpts - 1) ’Inset scale factors

 iElem& = 0: iDir = 1 ’Parameters for memory routines
 iBlk = 0 ’Counter for background measurements
 nWait = nCyc ’Number of cycles before recording data
 iWait = 0 ’Wait until user presses another key to record data?
 iQuit = 0 ’Clear quit flag
 i = 0 ’Data point
 nStart = 0: nStop = 0 ’Counters for AWFG pattern status
 DO ’Make measurements at nSteps+1 pulse frequencies
 j = 1 ’Sequence #
 DO ’Step through nSeq sequences
 iBckStp = 0 ’Flag to tell that the program is not being backstepped
 Sig4 = 0 ’Clear signal data
 nRptCnt = 1 ’Repetition #
 DO ’Step through nRptC measurements for each point
 NxtBlk = iBlk * nSteps / (nBlk - 1) ’Value of i for next background
 iBck = (i = NxtBlk) ’Read background for this cycle?
 IF iBck THEN nRptC = 1 ELSE nRptC = nRpt ’Number of repetitions
 m = mSt(j) ’FF pattern and array storage pointer this cycle
 m2 = (m + 1) \ 2 ’Which pair of interferometers?
 OUT aCON, iCON ’Clear START bit for AWFG board
 ’Reset AWFG board address pointers and end-of-scan address
 OUT aSCL, 0: OUT aSCH, 0
 OUT aDAC, 0: OUT aSYS, 0
 OUT aSCL, iSCL: OUT aSCH, iSCH
 IF iUp THEN ’Update pulse times and waveforms for this cycle
 ’Set blasting and probe time for SRS pulser#3
 outexpr = pr$(m)
 IF NOT iFix THEN outexpr = outexpr + ";" + bl$(m)
 l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSRSP2(0), mTerm(0))
 IF nErr <> 0 THEN PRINT "Detection timing: Error #"; nErr
 IF NOT iFix THEN ’Set DF Raman pulse times for SRS pulser#2
 outexpr = df$(m): l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSRSP1(0), mTerm(0))
 IF nErr <> 0 THEN PRINT "DF Raman timing: Error #"; nErr
 END IF
 ’Copy AWFG waveform #mSeq(j) from XMS to AWFG
 nErr = XMSSendBuff%(mSeq(j))
 IF nErr THEN PRINT "XMSSendBuff: Error #"; nErr
 ’Update the FF and Cs detuning waveforms
 outexpr = "FUNC:USER ARB_" + CHR$(48 + m) + ";SHAP USER"
 ELSE ’Rezero the phase for the FF and Cs detuning patterns
 ’The HP 33120A Synthesizer improperly changes the burst phase
 ’ after each trigger, so it must be rezeroed each cycle.
 outexpr = "BM:PHAS 0"
 END IF
 ’Send command to FF and Cs detuning synthesizers
 l& = LEN(outexpr)
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth2(0), mTerm(0))
 IF nErr <> 0 THEN PRINT "FF synth: Error #"; nErr
 CALL koutputStr(0, nErr, SSEGADD&(outexpr), l&, 0, mAdSnth3(0), mTerm(0))
 IF nErr <> 0 THEN PRINT "Cs synth: Error #"; nErr
 OUT a8254, &H30 ’Program 8254 Counter #0 for 1 cycle
 OUT aCT0, 1: OUT aCT0, 0 ’Low byte, high byte
 OUT aCON, iCON OR 1 ’Set START bit for AWFG pattern

 ’Update scanned FSK frequencies
 IF nFSK0 = 0 THEN ’Scan preselection frequency
 ’Since the preselection frequency is loaded onto the DDS lines
 ’ by the last strobe of the previous cycle, we must determine

 ’ the frequency for the next cycle.
 iCyc = (nRptCnt = nRpt AND nWait = 0) ’End of cycle?
 iNxt = i - (iCyc AND NOT iBck)
 iBckNxt = ((iNxt = NxtBlk) AND NOT (iCyc AND iBck))
 IF iBckNxt THEN ’Background next point
 fRndB& = fBack&(m, 0)
 ELSE ’Calculate frequency for normal data
 CALL BinCon(fC#(m, 0) + fOff - fspan * (.5 - iNxt / nSteps), fRndB&, fs#(0))
 END IF
 FSK&(2, m) = fRndB& ’Store frequency at end of FSK array
 IF NOT iBckNxt AND iNxt <= nSteps THEN
 ’Store actual frequency - center offset
 sig(j, 1, iNxt) = fs#(0) - fCAve#(m)
 cor#(j, iNxt) = 0 ’no correction for Pi-pulse scans
 END IF
 ELSE ’Do not scan preselection frequency
 FOR k = 0 TO 1 + iINT(0) ’May need to scan 2 frequencies
 IF iBck THEN ’Background this point
 fRndB& = fBack&(m, k)
 ELSE ’Calculate frequency for normal data
 CALL BinCon(fC#(m, k) + fOff - fspan * (.5 - i / nSteps), fRndB&, fs#(k))
 END IF
 FSK&(nFSK0 + k, m) = fRndB&
 NEXT k
 IF NOT iBck THEN ’Store actual frequency - center offset
 sig(j, 1, i) = (fs#(0) + fs#(1 + iINT(0))) / 2 - fCAve#(m)
’*55 cor#(j, i) = (PfPi2&(j, 1) - PfPi2&(j, 2)) * fstep * Tdds / Tint#
’*56:
 cor#(j, i) = (PfPi2&(m, 1) - PfPi2&(m, 2)) * fstep * Tdds / Tint#
 ’compensate for FSK delay between 1st and 2nd Pi/2-pulses
 cor#(j, i) = cor#(j, i) + (fs#(0) - fs#(1 + iINT(0))) * Tdds / Tint#
 ’compensate for FSK delay between 3rd and 4th Pi/2-pulses
’*55 cor#(j, i) = cor#(j, i) + (ADSPhase(PfPi2&(j, 1)) - ADSPhase(PfPi2&(j, 2))) /
Tint#
’*56:
 cor#(j, i) = cor#(j, i) + (ADSPhase(PfPi2&(m, 1)) - ADSPhase(PfPi2&(m, 2))) / Tint
#
 ’compensate for phase error of ADS-431 going from 1st to 2nd Pi/2
 cor#(j, i) = cor#(j, i) + (ADSPhase(FSK&(nFSK0, m)) - ADSPhase(FSK&(nFSK0 + 1, m))
) / Tint#
 ’compensate for phase error of ADS-431 going from 3rd to 4th Pi/2
 END IF
 END IF

 ’Copy FSK sequence into buffer for DMA transfer
 ’ Skip 1st element FSK&(0,m) to rotate pattern
 nErr = NI.DAQ.Mem.Copy%(FHDL%, FSK&(1, m), iElem&, nElem&, iDir)
 IF nErr <> 0 THEN PRINT "Error in NI.DAQ.Mem.Copy #"; nErr

 ’Arm Digital I/O board for DMA transfers to synthesizer.
 ’ Routine will immediately return control to main program
 nErr = FSKdrive%(1, fCent / 4, lBuf&, FLckHDL&, nElem&)

 ’Wait until IP0 is low for correct probe triggering
 DO: CALL basdasg(14, VARPTR(iParlst(0)), nErr)
 LOOP WHILE (iParlst(0) AND 1) = 1

 ’Set up to start aquisition on rising trigger IP0
 ’The call routine is not terminated until IP0 goes high
 ’# conversions; Memory segment for DMA; 1=trigger from timer; 0 = One shot; gain set
 iParlst(0) = nSamp: iParlst(1) = iAptr: iParlst(2) = 1: iParlst(3) = 0: iParlst(4) = 0
 CALL basdasg(6, VARPTR(iParlst(0)), nErr) ’Mode 6
 IF nErr <> 0 THEN PRINT "BASDASG mode 6: Error #"; nErr

 IF nWait = 0 THEN ’Check whether AWFG pattern was completed
 IF (INP(aCON) AND 1) THEN
 LOCATE 14, 1: PRINT "i="; i; "j="; j; ": AWFG not completed"
 nWait = 1 ’Wait 1 cycle for valid pattern
 nStart = nStart + 1
 ELSE
 nStop = nStop + 1

 END IF
 END IF

 ’Wait until conversion complete
 DO ’check status mode (8)
 CALL basdasg(8, VARPTR(iParlst(0)), nErr)
 LOOP WHILE (iParlst(1) AND 1) = 1

 ’Disarm DMA transfers for synthesizer
 ’ Now that the probe has ended, it is safe to disarm the DMA
 ’ transfers for the synthesizer, and check whether the AWFG
 ’ pattern ended its cycle properly.
 nErr = FSKdrive%(2, fCent / 4, lBuf&, FLckHDL&, nElem&)

 ’Retrieve probe A/D data
 ’ Transfer from segment iAptr; Conversion 0; Transfer to iData(); No channel array
 iParlst(0) = nSamp: iParlst(1) = iAptr: iParlst(2) = 0: iParlst(3) = VARPTR(iData(0)): i
Parlst(4) = 0
 CALL basdasg(9, VARPTR(iParlst(0)), nErr) ’Mode 9
 IF nErr <> 0 THEN PRINT "BASDASG Mode 9: Error #"; nErr

’Acquire tilt signals:
 ’Set the DAS-16 channel limits using mode 1 to sample channel 2 and 3
 iParlst(0) = 2: iParlst(1) = 3 ’lower limit; upper limit
 CALL basdasg(1, VARPTR(iParlst(0)), nErr)
 IF nErr <> 0 THEN PRINT "BASDASG mode 1: Error #"; nErr: iQuit = -1
 ’Sample once from channel 2
 CALL basdasg(3, VARPTR(iParlst(0)), nErr)
 IF nErr <> 0 THEN PRINT "BASDASG mode 3: Error #"; nErr: iQuit = -1
 itltx = iParlst(0)
 ’Sample once from channel 3
 CALL basdasg(3, VARPTR(iParlst(0)), nErr)
 IF nErr <> 0 THEN PRINT "BASDASG mode 3: Error #"; nErr: iQuit = -1
 itlty = iParlst(0)
’restore DAS-16 configuration
 ’Set the DAS-16 channel limits using mode 1 to sample channel 0
 iParlst(0) = 0: iParlst(1) = 0 ’lower limit; upper limit
 CALL basdasg(1, VARPTR(iParlst(0)), nErr)
 IF nErr <> 0 THEN PRINT "BASDASG mode 1: Error #"; nErr: iQuit = -1

 ’Plot and sum the A/D samples
 LINE (nXpts, 0)-(nXpts * .8, nYpts * .2), 1, BF ’Draw inset box
 sum = 0
 FOR k = 0 TO nSamp - 1
 y = iData(k) / 4095 * 10
 sum = sum + y
 y = .9 * (1 - (y - Bck4(j, 0)) / yysc)
 IF (y >= 0) AND (y < 1) THEN
 PSET (CINT(.8 * nXpts + SCXi * k), CINT(SCYi * y)), 15
 END IF
 NEXT k
 sum = sum / nSamp
 ’Display background value
 IF iINT(0) THEN
 iyC = 29: ixC = 71
 ELSE
 iyC = 1 + 14 * INT((m + 1) / 2): ixC = 71 - 40 * (m MOD 2)
 END IF
 LOCATE iyC, ixC: PRINT USING "##.#^^^^V"; Bck4(j, 0);

 ’Check for any keypress
 a$ = UCASE$(INKEY$)
 IF a$ <> "" THEN
 IF a$ <> "Q" AND a$ <> "B" THEN iWait = NOT iWait ’Toggle iWait
 ’Check for Q(uit) by user
 IF a$ = "Q" THEN
 iQuit = -1: iAuto = 0 ’Return to menu
 END IF
 ’Check for B(ack step) by user. If so, back up in frequency.
 IF a$ = "B" THEN ’Back up the signal and bckgnd pointers
 iPlot = i + (j = 1) ’Number of last plotted point

C.1. ALTINT.BAS 283

 LOCATE 5, 2: PRINT "Point #"; STR$(iPlot);
 INPUT ": Back step amount ="; a$: ia = VAL(a$)
 LOCATE 5, 2: PRINT STRING$(37, 32);
 iBckStp = (ia > 0) ’Only backstep if positive input
 IF iBckStp THEN
 i = iPlot - ia ’i + 1 is value of i for next measurement
 IF i < -1 THEN i = -1
 DO WHILE ((iBlk - 1) * nSteps / (nBlk - 1)) > i
 iBlk = iBlk - 1
 LOOP
 iBck = 0 ’Don’t let iBlk advance
 ’Redetermine the extrema in case they’ve been erased
 FOR jj = 1 TO nSeq
 FOR ii = 0 TO i
 dum = sig(jj, 2, ii)
 IF dum > sMax(jj) OR ii = 0 THEN sMax(jj) = dum: fMax(jj) = sig(jj, 1, ii
)
 IF dum < sMin(jj) OR ii = 0 THEN sMin(jj) = dum: fMin(jj) = sig(jj, 1, ii
)
 NEXT ii
 NEXT jj
 END IF
 nWait = 2 ’Wait through one cycle to get back in synch
 END IF
 END IF
 IF iWait THEN nWait = 2 ’Don’t record data until keypress
 iValid = (nWait = 0) ’Data invalid if exit before nWait=0
 IF iValid THEN
 Sig4 = Sig4 + sum ’Include data in sum
 nRptCnt = nRptCnt + 1 ’Increment nRptCnt
 ELSE
 nWait = nWait - 1 ’Decrement nWait
 END IF
 LOOP WHILE (nRptCnt <= nRptC) AND NOT (iQuit OR iBckStp)

 IF iValid THEN ’Check for minimum or maximum and plot
 ’average acquired tilt values:
 ntlt = ntlt + 1
 tltxs = tltxs + itltx
 tltys = tltys + itlty
’ LOCATE 14, 10
’ PRINT "X:"; itltx; ", "; itltx / 4095 * 10; ", "; tltxs / 4095 * 10 / ntlt; ", "; ntlt
’ LOCATE 15, 10
’ PRINT "Y:"; itlty; ", "; itlty / 4095 * 10; ", "; tltys / 4095 * 10 / ntlt; ", "; ntlt
’ Sig4 = ysc * Sig4 / nRptC
 Sig4 = Sig4 / nRptC
 iX = CINT(SCX * (i + ((m - 1) AND 1) * nSteps))
 IF iBck THEN ’Save and plot background value
 Bck4(j, iBlk) = Sig4
 ’Subtract background (Use 1st bckgnd pt, average bckgnd’s later)
 dum = Sig4 - Bck4(j, 0)
 ’Make room for circles
 IF iX < 3 THEN iX = 3
 IF iX > nXpts - 3 THEN iX = nXpts - 3
 dum = dum / ysc
 FOR k = 0 TO 3 ’Plot points on screen if valid
 IF dum > -.25 AND dum < 1 THEN
 CIRCLE (iX, SCY * (m2 - .2 - .8 * dum)), 2, 10 + k
 END IF
 dum = dum * 10
 NEXT k
 ELSE ’Save and plot signal value
 sig(j, 2, i) = Sig4
 ’Subtract background
 dum = Sig4 - Bck4(j, 0)
 ’Print present, high, and low signals
 IF dum > sMax(j) OR i = 0 THEN sMax(j) = dum: fMax(j) = sig(j, 1, i)
 IF dum < sMin(j) OR i = 0 THEN sMin(j) = dum: fMin(j) = sig(j, 1, i)
 iyC = 15 * m2 - 13: ixC = 45 - 40 * (m MOD 2)
 LOCATE iyC, ixC: PRINT USING smask; dum; : PRINT USING fmask; sig(j, 1, i);
 LOCATE iyC + 1, ixC: PRINT USING smask; sMax(j); : PRINT USING fmask; fMax(j)

 LOCATE iyC + 2, ixC: PRINT USING smask; sMin(j); : PRINT USING fmask; fMin(j)
 ’Plot data points over four orders of magnitude
 dum = dum / ysc / 10
 FOR k = 0 TO 3
 IF dum > -.25 AND dum < 1 THEN
 PSET (iX, SCY * (m2 - .2 - .8 * dum)), 10 + k
 END IF
 dum = dum * 10
 NEXT k
 END IF
 END IF
 j = j + 1
 LOOP WHILE (j <= nSeq) AND iValid
 iBlk = iBlk - iBck ’Advance background pointer
 i = i - (NOT iBck) ’Advance point counter except after backgrounds
 LOOP WHILE (i <= nSteps) AND NOT iQuit

 ’Set AWFG running continuously
 iCON = iCON AND &HFD ’Set NSCN=0 (-> continuous)
 OUT aCON, iCON ’Stop AWFG and set NSCN=0
 ’Reset AWFG board address pointers and end-of-scan address
 OUT aSCL, 0: OUT aSCH, 0
 OUT aDAC, 0: OUT aSYS, 0
 ’For cw operation, the last gate sample must cause the AWFG pattern to
 ’ wrap back around to sample #0. (For single shot, setting START=1 did
 ’ this. Consequently, for a fixed gate pattern, one point must be
 ’ dropped from the AWFG pattern. Since the first and last point are both
 ’ at 0, it doesn’t hurt to eliminate the last point.
 iSCL = (lArb& - 2) MOD &H100: iSCH = INT((lArb& - 2) / &H100)
 OUT aSCL, iSCL: OUT aSCH, iSCH
 OUT a8254, &H30 ’Program 8254 Counter #0 for 1 cycle
 OUT aCT0, 1: OUT aCT0, 0 ’Low byte, high byte
 OUT aCON, iCON OR 1 ’Set START bit for AWFG pattern
 IF ipl THEN LOCATE 15, 1: PRINT "AWFG stopped:"; nStop; ", AWFG running:"; nStart

 IF iAuto = 1 THEN iQuit = -1 ’Don’t save data

 ’Unlock and free memory for DMA transfers
 nErr = NI.DAQ.Mem.Unlock%(AHDL%)
 IF nErr THEN PRINT "NI.DAQ.Mem.Unlock for A/D: Error #"; nErr
 nErr = NI.DAQ.Mem.Free%(AHDL%)
 IF nErr THEN PRINT "NI.DAQ.Mem.Free for A/D: Error #"; nErr
 nErr = NI.DAQ.Mem.Unlock%(FHDL%)
 IF nErr THEN PRINT "NI.DAQ.Mem.Unlock for FSK: Error #"; nErr
 nErr = NI.DAQ.Mem.Free%(FHDL%)
 IF nErr THEN PRINT "NI.DAQ.Mem.Free for FSK: Error #"; nErr

 IF NOT iQuit THEN ’Save the data to the hard disk
 k0 = 3 ’Maximum scale for plotting
 FOR j = 1 TO nSeq
 ’Calculate average offset over all background readings
 AveBck4(j) = 0
 FOR i = 0 TO nBlk - 1
 AveBck4(j) = AveBck4(j) + Bck4(j, i)
 NEXT i
 AveBck4(j) = AveBck4(j) / nBlk

 ’Process raw signal and generate statistics with average offset
 sum = 0: sum2 = 0
 FOR i = 0 TO nSteps
 ’Scale and subtract offsets
 sig(j, 2, i) = sig(j, 2, i) - AveBck4(j)
 sum = sum + sig(j, 2, i)
 sum2 = sum2 + sig(j, 2, i) ^ 2
 NEXT i
 Ave(j) = sum / (nSteps + 1) ’Average signal
 sd(j) = SQR((sum2 - (nSteps + 1) * Ave(j) ^ 2) / nSteps) ’Standard deviation of signal
 IF Ave(j) <> 0 THEN
 frac(j) = ABS(exp2 * sd(j) / Ave(j)) ’Fractional rms noise in the signal
 ELSE
 frac(j) = 0

 END IF

 ’Find maximum scale for plotting
 DO WHILE 10 ^ k0 * sMin(j) < -.1 OR 10 ^ k0 * sMax(j) > 1
 k0 = k0 - 1
 LOOP
 NEXT j
 k0 = k0 - 1

 ’Open the file for storing data
 OPEN "e:\lab\dat\" + Flnm$ FOR OUTPUT AS 1

 ’Save number of steps and number of sequences
 PRINT #1, nSteps; d; nSeq

 ’Save frequency/signal pairs
 FOR k = 0 TO nSteps
 FOR j = 1 TO nSeq
 PRINT #1, USING fFmt; sig(j, 1, k);
 PRINT #1, USING sigexp; sig(j, 2, k);
 PRINT #1, USING fFmt; cor#(j, k);
 NEXT j
 PRINT #1,
 NEXT k

 ’Save numerical parameters
 ’Parameters for fit program only
 PRINT #1, nPi
 PRINT #1, USING "##.#########"; Tint#
 ’Parameters for fit and Plot40 programs
 FOR j = 1 TO nSeq
 PRINT #1, mSeq(j)
 PRINT #1, USING fFmt; fCAve#(mSt(j))
 NEXT j
 ’Save graphing parameters and # of lines of statistics for Plot??
’ PRINT #1, ysc; d; k0; d; nStat + nBlk
 PRINT #1, ysc; d; k0; d; nStat + nBlk + 2
 ’two lines added for tilt values
 ’Save summary statistics
 ’ Print interferometer sequence as column headings
 PRINT #1, "Interferometer #:";
 FOR j = 1 TO nSeq: PRINT #1, mSeq(j); STRING$(10, 32); : NEXT j
 FOR i = 0 TO nBlk - 1
 IF i = 0 THEN
 PRINT #1, d; "F=4 Backgnd:";
 ELSE
 PRINT #1, d; " ";
 END IF
 FOR j = 1 TO nSeq
 PRINT #1, USING sigexp; Bck4(j, i);
 NEXT j
 NEXT i
 PRINT #1, d; "Ave Backgnd:";
 FOR j = 1 TO nSeq
 PRINT #1, USING sigexp; AveBck4(j);
 NEXT j
 PRINT #1, d; "Max. Signal:";
 FOR j = 1 TO nSeq
 PRINT #1, USING sigexp; sMax(j);
 NEXT j
 PRINT #1, d; "@ fMax (Hz):";
 FOR j = 1 TO nSeq
 PRINT #1, USING fFmt; fMax(j);
 NEXT j
 PRINT #1, d; "Min. Signal:";
 FOR j = 1 TO nSeq
 PRINT #1, USING sigexp; sMin(j);
 NEXT j
 PRINT #1, d; "@ fMin (Hz):";
 FOR j = 1 TO nSeq
 PRINT #1, USING fFmt; fMin(j);

 NEXT j
 PRINT #1, d; "Ave. Signal:";
 FOR j = 1 TO nSeq
 PRINT #1, USING sigexp; Ave(j);
 NEXT j
 PRINT #1, d; "Stand. Dev.:";
 FOR j = 1 TO nSeq
 PRINT #1, USING sigexp; sd(j);
 NEXT j
 PRINT #1, d; "Fract. Err.:";
 FOR j = 1 TO nSeq
 PRINT #1, USING pcnt; frac(j);
 NEXT j
 PRINT #1, d; "X-tilt (V):";
 PRINT #1, USING " ##.###"; tltxs / 4095 * 10 / ntlt
 PRINT #1, "Y-tilt (V):";
 PRINT #1, USING " ##.###"; tltys / 4095 * 10 / ntlt
 END IF

 Scan% = iQuit

END FUNCTION

284 APPENDIX C. COMPUTER CODE

C.1.3 PlotFit.BAS

The PlotFit module is used to graphically display and Þt the data. The Þt code is a

subset of the main Þt code Fit.C given in section C.2.

’PFXX.BAS -- This module contains the Plot subroutine for outputting data
’ to the HP Plotter and the nonlinear least squares fit
’ routines for fitting interferometer data to sinusoids.
’ It is modified from PF42.BAS by checking the frequency data for
’ the formatted length based on the location of the first space.
’ This allows it to be compatible with different frequency formats,
’ which is necessary since Data42 rounds frequencies to 0.1 mHz
’ instead of 1 mHz.
’Revision History:
’43 Ring bell when scan is finished.
’52 11/ 5/97 Modify SUBROUTINE Plot() so that it can the correction to the
’ frequency values. As soon as the frequency values freq(i,j) are
’ loaded from the data file, the correction is added to freq(i,j).
’ Thus, the graphing, plotting, and fitting, sections all use the
’ corrected frequencies.
’53 2/12/98 Plots are now scaled in the same way that DATA53 scales the
’ incoming data. As in DATA53, the vertical scale is displayed
’ in the top center of the screen, and the offset is displayed in
’ the lower right of each sub-screen. The section for ploting to
’ the HP7090A plotter has been removed and replaced with a section
’ which gives the user the option of changing the vertical scale.
’ The vertical scale is initial set to yscP/10^k0, where yscP and
’ k0 are values stored in the data file by DATA??. k0 is the
’ largest integer such that all data points multiplied by 10^k0 fit
’ on the screen with the original vertical scale yscP.
’54 4/16/98 Add display of recoil difference in ppb and mrad. Change
’ default answer to question "Fit this data?" from YES to NO.
’55 7/13/98 Changed fitting algorithm from Levenberg-Marquardt to linear
’ least squares. Changed default answer to question "Fit this data?"
’ back from NO to YES.
’ --> Changed fit from sin(kx+p) to cos(kx+p)
’ (now all phases are pi/2 less than they would be before)
’55 11/ 6/98 Plot() no longer calls FlnmAdj$() to add path and extension.
’ Thus it assumes Flnm$ is the complete filename. Display the
’ file name when plotting. Instead of querying, accept ’f’ to run
’ fit.
’61 2/16/01 Ignore the graph scaling factor (or graph maximum value) yscP
’ saved in the data file. Calculate the "best" scaling factor
’ by finding the maximum of all of the data and then rounding up
’ to the nearest value 1e-X,2e-X,5e-X, where X is the smallest
’ exponent possible
’
’*55 ’$INCLUDE: ’e:\HP\BAS\head2.bi’

DEFINT I-N
DEFSNG A-H, O-Z

DECLARE SUB Plot (mode, Flnm$, psc)
DECLARE SUB Fit2 (Tint, nPts, nSeq, of(), amp(), idisc(), parm(), psd(), chi(), nErrFit())
DECLARE FUNCTION lfit (N, x(), y(), parm(), sig(), chisq)
DECLARE SUB standardform (j, p(), psd())
DECLARE FUNCTION mod2pi (phi)
DECLARE FUNCTION GaussJ% (N, A(), B())
’*60b
DECLARE SUB FitGhead (nPts, of(), amp(), idisc(), parm(), psd(), chi(), nErrFit())
DECLARE SUB FitG (nPts, xd(), yd(), ibad(), parm(), psd(), chi, nErrFit)
DECLARE SUB covsrt (nFit, ia(), covar())
DECLARE SUB mrqcof (nData, x(), y(), nFit, A(), ia(), alpha(), da(), chisq)
DECLARE FUNCTION mrqmin (nData, x(), y(), nFit, A(), ia(), covar(), alpha(), da(), chisq, aLamda)
DECLARE SUB funcs (x, A(), y, dyda())
DECLARE SUB PUNice (x!, xsd!, xnm$, xunit$)
’*60e

CONST nSeqMax = 4 ’Maximum number of interferometer sequences
CONST pi = 3.141592654#, twopi = 2 * pi
CONST ERRTooFewPts = 1, ERRBadData = 2, ERRAllocMem = 3
CONST ERRNRAllocMem = 4, ERRNRSingMat = 5

’Constants for fit routines
CONST pl% = 1 ’ level of diagnostic printing (0=least)
CONST nParm = 4 ’ maximum number of parmeters in fit

CONST DontVary = 0, DoVary = -1, AutoVary = 1

CONST nSamp = 200 ’Number of 20 us A/D samples for probe detection

’$STATIC
’variables for A/D board
DIM iParlst(15) ’A/D Driver requires iParLst() be Static
DIM iData(nSamp) ’Storage for A/D data
’variables for plot subroutine
DIM mTerm(3) ’GPIB terminators

’Common variables for A/D board
COMMON SHARED iParlst(), iData()
’Common variables for Plot subroutines
COMMON SHARED mTerm(), outexpr AS STRING, iErr

’$DYNAMIC

99 iErr = -1
 CLOSE 1
 PRINT "Plot: File I/O Error. Press any key to continue."
 DO: LOOP WHILE INKEY$ = ""
 RESUME NEXT

999 iErr = -1
 CLOSE 1
 RESUME NEXT

 END

REM $STATIC
DEFINT I-N

SUB covsrt (nFit, ia(), covar())
’ Expand compressed covar(nFit,nFit) back into original parameter space
’ covar(nParm,nParm).
’
’ (C) Copr. 1986-92 Numerical Recipes Software #Q2Zr!$!-3.
’

DIM i, j, k

 ’Clear outer elements of covar()
 FOR i = nFit + 1 TO nParm
 FOR j = 1 TO i: covar(i, j) = 0: covar(j, i) = 0: NEXT j
 NEXT i

 ’Expand covar() back into original parameter space
 k = nFit
 FOR j = nParm TO 1 STEP -1
 IF ia(j) THEN
 FOR i = 1 TO nParm: SWAP covar(i, k), covar(i, j): NEXT i
 FOR i = 1 TO nParm: SWAP covar(k, i), covar(j, i): NEXT i
 k = k - 1
 END IF
 NEXT j

’ERASE I, j, k

END SUB ’covsrt

SUB Fit2 (Tint, nPts, nSeq, of(), amp(), idisc(), parm(), psd(), chi(), nErrFit())
’ Fit2 is a replacement for the Levenberg-Marquardt algorithm sub called Fit.
’ This procedure calls the linear least squares fit of the data, throws away
’ 3 sigma points, and then refits the data.
’ Input parameters are
 ’Tint’ is the time between pi/2 pulses. 1/Tint is the fringe spacing.
 ’nPts’ is the number of data points
 ’nSeq’ is the number of interferometer sequences to fit
 ’of’ is the array(0..nPts-1,1..nSeq) of offset frequencies
 ’amp’ is the array(0..nPts-1,1..nSeq) of amplitudes

C.1. ALTINT.BAS 285

’Output parameters are
 ’parm’ is the array(0..nPts-1,1..nSeq) of fit parameters
 ’psd’ is the array(1..nParm,1..nSeq) of fit parameters error bars
 ’chi’ is the array(1..nSeq) of chi^2 values returned by fit
’are output parameters. Fit returns via nErrFit() integer(s) corresponding
’to one of the possible return codes defined in this file (search for "const err").

’$DYNAMIC

CONST DIS3SIGMA = 1 ’ nonzero to discard points > 3sigma

DIM x(1 TO nPts) ’ scaled frequencies
DIM y(1 TO nPts) ’ scaled amplitudes
DIM z(1 TO nPts) ’ y_fit - y_data
DIM z1, z2 ’ 1st and 2nd moments of z
DIM sigma ’ RMS deviation of z (= sqrt(z2 - z1*z1))
DIM nDiscard AS INTEGER
DIM fitparm(1 TO 4)
DIM fitpsd(1 TO 4)
DIM char AS INTEGER
DIM i

 FOR j = 1 TO nSeq ’Step through interferometer sequences

 FOR i = 0 TO nPts - 1
 x(i + 1) = twopi * Tint * of(i, j)’Scale frequency data
 y(i + 1) = amp(i, j)
 NEXT i

 IF nPts <= nParm + 1 THEN nErrFit(j) = ERRTooFewPts: GOTO Fit2End

 ’ Get a fit using all the points
 nErrFit(j) = lfit(nPts, x(), y(), fitparm(), fitpsd(), chisq)
 IF nErrFit(j) GOTO Fit2End

 IF DIS3SIGMA = 0 THEN

 nDiscard = 0
 FOR i = 1 TO nPts
 idisc(i - 1, j) = 0
 NEXT i

 ELSE

 ’ We will throw away the > 3sig points, so now
 ’ do some statistics on the residual error

 z1 = 0
 z2 = 0
 FOR i = 1 TO nPts
 z(i) = fitparm(1) + fitparm(2) * COS(x(i) + fitparm(3)) - y(i)
 z1 = z1 + z(i)
 z2 = z2 + z(i) * z(i)
 NEXT i
 z1 = z1 / nPts
 z2 = z2 / nPts
 sigma = SQR(z2 - z1 * z1)

 ’ Recopy x and y arrays, skipping points which are > 3 sigma
 nDiscard = 0
 place = 1
 FOR look = 1 TO nPts
 IF ABS(z(look) / sigma) > 3 THEN
 idisc(look - 1, j) = 1 ’ -1 because discard is 0 to npts-1
 nDiscard = nDiscard + 1
 ELSE
 idisc(look - 1, j) = 0
 x(place) = x(look)
 y(place) = y(look)
 place = place + 1
 END IF

 NEXT look
’ PRINT nDiscard; " "; place; " "; look

 FOR i = 1 TO nPts - nDiscard
 z(i) = fitparm(1) + fitparm(2) * COS(x(i) + fitparm(3)) - y(i)
’ PRINT INT(ABS(z(I) / sigma)); " ";
 NEXT i
’ PRINT

 IF nDiscard > 0 THEN
’ PRINT "refitting, "; nPts - nDiscard; " points"
 IF nPts - nDiscard <= nParm + 1 THEN nErrFit(j) = ERRTooFewPts: GOTO Fit2End

 ’ Get a fit using remaining points
 nErrFit(j) = lfit(nPts - nDiscard, x(), y(), fitparm(), fitpsd(), chisq)
 IF nErrFit(j) GOTO Fit2End
 END IF
 END IF

 parm(1, j) = fitparm(1)
 parm(2, j) = fitparm(2)
 parm(3, j) = 1 ’ we are not fitting the fringe spacing
 parm(4, j) = fitparm(3)

 psd(1, j) = fitpsd(1)
 psd(2, j) = fitpsd(2)
 psd(3, j) = 0
 psd(4, j) = fitpsd(3)

 chi(j) = chisq

 ’Return to original scale

 CALL standardform(j, parm(), psd())

 IF pl% >= 10 THEN
 PRINT "signal atoms/standard deviation="; parm(2, j) / ysig
 PRINT "Press any key to continue."
 DO: LOOP WHILE INKEY$ = ""
 CLS
 END IF

 nErrFit(j) = 0

Fit2End: NEXT j

END SUB ’Fit2

SUB FitG (nPts, xd(), yd(), ibad(), parm(), psd(), chi, nErrFit)
’ Run the non-linear least-squared fit routines that use the
’Levenberg-Marquardt Method code from Numerical Recipes to fit to a
’gaussian: y(x) = p1 * Exp{-0.5*[(x-p2)/p3]^2} + p4
’Input parameters:
’ nPts number of data points
’ xd, yd arrays 1..Npts of the data to be fit
’Output parameters:
’ parm, psd arrays 1..nParm fit parameters, error bars
’ chi chi^2 value returned by fit
’ ibad array 1..Npts of:
’ -1 if the point is discarded for the final fit
’ 0 otherwise
’ nErrFit return error codes
’
’
’
’ Fit first finds the mean and standard deviation of the amplitude
’values in ’amp()’. It then scales the data by dividing ’amp()’ by its
’mean and multiplying ’of()’ by 2*pi*Tint which converts ’of()’ to radians.
’It leaves out any "drop-out" points that are more than 3 standard deviations
’away from the mean. The scaled data are stored in ’x()’ and ’y()’.
’ The fit function is given by: y = A + B sin(C x + D). The fit

’routines thus vary the 4 parameters A,B,C,D to minimize chi^2, where chi^2
’is the sum of (y(i)-amp(i,j))^2. The initial values of these parameters
’’parminit()’ are set using the mean and standard deviation as follows:
’ A = mean/range DoVary
’ B = 1.3 * sdev/range DoVary
’ C = 1.0 DontVary
’ D = crossing of y=mean DoVary
’The control array ’pvinit()’ determines how each parameter is varied by the
’fit routine. It has 3 possible values: DontVary, DoVary, AutoVary.
’"DontVary" tells the fit routine NOT to vary that parameter, while "DoVary"
’allows the parameter to vary. "AutoVary" is used for extremely sensitive
’parameters. "AutoVary" forces the fit to be run twice. Any parameters set
’to "AutoVary" are held constant on the first pass and then allowed to vary
’on the second pass. The final values of the parameters from the first pass
’are used as initial values for the second pass. Fit returns the final
’parameter values from the best fit (i.e. the one that produced the smaller
’chi^2).
’
CONST head$ = " i amplitude Foffset width Yoffset chi^2 lamda"
CONST fmti$ = "###:", fmtA$ = " ##.###^^^^"
CONST fmtch$ = " ##.###^^^^", fmtl$ = "######.####"

CONST DIS3SIGMA = 1 ’ nonzero to discard points > 3sigma

’$DYNAMIC
DIM parminit(1 TO nParm) ’ initial values of fit parameters
DIM fitparm(1 TO nParm) ’ fit parameters that change each fit iteration
DIM dp(1 TO nParm) ’ parameter adjustment vector
DIM covar(1 TO nParm, 1 TO nParm) ’ covariance matrix
DIM alpha(1 TO nParm, 1 TO nParm) ’ curvature matrix
DIM x(1 TO nPts) ’ scaled frequencies
DIM y(1 TO nPts) ’ scaled amplitudes
DIM ymin, ymax, yrng ’ range of y-data
DIM xoff, xrng ’ offset, range for x-data
DIM z(1 TO nPts) ’ y_fit - y_data
DIM z1, z2 ’ 1st and 2nd moments of z
DIM sigma ’ RMS deviation of z (= sqrt(z2 - z1*z1))
DIM y1, y2, ytar
DIM aLamda

DIM nData ’ number of data points used in fit
DIM nFit ’ number of parameters that actually vary in fit
DIM n2Pass ’ number of parameters set to AutoVary
DIM pvinit(1 TO nParm) AS INTEGER ’ Handle parameter? DontVary,DoVary,AutoVary
DIM pvary(1 TO nParm) AS INTEGER ’ Vary this parameter? DontVary,DoVary
DIM iter ’ current number of fit iterations
DIM char AS INTEGER
DIM i, i1, i2, imax, nErr

 ’Set parameter control variables
 pvinit(1) = DoVary: pvinit(2) = DoVary: pvinit(3) = DoVary: pvinit(4) = DoVary

 ’Choose initial guesses for fit parameters
 IF pl% >= 20 THEN PRINT "Choosing initial values for fit parameters."
 xmax = xd(1): xmin = xd(1)
 ymax = yd(1): ymin = yd(1)
 imax = 1
 FOR i = 2 TO nPts ’ find extrema
 IF xd(i) < xmin THEN xmin = xd(i)
 IF xd(i) > xmax THEN xmax = xd(i)
 IF yd(i) < ymin THEN ymin = yd(i)
 IF yd(i) > ymax THEN
 ymax = yd(i)
 imax = i
 END IF
 NEXT i
 xoff = xd(imax)
 xrng = (xmax - xmin) / 2
 yrng = ymax - ymin
 ytar = ymin + yrng * EXP(-.5)
 y1 = yrng

 FOR i = 2 TO imax ’ find Exp(-0.5) points
 y2 = ABS(yd(i) - ytar)
 IF (y2 < y1) THEN
 i1 = i
 y1 = y2
 END IF
 NEXT i
 y1 = yrng
 FOR i = imax + 1 TO nPts
 y2 = ABS(yd(i) - ytar)
 IF (y2 < y1) THEN
 i2 = i
 y1 = y2
 END IF
 NEXT i
 IF pl% >= 20 THEN PRINT " xrange ="; xrng; " yrange ="; yrng;

 IF pl% >= 20 THEN PRINT "Scaling data."
 nData = 0 ’Pointer for valid data array
 FOR i = 1 TO nPts
 nData = nData + 1
 x(nData) = (xd(i) - xoff) / xrng
 y(nData) = (yd(i) - ymin) / yrng
 NEXT i
 IF nData <= nParm + 1 THEN nErrFit = ERRTooFewPts: GOTO FitGexit
 ’Set initial parameters
 parminit(1) = 1!
 parminit(2) = 0!
 parminit(3) = ABS(xd(i1) - xd(i2)) / 2 / xrng
 parminit(4) = 0!

 nFit = 0 ’# of parameters to vary in the fit
 n2Pass = 0 ’# of additional parameters to vary in 2nd pass
 FOR i = 1 TO nParm
 fitparm(i) = parminit(i)
 IF pvinit(i) = AutoVary THEN
 pvary(i) = DontVary
 n2Pass = n2Pass + 1
 ELSE
 pvary(i) = pvinit(i)
 nFit = nFit - (pvary(i) = DoVary)
 END IF
 NEXT i

 FOR iPass = 0 TO -(n2Pass > 0) ’2 passes if n2Pass>0
 IF iPass THEN ’2nd pass
 FOR i = 1 TO nParm ’Allow more parameters to vary on 2nd pass
 IF pvinit(i) = AutoVary THEN pvary(i) = DoVary
 NEXT i
 nFit = nFit + n2Pass
 IF pl% >= 10 THEN
 PRINT "Press any key to fit again for ’AutoVary’ parameters:"
 DO: LOOP WHILE INKEY$ = ""
 CLS
 END IF
 END IF

 IF pl% > 0 THEN LOCATE 1, 1: PRINT head$
 chisq = 0: aLamda = -1!
 iter = 0 ’Iteration counter
 DO
 IF pl% > 0 THEN
 IF pl < 10 THEN LOCATE 2, 1
 PRINT USING fmti$; iter;
 PRINT USING fmtA$; fitparm(1) * yrng;
 PRINT USING fmtA$; fitparm(2) * xrng + xoff;
 PRINT USING fmtA$; fitparm(3) * xrng;
 PRINT USING fmtA$; fitparm(4) * yrng + ymin;
 PRINT USING fmtch$; chisq / (nData - nFit) * yrng ^ 2;
 PRINT USING fmtl$; aLamda
 IF pl% >= 10 AND CSRLIN >= 27 THEN

286 APPENDIX C. COMPUTER CODE

 PRINT "Press any key to continue."
 DO: LOOP WHILE INKEY$ = ""
 CLS : PRINT head$
 END IF
 END IF
 nErrFit = mrqmin(nData, x(), y(), nFit, fitparm(), pvary(), covar(), alpha(), dp(), chisq,
aLamda)
 IF nErrFit GOTO FitGexit
 iter = iter + 1
 LOOP WHILE iter <= 100 AND aLamda <= 1000
 aLamda = 0!
 nErrFit = mrqmin(nData, x(), y(), nFit, fitparm(), pvary(), covar(), alpha(), dp(), chisq, aLa
mda)
 IF nErrFit GOTO FitGexit
 chisq = chisq / (nData - nFit)
 IF (NOT iPass) OR chisq <= chi THEN
 FOR i = 1 TO nParm ’Transfer parameters to return arrays
 parm(i) = fitparm(i)
 psd(i) = SQR(chisq * covar(i, i))
 NEXT i
 chi = chisq
 IF iPass AND pl% >= 10 THEN
 PRINT "New chi-squared better (smaller) than previous value."
 PRINT " -> use NEW parameters"
 END IF
 ELSE
 IF pl% >= 10 THEN
 PRINT "New chi-squared worse (larger) than prxevious value."
 PRINT " -> keep OLD parameters"
 END IF
 END IF
 NEXT iPass

 IF DIS3SIGMA = 0 THEN

 nDiscard = 0
 FOR i = 1 TO nPts
 ibad(i) = 0
 NEXT i

 ELSE

 ’ We will throw away the > 3sig points, so now
 ’ do some statistics on the residual error

 z1 = 0
 z2 = 0
 FOR i = 1 TO nPts
 z(i) = parm(1) * EXP(-.5 * ((x(i) - parm(2)) / parm(3)) ^ 2) + parm(4) - y(i)
 z1 = z1 + z(i)
 z2 = z2 + z(i) * z(i)
 NEXT i
 z1 = z1 / nPts
’ z2 = z2 / Npts
 sigma = SQR(z2 / (nPts - 1) - z1 * z1)

 ’ Recopy x and y arrays, skipping points which are > 3 sigma
 nDiscard = 0
 place = 1
 FOR look = 1 TO nPts
 IF ABS(z(look) / sigma) > 3 THEN
 ibad(look) = 1
 nDiscard = nDiscard + 1
 ELSE
 ibad(look) = 0
 x(place) = x(look)
 y(place) = y(look)
 place = place + 1
 END IF
 NEXT look
’ PRINT nDiscard; " "; place; " "; look

 IF nDiscard > 0 THEN
 IF pl% > 0 THEN
 LOCATE 29, 2
 PRINT nDiscard; "points discarded. Refitting"; nPts - nDiscard; "points";
 LOCATE 1, 1
 PRINT head$
 END IF
 IF nPts - nDiscard <= nParm + 1 THEN nErrFit(j) = ERRTooFewPts: GOTO Fit2End
 chisq = 0: aLamda = -1!
 iter = 0 ’Iteration counter
 DO
 IF pl% > 0 THEN
 IF pl < 10 THEN LOCATE 2, 1
 PRINT USING fmti$; iter;
 PRINT USING fmtA$; fitparm(1) * yrng;
 PRINT USING fmtA$; fitparm(2) * xrng + xoff;
 PRINT USING fmtA$; fitparm(3) * xrng;
 PRINT USING fmtA$; fitparm(4) * yrng + ymin;
 PRINT USING fmtch$; chisq / (nData - nFit) * yrng ^ 2;
 PRINT USING fmtl$; aLamda
 IF pl% >= 10 AND CSRLIN >= 27 THEN
 PRINT "Press any key to continue."
 DO: LOOP WHILE INKEY$ = ""
 CLS : PRINT head$
 END IF
 END IF
 nErrFit = mrqmin(nData - nDiscard, x(), y(), nFit, fitparm(), pvary(), covar(), alpha(), dp
(), chisq, aLamda)
 IF nErrFit GOTO FitGexit
 iter = iter + 1
 LOOP WHILE iter <= 100 AND aLamda <= 1000
 aLamda = 0!
 nErrFit = mrqmin(nData, x(), y(), nFit, fitparm(), pvary(), covar(), alpha(), dp(), chisq, aLa
mda)
 IF nErrFit GOTO FitGexit
 chisq = chisq / (nData - nFit)
 END IF
 END IF

 ’Return paramters to original scale
 parm(1) = yrng * parm(1)
 psd(1) = yrng * psd(1)
 parm(2) = xrng * parm(2) + xoff
 psd(2) = xrng * psd(2)
 parm(3) = xrng * parm(3)
 psd(3) = xrng * psd(3)
 parm(4) = yrng * parm(4) + ymin
 psd(4) = yrng * parm(4)
 chi = yrng ^ 2 * chi
 IF pl% >= 10 THEN
 PRINT "Press any key to continue."
 DO: LOOP WHILE INKEY$ = ""
 CLS
 END IF
 IF pl% > 0 THEN
 LOCATE 1, 1
 PRINT STRING$(75, 32)
 PRINT STRING$(75, 32)
 LOCATE 29, 1
 PRINT STRING$(75, 32);
 END IF

 nErrFit = 0

FitGexit:

ERASE parminit, fitparm, dp, covar, alpha, x, y, pvinit, pvary
’ERASE ymin, ymax, yrng, ymean, ysig, aLamda
’ERASE nData, nFit, n2Pass, iter, char, I, nErr

END SUB ’FitG

SUB FitGhead (nPts, of(), amp(), idisc(), parm(), psd(), chi(), nErrFit())
’ Header routine to interface non-linear least-squares fit code with the
’Plot() subroutine of PF??.BAS.
’Input parameters:
’ nPts number of data points
’ of,
’ amp arrays 0..Npts-1,1..nSeqMax of the data to be fit
’Output parameters:
’ parm, psd arrays 1..nParm,1..nSeqMax of fit parameters, error bars
’ chi array 1..nSeqMax of chi^2 values returned by fit
’ idisc is the array 1..Npts,1..nSeqMax of:
’ -1 if the point is discarded for the final fit
’ 0 otherwise
’ nErrFit array 1..nSeqMax of return error codes
’
’$DYNAMIC
DIM xd(1 TO nPts) ’ x-data
DIM yd(1 TO nPts) ’ y-data
DIM ibad(1 TO nPts)
DIM fprm(1 TO nParm) ’ fit parameters
DIM fpsd(1 TO nParm) ’ fit parameters error bars
DIM chisq ’ chi-square value from fit
DIM nec ’ fit return code

DIM i

 FOR i = 1 TO nPts
 xd(i) = of(i - 1, 1)
 yd(i) = amp(i - 1, 1)
 NEXT i

 CALL FitG(nPts, xd(), yd(), ibad(), fprm(), fpsd(), chisq, nec)

 FOR i = 1 TO nPts
 idisc(i - 1, 1) = ibad(i)
 NEXT i
 FOR i = 1 TO nParm
 parm(i, 1) = fprm(i)
 psd(i, 1) = fpsd(i)
 NEXT i
 chi(1) = chisq
 nErrFit(1) = nec

ERASE xd, yd, ibad, fprm, fpsd

END SUB ’FitGhead

REM $STATIC
’Evaluate the fit function and its derivatives:
’ y = p1 * Exp{-0.5*[(x-p2)/p3]^2} + p4
’ dy/dp1 = Exp{-0.5*[(x-p2)/p3]^2}
’ dy/dp2 = p1 * Exp{-0.5*[(x-p2)/p3]^2} * (x-p2) / p3^2
’ dy/dp3 = p1 * Exp{-0.5*[(x-p2)/p3]^2} * (x-p2)^2 / p3^3
’ dy/dp4 = 1
’
SUB funcs (x, p(), y, dydp())

DIM xs

 xs = (x - p(2)) / p(3)
 dydp(4) = 1
 dydp(1) = EXP(-(xs ^ 2) / 2)
 y = p(1) * dydp(1)
 dydp(2) = y * xs / p(3)
 dydp(3) = dydp(2) * xs
 y = y + p(4)

’ERASE xs

END SUB ’funcs

REM $DYNAMIC
’**
’Gauss-Jordan elimination routine from Numerical Recipes,
’ modified to return error codes.
’
’ (C) Copr. 1986-92 Numerical Recipes Software #Q2Zr!$!-3.
’**
’
FUNCTION GaussJ% (N, A(), B())
’
’$DYNAMIC

DIM big, dum, pivinv

DIM indxc(1 TO N), indxr(1 TO N), iPiv(1 TO N)
DIM i, iCol, iRow, j, k, l, ll

 FOR i = 1 TO N ’Loop over columns to be reduced
 big = 0!
 FOR j = 1 TO N ’Outer loop of search for pivot elements
 IF iPiv(j) <> 1 THEN
 FOR k = 1 TO N
 IF iPiv(k) = 0 THEN
 IF ABS(A(j, k)) >= big THEN
 big = ABS(A(j, k))
 iRow = j
 iCol = k
 END IF
 ELSE
 IF iPiv(k) > 1 THEN GaussJ% = ERRNRSingMat: GOTO GJexit
 END IF
 NEXT k
 END IF
 NEXT j
 iPiv(iCol) = iPiv(iCol) + 1
 IF iRow <> iCol THEN
 FOR l = 1 TO N: SWAP A(iRow, l), A(iCol, l): NEXT l
 SWAP B(iRow), B(iCol)
 END IF
 indxr(i) = iRow
 indxc(i) = iCol
 ’Divide pivot row by pivot element
 IF (A(iCol, iCol) = 0!) THEN GaussJ% = ERRNRSingMat: GOTO GJexit
 pivinv = 1! / A(iCol, iCol)
 A(iCol, iCol) = 1!
 FOR l = 1 TO N: A(iCol, l) = pivinv * A(iCol, l): NEXT l
 B(iCol) = pivinv * B(iCol)
 ’Reduce the rows
 FOR ll = 1 TO N
 IF ll <> iCol THEN
 dum = A(ll, iCol)
 A(ll, iCol) = 0!
 FOR l = 1 TO N: A(ll, l) = A(ll, l) - A(iCol, l) * dum: NEXT l
 B(ll) = B(ll) - B(iCol) * dum
 END IF
 NEXT ll
 NEXT i
 ’Unscramble the column interchanges
 FOR l = N TO 1 STEP -1
 IF indxr(l) <> indxc(l) THEN
 FOR k = 1 TO N: SWAP A(k, indxr(l)), A(k, indxc(l)): NEXT k
 END IF
 NEXT l

 GaussJ% = 0

GJexit:
’ERASE big, dum, pivinv, I, iCol, iRow, j, k, l, ll
ERASE indxc, indxr, iPiv

C.1. ALTINT.BAS 287

END FUNCTION ’GaussJ

REM $STATIC
FUNCTION lfit (N, x(), y(), prm(), psd(), chisq)

’ Fit the data to prm(1) + prm(2) * (cos(x + prm(3)))
’ This is done by doing a linear least squares fit to the function
’ myparm(1) + myparm(2) sin(x) + myparm(3) cos(x)
’ and then calculating parm() from myparm().
’ The linear least squares algorithm comes from Numerical Recipes
’ The transfer over the the new variables is scribed from sinefit.c

 DIM design(1 TO N, 1 TO 3) AS SINGLE

 FOR i = 1 TO N ’ the design matrix has elements composed of
 design(i, 1) = 1 ’ the basis functions located at the x
 design(i, 2) = COS(x(i)) ’ coordinates of the data points
 design(i, 3) = SIN(x(i))
 NEXT i

 DIM A(1 TO 3, 1 TO 3) ’ these are alpha and beta in Numerical Recipes
 DIM B(1 TO 3)

 FOR i = 1 TO 3
 FOR j = 1 TO i
 A(i, j) = 0 ’ initialize to 0
 FOR k = 1 TO N
 A(i, j) = A(i, j) + design(k, i) * design(k, j)
 NEXT k
 A(j, i) = A(i, j) ’ a is symmetric
 NEXT j
 NEXT i

 FOR i = 1 TO 3
 B(i) = 0
 FOR k = 1 TO N
 B(i) = B(i) + y(k) * design(k, i)
 NEXT k
 NEXT i

 ’ now solve the "normal equations" by calling gaussJ

 result = GaussJ(3, A(), B())
 IF result <> 0 THEN lfit = result: EXIT FUNCTION

 ’ calculate chisq

 chisq = 0
 FOR i = 1 TO N
 yfit! = B(1) + B(2) * COS(x(i)) + B(3) * SIN(x(i))
 diff! = yfit! - y(i)
 chisq = chisq + diff! * diff!
 NEXT i
 chisq = chisq / (N - 3) ’ chisq /= ndata - nfit

 ’ calculate amplitude, contrast, phase, and uncertainties

 prm(1) = B(1)
 psd(1) = SQR(chisq * A(1, 1))
 f1 = B(2) * B(2) + B(3) * B(3)
 prm(2) = SQR(f1)
 psd(2) = SQR(chisq / f1 * (B(2) * B(2) * A(2, 2) + B(3) * B(3) * A(3, 3) + 2 * B(2) * B(3) * A(2,
3)))

 ’ phase is defined as cos(x + phase)
 ’ and should be atan2(-b(3),b(2))
 ’ except there is no atan2 in BASIC

 ’ the following code should give the right result and be in the range [-pi,pi]
 prm(3) = ATN(-B(3) / ABS(B(2)))

 IF (B(2) < 0) THEN prm(3) = 3.141592653589# - prm(3)
 IF (prm(3) > pi) THEN prm(3) = prm(3) - twopi

 psd(3) = SQR(chisq * (B(3) * B(3) * A(2, 2) + B(2) * B(2) * A(3, 3) - 2 * B(2) * B(3) * A(2, 3)))
/ f1

 lfit = 0

END FUNCTION ’lFit

’ Shift the angle phi by 2*pi steps so that it lies between +-pi.
’ mod2pi returns the integer number of steps required.
’
FUNCTION mod2pi (phi)

 j = INT((ABS(phi) + pi) / twopi)
 IF phi > 0 THEN j = -j
 phi = phi + j * twopi

 mod2pi = j

END FUNCTION ’mod2pi

REM $DYNAMIC
SUB mrqcof (nData, x(), y(), nFit, A(), ia(), alpha(), beta(), chisq)

’$DYNAMIC

DIM ymod, wt, dy, dyda(1 TO nParm)
DIM i, j, k, l, m

 FOR j = 1 TO nFit ’Initialize (symmetric) alpha() and beta()
 FOR k = 1 TO j: alpha(j, k) = 0!: NEXT k
 beta(j) = 0!
 NEXT j

 chisq = 0!
 FOR i = 1 TO nData ’Sum over all data to get alpha(), beta(), and chisq
 CALL funcs(x(i), A(), ymod, dyda())
 dy = y(i) - ymod
 j = 0
 FOR l = 1 TO nParm
 IF ia(l) THEN
 wt = dyda(l)
 j = j + 1
 k = 0
 FOR m = 1 TO l
 IF ia(m) THEN
 k = k + 1
 alpha(j, k) = alpha(j, k) + wt * dyda(m)
 END IF
 NEXT m
 beta(j) = beta(j) + dy * wt
 END IF
 NEXT l
 chisq = chisq + dy ^ 2
 NEXT i
 FOR j = 2 TO nFit ’Fill the symmetric side of alpha()
 FOR k = 1 TO j - 1
 alpha(k, j) = alpha(j, k)
 NEXT k
 NEXT j

’ERASE ymod, wt, dy, dyda, I, j, k, l, m
ERASE dyda

END SUB ’mrqcof

REM $STATIC
’**
’ Nonlinear least-squares fit routine from Numerical Recipes, modified to

’ return error codes.
’
’ (C) Copr. 1986-92 Numerical Recipes Software #Q2Zr!$!-3.
’**
’
FUNCTION mrqmin (nData, x(), y(), nFit, A(), ia(), covar(), alpha(), da(), chisq, aLamda)

’$DYNAMIC
DIM atry(1 TO nParm) ’Trial parameter values
DIM beta(1 TO nFit) ’Parameter adjustment vector
DIM ochisq ’Storage of old chisq value
DIM j, k, l, m, nErr

 IF aLamda < 0 THEN ’Set initial values on 1st iteration
 aLamda = .001
 CALL mrqcof(nData, x(), y(), nFit, A(), ia(), alpha(), da(), chisq)
 END IF

 ’Augment diagonal elements of nonlinear fitting matrix
 ochisq = chisq ’Save old chisq value
 FOR j = 1 TO nFit
 FOR k = 1 TO nFit: covar(j, k) = alpha(j, k): NEXT k
 covar(j, j) = alpha(j, j) * (1! + aLamda)
 beta(j) = da(j)
 NEXT j

 ’Find the matrix solution
 nErr = GaussJ%(nFit, covar(), beta())
 IF nErr THEN mrqmin = nErr: GOTO Mrqexit

 IF aLamda = 0 THEN ’Expand covar() back into original parameter space
 CALL covsrt(nFit, ia(), covar())
 mrqmin = 0
 GOTO Mrqexit
 END IF

 ’Does chisq improve?
 j = 0
 FOR l = 1 TO nParm
 IF ia(l) THEN
 j = j + 1: atry(l) = A(l) + beta(j)
 ELSE
 atry(l) = A(l)
 END IF
 NEXT l
 CALL mrqcof(nData, x(), y(), nFit, atry(), ia(), covar(), beta(), chisq)

 IF chisq < ochisq THEN ’Accept new solution
 aLamda = .1 * aLamda
 FOR j = 1 TO nFit
 FOR k = 1 TO nFit: alpha(j, k) = covar(j, k): NEXT k
 da(j) = beta(j)
 NEXT j
 FOR j = 1 TO nParm: A(j) = atry(j): NEXT j
 ELSE
 aLamda = 10 * aLamda
 chisq = ochisq
 END IF

 mrqmin = 0
Mrqexit:
’ERASE atry, beta, ochisq, j, k, l, m, nErr
ERASE atry, beta

END FUNCTION ’mrqmin

REM $STATIC
SUB Plot (mode, Flnm$, psc)
’Plot -- Subroutine that plots data on screen, sends it to the HP plotter, and
’ then uses the Fit routines to fit interferometer signals to sine
’ waves.

’
’Recoil measurement constants
CONST k1 = 1117841.917# ’F=3 -> F’=3 wavenumber / (2*pi) in m^-1
CONST k2 = 1117811.254# ’F=4 -> F’=3 wavenumber / (2*pi) in m^-1
CONST keff = k1 + k2 ’Effective wavenumber / (2*pi) in m^-1
CONST hmCs = 3.002370019D-09 ’h/mCs in m^2/s
CONST fRec = 2 * hmCs * keff * keff ’Recoil splitting for 4 pi/2 interferometer

’Miscellaneous constants
CONST nXpts = 640, nYpts = 480
’*60:
CONST nFtPts = 100
CONST fmtA$ = "A:##.###", fmtAsd$ = "_+_-#.###", fmtAexp$ = "E+#"
CONST fmtB$ = "B:##.###"
CONST fmtC$ = "C:###.#", fmtCsd$ = "_+_-##.#%"
CONST fmtk$ = "k:##.###", fmtksd$ = "_+_-#.###"
CONST fmtp$ = "p:##.###", fmtpsd$ = "_+_-#.####rad"
CONST fmtch$ = "chi2:##.###^^^^"
’CONST fmtf$ = "+##.####", fmtfsd$ = "_+_-#.#### Hz" ’, fmtff$ = " (+#.#^^^^)"

’$DYNAMIC
DIM parm(1 TO nParm, 1 TO nSeqMax), psd(1 TO nParm, 1 TO nSeqMax)
DIM Aexp(1 TO nSeqMax), scA(1 TO nSeqMax), Bexp(1 TO nSeqMax), scB(1 TO nSeqMax)
DIM chi(1 TO nSeqMax), nErrFit(1 TO nParm)

 ’Prepare to print summary results
 COLOR 15 ’Bright white print
 ’Check whether file exists. If so, read in data.
 ON ERROR GOTO 999 ’Error for file not found
 iErr = 0
 FlnmP$ = Flnm$
 OPEN FlnmP$ FOR INPUT AS 1
 IF iErr THEN
 PRINT FlnmP$; " not found. Press any key to continue."
 DO: LOOP WHILE INKEY$ = ""
 GOTO 200
 END IF

 ON ERROR GOTO 99 ’Error routine for reading past end of file

 IF ABS(psc) < .0001 THEN psc = 1

 ’Read in number of steps and number of sequences
 INPUT #1, nSteps, nSeq
 IF iErr GOTO 200

 ’Arrays for frequency and amplitude data
 DIM freq(nSteps, 1 TO nSeq), ampl(nSteps, 1 TO nSeq), cor(nSteps, 1 TO nSeq)
 DIM idisc(nSteps, 1 TO nSeq)
 DIM Bck(1 TO nSeq)
 ’Read in signal data
 FOR i = 0 TO nSteps
 LINE INPUT #1, A$
 IF i = 0 THEN ’Determine formatting of data
 flen% = 1 ’Determine length of frequency data
 DO WHILE MID$(A$, flen%, 1) = " ": flen% = flen% + 1: LOOP
 DO WHILE MID$(A$, flen% + 1, 1) <> " ": flen% = flen% + 1: LOOP
 tlen% = flen% + 1 ’Determine length to end of amplitude data
 DO WHILE MID$(A$, tlen%, 1) = " ": tlen% = tlen% + 1: LOOP
 DO WHILE MID$(A$, tlen% + 1, 1) <> " ": tlen% = tlen% + 1: LOOP
 IF nSeq = 1 THEN
 clen% = LEN(A$) ’Total data length
 ELSE
 clen% = tlen% + 1 ’Determine length to end of freq. correction
 DO WHILE MID$(A$, clen%, 1) = " ": clen% = clen% + 1: LOOP
 DO WHILE MID$(A$, clen% + 1, 1) <> " ": clen% = clen% + 1: LOOP
 END IF
 alen% = tlen% - flen%
 blen% = clen% - tlen%
 END IF
 IF iErr GOTO 200

288 APPENDIX C. COMPUTER CODE

 FOR j = 1 TO nSeq
’ iStr = tlen% * (j - 1) + 1 ’First string character for Seq. #j
 iStr = clen% * (j - 1) + 1 ’First string character for Seq. #j
 freq(i, j) = VAL(MID$(A$, iStr, flen%))
 ampl(i, j) = VAL(MID$(A$, iStr + flen%, alen%))
 freq(i, j) = freq(i, j) + VAL(MID$(A$, iStr + tlen%, blen%))
 ’correct frequency for synthesizer phase errors
 NEXT j
 NEXT i

 ’Read in nPi and T (for curve fit)
 INPUT #1, nPi, Tint
 IF iErr GOTO 200
 phisc = 1 / (twopi * Tint * (nPi + 1)) ’phase->frequency scale factor

 ’Read in parameters needed for PLOT40
 FOR j = 1 TO nSeq
 INPUT #1, mSeq(j), fCAve#(j)
 IF iErr GOTO 200
 NEXT j

 IF mode THEN CLS ’CLS when calling from Menu

 ’Read in graphing parameters and numbers of statistics
 INPUT #1, yscP, k0, nStat
 IF iErr GOTO 200
’*60 yscP = yscP / 10 ^ k0

 ’Read in statistics
 FOR j = 1 TO nStat
 LINE INPUT #1, A$
 ’Read in average background value(s)
 IF LEFT$(A$, 11) = "Ave Backgnd" THEN
 FOR j2 = 1 TO nSeq
 Bck(j2) = VAL(MID$(A$, 1 + 13 * j2, 13))
 NEXT j2
 END IF
 IF iErr GOTO 200
 PRINT A$
 NEXT j

 ’Read in lengths of frequency list and parameter list
 INPUT #1, nList, nSumm
 IF iErr GOTO 200

 IF mode THEN ’List frequency list with other summary data
 nSumm = nSumm + nList + 1
 ELSE ’Read in frequency list, but don’t print out
 FOR j = 0 TO nList
 LINE INPUT #1, A$
 IF iErr GOTO 200
 NEXT j
 END IF

 ’Read in and print out summary data
 FOR j = 1 TO nSumm
 LINE INPUT #1, A$
 IF iErr GOTO 200
 PRINT A$
 IF (CSRLIN > 27) OR j = nSumm THEN
 PRINT : PRINT "Press any key to continue.";
 DO: A$ = INKEY$: LOOP WHILE A$ = ""
 CLS : LOCATE 1, 1
 END IF
 NEXT j
 CLOSE 1
 ON ERROR GOTO 0 ’Standard error routine

’*61b
 ’find maximum value of data
 amplmx = ampl(0, 1)

 FOR j = 1 TO nSeq
 FOR i = 0 TO nSteps
 IF (ampl(i, j) > amplmx) THEN amplmx = ampl(i, j)
 NEXT i
 NEXT j
 dum = LOG(ABS(amplmx)) / LOG(10#) ’log10()
 yscP = INT(dum) ’nearest decade = X
 dum2 = 10 ^ (dum - yscP) ’factor within the decade
 yscP = 10 ^ yscP ’scaling factor (graph maximum) = 10^X = 1eX
 IF (dum2 > 5.1) THEN
 yscP = yscP * 10 ’scaling factor 10eX
 ELSEIF (dum2 > 2.1) THEN
 yscP = yscP * 5 ’scaling factor 5eX
 ELSEIF (dum2 > 1.1) THEN
 yscP = yscP * 2 ’scaling factor 2eX
 END IF
’*61e

100 CLS : GOSUB border’Draw plot borders and center lines
 ’Plot points
 iPts = -1: iMode = 1: j0 = 1: GOSUB graph

 DO
 LOCATE 14, 1
 PRINT "Press any key to continue, ’s’ to change scale factor";
’*55 IF ((mSeq(1) <> 0) AND (NOT iFit)) THEN
 PRINT ", ’f’ to fit ";
’*55 ELSE
’*55 PRINT " ";
’*55 END IF
 DO: q$ = UCASE$(INKEY$): LOOP WHILE q$ = ""
 IF q$ = "S" THEN
 LOCATE 14, 1: PRINT STRING$(78, 32); : LOCATE 14, 1
 PRINT "Scale factor for plot is"; STR$(yscP);
 INPUT ". New scale factor = (# or RET)"; A$: A = VAL(A$)
 IF A$ <> "" AND A > 0 THEN
 iMode = 0: GOSUB graph ’Erase plot with old scale factor
 yscP = A: iMode = 1: GOSUB graph ’Redraw plot with new scale factor
 END IF
’*55 ELSEIF q$ = "F" AND (mSeq(1) <> 0) AND (NOT iFit) THEN
’*60b
 ELSEIF q$ = "F" AND (NOT iFit) THEN
 IF (mSeq(1) <> 0) THEN
’*60e
 CALL Fit2(Tint, nSteps + 1, nSeq, freq(), ampl(), idisc(), parm(), psd(), chi(), nErrFit
())
 ’Find scaling for printing signal amplitude
 FOR j = 1 TO nSeq
 IF parm(1, j) <> 0 THEN
 Aexp(j) = INT(LOG(ABS(parm(1, j))) / LOG(10))
 ELSE
 Aexp(j) = 0
 END IF
 scA(j) = 10 ^ -Aexp(j)
 IF parm(2, j) > parm(1, j) THEN
 IF parm(2, j) <> 0 THEN
 Bexp(j) = INT(LOG(parm(2, j)) / LOG(10))
 ELSE
 Bexp(j) = 0
 END IF
 scB(j) = 10 ^ -Bexp(j)
 END IF
 NEXT j
 LOCATE 2, 1
 FOR m1 = 1 TO 3 STEP 2 ’Look for 1->2 and 3->4 pairs
 IF (m1 = 3) THEN LOCATE 3, 1
 iHead = -1 ’Print heading before next pair
 FOR j = 1 TO nSeq
 IF mSeq(j) = m1 AND nErrFit(j) = 0 THEN
 FOR k = 1 TO nSeq ’Look for corresponding interferometer
 IF mSeq(k) = m1 + 1 AND nErrFit(k) = 0 THEN

 IF iHead THEN
 PRINT m1; "->"; m1 + 1; ":";
 iHead = 0
 ELSE
 PRINT ", ";
 END IF
 dphi = parm(4, j) - parm(4, k)
 dpsd = SQR(psd(4, j) ^ 2 + psd(4, k) ^ 2)
 nErr = mod2pi(dphi)
 IF nErr THEN PRINT "*"; LTRIM$(STR$(nErr)); "*";
 IF fCAve#(j) > fCAve#(k) THEN dphi = -dphi
 dfRec = phisc * dphi
 dfsd = phisc * dpsd
 PRINT USING "+##.####"; dfRec;
 PRINT USING "_+_-#.#### Hz = "; dfsd;
 PRINT USING "+###.##"; dphi * 1000;
 PRINT USING "(###.##) mrad = "; dpsd * 1000;
 dfRec = dfRec / fRec * 1E+09
 dfsd = dfsd / fRec * 1E+09
 IF ((ABS(dfRec) < 10000) AND (dfsd < 10000)) THEN
 PRINT USING "+####.#"; dfRec;
 PRINT USING "(####.#) ppb"; dfsd;
 ELSE
 PRINT USING "+###.##"; dfRec / 1000;
 PRINT USING "(###.##) ppm"; dfsd / 1000;
 END IF
 END IF
 NEXT k
 END IF
 NEXT j
’ PRINT
 NEXT m1
 iFit = -1
 GOSUB border ’Redraw border
 iPts = -1: GOSUB graph ’Now plot curves, and data
’*55 iPts = -1: ’From now on, plot both
’*60b
 ELSE
 CALL FitGhead(nSteps + 1, freq(), ampl(), idisc(), parm(), psd(), chi(), nErrFit())
 iFit = -1
 GOSUB border ’Redraw border
 iPts = -1: GOSUB graph ’Now plot curves, and data
 END IF
’*60e
 END IF
 LOOP WHILE q$ = "S" OR q$ = "F"

200 CLS
 ON ERROR GOTO 0

ERASE parm, psd, Aexp, scA, Bexp, scB, chi, nErrFit
ERASE freq, ampl, cor, Bck

 PRINT "Leaving Plot"

 EXIT SUB

border: ’Draw plot border and center line
 IF mSeq(1) = 0 THEN ’Single plot
 LINE (0, 384)-(639, 384), 15: LINE (320, 0)-(320, 479), 15
 SCX = (nXpts - 1) / nSteps: SCY = nYpts - 1
’*60:
 SCXf = (nXpts - 1) / (nFtPts - 1)
 ELSE ’Four plots
 LINE (320, 0)-(320, 479), 9: LINE (0, 240)-(639, 240), 9
 LINE (0, 192)-(639, 192), 15: LINE (0, 432)-(639, 432), 15
 LINE (160, 0)-(160, 479), 15: LINE (480, 0)-(480, 479), 15
 SCX = (nXpts - 1) / (2 * nSteps): SCY = (nYpts - 1) / 2
’*60:
 SCXf = (nXpts / 2 - 1) / (nFtPts - 1)
 END IF

 LINE (0, 0)-(639, 479), 9, B ’Border box
 ’Display background value
 IF mSeq(1) = 0 THEN
 LOCATE 29, 71: PRINT USING "##.#^^^^V"; Bck(1);
 ELSE
 FOR j = 1 TO nSeq
 m = mSeq(j)
 iyC = 1 + 14 * INT((m + 1) / 2): ixC = 71 - 40 * (m MOD 2)
 LOCATE iyC, ixC: PRINT USING "##.#^^^^V"; Bck(j);
 NEXT j
 END IF
 RETURN

graph: ’Plot the data and fit results on the screen
 COLOR 14
 LOCATE 30, CINT(41 - LEN(Flnm$) / 2): PRINT Flnm$;
 COLOR 15
 LOCATE 1, 38: PRINT USING "#^^^^V"; yscP; ’display main plot scale
 IF iMode = 0 THEN iColP = 0 ’Erase
 IF iMode = 1 THEN iColP = 11
 FOR jj = 1 TO nSeq
 ’Plot in reverse order with j0 last
 j = ((j0 + 2 * nSeq - 1 - jj) MOD nSeq) + 1
 IF iMode = -1 THEN ’Selecting interferometers
 IF j = j0 THEN
 iColP = 15 ’Bright white for current selection
 ELSE
 iColP = 11
 END IF
 END IF
 m = mSeq(j): IF m = 0 THEN m = 1 ’m -> location of plot
 mSw = INT((m + 1) / 2) ’Row for plot

 IF iFit THEN ’Print fit parameters
’*60:
 IF (mSeq(1) <> 0) THEN ’sine wave fit
 IF iMode = -2 THEN
 COLOR 0
 ELSE
 IF iMode = -1 AND j = j0 THEN
 COLOR 15
 ELSE
 COLOR 7
 END IF
 END IF
 ix = 42 - 40 * (m MOD 2)
 iy = 14 * mSw - 10
 LOCATE iy, ix
 IF nErrFit(j) = 0 THEN ’Valid fit -> list parameter values
 PRINT USING fmtA$; parm(1, j) * scA(j);
 PRINT USING fmtAsd$; psd(1, j) * scA(j);
 PRINT USING fmtAexp$; Aexp(j)
 LOCATE iy + 1, ix
 IF parm(2, j) > parm(1, j) THEN ’Print as amplitude
 PRINT USING fmtB$; parm(2, j) * scB(j);
 PRINT USING fmtAsd$; psd(2, j) * scB(j);
 PRINT USING fmtAexp$; Bexp(j)
 ELSE ’Print as contrast
 Cntrst = 100 * parm(2, j) / parm(1, j)
 CntrstSD = Cntrst * SQR((psd(1, j) / parm(1, j)) ^ 2 + (psd(2, j) / parm(2, j)) ^ 2)
 PRINT USING fmtC$; Cntrst;
 PRINT USING fmtCsd$; CntrstSD
 END IF
 ’LOCATE iy + 2, ix: PRINT USING fmtk$; parm(3, j);
 ’PRINT USING fmtksd$; psd(3, j)
 LOCATE iy + 2, ix: PRINT USING fmtp$; parm(4, j);
 PRINT USING fmtpsd$; psd(4, j)
 LOCATE iy + 3, ix: PRINT USING fmtch$; chi(j)
 ELSE ’List error number
 PRINT "Fit: Error #:"; nErrFit(j)
 END IF

C.1. ALTINT.BAS 289

’*60b
 ELSE ’gaussian fit
 COLOR 7
 ix = 2
 iy = 2
 LOCATE iy, ix
 IF nErrFit(j) = 0 THEN ’Valid fit -> list parameter values
 PRINT "Fit function:"
 LOCATE iy + 1, ix + 2
 PRINT "A exp{-0.5*[(f-f0)/B]^2} + C"
 LOCATE iy + 2, ix + 4
 CALL PUNice(parm(1, j), psd(1, j), " A", " V")
 LOCATE iy + 3, ix + 4
 CALL PUNice(parm(2, j), psd(2, j), "f0", " Hz")
 LOCATE iy + 4, ix + 4
 CALL PUNice(parm(3, j), psd(3, j), " B", " Hz")
 LOCATE iy + 5, ix + 4
 CALL PUNice(parm(4, j), psd(4, j), " C", " V")
 ELSE ’List error number
 PRINT "Fit: Error #:"; nErrFit(j)
 END IF
 END IF
’*60e
 END IF
 IF iMode <> -2 THEN ’Plot data and/or curve
 ix0 = ((m - 1) AND 1) * nSteps
 y0 = SCY * (mSw - .2)
 IF iPts THEN ’Plot data points
’*60:
 fmn = freq(0, j): fmx = freq(0, j)
 FOR i = 0 TO nSteps
’*60b
 IF (freq(i, j) < fmn) THEN fmn = freq(i, j)
 IF (freq(i, j) > fmx) THEN fmx = freq(i, j)
’*60e
 dum = ampl(i, j) / yscP
 IF dum > -.25 AND dum < 1 THEN
 ix = CINT(SCX * (ix0 + i))
 iy = CINT(y0 - .8 * SCY * dum)
 PSET (ix, iy), iColP
 IF idisc(i, j) = 1 THEN CIRCLE (ix, iy), 4, iColP: PSET (ix, iy), 15
 END IF
 NEXT i
 END IF

 IF iFit AND nErrFit(j) = 0 THEN ’Plot curve
’*60b
 IF ((m = 2) OR (m = 4)) THEN
 ix0 = nXpts / 2
 ELSE
 ix0 = 0
 END IF
 fstp = (fmx - fmn) / (nFtPts - 1)
’*60e
 iLine = 0 ’PSET for first point
’*55 FOR i = 0 TO nSteps
’*55:60b dum = (parm(1, j) + parm(2, j) * COS(twopi * Tint * parm(3, j) * freq(i, j) + p
arm(4, j))) / yscP
 FOR i = 0 TO (nFtPts - 1)
 ff = fmn + fstp * i
 IF (mSeq(1) <> 0) THEN ’sine wave fit
 dum = (parm(1, j) + parm(2, j) * COS(twopi * Tint * parm(3, j) * ff + parm(4, j))) /
yscP
 ELSE
 dum = (parm(1, j) * EXP(-.5 * ((ff - parm(2, j)) / parm(3, j)) ^ 2) + parm(4, j)) / y
scP
 END IF
’*60e
 IF dum > -.25 AND dum < 1 THEN
’*55:60 ix = CINT(SCX * (ix0 + i))
 ix = CINT(ix0 + i * SCXf)

 iy = CINT(y0 - .8 * SCY * dum)
 IF iLine THEN
 LINE -(ix, iy), iColP
 ELSE
 PSET (ix, iy), iColP
 END IF
 iLine = -1 ’Draw line to next point
 ELSE
 iLine = 0 ’PSET next point
 END IF
 NEXT i
 END IF
 END IF
 NEXT jj

 COLOR 15
 RETURN

END SUB ’Plot

REM $STATIC
SUB PUNice (x, xsd, xnm$, xunit$)
’Print variable xnm$ with value x and error bar xsd in a nice form
’$DYNAMIC
DIM xexp, xsc

 IF x <> 0 THEN
 xexp = INT(LOG(ABS(x)) / LOG(10))
 ELSE
 xexp = 0
 END IF
 xsc = 10 ^ -xexp

 PRINT xnm$; ":";
 PRINT USING "##.###"; x * xsc;
 PRINT USING "_+_-#.###"; xsd * xsc;
 PRINT USING "E+#"; xexp;
 PRINT xunit$;

END SUB

REM $STATIC
’ Put parameters in "standard" form
SUB standardform (j, p(), psd())

DIM p1

 IF p(3, j) < 0 THEN
 p(3, j) = -p(3, j): p(2, j) = -p(2, j): p(4, j) = -p(4, j)
 END IF
 IF p(2, j) < 0 THEN p(2, j) = -p(2, j): p(4, j) = p(4, j) + pi
 IF mod2pi(p(4, j)) AND pl% >= 10 THEN
 PRINT "WARNING: parameter shifted by a multiple of 2pi"
 END IF

’ERASE p1

END SUB

290 APPENDIX C. COMPUTER CODE

C.2 Fit.C

The Fit.C code compiled in Borland Turbo C++ 3.0 and running under DOS takes

the output data Þles from the AltInt.BAS program described in Section C.1 and

Þts the interferometer fringes using the non-linear least-squares Þt algorithm based

on the Levenberg-Marquardt method of root Þnding [50]. It can Þt two conjugate

interferometer fringes simultaneously and also display the results graphically. All of

our interferometer data was Þt using this code.

#define Program __FILE__
/*
 FitXX.C Joel Hensley

Revision History
1.1 10/9/96 Sign of calculated recoil corrected.
 Precision of check for agreement between known recoil shift
 and difference of center frequencies changed from 0.01 to
 0.0001
 When autofitting, 2 chi^2 values are produced. One from the
 1st pass where AutoVary parameter(s) are not varied, and one
 from the 2nd pass where AutoVary parameter(s) are allowed to
 vary. Before comparing these chi^2 values they must be
 properly scaled by the number of data points minus the number
 of free parameters.
 Remove display of signal-to-noise (S/N) from summary and
 SigmaPlot files.
 Do not perform modulo(2Pi) on error in phase parameter
1.2 12/4/96 The fit routines will crash if any of the amplitude values are
 negative. This happens when the background values are wrong.
 Fix this problem by checking for negative values and shifting
 all values up until they are all non-negative.
 Fix display colors.
 Improve output format in fit subsection.
 Make separate subroutine that calls the fit routines, so that
 multiple-pass fitting does not repeat code.
1.3 12/6/96 Use correct method for dropping out 3-sigma points: run fit
 once to get an initial set of fit parameters, use these initial
 parameters to calculate residuals and a standard deviation of
 the residuals, throw out any data points that are more than 3
 (or 5) standard deviations away from this initial fit curve,
 refit using this reduced set of data points.
 Improve "SigmaPlot" output file format
 Convert large static 2D arrays to dynamic arrays using malloc()
 Read in time data was taken from input data file
1.4 1/23/97 Increased maximum data file name length from 30 to 256
 Added column to summary and SigmaPlot output files: the ratio
 between the fit amplitudes (parameter A), A1/A2, A4/A3, where
 Ai is the amplitude of the interferometer #i.
1.5 2/10/97 Added ability to correct the final recoil shift for RF phase
 errors. A third order polynomial is used to calculate the
 phase shift from RF components at the frequencies of the
 third and fourth Pi/2 pulses for each conjugate
 interferometer. These phase shifts are then added with the
 correct signs into the final recoil shift. The polynomial
 coefficients come from a fit to the experimentally measured
 phase shifts of the relevant RF components.
1.6 11/ 5/97 To correct for the phase error of the new DDS synthesizer
 (ADS-431), the ALTINT program calculates a correction to each
 frequency value of an interferometer scan. This correction is
 stored as a new column so that data are of the form FREQ, AMP,
 COR for each sequence in the data file. This version of FIT
 can read this new column and immediately correct the frequency
 values.
 Disable the previous version’s "corrected" output.
1.7 1/10/98 Add the preselection offset frequency and Raman sequence
 start time to the summary and SigmaPlot file output. Increase
 the precision of T and Tram in the summary and sigma plot files.
1.8 3/11/98 Since an absolute measurement of the recoil depends of course
 on the "constant" accepted value that is subracted off of all
 of the frequency differences, this value should be displayed in
 all of the output files.
1.9 4/ 2/98 The data taking program now acquires and stores the table tilt
 from the tilt sensor into the output files. Read these values
 in and store them to the summary and SigmaPlot files.
 Disable all displays of the "corrected" frequency value (see
 1.6). Stop displaying the amplitude ratio in the summary file.
2.0 7/ 8/98 The one-sigma uncertainty value for the amplitude parameter
 was not being returned to the original scale. Now, multiply it
 by "yscale" before returning from fit section.
2.1 7/27/98 Include a display of the phase parameter from the fit of each

 interferometer. Before, I just displayed the uncertainties and
 then the difference (in Hz) of the phase parameters.
 Replace all expressions of the form A*A with sqr(A*A) which is
 #defined as a macro at the begining.
2.2 11/ 3/99 Correct definition of ysig and ressd
2.3 2/ 4/01 Set fit booleans only at beginning of program not after
 loading each file. This way, if the fit booleans are changed
 for one file they will stay that way for the rest of the files,
 unless of course they are changed again.
2.4 5/20/01 Temporarily disable the section which looks for the tilt
 sensor data so that we can fit old data.
 Even if the fixed value for the recoil shift is the same in
 this program and the program that takes the data, the difference
 in center frequencies Dcf(acutal) will not exactly agree with the
 predicted values Dcf(desired) because of the discrete resolution
 of the DDS synthesizer. This program corrects for this by
 modifying the UP/DOWN difference Df/(N+1) by the difference
 between the actual and desired center frequencies:
 [Dcf(actual) - Dcf(desired)]/(N+1).
 Unfortunately, all previous versions of this code performed this
 correction incorrectly! They modified the UP/DOWN difference Df
 by: [Dcf(actual) - Dcf(desired)]. This version corrects this
 error.
2.5 7/ 8/01 References to interferometer # (iref) do not work well when
 one interferometer is repeat in a sequence (ex. 1,1). Change
 function of number keys ’1’,’2’,’3’,’4’ to refer to sequence
 number instead of interferometer number. Correct autocommand
 string generator accordingly. Change the way the ’.sp’ file is
 generated. Before, the ’.sp’ displayed the results from each
 interferometer and printed blanks if that int was not present.
 This does not work for repeat ints in one sequence. Now, sort
 list of int references (sort not currently implemented) in
 increasing order and display save them in that order in the
 ’.sp’ file.
*/

#define docorr (2) // use correction? 0 = no, 1 = old method, 2 = new

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
#include<conio.h>
#include<graphics.h>
#include<dos.h>
#include<process.h>
#include<time.h>
#include"nrutil.h"

enum boolean {FALSE,TRUE};
#define sqr(A) (A*A)
enum varytype {NO,YES,AUTO};
enum dots {POINT,DOT1,DOT2,DOT3,CROSS,TICKX1,TICKY1,TICKX2,TICKY2,LINE};

#define Pi (3.141592654)
#define BGIDIR "e:\\PRG\\TC\\BGI"

#if (docorr)
 #define SUMFN "FIT.SUM" // summary file name
 #define SPFN "FIT.SP" // sigma-plot file name
#else
 #define SUMFN "UCF.SUM" // summary file name
 #define SPFN "UCF.SP" // sigma-plot file name
#endif
#define INFN "FIT.IN" /* input file name */
#define VER 1 /* version number */
#define NFITMX 1000 /* maximum # intervals on fit function */

/* calculated value of recoil shift (Hz): */
//#define RECSHFT (30012.55878090934)
//modified 3/5/98 to include better value for mCs:

C.2. FIT.C 291

#define RECSHFT (30012.55775)

FILE
 in_fp, / input file pointer */
 dat_fp, / input data file pointer */
 out_fp, / output file pointer */
 sum_fp, / summary file pointer */
 sp_fp; / sigma-plot file pointer */
int
/* graphics screen constants: */
 ScrnX,ScrnY, /* graphics screen maximum dimensions */
 NColor, /* number of graphics colors */
/* plot window paramaters and variables */
 nxdiv = 10, /* number of divisions along x-axis */
 nxsubdiv = 5, /* number of subdivision along x-axis */
 nydiv = 8, /* number of divisions along y-axis */
 nysubdiv = 5, /* number of subdivisions alonx y-axis */
 winx1,winy1,winx2,winy2, /* graphics coordinates for plot window */
 fitwx1,fitwx2,fitwy1,fitwy2, /* graphics coordinates for fit parameter window */
 isauto = FALSE, /* automatically enter commands? */
 nautocommand = 0, /* number of auto-commands in string */
 **badpt, /* array of indeces to thrown out points */
/* fit menu table dimensions */
 ncol[3] = {2,1,2},
 nrow[3] = {4,3,3};

float
 **of, /* offset frequency from input file */
 **amp, /* amplitude from input file */
 *xdata,*ydata,*sdata, /* raw data to fit */
 res, / residuals from fit */
 **parm, /* parameters in fit */
 **psd, /* standard deviations for fit parameters */
 leftx,stepx,intx,
 boty,stepy,inty, /* real coordinates for plot window */
 ymin[4],ymax[4],yoff1,yoff2, /* minimum value of data */
 xzero[4], /* average zero crossing point (rad) */
 ymean[4], ysig[4]; /* mean and standard deviation of data */

char
 ffstr[25] = "A {1 + B sin[C(x + D)]}",
 autocommand[100] = ""; /* automatic command string */

int fgetline(FILE *f_fp, char *line, int *l);
void myfunc(int ids, float x,float *parm,float *y,float *dydp,int nparm);
void plot(float *x, float *y, int n, int *bp, int nb, int color, int dot);
void setextrema(float *x, float *y, int n);
void drawgrid(char *xunits, char *yunits);
void changescale(float *step, float *interval, int dir);
void dataerr(int l);
void tablemove(int it, int dr, int dc, int *r, int *c);
int mod2Pi(float *phi,float cent);
int mod2Pid(double *phi,double cent);
char getautoc(int *i);
void beep(int i);
void standardform(float p[], float psd[]);
void bye(int err, int ns);
void FreeDynam(int ns);
float RunFit(int dodisp,
 int n, float x[], float y[], float s[],
 int nparm, float p[], int pvary[],
 int dosimfit, int idsref[], float yscale,
 float **covar, float **alpha);
unsigned long TimeToSeconds(char *s);
float RFphase(double f);
void DateTimeStr(time_t t, char *ds, char *ts) {
/* Convert the time "t" into mm/dd//yy hh:mm:ss format. */
 struct tm* lt;

 lt = localtime(&t);
 sprintf(ds,"%02i/%02i/%02i",lt->tm_mon+1,lt->tm_mday,lt->tm_year);
 sprintf(ts,"%02i:%02i:%02i",lt->tm_hour,lt->tm_min,lt->tm_sec);
}
/* external routines: */
extern int strfind(char *s1, char *s2);
int isnum(char c) // is "c" part of a number?
{
 return ((c==’+’) || (c==’-’) || (c==’.’) || isdigit(c));
}

int main(int narg, char **argstr)
{
 char
 datfn[30], /* data file name */
 outfn[30], /* output file name */
 ds[9],ts[9], // date and time
 xunits[10] = "Hz",
 yunits[10] = "(arb)",
 varystr[3][5] = {" No "," Yes","Auto"},
 parmname[8][2] = {"","A","B","C","D","A","B","D"};

 int
 graphdriver = DETECT, graphmode,
 version, /* version number for input file format */
 ns,nstep, /* number of steps in each interferometer sequence */
 ni,nseq, /* number of interferometer sequences */
 nis[4], // indeces to sorted list of interferometers
 iref[4], /* interometer sequence reference code */
 dohead = TRUE, // should I print a header for the _sp file?
 conj[4] = {1,0,3,2}, /* ref. numbers for the conjugate interferometers */
 hasint[4]={-1,-1,-1,-1},hi1,hi2,hi3,hi4,
 /* which interferometer sequences are present? */
 npi, /* number of Pi pulses */
 inti = 0, intj, /* current and conjugate interferometer number (0-3) */
 nxpz, nxnz, /* # of pos., neg. going zero-crossings */
 istext = TRUE, /* is current screen textual (or graphical)? */
 donegraph = FALSE, /* already plotted data? */
 donefit[4] = {FALSE,FALSE,FALSE,FALSE},
 /* already fit the data for each interferometer? */
//*24 dosimfit, /* do simultaneous fit of two data sets? */
//*25:
 dosimfit, dsf0 = TRUE, // do simultaneous fit of two data sets?
 dispparm = FALSE, /* show parameter values after each fit iteration */
 idsref[3], /* index of 1st data point in each data set */
 showfit = FALSE, /* display the fit? */
 itable, /* currently active fit options table:
 0: primary interferometer fit options
 1: general options
 2: conjugate interferometer fit options */
 nparm, /* number of parameters in model */
 pvary[8],pvinit[8], /* how this parameter is varied in fit:
 0 = NOT varied
 1 = varied
 2 = not varied, then varied */
 n2pass, /* number of parameters varied in 2 passes */
 ndata, /* # of data points within 3-sigma to use in fit */
 nignore, /* # of points thrown out for a given inter. */
 nbad[4] = {-1,-1,-1,-1}, /* # of thrown out points for each inter. */
 ndpfit[4], /* number of points used in each fit */
 nfpfit[4], /* number of free parameters used in each fit */
 row,col, /* row and column in initial fit-parameter table */
 locx[3][2] = {{16,27},{48,48},{41,52}}, /* positions of columns */
 locy[3][4] = {{3,4,5,6},{8,9,10,9},{3,4,6,6}}, /* positions of rows */
 npts, /* number of intervals used when plotting fit */
 color, /* color to draw points */
 iac = 1; /* auto-command index */

 float
 TT, /* time between Pi pulses */

 cor, /* correction to a frequency value (Hz) */
 xpz, xnz, /* positive and negative going zero-crossings */
 tltx, tlty, // x and y-axis tilt values (V)
 yscale, /* y scaling factor */
 parminit[8], /* initial values of fit parameters */
 fitparm[8], /* parameter array used by fit */
 oldparm[8],pval, /* scratch space to save parameter values */
 oldvar[8], /* scratch space to save covariances */
 pchisq[4], /* chi-squared value from fit */
 dydp[8], /* derivatives with respect to the paramaters */
 **covar, /* covariance matrix */
 **alpha, /* curvature matrix */
 chisq,newchisq,
 resmean,ressd, /* mean and standard deviaiton of residuals */
 resfact = 3.0, /* # of sigma away before a point is thrown out */
 fstepx,
 xfit[NFITMX],
 yfit[NFITMX],
 ar12,ar43, /* fit amplitude ratios */
 rf1,rf2; /* RF phase shifts for each conjugate int (cycles) */

 unsigned long
 ltm = 0; /* time data was taken (seconds from 00:00:00) */

 double
 p2f3[4], p2f4[4], // frequencies of 3rd, 4th Pi/2 pulses (Hz)
 fpre, // preselection offset frequency (Hz)
 tram, // Raman sequence start time (ms)
 f0, // integer multiple of the "fixed" recoil freq. RECSHFT
 df,ddf,ddfs, // recoil shift and recoil shift error error-bar
 cddf, // recoil shift correct for RF phase error
 cf[4]; // center frequency

 time_t tim;
 char c,s1[80],*c_p;
 int i,j,k,l,bool1,bool2;
 float f1,f2,f3;
 double d1;
//temporary patch
// const double tempcor[5]={0.,-0.0014,-0.2442, 0.0154,-0.0001}; // 7/20
// const double tempcor[5]={0., 0.0006,-0.2443, 0.0154,-0.0001}; // 7/21
// const double tempcor[5]={0., 0.0004,-0.2444, 0.0155, 0.0000}; // 7/22
//temporary patch

 clrscr();
 textcolor(LIGHTGRAY);

/* open summary file */
 if ((sum_fp=fopen(SUMFN,"wt")) == NULL) {
 cprintf("fit: ERROR opening summary ouput file ’%s’.\r\n",SUMFN);
 bye(1,0);
 }
 tim = time(NULL);
 DateTimeStr(tim,ds,ts);
 fprintf(sum_fp,"Summary file created by %s on %s at %s\n",Program,ds,ts);
 fprintf(sum_fp,"f0 = (N+1) * %.11lf Hz.\n",(double)RECSHFT);
 fprintf(sum_fp,"DataFile T(ms) Npi Fpre(Hz) Tram(ms)\n");
 fprintf(sum_fp," Contrast(%) Phase(rad) k’ chi^2 N :Nparm\n");
 fflush(sum_fp);
/* open sigma-plot file */
 if ((sp_fp=fopen(SPFN,"wt")) == NULL) {
 cprintf("fit: ERROR opening sigma-plot ouput file ’%s’.\r\n",SUMFN);
 bye(1,0);
 }
 fprintf(sp_fp,"FileName,T(ms),N_Pi,Fpre(Hz),Tram(ms),");
/* read input file */
 if ((in_fp=fopen(INFN,"rt")) == NULL) {
 cprintf("fit: ERROR opening input file ’%s’.\r\n",INFN);
 bye(1,0);
 }
 cprintf("Reading program input file.\r\n");

 fscanf(in_fp,"%i\n",&version);
 if (version != VER) {
 cprintf("fit: input file ’%s’ has wrong version number.\r\n",INFN);
 bye(1,0);
 }
 /* default values for fit code: */
 npts = 500;
 nparm = 4;
 pvinit[1] = YES;
 pvinit[2] = YES;
 pvinit[3] = NO;
 pvinit[4] = YES;
 pvinit[5] = YES;
 pvinit[6] = YES;
 pvinit[7] = YES;
 do {
 l = 30;
 if (fgetline(in_fp,datfn,&l)) {
 cprintf("fit: ERROR reading input file.\r\n");
 bye(1,0);
 }
 if (l > 0) {
 clrscr();
/* reset initial values */
 hasint[0] = hasint[1] = hasint[2] = hasint[3] = -1;
 inti = 0;
 istext = TRUE;
 donegraph = FALSE;
 donefit[0] = donefit[1] = donefit[2] = donefit[3] = FALSE;
/* read input data file */
 if ((dat_fp=fopen(datfn,"rt")) == NULL) {
 cprintf("fit: ERROR opening input data file, ’%s’.\r\n",datfn);
 bye(1,0);
 }
 cprintf("Reading interferometer data from file ’%s’.\r\n",datfn);
 fscanf(dat_fp,"%i\n",&nstep);
 if (nstep < 1) dataerr(1);
 fscanf(dat_fp,"%i\n",&nseq);
 if ((nseq < 1) || (nseq > 4)) dataerr(2);
 /* now that we know how many interferometers and data points are in
 this data file, allocate the required storage space */
 bool1 = FALSE;
 j = 2*(nstep+1);
 if ((xdata=(float *)malloc(j*sizeof(float)))==NULL) bool1 = TRUE;
 xdata--; /* starting index = 1 */
 if ((ydata=(float *)malloc(j*sizeof(float)))==NULL) bool1 = TRUE;
 ydata--; /* starting index = 1 */
 if ((sdata=(float *)malloc(j*sizeof(float)))==NULL) bool1 = TRUE;
 sdata--; /* starting index = 1 */
 if ((res=(float *)malloc(j*sizeof(float)))==NULL) bool1 = TRUE;
 res--; /* starting index = 1 */
 if ((of=(float **)malloc(nseq*sizeof(float *)))==NULL) bool1 = TRUE;
 if ((amp=(float **)malloc(nseq*sizeof(float *)))==NULL) bool1 = TRUE;
 if ((badpt=(int **)malloc(nseq*sizeof(int *)))==NULL) bool1 = TRUE;
 j = nstep+1;
 if ((parm=(float **)malloc(nseq*sizeof(float *)))==NULL) bool1 = TRUE;
 if ((psd=(float **)malloc(nseq*sizeof(float *)))==NULL) bool1 = TRUE;
 for(i=0; i<nseq; i++) {
 if ((of[i]=(float *)malloc(j*sizeof(float)))==NULL) bool1 = TRUE;
 if ((amp[i]=(float *)malloc(j*sizeof(float)))==NULL) bool1 = TRUE;
 if ((badpt[i]=(int *)malloc(j*sizeof(int)))==NULL) bool1 = TRUE;
 if ((parm[i]=(float *)malloc(7*sizeof(float)))==NULL) bool1 = TRUE;
 parm[i]--; /* starting index = 1 */
 if ((psd[i]=(float *)malloc(7*sizeof(float)))==NULL) bool1 = TRUE;
 psd[i]--; /* starting index = 1 */
 }
 if (bool1) {
 cprintf("fit: ERROR allocating dynamic memory.\r\n");
 bye(1,0);
 }
 /* continue loading in the data */

292 APPENDIX C. COMPUTER CODE

 for(ns=0; ns<=nstep; ns++) {
 for(ni=0; ni<nseq; ni++) {
 if (fscanf(dat_fp,"%f%E%f",&(of[ni][ns]),&(amp[ni][ns]),&cor) != 3)
 dataerr(ns+3);
#if (docorr==2)
 of[ni][ns] += cor;
#endif
 }
 fscanf(dat_fp,"\n");
 }
 fscanf(dat_fp,"%i\n",&npi);
/* basic uses #.########D-## format to express double precision reals.
C does not recoqnize the ’D’, so if there is an alphanumeric character
in the expression, parse the mantissa and exponents separately." */
 // load T
 l = 30;
 if (fgetline(dat_fp,s1,&l)) dataerr(nstep+5);
 for(i=0; i<l && !isalpha(s1[i]); i++);
 sscanf(s1,"%f",&TT);
 if (i < l) {
 sscanf(s1+i+1,"%i",&j);
 TT = TT * pow(10.0,(float)j);
 }
 // load interferometer reference number and center frequency
 for(ni=0; ni<nseq; ni++) {
 if (fscanf(dat_fp,"%i\n%lf\n",&iref[ni],&cf[ni]) != 2)
 dataerr(nstep+6+ni);
 if ((iref[ni] < 1) || (iref[ni] > 4)) dataerr(nstep+4+ni);
 hasint[iref[ni]-1] = ni;
//temporary patch
// for(i=0; i<=nstep; i++)
// of[ni][i] += tempcor[iref[ni]];
//temporary patch
 }
 tltx = 0.;
 tlty = 0.;
 do { // look for the phrase "X-tilt"
 l = 80;
 fgetline(dat_fp,s1,&l);
 } while (strfind(s1,"X-tilt") == -1);
 for(i=7; !isnum(s1[i]); i++);
 sscanf(s1+i,"%f",&tltx); // read x-axis tilt
 fgetline(dat_fp,s1,&l);
 for(i=7; !isnum(s1[i]); i++);
 sscanf(s1+i,"%f",&tlty); // read y-axis tilt
 /* load in the frequencies of the 3rd and 4th Pi/2 pulses */
 do { /* look for the first occurence of "pi/2 pair:" */
 l = 80;
 fgetline(dat_fp,s1,&l);
 } while (strfind(s1,"pi/2 pair:") == -1);
 do { /* look for the second occurence of "pi/2 pair:" */
 l = 80;
 fgetline(dat_fp,s1,&l);
 } while (strfind(s1,"pi/2 pair:") == -1);
 for(i=10; isspace(s1[i]); i++);
 for(ni=0; ni<nseq; ni++) { /* 3rd pi/2 */
 for(; !isspace(s1[i]); i++);
 for(; isspace(s1[i]); i++);
 sscanf(s1+i,"%lf",&p2f3[ni]);
 }
 l = 80;
 fgetline(dat_fp,s1,&l);
 for(i=10; isspace(s1[i]); i++);
 for(ni=0; ni<nseq; ni++) { /* 4th pi/2 */
 for(; !isspace(s1[i]); i++);
 for(; isspace(s1[i]); i++);
 sscanf(s1+i,"%lf",&p2f4[ni]);
 }
 /* load in time the data was taken: */
 do { // look for the phrase "Data collected by"
 l = 80;

 fgetline(dat_fp,s1,&l);
 } while (strfind(s1,"Data collected by") == -1);
 ltm = TimeToSeconds(strchr(s1,’:’)-2);
 /* load in preselection offset frequency and Raman start time: */
 do { // look for the phrase "Preselection offset ="
 l = 80;
 fgetline(dat_fp,s1,&l);
 j = strfind(s1,"Preselection offset =");
 } while (j == -1);
 sscanf(s1+j+21,"%lf",&fpre);
 j = strfind(s1,"Raman trigger time =");
 sscanf(s1+j+20,"%lf",&tram);
 fclose(dat_fp);

 cprintf("Input data file: %s\r\n",datfn);
 cprintf("Number of points: %i\r\n",nstep+1);
 cprintf("Number of interferometers: %i\r\n",nseq);

/*
 for(ns=0; ns<=nstep; ns++) {
 for(ni=0; ni<nseq; ni++)
 printf("%13.3f%13.5E",of[ni][ns],amp[ni][ns]);
 printf("\n");
 }
*/
 cprintf("Number of Pi pulses: %i\r\n",npi);
 cprintf("Time between Pi/2 pulses: %f sec\r\n",TT);
 cprintf("Preselection offset frequency: %.0lf Hz\r\n",fpre);
 cprintf("Raman sequence start time: %.4lf ms\r\n",tram);
 cprintf("\r\n Frequency Data (Hz):\r\n");
 cprintf("Int 3rd Pi/2 4th Pi/2 Cent Freq\r\n");
 for(ni=0; ni<nseq; ni++)
 cprintf("%2i % 11.2lf % 11.2lf % 12.3lf\r\n",iref[ni],p2f3[ni],
 p2f4[ni],cf[ni]);

 for(ni=0; ni<nseq; ni++) {
/* compute mean, standard deviation, minimum, and maximum of data */
 ymean[ni] = 0.;
 ysig[ni] = 0.;
 ymin[ni] = amp[ni][0];
 ymax[ni] = amp[ni][0];
 for(i=0; i<=nstep; i++) {
 ymean[ni] += amp[ni][i];
 ysig[ni] += amp[ni][i]*amp[ni][i];
 if (amp[ni][i] < ymin[ni]) ymin[ni] = amp[ni][i];
 if (amp[ni][i] > ymax[ni]) ymax[ni] = amp[ni][i];
 }
 ymean[ni] /= (nstep + 1);
 ysig[ni] = sqrt((ysig[ni] - (nstep+1)*sqr(ymean[ni]))/nstep);
/*
Find "positive zero" crossings where curve passes through the mean. Average
these together to get best initial guess for phase parameter in fit.
*/
 f1 = amp[ni][0] - ymean[ni];
 xpz = 0.0; nxpz = 0;
 xnz = 0.0; nxnz = 0;
 for(i=1; i<=nstep; i++) {
 f2 = amp[ni][i] - ymean[ni];
 if ((f1 < 0.0) != (f2 < 0.0)) {
 /* interpolate between the two points on either side of the
 mean to get the zero crossing */
 f1 = of[ni][i-1] - (of[ni][i]-of[ni][i-1]) * f1 / (f2-f1);
 f1 *= 2*Pi*TT;
 mod2Pi(&f1,0.0);
 if (f2 > 0.0) {
 xpz -= f1; nxpz++;
 } else {
 xnz -= f1; nxnz++;
 }
 }
 f1 = f2;

 }
 xpz /= nxpz;
 xnz = xnz / nxnz + Pi;
 mod2Pi(&xnz,0.0);
 xzero[ni] = (xpz+xnz)/2.0;
 }
 cprintf("\r\n Fringe Statistics:\r\n");
 cprintf("Int Mean Std Dev Min Max Zero(rad)\r\n");
 for(ni=0; ni<nseq; ni++)
 cprintf("%2i % 8.2E % 8.2E % 8.2E % 8.2E % 8.2E\r\n",iref[ni],
 ymean[ni],ysig[ni],ymin[ni],ymax[ni],xzero[ni],p2f3[ni],p2f4[ni]);
 cprintf("\r\nAny key to continue...\r\n");
 getautoc(&iac);

MainLoop:
 do {
 if (istext) {
 clrscr();
 textcolor(LIGHTGRAY);
 gotoxy(1,1);
 cprintf("%s has interferometers:",datfn);
 for(ni=0; ni<nseq; ni++) {
 if (ni == inti)
 textcolor(WHITE);
 else
 textcolor(LIGHTGRAY);
 cprintf("%2i",iref[ni]);
 if (donefit[ni])
 cprintf("f");
 else
 cprintf(" ");
 }
 textcolor(LIGHTGRAY);
 cprintf("\r\n g - graph data\r\n");
 cprintf(" f - fit data\r\n");
 cprintf(" s - save fit results\r\n");
 cprintf("1..4 - select interferometer\r\n");
 cprintf(" n - next data file\r\n");
 cprintf(" a - fit all interferometers, save results, goto next data file\r\n");
 cprintf(" A - fit all data files, save results, quit\r\n");
 cprintf(" q - quit\r\n");
 }
 switch(c = getautoc(&iac)) {
 case ’g’:
 do {
 if (istext) {
 initgraph(&graphdriver, &graphmode,BGIDIR);
 if (graphresult() != grOk) {
 cprintf("fit: ERROR initializing graphics.\r\n");
 bye(1,nseq);
 }
 istext = FALSE;
 showfit = FALSE;
 }
 if (!donegraph) {
 donegraph = TRUE;
 ScrnX = getmaxx();
 ScrnY = getmaxy();
 NColor = getmaxcolor();
 winx1 = 50;
 winy1 = 30;
 winx2 = ScrnX - winx1;
 winy2 = ScrnY - winy1;
 fitwx2 = winx2 - 10;
 fitwx1 = fitwx2 - 140;
 fitwy1 = winy1 + 10;
 fitwy2 = fitwy1 + 50;
 setextrema(of[inti],amp[inti],nstep+1);
 changescale(&stepy,&inty,1);
 }
 cleardevice();

 drawgrid(xunits,yunits);
 plot(of[inti],amp[inti],nstep+1,badpt[inti],nbad[inti],YELLOW,DOT2);
 sprintf(s1,"Inteferometer #%1i",iref[inti]); /* display plot title */
 settextstyle(DEFAULT_FONT,HORIZ_DIR,1);
 settextjustify(CENTER_TEXT,CENTER_TEXT);
 outtextxy((winx1+winx2)/2,winy1+10,s1);
 if (showfit) {
 fstepx = stepx*nxdiv / npts;
 for(i=0; i<=npts; i++) {
 xfit[i] = leftx + i*fstepx;
 myfunc((int)0,2*Pi*TT*xfit[i],parm[inti],&(yfit[i]),dydp,nparm);
 }
 plot(xfit,yfit,npts+1,badpt[inti],0,MAGENTA,LINE);
 setfillstyle(SOLID_FILL,BLACK);
 bar(fitwx1,fitwy1,fitwx2,fitwy2);
 setcolor(MAGENTA);
 rectangle(fitwx1,fitwy1,fitwx2,fitwy2);
 settextstyle(SMALL_FONT,HORIZ_DIR,0);
 settextjustify(CENTER_TEXT,RIGHT_TEXT);
 k = fitwy1;
 l = textheight(ffstr);
 outtextxy((fitwx1+fitwx2)/2,k,ffstr);
 k += 2;
 line(fitwx1,k+l,fitwx2,k+l);
 settextjustify(LEFT_TEXT,RIGHT_TEXT);
 for(i=1; i<=nparm; i++) {
 sprintf(s1,"%s:% 8.2E +-%7.1E",parmname[i],
 parm[inti][i],psd[inti][i]);
 outtextxy(fitwx1+2,(k+=l),s1);
 }
 }
 switch (c=getch()) {
 case ’f’:
 if (!showfit && donefit[inti])
 showfit = TRUE;
 else
 showfit = FALSE;
 break;
 case 0:
 switch(getch()) {
 case 75:
 leftx += stepx; break;
 case 77:
 leftx -= stepx; break;
 case 72:
 boty -= stepy; break;
 case 80:
 boty += stepy; break;
 case 115:
 changescale(&stepx,&intx,-1); break;
 case 116:
 changescale(&stepx,&intx,1); break;
 case 141:
 changescale(&stepy,&inty,1); break;
 case 145:
 changescale(&stepy,&inty,-1); break;
 }
 break;
 case ’1’: case ’2’: case ’3’: case ’4’:
 j = c - ’1’;
//*24 if ((hasint[j]>=0) && (hasint[j] != inti))
//*24 inti = hasint[j];
//*30b
 if (j < nseq)
 inti = j;
//*30e
 if (showfit && !donefit[inti]) showfit = FALSE;
 break;
 case ’q’: case ’\x1B’:
 closegraph();
 istext = TRUE;

C.2. FIT.C 293

 break;
 }
 } while ((c != ’q’) && (c != ’\x1B’));
 c = ’g’;
 break;
 case ’1’: case ’2’: case ’3’: case ’4’:
 j = c - ’1’;
//*24 if ((hasint[j]>=0) && (hasint[j] != inti))
//*24 inti = hasint[j];
//*30b
 if (j < nseq)
 inti = j;
//*30e
 break;
 case ’s’:
 if (donefit[0]||donefit[1]||donefit[2]||donefit[3]) {
 hi1 = hasint[0];
 hi2 = hasint[1];
 hi3 = hasint[2];
 hi4 = hasint[3];
 strcpy(outfn,datfn);
#if (docorr)
 strcpy(strchr(outfn,’.’),".fit");
#else
 strcpy(strchr(outfn,’.’),".ucf");
#endif
 if ((out_fp=fopen(outfn,"wt")) == NULL) {
 cprintf("fit - ERROR opening output file, ’%s’\r\n",outfn);
 bye(1,nseq);
 }
 fprintf(out_fp,"’%s’ has %i points per interferometer\n",
 datfn,nstep+1);
 fprintf(out_fp,
 " with T=%.4f ms, %i Pi pulses, Fpre=%.0lf Hz, Tram=%.4lf ms\n",
 1000*TT,npi,fpre,tram);
 fprintf(out_fp,"Fit function: %s\n",ffstr);
 for (ni=0; ni<nseq; ni++)
 if (donefit[ni]) {
 fprintf(out_fp,"Interferometer %i fit with %i free parameters using %i points:\n",
 iref[ni],nfpfit[ni],ndpfit[ni]);
 fprintf(out_fp,"center frequency =%13.4lf Hz:\n",cf[ni]);
 for(i=1; i<=nparm; i++)
 fprintf(out_fp," %s = % 11.5E (+- %9.3E)\n",parmname[i],
 parm[ni][i],psd[ni][i]);
 fprintf(out_fp," chi^2 = %9.3E\n",pchisq[ni]);
 }
 strcpy(s1,datfn);
 c_p = (char *)strchr(s1,’.’);
 sprintf(c_p,"\0");
 c_p = ((c_p - s1) > 8) ? c_p-8 : s1;
 if (dohead) {
 for (ni=0; ni<nseq; ni++) nis[ni] = ni;
 /* *** insert sort function here *** so that nis[]
 is a sort list of the intferometer numbers 1-4 */
 for(j=0; j<4; j++) {
 i = (j<nseq) ? iref[nis[j]] : 0;
 c = ’A’ + j;
 fprintf(sp_fp,"A%c%1i,A%c%1isd,C%c%1i,C%c%1isd,Phi%c%1i,Phi%c%1isd,Chi%c%1i^2,",
 c,i,c,i,c,i,c,i,c,i,c,i,c,i);
 }
 fprintf(sp_fp,"1-2,c1-2,1-2sd,3-4,c3-4,3-4sd,ar1/2,ar4/3,time(s),");
 fprintf(sp_fp,"TiltX(V),TiltY(V),%.11lf\n",(double)RECSHFT);
 fflush(sp_fp);
 dohead = FALSE;
 }
 fprintf(sp_fp,"%8s,%8.4f,%2i,%7.0lf,%8.4lf",
 c_p,1000*TT,npi,fpre,tram);
 fprintf(sum_fp,"%8s, %8.4f, %2i, %7.0lf, %8.4lf:\n",
 c_p,1000*TT,npi,fpre,tram);
//24* for(i=0; i<4; i++) {
//24* j = hasint[i];

//24* if ((j >= 0) && donefit[j]) {
//30b
 for (ni=0; ni<4; ni++) {
 if (ni < nseq) {
 j = nis[ni];
//30e
 fprintf(sp_fp,",%10.4E,%9.3E,%4.1f,%3.1f,%11.5E,%8.2E,%8.2E",
 parm[j][1],psd[j][1],100*parm[j][2],100*psd[j][2],
 parm[j][3]*parm[j][4],
 sqrt(sqr(psd[j][3])+sqr(psd[j][4])),pchisq[j]);
 } else {
 fprintf(sp_fp,", , , , , , , ");
 }
 }
 for (ni=0; ni<nseq; ni++) {
 if (donefit[ni]) {
 fprintf(sum_fp," %1i ",iref[ni]);
 fprintf(sum_fp,
 "(%4.1f,%3.1f) (% 8.2E,%7.1E) (%4.2f) %8.2E%4i:%1i\n",
 100*parm[ni][2],100*psd[ni][2],parm[ni][4],psd[ni][4],
 parm[ni][3],pchisq[ni],ndpfit[ni],nfpfit[ni]);
 }
 }
 f0 = (npi + 1) * RECSHFT;
 d1 = 2*Pi*TT;

 /* print frequency difference if we have both Interferometers 1 & 2 */
 bool1 = bool2 = FALSE;
 ar12 = -1.0; ar43 = -1.0;
//*24 if ((hi1>=0)&&(hi2>=0)&&(donefit[hi1])&&(donefit[hi2])&&
//*24 (parm[hi1][3]==parm[hi2][3])) {
//*25:
 if (dsf0&&(hi1>=0)&&(hi2>=0)&&(donefit[hi1])&&(donefit[hi2])&&
 (parm[hi1][3]==parm[hi2][3])) {
 ddf = ((double)parm[hi1][4]*parm[hi1][3] - parm[hi2][4]*parm[hi2][3]);
 mod2Pid(&ddf,0.0);
#if (docorr == 1)
 /* old method of correcting for frequency dependent delays
 in the synthesizer’s output filter: */
 rf1 = RFphase(p2f4[hi1]) - RFphase(p2f3[hi1]);
 rf2 = RFphase(p2f4[hi2]) - RFphase(p2f3[hi2]);
 cddf = ddf + 2*Pi*parm[hi1][3]*(rf1 - rf2);
#else
 cddf = 0.0;
#endif
 ar12 = parm[hi1][1] / parm[hi2][1];
 if (cf[hi2] < cf[hi1]) {
 ddf = -ddf;
 cddf = -cddf;
 }
 ddf /= d1;
 cddf /= d1;
 ddfs = sqrt(sqr(psd[hi1][4])+sqr(psd[hi2][4]))/d1;
 df = fabs(cf[hi1]-cf[hi2]);
// fprintf(out_fp,
// "1-2 freq diff in Hz (corrected): %.5lf (%.5lf) +- %9.3lE\n",
// df+ddf,df+cddf,ddfs);
 fprintf(out_fp,
 "1-2 freq diff in Hz (corrected): %.5lf () +- %9.3lE\n",
 df+ddf,ddfs);
 ddf += df - f0;
 cddf += df - f0;
 fprintf(out_fp,
 "(1-2 freq diff - f0)/(N+1) in Hz (corrected): % 11.5lE () +- %9.3lE\n",
 ddf/(npi+1),ddfs/(npi+1));
 fprintf(sp_fp,",% 11.5lE, ,%9.3lE",ddf/(npi+1),ddfs/(npi+1));
 fprintf(sum_fp," (1-2 freq diff - f0)/(N+1) in Hz (corrected): % 11.5lE () +- %9.3lE\
n",
 ddf/(npi+1),ddfs/(npi+1));
// fprintf(sum_fp," amp ratio: %4.2f\n",ar12);
 bool1 = (fabs(df - f0)/(npi+1) > 0.003);

 } else {
 fprintf(sp_fp,", , , ");
 }

 /* print frequency difference if we have both Interferometers 3 & 4 */
//*24 if ((hi3>=0)&&(hi4>=0)&&(donefit[hi3])&&(donefit[hi4])&&
//*24 (parm[hi3][3]==parm[hi4][3])) {
//*25:
 if (dsf0&&(hi3>=0)&&(hi4>=0)&&(donefit[hi3])&&(donefit[hi4])&&
 (parm[hi3][3]==parm[hi4][3])) {
 ddf = ((double)parm[hi3][4]*parm[hi3][3] - parm[hi4][4]*parm[hi4][3]);
 mod2Pid(&ddf,0.0);
#if (docorr == 1)
 /* old method of correcting for frequency dependent delays
 in the synthesizer’s output filter: */
 rf1 = RFphase(p2f4[hi3]) - RFphase(p2f3[hi3]);
 rf2 = RFphase(p2f4[hi4]) - RFphase(p2f3[hi4]);
 cddf = ddf + 2*Pi*parm[hi3][3]*(rf1 - rf2);
#else
 cddf = 0.0;
#endif
 ar43 = parm[hi4][1] / parm[hi3][1];
 if (cf[hi4] < cf[hi3]) {
 ddf = -ddf;
 cddf = -cddf;
 }
 ddf /= d1;
 cddf /= d1;
 ddfs = sqrt(sqr(psd[hi3][4])+sqr(psd[hi4][4]))/d1;
 df = fabs(cf[hi3]-cf[hi4]);
// fprintf(out_fp,
// "3-4 freq diff in Hz (corrected): %.5lf (%.5lf) +- %9.3lE\n",
// df+ddf,df+cddf,ddfs);
 fprintf(out_fp,
 "3-4 freq diff in Hz (corrected): %.5lf () +- %9.3lE\n",
 df+ddf,ddfs);
 ddf += df - f0;
 cddf += df - f0;
 fprintf(out_fp,
 "(3-4 freq diff - f0)/(N+1) in Hz (corrected): % 11.5lE () +- %9.3lE\n",
 ddf/(npi+1),ddfs/(npi+1));
 fprintf(sp_fp,",% 11.5lE, ,%9.3lE",ddf/(npi+1),ddfs/(npi+1));
 fprintf(sum_fp," (3-4 freq diff - f0)/(N+1) in Hz (corrected): % 11.5lE () +- %9.3lE\
n",
 ddf/(npi+1),ddfs/(npi+1));
// fprintf(sum_fp," amp ratio: %4.2f\n",ar43);
 bool2 = (fabs(df - f0)/(npi+1) > 0.003);
 } else {
 fprintf(sp_fp,", , , ");
 }
 if (ar12 < 0.0)
 fprintf(sp_fp,", ");
 else
 fprintf(sp_fp,",%4.2f",ar12);
 if (ar43 < 0.0)
 fprintf(sp_fp,", ");
 else
 fprintf(sp_fp,",%4.2f",ar43);
 fprintf(sp_fp,",%5lu,% 6.3f,% 6.3f\n",ltm,tltx,tlty);
// fprintf(sp_fp,",%5lu,% 6.3f,% 6.3f,%2s\n",ltm,tltx,tlty,(iref[0]==1)?"12":"34");
 if (bool1) fprintf(sum_fp," WARNING: 1-2 center frequency separation does not match cal
culated recoil shift!\n");
 if (bool2) fprintf(sum_fp," WARNING: 3-4 center frequency separation does not match cal
culated recoil shift!\n");
 fclose(out_fp);
 }
 fflush(sum_fp);
 fflush(sp_fp);
 break;
 case ’f’:
 clrscr();

 textcolor(LIGHTGRAY);
 parminit[1] = 1.0;
 parminit[2] = ysig[inti]/ymean[inti]*sqrt(2.0);
 parminit[3] = 1.0;
 parminit[4] = xzero[inti];
 intj = hasint[conj[iref[inti]-1]];
 bool1 = (intj>=0);
//*25b
 dosimfit = dsf0;
 if (dsf0) dosimfit = bool1;
//*25e
 if (dosimfit) {
 parminit[5] = 1.0;
 parminit[6] = ysig[intj]/ymean[intj]*sqrt(2.0);
 parminit[7] = xzero[intj];
 }
 gotoxy(1,1);
 cprintf("Fit function: %s\r\n",ffstr);
 cprintf("Parameter Initial Value Vary?\r\n");
 for (i=1; i<=nparm; i++) {
 cprintf(" %s % 5.3f %s\r\n",parmname[i],parminit[i],
 varystr[pvinit[i]]);
 }
 gotoxy(1,locy[1][0]);
 cprintf("Simulaneously fit the conjugate interferometer?%s\r\n",
 varystr[dosimfit]);
 cprintf("Display parameters after each fit iteration? %s\r\n",
 varystr[dispparm]);
 cprintf("Throw out all points more than X*sigma (X = %3.2f)",
 resfact);
 cprintf(" from the fitted curve.\r\n");
 cprintf("\r\n f - fit with these initial parameters\r\n");
 cprintf("ESC - return to main menu\r\n");
 row = 0;
 col = 0;
 itable = 0;
PrintSimFit:
 if (dosimfit) {
 gotoxy(locx[2][0]-5,locy[2][0]-1);
 cprintf("(Conjugate Interferometer)");
 for(i=5; i<=7; i++) {
 j = (i==7) ? 3 : i-5;
 gotoxy(locx[2][0]-1,locy[2][j]);
 cprintf("% 5.3f %s",parminit[i],varystr[pvinit[i]]);
 }
 } else {
 for(i=locx[2][0]-5,j=locy[2][0]-1; j<locy[2][0]+4; j++) {
 gotoxy(i,j);
 cprintf(" ");
 }
 }
 do {
 gotoxy(locx[itable][col],locy[itable][row]);
 textcolor(YELLOW);
 switch(c = getautoc(&iac)) {
 case ’0’: case ’1’: case ’2’: case ’3’: case ’4’: case ’5’:
 case ’6’: case ’7’: case ’8’: case ’9’: case ’.’: case ’-’:
 case ’+’:
 if ((((itable==0)||(itable==2))&&(col == 0)) ||
 ((itable==1)&&(row==2))) {
 putch(c);
 s1[0] = c;
 for (i=1; (s1[i]=getche()) != ’\r’; i++);
 s1[i] = ’\0’;
 if (sscanf(s1,"%f\n",&pval)) {
 if (itable == 1) {
 if (pval < 0.0) pval = 0.0;
 resfact = pval;
 gotoxy(locx[itable][col],locy[itable][row]);
 cprintf("%3.2f",resfact);
 } else {

294 APPENDIX C. COMPUTER CODE

 parminit[row+1] = pval;
 gotoxy(locx[itable][col]-1,locy[itable][row]);
 cprintf("% 5.3f",parminit[row+1]);
 }
 } else {
 textcolor(LIGHTGRAY);
 gotoxy(locx[itable][col]-1,locy[itable][row]);
 if (itable == 1)
 cprintf("%3.2f",resfact);
 else
 cprintf("% 5.3f",parminit[row+1]);
 textcolor(YELLOW);
 }
 }
 break;
 case ’y’:
 if (((itable == 0) || (itable == 2)) && (col == 1)) {
 pvinit[row+1] = YES;
 gotoxy(locx[itable][col],locy[itable][row]);
 cprintf("%s",varystr[YES]);
 } else if ((itable == 1) && (col == 0)) {
 gotoxy(locx[itable][col],locy[itable][row]);
 cprintf("%s",varystr[YES]);
 if (row == 0) {
 dosimfit = bool1;
 goto PrintSimFit;
 } else if (row == 1) {
 dispparm = TRUE;
 }
 }
 break;
 case ’n’:
 if (((itable == 0) || (itable == 2)) && (col == 1)) {
 pvinit[row+1] = NO;
 gotoxy(locx[itable][col],locy[itable][row]);
 cprintf("%s",varystr[NO]);
 } else if ((itable == 1) && (col == 0)) {
 gotoxy(locx[itable][col],locy[itable][row]);
 cprintf("%s",varystr[NO]);
 if (row == 0) {
 dosimfit = FALSE;
 goto PrintSimFit;
 } else if (row == 1) {
 dispparm = FALSE;
 }
 }
 break;
 case ’a’:
 if (((itable == 0) || (itable == 2)) && (col == 1)) {
 pvinit[row+1] = 2;
 gotoxy(locx[itable][col],locy[itable][row]);
 cprintf("%s",varystr[2]);
 }
 break;
 case ’\r’:
 tablemove(itable,1,0,&row,&col); break;
 case ’\t’:
 row = 0;
 col = 0;
 if (++itable > dosimfit+1) itable = 0;
 break;
 case 0:
 switch(getch()) {
 case 75:
 tablemove(itable,0,-1,&row,&col); break;
 case 77:
 tablemove(itable,0,1,&row,&col); break;
 case 72:
 tablemove(itable,-1,0,&row,&col); break;
 case 80:
 tablemove(itable,1,0,&row,&col); break;

 }
 break;
 case ’q’: case 0x1B: /* ESC key */
 goto MainLoop;
 }
 } while (c != ’f’);
 clrscr();
 textcolor(LIGHTGRAY);
 /* assign amplitude scaling factor */
 if (dosimfit)
 yscale = (ymean[inti] + ymean[intj])/2;
 else
 yscale = ymean[inti];
 /* check for negative amplitudes in 1st interferometer */
 if (ymin[inti] < 0.0) {
 yoff1 = -1.1*ymin[inti];
 cprintf("Warning! Some amplitude values of Inteferometer %i are negative.\r\n",
 iref[inti]);
 beep(1);
 cprintf(" - shifting all values up by %8.2E\r\n",yoff1);
 } else
 yoff1 = 0.0;
 /* scale and shift data from 1st interferometer, if necessary */
 for(i=0,ndata=0; i<=nstep; i++,ndata++) {
 xdata[ndata+1] = 2*Pi*TT*of[inti][i];
 ydata[ndata+1] = (amp[inti][i] + yoff1) / yscale; /* scale data */
 sdata[ndata+1] = 1.0;
 }
 idsref[0] = ndata + 1;
 nparm = 4;
 if (dosimfit) {
 /* check for negative amplitudes in conjugate interferometer */
 if (ymin[intj] < 0.0) {
 yoff2 = -1.1*ymin[intj];
 cprintf("Warning! Some amplitude values of Inteferometer %i are negative.\r\n",
 iref[inti]);
 beep(1);
 cprintf(" - shifting all values up by %8.2E\r\n",yoff2);
 } else
 yoff2 = 0.0;
 /* scale and shift data from conjugate interferometer, if necessary */
 for(i=0; i<=nstep; i++,ndata++) {
 xdata[ndata+1] = 2*Pi*TT*of[intj][i];
 ydata[ndata+1] = (amp[intj][i] - yoff2) / yscale; /* scale data */
 sdata[ndata+1] = 1.0;
 }
 idsref[1] = ndata + 1;
 nparm = 7;
 }
 for(i=1,n2pass=0; i<=nparm; i++) {
 /* assign initial parameter values */
 fitparm[i] = parminit[i];
 pvary[i] = pvinit[i];
 /* look for any parameters set to "AutoVary" */
 if (pvinit[i] == AUTO) {
 pvary[i] = NO;
 n2pass++;
 }
 }
 /* allocate temporary scratch space for fit routines */
 covar = matrix((long)1,(long)nparm,(long)1,(long)nparm);
 alpha = matrix((long)1,(long)nparm,(long)1,(long)nparm);

 chisq = RunFit(dispparm,ndata,xdata,ydata,sdata,nparm,fitparm,
 pvary,dosimfit,idsref,yscale,covar,alpha);

 /* if there are any "AutoVary" parameters, run fit again */
 if (n2pass) {
 for(i=1; i<=nparm; i++) {
 /* save old parameter values */
 oldparm[i] = fitparm[i];

 oldvar[i] = covar[i][i];
 /* turn on all "AutoVary" parameters */
 if (pvinit[i] == AUTO)
 pvary[i] = YES;
 }
 if (dispparm) clrscr();
 cprintf("Running fit again:\r\n");
 cprintf(" - using the parameters resulting from the first pass\r\n");
 cprintf(" - this time also varying all parameters set to \"Auto\"\r\n");
 newchisq = RunFit(dispparm,ndata,xdata,ydata,sdata,nparm,fitparm,
 pvary,dosimfit,idsref,yscale,covar,alpha);
 if (dispparm)
 clrscr();
 else
 printf("\n");
 if (newchisq > chisq) {
 cprintf("New chi-squared worse (larger) than previous value.\r\n");
 cprintf(" -> keep OLD parameters\r\n");
 for(i=1; i<=nparm; i++) {
 fitparm[i] = oldparm[i];
 covar[i][i] = oldvar[i];
 if (pvinit[i] == AUTO) pvary[i] = NO;
 }
 } else {
 cprintf("New chi-squared better (smaller) than previous value.\r\n");
 cprintf(" -> use NEW parameters\r\n");
 chisq = newchisq;
 }
 }

 if (resfact > 0.0) {
 /* compute residuals and standard deviation of residuals */
 cprintf("\r\nComputing residuals...\r\n");
 resmean = 0.0;
 ressd = 0.0;
 for(j=0,i=1; j<=dosimfit; j++)
 for(; i<idsref[j]; i++) {
 myfunc(j,xdata[i],fitparm,&f1,dydp,nparm);
 res[i] = ydata[i] - f1;
 resmean += res[i];
 ressd += res[i]*res[i];
 }
 resmean /= ndata;
/* ressd = sqrt(ressd/ndata - resmean*resmean); */
 ressd = sqrt(ressd/(ndata-1));
 /* throw out any points whose residual is more than "resfact"
 standard deviations ("ressd") away from "resmean" */
 cprintf("Throwing out all points farther than %3.2f*sigma away from fitted curve...\r\n"
,
 resfact);
 for(j=0,i=1,k=1,l=0,nignore=0; j<=dosimfit; j++) {
 l = (j==0) ? inti : intj;
 nbad[l] = 0;
 for(; i<idsref[j]; i++,k++) {
 xdata[k] = xdata[i];
 ydata[k] = ydata[i];
/* if (fabs(res[i]-resmean) >= resfact*ressd) { */
 if (fabs(res[i]) >= resfact*ressd) {
 k--;
 nignore++;
 badpt[l][nbad[l]++] = (j==0)? i-1 : i-idsref[0];
 }
 }
 cprintf(" %3i points from Interferometer %i.\r\n",nbad[l],
 iref[l]);
 ndata -= nbad[l];
 }
 idsref[0] -= nbad[inti];
 if (dosimfit) idsref[1] -= nignore;
 /* if points were thrown out, refit using the remaining points */
 if (nignore > 0)

 chisq = RunFit(dispparm,ndata,xdata,ydata,sdata,nparm,fitparm,
 pvary,dosimfit,idsref,yscale,covar,alpha);
 }

 /* store fit results and clean up */
 for(i=1; i<=4; i++) {
 parm[inti][i] = fitparm[i];
 psd[inti][i] = sqrt(chisq*covar[i][i]);
 }
 /* return to original scale: */
 parm[inti][1] *= yscale;
 psd[inti][1] *= yscale;
 pchisq[inti] = chisq * sqr(yscale);
 if (dosimfit) {
 parm[intj][1] = fitparm[5] * yscale;
 psd[intj][1] = sqrt(chisq*covar[5][5]) * yscale;
 parm[intj][2] = fitparm[6];
 psd[intj][2] = sqrt(chisq*covar[6][6]);
 parm[intj][3] = parm[inti][3];
 psd[intj][3] = psd[inti][3];
 parm[intj][4] = fitparm[7];
 psd[intj][4] = sqrt(chisq*covar[7][7]);
 pchisq[intj] = pchisq[inti];
 }
 cprintf("\r\nFinal: chi^2 = %9.3E\r\n",pchisq[inti]);
 standardform(parm[inti],psd[inti]);
 if (dosimfit) standardform(parm[intj],psd[intj]);
 for(i=1; i<=4; i++) {
 cprintf(" %s = % 11.5E (+- %9.3E)",parmname[i],parm[inti][i],
 psd[inti][i]);
 if (dosimfit)
 cprintf(" | % 11.5E (+- %9.3E)\r\n",parm[intj][i],psd[intj][i]);
 else
 printf("\n");
 }
 free_matrix(covar,(long)1,(long)nparm,(long)1,(long)nparm);
 free_matrix(alpha,(long)1,(long)nparm,(long)1,(long)nparm);
 donefit[inti] = TRUE;
 ndpfit[inti] = ndata;
 for(i=1,nfpfit[inti]=0; i<=nparm; i++)
 if (pvary[i]) nfpfit[inti]++;
 if (dosimfit) {
 donefit[intj] = TRUE;
 ndpfit[intj] = ndpfit[inti];
 nfpfit[intj] = nfpfit[inti];
 nparm = 4;
 }
 cprintf("\nAny key to return to main menu\r\n");
 getautoc(&iac);
 break;
 case ’q’:
 if (!istext) closegraph();
 break;
 case ’a’: case ’A’:
 autocommand[0] = ’\0’;
 for (ni=0; ni<nseq; ni++) {
 j = hasint[conj[iref[ni]-1]];
//*24 if ((j < 0) || (j > ni)) {
//*24 sprintf(s1,"%1iff ",iref[ni]);
//*25b
 if ((j < 0) || (j > ni) || !dsf0) {
 sprintf(s1,"%1iff ",ni+1);
//*25e
 strcat(autocommand,s1);
 }
 }
 strcat(autocommand,"sn");
 if (c == ’A’) strcat(autocommand," A");
 nautocommand = strlen(autocommand);
 iac = 1;
 isauto = TRUE;

C.2. FIT.C 295

 break;
 }
 } while ((c != ’q’) && (c != ’n’));
 FreeDynam(nseq);
 } else {
 c = ’q’;
 }
 } while (c != ’q’);
 fclose(sum_fp);
 fclose(sp_fp);
 return 0;
}

int fgetline(FILE *f_fp, char *line, int *l)
/*
 Read up to "l" characters from stream "f_fp" and store them in
"line[]". Stop if a ’\n’ or EOF is reached.
 Returns:
 TRUE, if "l" chars are read without encountering a ’\n’ or EOF
 FALSE, otherwise
*/
{
 char c;
 int i = 0;

 if (*l == 0) return TRUE;
 while(((c=fgetc(f_fp)) != ’\n’) && (c != EOF) && (i < *l)) {
 line[i++] = c;
 }
 if ((i==*l) && (c!=’\n’) && (c!=EOF)) {
 line[i-1] = ’\0’;
 return TRUE;
 }
 line[i] = ’\0’;
 *l = i;
 return FALSE;
}

void myfunc(int ids, float x,float *parm,float *y,float *dydp,int nparm)
{
 int i;
 float phi1,phi2,fc,fs;

 if (ids == 0) {
/* *y = parm[1]*(1 + parm[2]*sin(parm[3]*(x+parm[4]))); */
 phi1 = x + parm[4];
 phi2 = parm[3]*phi1;
 fs = sin(phi2);
 fc = parm[1]*parm[2]*cos(phi2);
 dydp[1] = 1.0 + parm[2]*fs;
 *y = parm[1]*dydp[1];
 dydp[2] = parm[1]*fs;
 dydp[3] = fc*phi1;
 dydp[4] = fc*parm[3];
 for(i=5; i<=nparm; i++)
 dydp[i] = 0.0;
 } else if (ids == 1) {
/* *y = parm[5]*(1 + parm[6]*sin(parm[3]*(x+parm[7]))); */
 phi1 = x + parm[7];
 phi2 = parm[3]*phi1;
 fs = sin(phi2);
 fc = parm[5]*parm[6]*cos(phi2);
 dydp[5] = 1.0 + parm[6]*fs;
 *y = parm[5]*dydp[5];
 dydp[6] = parm[5]*fs;
 dydp[3] = fc*phi1;
 dydp[7] = fc*parm[3];
 dydp[1] = 0.0;
 dydp[2] = 0.0;

 dydp[4] = 0.0;
 }

/*
 *y = parm[1] + parm[2]*sin(parm[3]*x+parm[4]);
 dydp[1] = 1.0;
 dydp[2] = sin(parm[3]*x+parm[4]);
 dydp[3] = parm[2]*x*cos(parm[3]*x+parm[4]);
 dydp[4] = parm[2]*cos(parm[3]*x+parm[4]);
*/
/*
 y = parm[1](1 + parm[2]*sin((1+parm[3])*(x+parm[4])));
 dydp[1] = 1 + parm[2]*sin((1+parm[3])*(x+parm[4]));
 dydp[2] = parm[1]*sin((1+parm[3])*(x+parm[4]));
 dydp[3] = parm[1]*parm[2]*(x+parm[4])*cos((1+parm[3])*(x+parm[4]));
 dydp[4] = parm[1]*parm[2]*(1+parm[3])*cos((1+parm[3])*(x+parm[4]));
*/
}

void autoscale(float min, float max, int ndiv, float *minscaled, float *step, float *intscaled)
{
 float a,b,f;

 f = log10((max - min)/ndiv);
 a = floor(f);
 b = f - a;
 a = pow(10,a);
 b = pow(10,b);
 if (b > 5.1) *step = a*10;
 else if (b > 2.1) *step = a*5;
 else if (b > 1.1) *step = a*2;
 else *step = a;
 *minscaled = floor(min/(*step)) * *step;
 *intscaled = *step * ndiv;
}

void changescale(float *step, float *interval, int dir)
{
 float s,b,f;

 if (dir != 0) {
 f = log10(*step);
 b = f - floor(f);
 b = pow(10,b);
 if (((dir > 0) && (fabs(b-2) < 0.00001)) ||
 ((dir < 0) && (fabs(b-5) < 0.00001))) s = 2.5;
 else s = 2.0;
 if (dir > 0) {
 *step *= s;
 *interval *= s;
 changescale(step,interval,dir-1);
 } else {
 *step /= s;
 *interval /= s;
 changescale(step,interval,dir+1);
 }
 }
}

void rtog(float x, float y, int *gx, int *gy)
{
 gx = (x-leftx)/intx(winx2-winx1) + winx1;
 gy = winy2 - (y-boty)/inty(winy2-winy1);
}

void mydot(int gx, int gy, int type)
{

 switch(type) {
 case TICKX1:
 line(gx-2,gy,gx+2,gy);
 break;
 case TICKY1:
 line(gx,gy-2,gx,gy+2);
 break;
 case DOT2:
 fillellipse(gx,gy,2,2);
 break;
 case DOT1:
 fillellipse(gx,gy,1,1);
 break;
 case CROSS:
 line(gx-4,gy-4,gx+4,gy+4);
 line(gx-4,gy+4,gx+4,gy-4);
 break;
 case LINE:
 lineto(gx,gy);
 break;
 case POINT:
 default:
 putpixel(gx,gy,getcolor());
 break;
 }
}

void setextrema(float *x, float *y, int n)
{
 float minx,maxx, miny,maxy; /* extrema of the data */
 int i;

 minx = maxx = x[0];
 miny = maxy = y[0];
 for(i=1; i<n; i++) {
 if (x[i] > maxx) maxx = x[i];
 if (x[i] < minx) minx = x[i];
 if (y[i] > maxy) maxy = y[i];
 if (y[i] < miny) miny = y[i];
 }
 autoscale(minx,maxx,nxdiv,&leftx,&stepx,&intx);
 autoscale(miny,maxy,nydiv,&boty,&stepy,&inty);
}

void drawgrid(char *xunits, char *yunits)
{
 int gx1,gy1,gleftx,gboty,grightx,gtopy;
 int gx[100],gy[100];
 int mxnsd;
 int i,j;
 char s1[80];

 int
 font = DEFAULT_FONT,
 fontsize = 1;

 setcolor(LIGHTGRAY);
 rtog(leftx,boty,&gleftx,&gboty);
 rtog(leftx+stepx*nxdiv,boty+stepy*nydiv,&grightx,>opy);
 mxnsd = max(nxdiv*nxsubdiv,nydiv*nysubdiv);
 for(i=0; i<mxnsd; i++)
 rtog(leftx+i*stepx/nxsubdiv,boty+i*stepy/nysubdiv,&(gx[i]),&(gy[i]));
 for(i=0; i<=nxdiv; i++) {
 rtog(leftx+i*stepx,boty,&gx1,&gy1);
 line(gx1,gboty,gx1,gtopy);
 for(j=0; j<(nydiv*nysubdiv); j++)
 mydot(gx1,gy[j],TICKX1);
 }
 for(i=0; i<=nydiv; i++) {

 rtog(leftx,boty+i*stepy,&gx1,&gy1);
 line(gleftx,gy1,grightx,gy1);
 for(j=0; j<(nxdiv*nxsubdiv); j++)
 mydot(gx[j],gy1,TICKY1);
 }
 sprintf(s1,"%7.1E %s",leftx,xunits);
 settextstyle(font,HORIZ_DIR,fontsize);
 settextjustify(LEFT_TEXT,RIGHT_TEXT);
 outtextxy(gleftx,gboty+4,s1);
 sprintf(s1,"%7.1E",leftx+stepx*nxdiv);
 settextstyle(font,HORIZ_DIR,fontsize);
 settextjustify(CENTER_TEXT,RIGHT_TEXT);
 outtextxy(grightx,gboty+4,s1);
 sprintf(s1,"%6.0E per div",stepx);
 settextstyle(font,HORIZ_DIR,fontsize);
 settextjustify(CENTER_TEXT,RIGHT_TEXT);
 rtog(leftx+nxdiv/2*stepx,boty,&gx1,&gy1);
 outtextxy(gx1,gboty+4,s1);
 sprintf(s1,"%7.1E %s",boty,yunits);
 settextstyle(font,VERT_DIR,fontsize);
 settextjustify(RIGHT_TEXT,LEFT_TEXT);
 outtextxy(gleftx-5,gboty,s1);
 sprintf(s1,"%7.1E",boty+stepy*nydiv);
 settextstyle(font,VERT_DIR,fontsize);
 settextjustify(RIGHT_TEXT,CENTER_TEXT);
 outtextxy(gleftx-5,gtopy,s1);
 sprintf(s1,"%6.0E per div",stepy);
 settextstyle(font,VERT_DIR,fontsize);
 settextjustify(RIGHT_TEXT,CENTER_TEXT);
 rtog(leftx,boty+nydiv/2*stepy,&gx1,&gy1);
 outtextxy(gleftx-5,gy1,s1);
}

void plot(float *x, float *y, int n, int *bp, int nb, int color, int dot)
{
 int gx1, gy1;
 int i,ib=0;

 for(i=0; i<n; i++) {
 rtog(x[i],y[i],&gx1,&gy1);
 setcolor(color);
 setfillstyle(SOLID_FILL,color);
 if (dot == LINE) {
 if (i==0) moveto(gx1,gy1);
 mydot(gx1,gy1,dot);
 } else {
 if ((nb > 0) && (i == bp[ib])) {
 ib++;
 setcolor(LIGHTRED);
 mydot(gx1,gy1,CROSS);
 setcolor(color);
 } else
 mydot(gx1,gy1,dot);
 }
 }
}

void dataerr(int l)
{
 cprintf("fit: ERROR in data file, line %i.\r\n",l);
 fclose(dat_fp);
 bye(1,0);
}

void bye(int err, int ns)
{
 /* if variable space was allocated, free it */
 if (ns > 0) FreeDynam(ns);

296 APPENDIX C. COMPUTER CODE

 /* close files */
 fclose(sum_fp);
 fclose(sp_fp);
 exit(err);
}

void FreeDynam(int ns)
{
 int i;

 free(xdata+1); /* starting index = 1 */
 free(ydata+1); /* starting index = 1 */
 free(sdata+1); /* starting index = 1 */
 free(res+1); /* starting index = 1 */
 for(i=0; i<ns; i++) {
 free(of[i]);
 free(amp[i]);
 free(badpt[i]);
 free(parm[i]+1); /* starting index = 1 */
 free(psd[i]+1); /* starting index = 1 */
 }
 free(of);
 free(amp);
 free(badpt);
 free(parm);
 free(psd);
}

void tablemove(int it, int dr, int dc, int *r, int *c)
{
 *r += dr;
 if (*r < 0) {
 if (*c == 0) {
 *r = nrow[it] - 1;
 *c = ncol[it] - 1;
 } else {
 *r += nrow[it];
 tablemove(it,0,-1,r,c);
 }
 } else if (*r >= nrow[it]) {
 if (*c >= (ncol[it]-1)) {
 *r = 0;
 *c = 0;
 } else {
 *r -= nrow[it];
 tablemove(it,0,1,r,c);
 }
 }

 *c += dc;
 if (*c < 0) {
 if (*r == 0) {
 *r = nrow[it] - 1;
 *c = ncol[it] - 1;
 } else {
 *c += ncol[it];
 tablemove(it,-1,0,r,c);
 }
 } else if (*c >= ncol[it]) {
 if (*r >= (nrow[it]-1)) {
 *r = 0;
 *c = 0;
 } else {
 *c -= ncol[it];
 tablemove(it,1,0,r,c);
 }
 }
}

int mod2Pi(float *phi,float cent)
{
 float
 oldphi = *phi,
 p1 = cent - Pi,
 p2 = cent + Pi,
 twoPi = 2*Pi;

 while (*phi > p2) *phi -= twoPi;
 while (*phi < p1) *phi += twoPi;
 return (!(oldphi == *phi));
}

int mod2Pid(double *phi,double cent)
{
 double
 oldphi = *phi,
 p1 = cent - Pi,
 p2 = cent + Pi,
 twoPi = 2*Pi;

 while (*phi > p2) *phi -= twoPi;
 while (*phi < p1) *phi += twoPi;
 return (!(oldphi == *phi));
}

char getautoc(int *i)
{
 char c;

 if (isauto) {
 if (*i >= nautocommand) isauto = FALSE;
 if (*i <= nautocommand) {
 c = autocommand[*i-1];
 (*i)++;
 return c;
 }
 }
 return getch();
}

void beep(int i)
{
 int
 f1, f2, /* frequency of beep (Hz) */
 d1, d2; /* duration of beep (ms) */

 switch(i) {
 case 2:
 f1 = 1000;
 d1 = 50;
 f2 = 1000;
 d2 = 30;
 break;
 default:
 f1 = 1000;
 d1 = 100;
 f2 = 0;
 d2 = 0;
 }
 sound(f1);
 delay(d1);
 nosound();
 delay(d2);
 sound(f2);
 delay(d1);
 nosound();

}

void standardform(float p[], float psd[])
/* put parameters in "standard" form */
{
 float p1;

 if (p[3] < 0) {
 p[3] = -p[3];
 p[2] = -p[2];
 }
 if (p[2] < 0) {
 p[2] = -p[2];
 p[4] += Pi/p[3];
 }
 p1 = p[4] * p[3];
 if (mod2Pi(&p1,0.0)) {
 beep(1);
 cprintf("WARNING: parameter shifted by a multiple of 2Pi\r\n");
 }
 p[4] = p1 / p[3];
/*
 p1 = psd[4] * p[3];
 if (mod2Pi(&p1,0.0)) {
 beep(2);
 cprintf("WARNING: standard deviation of parameter shifted by a multiple of 2Pi\r\n");
 getch();
 }
 psd[4] = p1 / p[3];
*/
}

float RunFit(int dodisp,
 int n, float x[], float y[], float s[],
 int nparm, float p[], int pvary[],
 int dosimfit, int idsref[], float yscale,
 float **covar, float **alpha)
{
 int
 i,
 nfit=0, /* number of parameters that vary */
 iter;
 float
 chisq = 0.0,
 alamda = -1.0;

 /* count the number of free parameters */
 for(i=1; i<=nparm; i++)
 if (pvary[i]) nfit++;

 if (dodisp) {
 cprintf("Fit %i free parameters to %s using %i points:\r\n",
 nfit,ffstr,n);
 cprintf("Iter A B C D");
 if (dosimfit) cprintf(" | A B D");
 cprintf(" chi^2 lamda\r\n");
 } else
 cprintf("Fitting %i free parameters using %i points",nfit,n);
 /*
 void mrqmin(float x[], float y[], float sig[], int n, float a[], int ia[],
 int ma, float **covar, float **alpha, float *chisq,
 void (*funcs)(float, float [], float *, float [], int), float *alamda)
 */
 for(iter=0; (iter<=100) && (alamda<=1000.); iter++) {
 if (dodisp) {
 cprintf("%3i: % 5.3f % 5.3f % 5.3f % 5.3f",iter,p[1]*yscale,
 p[2],p[3],p[4]);
 if (dosimfit)
 cprintf(" | % 5.3f % 5.3f % 5.3f",p[5]*yscale,p[6],

 p[7]);
 cprintf(" %9.3E % 6.0E\r\n",chisq/(n-nfit)*yscale*yscale,
 alamda);
 } else {
 cprintf(".");
 }
 mymrqmin(x,y,s,n,idsref,p,pvary,nparm,covar,
 alpha,&chisq,myfunc,&alamda);
 };
 printf("\n");
 alamda = 0.0;
 mymrqmin(x,y,s,n,idsref,p,pvary,nparm,covar,
 alpha,&chisq,myfunc,&alamda);
 if (dodisp) {
 cprintf("Press any key to continue.\r\n");
 getch();
 }
 return chisq/(n-nfit);
}

unsigned long TimeToSeconds(char *s)
/*
 Convert time in hh:mm:ss form stored in string "s" to seconds from
00:00:00.
*/
{
 char
 *c1_p = NULL,
 *c2_p = NULL;
 unsigned long ul;

 if (((c1_p = strchr(s,’:’)) < s+2) || ((c2_p = strchr(c1_p+1,’:’)) < s+5))
 return (unsigned long)0;
 ul = (unsigned long)3600*atoi(s);
 ul += (unsigned long)60*atoi(c1_p+1);
 ul += (unsigned long)atoi(c2_p+1);
 return ul;
}

C.3. DIGFIL.C 297

C.3 DigFil.C

The DigFil.C code compiled in Borland Turbo C++ 3.0 and running under DOS

controls the active part of the vibration isolation system discuss in Section 3.4. It

installs a small memory resident routine that traps a hardware interrupt generated

every time the analog-to-digital (AD) pc-board inside the computer samples another

value from the accelerometer. Using a discrete transform with operator controllable

parameters, it transforms this digital input signal in real time into an output control

value which is converted back to an analog signal by the same pc-board. This analog

control signal goes eventually to the solenoid coil which pushes against the freely

moving part of the VI tower (see Figure 3.15) to counteract the motion detected by

the accelerometer. A particular important feature of the code is the ability to change

the parameters that deÞne the discrete transform while the feedback loop is closed.

This feature allows the feedback parameters to be optimized without opening and

re-closing the loop, thus minimizing the time spent waiting for feedback transients to

die away.

/*
 DIGFIL.C Joel M. Hensley
Has the National Intruments AT-MIO-16XE-50 board perform as an "almost"
real-time digital controller for a vibration isolation system. Using
interrupts digital values are read in from the board, filtered, and
then given directly back to the board for conversion to an analog
output signal.

2.0 9/95
 Revised to run the AT-MIO-16X board with 16-bit resolution.
2.1 9/15/95
 Added feature to allow the operator to vary the gain of the monitor
output (DAC1).
 Added feature to automatically decrease the gain when the control
output exceeds a certain threshold (THRAIL) and increase the gain when
it settles below another threshold (THMIN).
2.3 10/16/95
 Allow operator to remove high-pass filter from compensation function.
 Added feature to save output values of internal transfer function
components into a buffer so that they can be viewed later.
2.4 12/12/95
 Add two more compensators.
2.5 1/15/95
 Add a gate to the buffer save feature so that we can store values of
the error signal at specific points in time. The gate signal will come
in on bipolar channel AI1/9.
3.0 3/9/96
 Same as version 2.5 but drives AT-MIO-16XE-50 board instead of AT-MIO-16X
3.1 4/17/96
 Change format of input file and internal definition of transfer functions
to increase flexibility.
3.2 3/27/97
 Fix bug that incorrectly assigned the interupt number.
*/
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <math.h>
#include <dos.h>
#include <conio.h>
#include <string.h>
#include "mynidefs.h"
#include "arrays.h"

enum {FALSE,TRUE};

/* conversion factor for CMG3 (serial number 3133) in V/(mm/s*s) */
#define ACCELCF (0.995)
/* extrema values for bipolar 16-bit conversion: */
#define MAXVAL 32767 /* maximum allowed digital value */
#define MINVAL -32768 /* minimum allowed digital value */
/*
The following parameters are used only if they are not set correctly
in the input file: */
#define EXTCONT 0 /* sample rate controlled (1=external,0=internal) */
#define SAMPRATE 4000 /* sample rate (points / sec) */
 /* - maximum from command line: 8000
 - maximum from Turbo C: ˜4000 */
#define NDITHAVG 4 /* # of past samples to avg over */
#define MODFACT 1.1892
#define THMAX 0.9 /* threshold where gain is automatically lowered */
#define THMIN 0.1 /* threshold where gain is automatically raised */
 /* thresholds defined in terms of percentage of maximum range */
#define ONTHRESH 1 /* threshold for turn-on comparator */

#define INFILE "digfil.in"
#define INFVER 2
#define OUTFILE "digfil.out"

#define NTF 4 /* max # of definable transfer functions */

#define NELEMMAX 10 /* max # of definable elements per TF */
#define NSBUF 5 /* number of save buffers */
#define SBUFSIZ 1000 /* size of save buffers */
#define GBUFSIZ 10000 /* size of gate save buffer */
#define BGMASK 1 /* gate comes in on Digital Port A0 */
#define NTGSTEP 28 /* number of steps before achieving final gain */
 /* modifcation factor for variable compensator */
enum {UNDERRAIL,NORAIL,OVERRAIL};
const int printlevel = 1;

unsigned int
 igate = 0; /* number of external gate events */
int
 ndithavg=NDITHAVG, /* number of past samples to average over */
 dithfact=NDITHAVG, /* multiplicative factor used to increase
 resolution after dither averaging */
 onthresh=ONTHRESH, /* threshold for turn-on comparator */
 tfnelem[NTF], /* number of elements in each TF */
 **tfes, /* individual elements enabled? */
 **tfe, /* element type:
 0 = HP
 1 = LP
 2 = CU
 3 = CD */
 **tfepos, /* element index for each position */
 **tfpose, /* element position for each element index */
 nparme[4] = {2,2,3,3}, /* number of parameters in element type */
 Atf = 0, /* output A computed from this TF */
 Btf = 1, /* output B computed from this TF */
 tfreq = -1, /* TF requested */
 TOtf = 3, /* vel=0 computed from this TF */
 bab = 1, /* 0: output A inactive, output B active
 1: output A active, ouput B inactive */
 israiled, /* control output at or past rail?
 UNDERAIL = abs(control out) < thmin
 NORAIL = thmin < abs(control out) < thmax
 OVERRAIL = abs(control out) > thmax */
 itempgain = 0, /* =log(tempfact)/log(modfact) */
 cstate = 0, /* 0 = FB loop open
 1 = FB closed, no pending messages
 2 = waiting for vel=0 to close FB loop
 3 = display "FB loop closed" message
 4 = waiting for vel=0 to make change in TF
 5 = display "TF changed" message
 6 = wait for vel=0 to change active TF
 7 = display "Active TF changed" message */
 monab = 1, /* 0: monitor output B,
 1: monitor output A */
 monpos = 0, /* select which TF element is monitored at DAC1 */
 imog = 2, /* index for monitor output gain */
 buffsel = -1, /* selects the buffer where values are stored:
 -1 = no storage
 0-4 = buffer 1-5 */
 isbuff[NSBUF], /* buffer index */
 dogatebuf = FALSE, /* enable gated save buffer */
 gberr = 0, /* 0 = no error,
 1 = buffer full, message not displayed,
 2 = buffer full, message displayed,
 3 = sequence of 4 gates were not
 within 200ms of each other */
 gbarm = 3, /* 3 = wait for rising edge of preselection pulse
 2 = wait for falling edge of preselection pulse
 1 = wait for rising edge of a Pi/2 pulse
 0 = wait for falling edge of a Pi/2 pulse */
 savebuff[NSBUF][SBUFSIZ], /* buffer storage space */
 donebuff[NSBUF], /* buffer used for storage? */
 idith; /* counter for dither points */
long
 pindithsum = 0, /* accumulator for dither average */
 pindith_a[30]; /* storage array for dither points to be averaged */

298 APPENDIX C. COMPUTER CODE

unsigned long
 ligc = 0, /* indicates at which point to change gain */
 bsmark = 0, /* indicates at which point to store a value in buffer */
 ngb = 0, /* point of last gate event */
 nin = 0; /* total number of points acquired */
float
 ***tfeparm, /* transfer function parmeters */
 gsvbuff[GBUFSIZ], /* gated save buffer */
 mogain[4] = {0.01,0.1,1.0,10.0}; /* selectable monitor output gains */
double
 dT, /* time between samples (sec) */
 fthmin,fthmax, /* threshold values */
 zsv[4], /* temporary space for gated buffer values */
 fpout2, /* output value for DAC1 before conversion to int */
/* previous intermediate output values: */
 fpiprev = 0,
 eAprev[NELEMMAX],
 eBprev[NELEMMAX],
 eTOprev[NELEMMAX],
 modfact[NTGSTEP+1], /* temporary gain factors */
 velsum = 0.,
 zsum = 0.,
 **tfA, /* digital filter constants for TF A */
 **tfB, /* digital filter constants for TF B */
 **tfTO; /* digital filter constants for turnon-on TF */
char
 /* global dislay strings: */
 tfenm[NTF][NELEMMAX][9], /* element names */
 enm[4][3] = {"HP","LP","CU","CD"}, /* element type names */
 esnm[2][9] = {"Disabled","Enabled"}; /* status */

void intr_install(unsigned char irq);
void intr_remove(unsigned char irq);
void far interrupt (*oldhandler)();
void far interrupt handler();
void bye(int err); /* exit routine */
int fgetline(FILE *f_fp, char line[], int *l, char tc);
double gainchange(int itg);
int DecodeTFElement(char lstr[]);
void SetTF(int itf, int id);
void SetElement(int id, int elem, int pos, float *p);
void DefHP(double *a, float *p);
void DefLP(double *a, float *p);
void DefCD(double *a, float *p);
void DefCU(double *a, float *p);
void FreeArrays(void);
void DisplayTF(FILE *fp, int tfi);

int main(void)
{
 unsigned int
 status;
 double
 modconst=MODFACT, /* parameter change factor */
 tempfact = 1.0; /* temporary gain modification factor */
 float
 thmin=THMIN, /* threshold where gain is automatically raised */
 thmax=THMAX; /* threshold where gain is automatically lowered */
 int
 ver, /* input file version number */
 dev, /* NI device number */
 samprate=SAMPRATE, /* sample rate (samples/sec) */
 inputgain = 1, /* input gain */
 extcont=EXTCONT, /* acquisition triggered externally? */
 montf = 0, /* TF index of channel being monitored */
 vartf = 0, /* TF to vary */
 varps = 0, /* element position to vary */
 varpm = 0, /* parmeter to vary */
 aiovrflw_b, /* was there an AI overflow error? */

 aiovrrun_b, /* was there an AI overrun error? */
 daqup_b, /* is analog output ready for new value */
 doautogain = FALSE, /* automatically change gain? */
 doautostart = FALSE; /* start with low gain and then automatically increase? */
 unsigned long
 sampint; /* number of clock cycles between samples */
 char
 /* display strings: */
 chanstr[3][11] = {"B","A","Vel=0"},
 tfstr[NTF][4] = {"TF1","TF2","TF3","TF4"}, /* transfer functions */
 epnm[4][3][4] = {{"Ghf","Fl","Fu"},{"Gdc","Fl","Fu"},{"Gdc","Fl","Fu"},
 {"Gdc","Fl","Fu"}}; /* parameter names */
 FILE
 inf, / input file pointer */
 outf; / output file pointer */

 int i,ie,ip,j,k,l,ln,bool,itf;
 float f1;
 long li;
 unsigned long ul;
 double d1;
 char c = 0,s1[80],lnstr[80];

 /* declare arrays */
 tfes = imatrix(0,(int)NTF-1,0,(int)NELEMMAX-1);
 tfe = imatrix(0,(int)NTF-1,0,(int)NELEMMAX-1);
 tfepos = imatrix(0,(int)NTF-1,0,(int)NELEMMAX-1);
 tfpose = imatrix(0,(int)NTF-1,0,(int)NELEMMAX-1);
 tfeparm = f3tensor(0,(int)NTF-1,0,(int)NELEMMAX-1,0,2);
 tfA = dmatrix(0,(int)NELEMMAX-1,0,2);
 tfB = dmatrix(0,(int)NELEMMAX-1,0,2);
 tfTO = dmatrix(0,(int)NELEMMAX-1,0,2);

 /* clear previous output values */
 for(i=0; i<NELEMMAX; i++) {
 eAprev[i] = 0.0;
 eBprev[i] = 0.0;
 eTOprev[i] = 0.0;
 }
 for (idith=0; idith<ndithavg; idith++)
 pindith_a[idith] = 0;
 /* define temporary gain factors */
 for(i=0; i<=NTGSTEP; i++)
 modfact[i] = pow(modconst,(double)-i);
 /* clear storage buffers */
 for(i=0; i<NSBUF; i++) {
 donebuff[i] = FALSE;
 for(l=0; l<SBUFSIZ; l++)
 savebuff[i][l] = 0;
 }
 for(i=0; i<GBUFSIZ; i++) {
 gsvbuff[i] = 0.0;
 }

 clrscr();
 printf("Reading input file.\n");
 /* open input file */
 if ((inf=fopen(INFILE,"rt")) == NULL) {
 printf("digfil - error opening input file ’%s’\n",INFILE);
 FreeArrays();
 exit(1);
 }
 /* check input file version number */
 fscanf(inf,"%i\n",&ver);
 if (ver != INFVER) {
 printf("digfil - input file has incorrect version number.\n");
 FreeArrays();
 fclose(inf);
 exit(1);
 }
 /* initialize transfer function storage space */

 for(i=0; i<NTF; i++)
 tfnelem[i] = 0;
 /* read input file */
 ln = 2; l = 80; fgetline(inf,lnstr,&l,’\n’);
 while (l > 0) {
 for(i=0; i<l && isspace(lnstr[i]) && lnstr[i]!=’\’’; i++);
 /* skip leading white space but stop at comment character */
 if (lnstr[i]==’\’’) goto NextLine;
 if (strnicmp(lnstr+i,"SampleRate",10) == 0) {
 for(i+=10; i<l && !isdigit(lnstr[i]); i++); /* find first digit */
 for(j=i; i<l && isdigit(lnstr[i]); i++)
 s1[i-j] = lnstr[i];
 s1[i-j] = ’\0’;
 samprate = atoi(s1);
 if (samprate < 7) {
 samprate = (int)SAMPRATE;
 printf("digfil WARNING (input file line %i):\n",ln);
 printf(" Bad sample rate, sample rate set to default: %i samples/sec\n",samprate);
 }
 } else if (strnicmp(lnstr+i,"ExtTrig",7) == 0) {
 for(i+=7; i<l && !isdigit(lnstr[i]); i++); /* find first digit */
 extcont = lnstr[i] - ’0’;
 } else if (strnicmp(lnstr+i,"NumberofAverages",16) == 0) {
 for(i+=16; i<l && !isdigit(lnstr[i]); i++); /* find first digit */
 for(j=i; i<l && isdigit(lnstr[i]); i++)
 s1[i-j] = lnstr[i];
 s1[i-j] = ’\0’;
 ndithavg = atoi(s1);
 if (ndithavg < 1 || ndithavg > 30) {
 ndithavg = NDITHAVG;
 printf("digfil WARNING (input file line %i):\n",ln);
 printf(" Number of Averages out of range, set to default: %i\n",ndithavg);
 }
 } else if (strnicmp(lnstr+i,"ParameterChangeFactor",21) == 0) {
 for(i+=21; i<l && !isnumb(lnstr[i],21); i++); /* find first number */
 for(j=i; i<l && isnumb(lnstr[i]); i++)
 s1[i-j] = lnstr[i];
 s1[i-j] = ’\0’;
 modconst = atof(s1);
 if (modconst < 1.0) {
 modconst = MODFACT;
 printf("digfil WARNING (input file line %i):\n",ln);
 printf(" Parameter change factor must be >= 1, set to default: %f\n",modconst);
 }
 } else if (strnicmp(lnstr+i,"MinimumThreshold",16) == 0) {
 for(i+=16; i<l && !isnumb(lnstr[i],16); i++); /* find first number */
 for(j=i; i<l && isnumb(lnstr[i]); i++)
 s1[i-j] = lnstr[i];
 s1[i-j] = ’\0’;
 thmin = (float)atof(s1);
 if (thmin < 0.0 || thmin >= 1.0) {
 thmin = THMIN;
 printf("digfil WARNING (input file line %i):\n",ln);
 printf(" Minimum threshold out of range, set to default: %f\n",thmin);
 }
 } else if (strnicmp(lnstr+i,"MaximumThreshold",16) == 0) {
 for(i+=16; i<l && !isnumb(lnstr[i],16); i++); /* find first number */
 for(j=i; i<l && isnumb(lnstr[i]); i++)
 s1[i-j] = lnstr[i];
 s1[i-j] = ’\0’;
 thmax = (float)atof(s1);
 if (thmax < thmin || thmax > 1.0) {
 thmax = THMAX;
 printf("digfil WARNING (input file line %i):\n",ln);
 printf(" Maximum threshold out of range, set to default: %f\n",thmax);
 }
 } else if (strnicmp(lnstr+i,"TurnOnThreshold",15) == 0) {
 for(i+=15; i<l && !isnumb(lnstr[i]); i++); /* find first digit */
 for(j=i; i<l && isnumb(lnstr[i]); i++)
 s1[i-j] = lnstr[i];
 s1[i-j] = ’\0’;

 onthresh = atoi(s1);
 if (onthresh < 0) {
 onthresh = ONTHRESH;
 printf("digfil WARNING (input file line %i):\n",ln);
 printf(" Turn-on threshold out of range, set to default: %i\n",onthresh);
 }
 } else if (strnicmp(lnstr+i,"ATF",3) == 0) {
 for(i+=3; i<l && !isdigit(lnstr[i]); i++); /* find first digit */
 Atf = lnstr[i] - ’1’;
 if (Atf<0 || Atf>3) {
 Atf = 0;
 printf("digfil WARNING (input file line %i):\n",ln);
 printf(" Unknown transfer function identifier, set to %i.\n",Atf+1);
 }
 } else if (strnicmp(lnstr+i,"BTF",3) == 0) {
 for(i+=3; i<l && !isdigit(lnstr[i]); i++); /* find first digit */
 Btf = lnstr[i] - ’1’;
 if (Btf<0 || Btf>3) {
 Btf = 1;
 printf("digfil WARNING (input file line %i):\n",ln);
 printf(" Unknown transfer function identifier, set to %i.\n",Btf+1);
 }
 } else if (strnicmp(lnstr+i,"TurnOnTF",8) == 0) {
 for(i+=8; i<l && !isdigit(lnstr[i]); i++); /* find first digit */
 TOtf = lnstr[i] - ’1’;
 if (TOtf<0 || TOtf>3) {
 TOtf = 3;
 printf("digfil WARNING (input file line %i):\n",ln);
 printf(" Unknown transfer function identifier, set to %i.\n",TOtf+1);
 }
 } else if (strnicmp(lnstr+i,"tf",2) == 0) {
 /* define a new transfer function element */
 for(i+=2; i<l && !isdigit(lnstr[i]); i++); /* find first digit */
 itf = lnstr[i] - ’1’;
 if (itf<0 || itf>3) {
 printf("digfil WARNING (input file line %i):\n",ln);
 printf(" Unknown transfer function identifier, element definition ignored!\n");
 goto NextLine;
 }
 if (tfnelem[itf] >= NELEMMAX) {
 printf("digfil WARNING (input file line %i):\n",ln);
 printf(" No more than %i elements per transfer function",NELEMMAX);
 printf("allowed, definition ignored!\n");
 goto NextLine;
 }
 /* read in element name */
 for(i++; i<l && lnstr[i]!=’"’; i++); /* find ’"’ */
 for(j=++i; i<l && lnstr[i]!=’"’; i++)
 tfenm[itf][tfnelem[itf]][i-j] = lnstr[i];
 tfenm[itf][tfnelem[itf]][i-j] = ’\0’;
 /* read in element status */
 for(i++; i<l && isspace(lnstr[i]); i++); /* skip white space */
 switch(toupper(lnstr[i])) {
 case ’E’: tfes[itf][tfnelem[itf]] = TRUE; break;
 default:
 printf("digfil WARNING (input file line %i):\n",ln);
 printf(" Unknown transfer function element status, set to DISABLED.\n");
 case ’D’: tfes[itf][tfnelem[itf]] = FALSE;
 }
 /* read in element type */
 for(j=++i; i<l && lnstr[i]!=’(’; i++)
 s1[i-j] = lnstr[i];
 s1[i-j] = ’\0’;
 tfe[itf][tfnelem[itf]] = DecodeTFElement(s1);
 if (tfe[itf][tfnelem[itf]] == -1) {
 printf("digfil WARNING (input file line %i):\n",ln);
 printf(" Unknown transfer function element, element definition ignored!\n");
 goto NextLine;
 }
 /* read in element parameters */
 k = 0;

C.3. DIGFIL.C 299

 do {
 for(j=++i; i<l && lnstr[i]!=’,’ && lnstr[i]!=’)’; i++)
 s1[i-j] = lnstr[i];
 s1[i-j] = ’\0’;
 tfeparm[itf][tfnelem[itf]][k] = (float)atof(s1);
 if (tfeparm[itf][tfnelem[itf]][k] < 0.0) {
 printf("digfil WARNING (input file line %i):\n",ln);
 printf(" Illegal transfer function elelement paramete, ");
 printf("element definition ignored!\n");
 goto NextLine;
 }
 k++;
 } while(lnstr[i] != ’)’ && i < l);
 if (k != nparme[tfe[itf][tfnelem[itf]]]) {
 printf("digfil WARNING (input file line %i):\n",ln);
 printf(" Incorrect number of transfer function parameters, ");
 printf("element definition ignored!\n");
 goto NextLine;
 }
 tfpose[itf][tfnelem[itf]] = tfnelem[itf];
 tfnelem[itf]++;
 } else {
 if (i != l)
 printf("digfil WARNING (input file line %i): unknown command\n",ln);
 }
NextLine:
 ln++; l = 80; fgetline(inf,lnstr,&l,’\n’);
 }
 fclose(inf);
/*
 tfepos[itf][ie] is an array which defines the position of element
number "ie" in transfer function "itf". Initially, this array is set
to match the order in which the elements are defined in the input file.
However, the operator may move the elements around, so invert this array
to make another array, tfpose[itf][ipos], which gives the index number of
the element to be located at position "ipos". */
 for(itf=0; itf<NTF; itf++)
 for(ie=0; ie<tfnelem[itf]; ie++)
 tfepos[itf][tfpose[itf][ie]] = ie;

 dithfact = (ndithavg < 2) ? 1 : ndithavg;
 fthmin = (double)thmin * MAXVAL;
 fthmax = (double)thmax * MAXVAL;
 dT = (double)1.0/samprate*ndithavg;
 SetTF(Atf,bab);
 SetTF(Btf,!bab);
 SetTF(TOtf,2);

 printf("Looking for the National Instruments AT-MIO-16XE-50 board...");
 dev = 0;
 bool = TRUE;
 do {
 dev++;
 if (Get_DAQ_Device_Info(dev,ND_DEVICE_TYPE_CODE,&ul))
 bool = ((int)ul != AT_MIO_16XE_50);
 } while (bool && (dev < 16));
 if (bool) {
 printf("NOT found!\n");
 FreeArrays();
 exit(1);
 } else
 printf("found.\n");

 if (irqmap[NIintr] == -1) {
 printf("Interupt IRQ%i is not supported by the AT-MIO-16XE-50!\n",(int)NIintr);
 exit(1);
 }
/* The NI-DAQ routine Init_DA_Brds() and require this call: */
 errchk(USE_E_Series_Misc(),"USE_E_Series_Misc");
/* Init_DA_Brds(deviceNumber,&deviceNumberCode) */
 errchk(Init_DA_Brds(dev,&i),"Init_DA_Brds");

 printf("NI board reset.\n");
/*
 printf("Using calibration constants from: ");
/* printf("Factory Default.\n");
 errchk(MIO_Calibrate(dev,1,0,6,0,0,1,(double)10.0,6),"MIO_Calibrate");
 /* use factory default calibration settings */
/*
 printf("User Area #1.\n");
 errchk(MIO_Calibrate(dev,1,0,1,0,0,1,(double)10.0,6),"MIO_Calibrate");
 /* use calibration settings in User Area 1 */

 intr_install(NIintr);
 printf("Interrupt handler installed.\n");

/*
** Configure the AT-MIO-16XE-50 board **
*/
 if (printlevel > 10) printf("Write strobes 0, 1...\n");
 outwin(waWrtStrb0,0x0001); /* strobe Write_Stobe_0 */
 outwin(waWrtStrb1,0x0001); /* strobe Write_Stobe_1 */
/* Configure analog intput scan sequence: */
 if (printlevel > 10) printf("Load in scan sequence...\n");
 outwin(waConfMemClear,0x0000); /* clear AI configuration memory */
 outport(aCFGMEMHigh,0x1000);
 /* Inputs are differential, bank 1 disabled, bank 0 enabled, inputs
 come from ACh0 and Ach8 */
 outport(aCFGMEMLow,0x8201);
 /* Last channel, do not generate trigger, dither enabled (required for
 AT-MIO-16XE-50), bipolar, gain = 1 */
 inputgain = 1;
/* Preconfigure clock: 100KHz internal timebase */
 if (printlevel > 10) printf("MSC Clock Configure...\n");
 ClkFOUT |= 0x0800; /* set Slow_Internal_Timebase */
 ClkFOUT |= 0x1000; /* set Slow_Internal_Time_Divide_By_2 */
 ClkFOUT |= 0x0100; /* set Clock_to_Board */
 ClkFOUT |= 0x0200; /* set Clock_to_Board_Divide_by_2 */
 outwin(waClkFOUT,ClkFOUT);
/* Reset and Initialize the DAQ-STC: */
 BoardInitialize(printlevel);
/* Configure interrupts and gating: */
 if (printlevel > 10) printf("Configure interrupts and gating...\n");
 AIMode3 &= 0xFF3F; /* AI_FIFO_Mode = 0: interrupt on FIFO not empty */
 AIMode3 &= 0xFFE0; /* AI_External_Gate_Select = 0: (External gating disabled) */
 outwin(waAIMode3,AIMode3);
/* Configure trigger: */
 if (printlevel > 10) printf("Configure trigger...\n");
 AIMode1 |= 0x0001; /* set AI_Trigger_Once: not re-triggerable */
 outwin(waAIMode1,AIMode1);
 if (extcont) {
 AITrigSel &= 0xFFE0;
 AITrigSel |= 0x0001; /* AI_START1 = 1: trigger from PFI0/TRIG1 */
 AITrigSel &= 0xF07F;
 AITrigSel |= 0x0080; /* AI_START2 = 1: trigger from PFI0/TRIG1 */
 } else {
 AITrigSel &= 0xFFE0; /* AI_START1 = 0: trigger from AI_START1_Pulse */
 AITrigSel &= 0xF07F; /* AI_START2 = 0: trigger from AI_START1_Pulse */
 }
 AITrigSel &= 0x7FFF; /* clear AI_START1_Polarity: active on positive */
 AITrigSel |= 0x0020; /* set AI_START1_Edge: edge-sensitive */
 AITrigSel |= 0x0040; /* set AI_START1_Sync: synchronize to SC source */
 AITrigSel &= 0xBFFF; /* clear AI_START2_Polarity: active on positive */
 AITrigSel |= 0x1000; /* set AI_START2_Edge: edge-sensitive */
 AITrigSel |= 0x2000; /* set AI_START2_Sync: synchronize to SC source */
 outwin(waAITrigSel,AITrigSel);
/* Set number of scans: (continuous) */
 if (printlevel > 10) printf("Set number of scans...\n");
 AIMode1 |= 0x0002; /* set AI_Continuous: continuous operation */
 outwin(waAIMode1,AIMode1);
 AIMode2 &= 0xDFFF; /* clear AI_Pre_Trigger */
 AIMode2 &= 0xFFFB; /* clear AI_SC_Intial_Load_Source: load from register A */
 AIMode2 &= 0xFFFD; /* clear AI_SC_Reload_Mode: do not switch SC load register on TC */

 outwin(waAIMode2,AIMode2);
 outwin(waAISCLoadA,0x0000); /* AI_SC_Load_A = 0: */
 outwin(waAISCLoadA+1,0x0000); /* # of posttrigger scans - 1 */
 outwin(waAIComm1,0x0020); /* strobe AI_SC_Load */
/* set start of scan conditions: internal, sample rate */
 if (printlevel > 10) printf("Set scan start condition...\n");
 AIMode3 &= 0xEFFF; /* clear AI_SI_Special_Trigger_Delay: do not block START pulses */
 outwin(waAIMode3,AIMode3);
 AISSSel &= 0xFFE0; /* AI_START_Select = 0: use SI_TC */
 AISSSel |= 0x0020; /* set AI_START_Edge: edge sensitive */
 AISSSel |= 0x0040; /* set AI_START_Sync: synchronize START */
 AISSSel &= 0x7FFF; /* clear AI_START_Polarity: active on positive */
 outwin(waAISSSel,AISSSel);
 AIMode1 &= 0xF83F; /* AI_SI_Source_Select = 0: AI_IN_TIMEBASE */
 AIMode1 &= 0xFFEF; /* clear AI_SI_Source_Polarity: rising edge */
 outwin(waAIMode1,AIMode1);
 outwin(waAISILoadA,0x0000);
 outwin(waAISILoadA+1,0x0000);
 outwin(waAIComm1,0x0200); /* strobe AI_SI_Load */
 sampint = (unsigned long)floor(20000000 / samprate); /* 20 MHz clock */
 outwin(waAISILoadA,(int)((sampint-1)/65536));
 outwin(waAISILoadA+1,(int)((sampint-1)%65536));
 outwin(waAIComm1,0x0200); /* strobe AI_SI_Load */
 AIMode2 &= 0xFF7F; /* clear AI_SI_Load_Source: use register A */
 AIMode2 &= 0xFF8F; /* AI_SI_Reload_Mode = 0: no change of SI register */
 outwin(waAIMode2,AIMode2);
 AIMode2 &= 0xFFF7; /* clear AI_SI_Write_Switch */
 outwin(waAIMode2,AIMode2);
/* set end of scan conditions: */
 if (printlevel > 10) printf("Set scan end conditions...\n");
 AISSSel &= 0xF07F; /* AI_Stop_Select = 31: logic low */
 AISSSel |= 0x0F80;
 AISSSel &= 0xDFFF; /* clear AI_STOP_Sync: don’t synchronize */
 AISSSel &= 0xEFFF; /* clear AI_STOP_Edge: level-sensitive */
 AISSSel |= 0x4000; /* set AI_STOP_Polarity: active on positive */
 outwin(waAISSSel,AISSSel);
/* set convert conditions: */
 if (printlevel > 10) printf("Set convert conditions...\n");
 outwin(waJointReset,0x0010); /* AI_Configuration_Start */
 AIMode2 &= 0x7FFF; /* clear AI_SC_Gate_Enable */
 AIMode2 &= 0xBFFF; /* clear AI_Start_Stop_Gate_Enable */
 AIMode3 &= 0xF7FF; /* clear AI_SI2_Source_Select: use same as SI */
 outwin(waAIMode3,AIMode3);
 outwin(waAISI2LoadA,0x0001); /* AI_SI2_Load_A = 2 */
 AIMode2 &= 0xFDFF; /* clear AI_SI2_Intial_Load_Source: use reg. A */
 outwin(waAISI2LoadB,0x0001); /* AI_SI2_Load_B = 2 */
 AIMode2 |= 0x0100; /* set AI_SI2_Reload_Mode: alternate first period on every stop */
 outwin(waAIMode2,AIMode2);
 outwin(waAIComm1,0x0800); /* strobe AI_SI2_Load */
 AIMode2 |= 0x0200; /* set AI_SI2_Intial_Load_Source: use reg. B */
 outwin(waAIMode2,AIMode2);
 outwin(waJointReset,0x0100); /* AI_Configuration_End */
/* enable interrupts: */
 if (printlevel > 10) printf("Program and enable interrupts...\n");
 IntAEnab |= 0x0080; /* set AI_FIFO_Interrupt_Enable */
 IntAEnab &= 0xFFF7; /* clear AI_START_Interrupt_Enable */
 IntAEnab &= 0xFFEF; /* clear AI_STOP_Interrupt_Enable */
 IntAEnab &= 0xFFFE; /* clear AI_SC_TC_Interrupt_Enable */
 IntAEnab &= 0xFFFD; /* clear AI_START1_Interrupt_Enable */
 IntAEnab &= 0xFFFB; /* clear AI_START2_Interrupt_Enable */
 IntAEnab &= 0xFFBF; /* clear AI_Error_Interrupt_Enable */
 outwin(waIntAEnab,IntAEnab);
/* program Interrupt Control Module: */
 IntCont &= 0xF8FF; /* Interrupt_A_Output_Select = irqmap[NIintr] */
 IntCont |= irqmap[NIintr]*256; /* use interrupt channel NIintr */
 IntCont |= 0x0800; /* set Interrupt_A_Enable */
 outwin(waIntCont,IntCont);
/* arm analog input counters: */
 if (printlevel > 10) printf("Arm analog input counters...\n");
 outwin(waAIComm1,0x0400); /* strobe AI_SI_Arm */
 outwin(waAIComm1,0x1000); /* strobe AI_SI2_Arm */

/* configure analog outputs: */
 if (printlevel > 10) printf("Configure analog outputs...\n");
 outport(aAOConf,0x0001); /* DAC0: bipolar */
 outport(aAOConf,0x0101); /* DAC1: bipolar */
 outport(aDAC0,0);
 outport(aDAC1,0);

 if (printlevel > 10) printf("Clear input and output FIFO buffers...\n");
 outwin(waADCClear,0x0000); /* clear input FIFO buffer */
 outwin(waDACClear,0x0000); /* clear output FIFO buffer */

 printf("NI board sampling at %i points/sec",samprate);
 if (extcont) printf(" (EXTERNALLY driven)\n");
 else printf(" (INTERNALLY driven)\n");
 if (ndithavg > 1)
 printf("Post-sample averaging the previous %i samples.\n",ndithavg);
 else
 printf("No post-sample averaging.\n");
 gotoxy(1,25);
 printf("Press any key to continue...");
 getch();
 clrscr();
 printf(" Transfer function for channel A:\n");
 DisplayTF(stdout,Atf);
 gotoxy(1,25);
 printf("Press any key to continue...");
 getch();
 clrscr();
 printf(" Transfer function for channel B:\n");
 DisplayTF(stdout,Btf);
 gotoxy(1,25);
 printf("Press any key to continue...");
 getch();
 clrscr();
 printf(" Turn-On transfer function:\n");
 DisplayTF(stdout,TOtf);
 gotoxy(1,25);
 printf("Press any key to continue...");
 getch();

 clrscr();
 printf("Status registers before starting:\n");
 ShowStatus();
 printf("Press any key to start acquistion and then ’q’ to stop.\n");
 getch();
 printf("Running...\n");
 outwin(waAIComm2,0x0001); /* strobe AI_START1_Pulse */
 printf("Status registers after starting:\n");
 ShowStatus();

 do {
 do {
 if (cstate == 3) {
 cstate = 1;
 nin = 0;
 printf(" CLOSED (compensation: channel %s using %s).\n",chanstr[bab],
 tfstr[(bab)?Atf:Btf]);
 } else if (cstate == 5) {
 cstate = 1;
 printf(" DONE (new compesation: channel %s using %s).\n",chanstr[bab],
 tfstr[(bab)?Atf:Btf]);
 } else if (cstate == 7) {
 cstate = 1;
 printf(" active channel: %s.\n",chanstr[bab]);
 }
 status = inwin(waAIStat1);
 aiovrrun_b = status & 0x0800;
 aiovrflw_b = status & 0x0400;
 if ((doautogain || doautostart) && (nin >= ligc)) {
 if ((israiled == UNDERRAIL) && (itempgain < 0)) {
 tempfact = gainchange(++itempgain);

300 APPENDIX C. COMPUTER CODE

 if (doautostart && (itempgain == 0)) {
 doautostart = FALSE;
 printf("Final total gain reached. %s compensation active.\n",tfstr[(bab)?Atf:Btf]);
 } else {
 ligc = nin + 5*samprate;
 printf("Automatically increasing total gain (GAIN * %6.4lf) at point %li.\n",\
 tempfact,nin);
 }
 } else if (israiled == OVERRAIL) {
 ligc = nin + samprate;
 tempfact = gainchange(--itempgain);
 printf("Automatically DECREASING total gain (GAIN * %6.4lf) at point %li.\n",
 tempfact,nin);
 }
 }
/* Automatically turn on gain control after a certain amount of time running */
 if ((buffsel >= 0) && (nin >= bsmark)) {
 savebuff[buffsel][isbuff[buffsel]++] = (int)(fpout2*mogain[imog]);
/* printf("Storing into buff #%1i at point %li.\n",buffsel+1,nin); */
 if (isbuff[buffsel] >= SBUFSIZ) {
 printf("Buffer #%1i full. Storage stopped.\n",buffsel+1);
 donebuff[buffsel] = TRUE;
 } else {
 bsmark = nin + samprate; /* every second */
 }
 }
 if (gberr == 1) {
 gberr = 2;
 printf("Gated storage buffer full. Storage disabled.\n");
 } else if (gberr == 3) {
 gberr = 0;
 printf("WARNING: a gate (igate = %u) ocurred more than 400 ms after the previous gate!\n",
 igate);
 }
 } while (!aiovrrun_b && !aiovrflw_b && !kbhit());
 if (aiovrrun_b || aiovrflw_b) {
 if (aiovrrun_b) printf("WARNING: analog input OVERRUN error!\n");
 if (aiovrflw_b) printf("WARNING: analog input OVERFLOW error!\n");
 ShowStatus();
 outwin(waIntAAck,0x2000); /* strobe AI_Error_Interrupt_Ack */
 bye(1);
 } else {
 c = getch();
 switch(c) {
 case(’A’): /* wait for v=0 and then close loop */
 if (cstate == 0) {
 cstate = 2;
 printf("Waiting for vel = 0 to close the feedback loop...\n");
 } else if (cstate == 2) {
 cstate = 1;
 nin = 0;
 printf(" CLOSED (compensation: channel %s using %s).\n",
 chanstr[bab],tfstr[(bab)?Atf:Btf]);
 }
 break;
 case(’a’): /* reduce gain, close loop, slowly increase gain */
 if (cstate == 0) {
 tempfact = gainchange(-NTGSTEP);
 printf("Automatically closing feedback loop...");
 doautostart = TRUE;
 itempgain = -NTGSTEP;
 ligc = 5*samprate;
 for(li=nin; (nin-li)<5*samprate;); /* delay 5 seconds */
 nin = 0;
 printf(" CLOSED.\n");
 printf(" Compensation: %s, initial gain %6.4lf\n",
 tfstr[(bab)?Atf:Btf],tempfact);
 cstate = 1;
 }
 break;
 case(’D’): /* open feedback loop suddenly */

 cstate = 0;
 printf("feedback loop OPEN.\n");
 itempgain = 0;
 tempfact = gainchange(itempgain);
 doautostart = FALSE;
 break;
 case(’d’): /* slowly reduce gain, open FB loop */
 if (cstate == 1) {
 printf("Gradually disabling compensation");
 while (itempgain > -NTGSTEP) {
 li = nin;
 gainchange(--itempgain);
 putchar(’.’);
 while ((nin-li)<samprate); /* delay ˜1 second */
 }
 cstate = 0;
 printf(" feedback loop OPEN.\n");
 doautostart = FALSE;
 itempgain = 0;
 tempfact = gainchange(itempgain);
 }
 break;
 case(’1’): case(’2’): case(’3’): case(’4’): /* select TF for ch. A */
 case(’!’): case(’@’): case(’#’): case(’$’): /* select TF for ch. B */
 if (!doautostart) {
 bool = FALSE;
 switch(c) {
 case(’!’): i = 0; break;
 case(’@’): i = 1; break;
 case(’#’): i = 2; break;
 case(’$’): i = 3; break;
 default: i = c - ’1’; bool = TRUE; break;
 }
 if (i != ((bool)?Atf:Btf)) { /* different from current setting? */
 if ((bool != bab) || (cstate == 0) ||
 ((cstate==4) && (i==tfreq))) {
 /* change inactive TF, FB loop open,
 or this is 2nd request to wait for v=0 */
 if (cstate == 4) cstate = 1;
 if (bool) {
 SetTF(i,1);
 Atf = i;
 } else {
 SetTF(i,0);
 Btf = i;
 }
 if (monab == bool) monpos = 0;
 /* if user was monitoring the channel whose TF just changed,
 the monitor position "monpos" may no longer be valid.
 Reset it to a safe value. */
 printf("Channel %c TF changed to %s.\n",(bool)?’A’:’B’,
 tfstr[(bool)?Atf:Btf]);
 } else if (cstate == 1) {
 /* change active TF and FB closed -> wait for v=0 */
 cstate = 4;
 tfreq = i;
 printf("Channel %s TF change requested: %s --> %s.\n",
 chanstr[bab],tfstr[(bab)?Atf:Btf],tfstr[tfreq]);
 }
 }
 }
 break;
 case(’u’): /* toggle active channel: A<->B */
 if (!doautostart) {
 if ((cstate == 0) || (cstate == 6)) {
 /* FB loop open or 2nd reqest to wait for v=0 */
 if (cstate == 6) cstate = 1;
 bab = !bab;
 printf("Active channel changed to %s running %s.\n",
 chanstr[bab],tfstr[(bab)?Atf:Btf]);
 } else if (cstate == 1) {

 /* FB loop close -> wait for v=0 */
 cstate = 6;
 printf("Active channel change requested...\n");
 }
 }
 break;
 case(’p’): /* select channel to monitor */
 monpos = 1;
 if (++monab > 2) monab = 0;
 case(’o’): /* select element of a TF to monitor */
 if (monab == 2)
 montf = TOtf;
 else
 montf = (monab) ? Atf : Btf;
 if (c == ’o’)
 if (++monpos > tfnelem[montf]) monpos = 0;
 if (monpos == 0)
 printf("Monitoring input: Gain=%i, SampleRate=%i\n",inputgain,samprate);
 else {
 ie = tfepos[montf][monpos-1]; /* element index */
 printf("Monitoring channel %s",chanstr[monab]);
 if (monab < 2) printf("(%s)",(bab==monab)?"Active":"Inactive");
 printf("; position %i of %s:\n ",monpos,tfstr[montf]);
 printf("\"%s\" %s(%.4f",tfenm[montf][ie],enm[tfe[montf][ie]],
 tfeparm[montf][ie][0]);
 for(i=1; i<nparme[tfe[montf][ie]]; i++)
 printf(",%.4f",tfeparm[montf][ie][i]);
 printf(") %s\n",esnm[tfes[montf][ie]]);
 }
 break;
 case(’O’): /* change gain of output monitor */
 imog++;
 if (imog > 3) imog = 0;
 printf("Monitor output (DAC1) gain:%6.2f\n",mogain[imog]);
 break;
 case(’c’): case(’v’): case(’b’):
 if (c == ’c’) { /* cycle TF to be modified */
 if (++vartf >= NTF) vartf = 0;
 varps = 0;
 varpm = 0;
 } else if (c == ’v’) { /* cycle element to be modified */
 if (++varps >= tfnelem[vartf]) varps = 0;
 varpm = 0;
 } else if (c == ’b’) { /* cycle parameter to be modified */
 if (++varpm >= nparme[tfe[vartf][tfepos[vartf][varps]]]+2)
 varpm = 0;
 }
 ie = tfepos[vartf][varps]; /* element index */
 printf("%s element %s",tfstr[vartf],tfenm[vartf][ie]);
 if (varpm == nparme[tfe[vartf][ie]]+1)
 printf(" in position %i\n",varps+1);
 else if (varpm == nparme[tfe[vartf][ie]])
 printf(" %s\n",esnm[tfes[vartf][ie]]);
 else
 printf(": parameter %s = %f\n",epnm[tfe[vartf][ie]][varpm],
 tfeparm[vartf][ie][varpm]);
 break;
 case(’z’): case(’x’): /* modified selected parameter */
 if (!doautostart) {
 ie = tfepos[vartf][varps]; /* element index */
 if (varpm == nparme[tfe[vartf][ie]]+1) {
 /* change element position: */
 j = varps;
 if (c == ’z’) {
 if (--varps < 0) varps = tfnelem[vartf] - 1;
 } else {
 if (++varps >= tfnelem[vartf]) varps = 0;
 }
 /* If this TF is active, bring the current output of this element
 along with it: */
 if (vartf==Atf) {

 d1 = eAprev[j];
 eAprev[j] = eAprev[varps];
 eAprev[varps] = d1;
 } else if (vartf==Btf) {
 d1 = eBprev[j];
 eBprev[j] = eBprev[varps];
 eBprev[varps] = d1;
 } else if (vartf == TOtf) {
 d1 = eTOprev[j];
 eTOprev[j] = eTOprev[varps];
 eTOprev[varps] = d1;
 }
 /* update index arrays: */
 tfpose[vartf][ie] = varps;
 tfpose[vartf][tfepos[vartf][varps]] = j;
 tfepos[vartf][j] = tfepos[vartf][varps];
 tfepos[vartf][varps] = ie;
 printf("%s of %s moved from position %i to %i\n",tfenm[vartf][ie],
 tfstr[vartf],j+1,varps+1);
 } else if (varpm == nparme[tfe[vartf][ie]]) {
 /* change element status (enabled/disabled): */
 bool = tfes[vartf][ie];
 if ((c==’z’ && bool) || (c==’x’ && !bool)) {
 tfes[vartf][ie] = !bool;
 printf("%s of %s: %s --> %s\n",tfenm[vartf][ie],
 tfstr[vartf],esnm[bool],esnm[!bool]);
 }
 } else {
 /* change numerical parameter: */
 f1 = tfeparm[vartf][ie][varpm];
 if (c == ’z’)
 tfeparm[vartf][ie][varpm] /= modconst;
 else
 tfeparm[vartf][ie][varpm] *= modconst;
 if (vartf==Atf)
 SetElement(1,tfe[vartf][ie],varps,tfeparm[vartf][ie]);
 else if (vartf==Btf)
 SetElement(0,tfe[vartf][ie],varps,tfeparm[vartf][ie]);
 else if (vartf==TOtf)
 SetElement(2,tfe[vartf][ie],varps,tfeparm[vartf][ie]);
 printf("%s of %s from %s: %f --> %f\n",
 epnm[tfe[vartf][ie]][varpm],tfenm[vartf][ie],
 tfstr[vartf],f1,tfeparm[vartf][ie][varpm]);
 }
 }
 break;
 case ’g’: /* toggle autogain feature */
 if (doautogain) {
 if (itempgain && !doautostart) {
 itempgain = 0;
 tempfact = gainchange(itempgain);
 }
 printf("Automatic gain control OFF.\n");
 doautogain = FALSE;
 } else {
AutoGain: doautogain = TRUE;
 printf("Automatic gain control ON (thresholds: %5.3f,%5.3f).\n",thmin,thmax);
 }
 break;
 case ’s’: /* select storage buffer */
 buffsel++;
 if (buffsel >= NSBUF) {
 buffsel = -1;
 printf("NO storage.\n");
 } else {
 printf("Use storage buffer #%1i.\n",buffsel+1);
 }
 break;
 case ’S’: /* start/stop storage */
 if (buffsel >= 0) {
 if (bsmark > nin) {

C.3. DIGFIL.C 301

 bsmark = 0;
 printf("Storage stopped after %i points.\n",isbuff[buffsel]);
 donebuff[buffsel] = TRUE;
 } else {
 isbuff[buffsel] = 0;
 bsmark = nin+1;
 printf("Storing into buffer #%1i...\n",buffsel+1);
 }
 }
 break;
 case ’m’: /* start/stop gated storage */
 if (dogatebuf) {
 dogatebuf = FALSE;
 if ((igate % 4) != 0)
 printf("WARNING: gated storage stopped in the middle of a sequence!\n");
 else
 printf("Gated storage disabled.\n");
 } else {
 if (gberr == 0) {
 velsum = 0.;
 zsum = 0.;
 dogatebuf = TRUE;
 printf("Gated storage enabled.\n");
 }
 }
 break;
 case ’M’: /* zero accumulator for gated storage */
 velsum = 0.;
 zsum = 0.;
 printf("Gated storage accumulators cleared.\n");
 break;
 case ’n’: /* show number of points in gated storage buffer */
 printf("%u points in gated storage buffer.\n",(unsigned int)floor(igate / 4));
 break;
 case ’N’: /* remove last entry from the gated storage buff. */
 if ((igate > 3) && !dogatebuf) {
 igate -= 4;
 printf("Removing last point from gated storage buffer: %u points remain.\n",
 (unsigned int)floor(igate / 4));
 }
 break;
 case ’t’: /* dump status registers of AtoD board */
 ShowStatus();
 break;
 }
 }
 } while ((c != ’q’) && (c != ’Q’));
 BoardInitialize(printlevel);
 intr_remove(NIintr);
 printf("%li\n",nin);

 /* open output file */
 if ((outf=fopen(OUTFILE,"wt")) == NULL) {
 printf("digfil - error opening output file ’%s’.\n",OUTFILE);
 FreeArrays();
 exit(1);
 }
 /* write to output file */
 fprintf(outf,"SampleRate\t\t%i;\n",samprate);
 fprintf(outf,"NumberofAverages\t%i;\n",ndithavg);
 fprintf(outf,"’\n");
 fprintf(outf,"ATF\t\t%i;",Atf+1);
 if (bab)
 fprintf(outf," (Active)\n");
 else
 fprintf(outf,"\n");
 fprintf(outf,"BTF\t\t%i;",Btf+1);
 if (!bab)
 fprintf(outf," (Active)\n");
 else
 fprintf(outf,"\n");

 fprintf(outf,"TurnOnTF\t%i;\n",TOtf+1);
 for(itf=0; itf<NTF; itf++) {
 fprintf(outf,"’\n");
 for(ip=0; ip<tfnelem[itf]; ip++) {
 ie = tfepos[itf][ip];
 fprintf(outf,"tf %i \"%s\"\t %c %s(%.4f",itf+1,tfenm[itf][ie],
 (tfes[itf][ie])?’E’:’D’,enm[tfe[itf][ie]],tfeparm[itf][ie][0]);
 for(i=1; i<nparme[tfe[itf][ie]]; i++)
 fprintf(outf,",%.4f",tfeparm[itf][ie][i]);
 fprintf(outf,")\n");
 }
 }
 for(i=0; i<NSBUF; i++)
 if (donebuff[i]) {
 fprintf(outf,"Buffer #%1i (%i points):\n",i+1,isbuff[i]);
 for(l=0; l<isbuff[i]; l++)
 fprintf(outf,"%i\n",savebuff[i][l]);
 }
 l = (int) floor(igate / 4);
 if (l > 0) {
 fprintf(outf,"Position in mm (%i points):\n",l);
 for(i=0; i<l; i++)
 fprintf(outf,"% .7E\n",gsvbuff[i]*dT/ndithavg/4.0/ACCELCF);
 }
 fclose(outf);
 FreeArrays();

 return 0;
}

void far interrupt handler()
{
 int
 i,j,ie,
 gate, /* value at digital port */
 stat; /* contents of status register */
 unsigned int
 ui;
 long
 pindith; /* raw input value, before dither avg */
 double
 fpin=0, /* input value, after dither averaging */
 eA[NELEMMAX], /* output of each element of TF A */
 eB[NELEMMAX], /* output of each element of TF B */
 fpout1, /* output of main TF */
 eTO[NELEMMAX], /* output of each element of turn-on TF */
 tiout; /* output of turn-on integrator */

 disable();
 pindith = dithfact*(long)inport(aADFIFO);
 if (ndithavg > 1) {
 pindithsum += pindith;
 pindithsum -= pindith_a[--idith];
 fpin = (double)pindithsum/ndithavg / dithfact;
 } else {
 fpin = (double)pindith / dithfact;
 }
 eA[0] = tfA[0][0]*eAprev[0] + tfA[0][1]*fpin + tfA[0][2]*fpiprev;
 for(i=1; i<tfnelem[Atf]; i++) {
 ie = tfepos[Atf][i]; /* element index */
 if (tfes[Atf][ie])
 eA[i] = tfA[i][0]*eAprev[i] + tfA[i][1]*eA[i-1] + tfA[i][2]*eAprev[i-1];
 else
 eA[i] = eA[i-1];
 }
 eB[0] = tfB[0][0]*eAprev[0] + tfB[0][1]*fpin + tfB[0][2]*fpiprev;
 for(j=1; j<tfnelem[Btf]; j++) {
 ie = tfepos[Btf][j]; /* element index */
 if (tfes[Btf][ie])
 eB[j] = tfB[j][0]*eBprev[j] + tfB[j][1]*eB[j-1] + tfB[j][2]*eBprev[j-1];

 else
 eB[j] = eB[j-1];
 }
 if ((cstate >= 1) && (cstate != 2))
 fpout1 = (bab) ? eA[i-1] : eB[j-1];
 else
 fpout1 = 0.0; /* FB loop currently open */
 israiled = UNDERRAIL; /* default: abs(fpout1) < fthmnin */
 if (fpout1 > fthmin) {
 if (fpout1 > fthmax) {
 israiled = OVERRAIL;
 if (fpout1 > MAXVAL) fpout1 = (double)MAXVAL;
 } else {
 israiled = NORAIL;
 }
 } else if (fpout1 < (-fthmin)) {
 if (fpout1 < (-fthmax)) {
 israiled = OVERRAIL;
 if (fpout1 < MINVAL) fpout1 = (double)MINVAL;
 } else {
 israiled = NORAIL;
 }
 }
 outport(aDAC0,(int)(fpout1/16.0));
 eTO[0] = tfTO[0][0]*eTOprev[0] + tfTO[0][1]*fpin + tfTO[0][2]*fpiprev;
 for(i=1; i<tfnelem[TOtf]; i++) {
 ie = tfepos[TOtf][i]; /* element index */
 if (tfes[TOtf][ie])
 eTO[i] = tfTO[i][0]*eTOprev[i] + tfTO[i][1]*eTO[i-1] + tfTO[i][2]*eTOprev[i-1];
 else
 eTO[i] = eTO[i-1];
 }
 tiout = eTO[i-1];
 if (monpos == 0)
 fpout2 = fpin; /* monitoring input */
 else
 switch(monab) {
 case 0: fpout2 = eB[monpos-1]; break;
 case 1: fpout2 = eA[monpos-1]; break;
 case 2: fpout2 = eTO[monpos-1]; break;
 }
 outport(aDAC1,(int)(fpout2*mogain[imog]/16.0));
 if (cstate == 2) {
 if (fabs(tiout) <= onthresh) cstate = 3;
 } else if (cstate == 4) {
 if (fabs(tiout) <= onthresh) {
 SetTF(tfreq,bab);
 if (bab)
 Atf = tfreq;
 else
 Btf = tfreq;
 cstate = 5;
 }
 } else if (cstate == 6) {
 if (fabs(tiout) <= onthresh) {
 bab = !bab;
 cstate = 7;
 }
 }
 velsum += fpin;
 zsum += velsum;
 if (dogatebuf) {
/* gate = BGMASK & inport(aDigIn); */
 if (gate) {
 if (gbarm == 3)
 gbarm = 2;
 else if (gbarm == 1) {
 gbarm = 0;
 ui = (unsigned int) igate % 4;
 zsv[ui] = zsum;
 if ((ui != 0) && ((nin - ngb) > 1600)) gberr = 3; /* 400 ms */

 if (ui == 3) {
 ui = (unsigned int) floor(igate / 4);
 gsvbuff[ui] = (float) (zsv[3]-zsv[2]-zsv[1]+zsv[0]);
 if (ui >= GBUFSIZ) {
 dogatebuf = FALSE;
 gberr = 1;
 }
 velsum = 0.;
 zsum = 0.;
 }
 ngb = nin;
 igate++;
 }
 } else {
 if (gbarm == 2)
 gbarm = 1;
 else if (gbarm == 0)
 gbarm = ((igate % 4) == 0) ? 3 : 1;
 }
 }
 fpiprev = fpin;
 for(i=0; i<tfnelem[Atf]; i++)
 eAprev[i] = eA[i];
 for(i=0; i<tfnelem[Btf]; i++)
 eBprev[i] = eB[i];
 for(i=0; i<tfnelem[TOtf]; i++)
 eTOprev[i] = eTO[i];
 if (ndithavg > 1) {
 pindith_a[idith] = pindith;
 if (idith == 0) idith = ndithavg;
 }
 nin++;
/* send a no-interrupt specific End of Interrupt (EOI) to both 8259s */
 outportb(aICW_M,0x20); /* master */
 outportb(aICW_S,0x20); /* slave */
 enable();
}

void intr_install(unsigned char irq)
{
 int aintr;
 unsigned char c1,c2;

 if (irq < 8)
 aintr = 0x08 + irq;
 else
 aintr = 0x68 + irq;

 disable();
 oldhandler = getvect(aintr);
 setvect(aintr,handler);

 maskmaster = inportb(aMask_M);
 maskslave = inportb(aMask_S);
 if (irq < 8) {
 outportb(aMask_M,(maskmaster & ˜(1<<irq)));
 outportb(aMask_S,maskslave);
 } else {
 outportb(aMask_M,maskmaster);
 outportb(aMask_S,(maskslave & ˜(1<<(irq-8))));
 }
 c1 = inportb(aMask_M);
 c2 = inportb(aMask_S);
 enable();
}

void intr_remove(unsigned char irq)
{
 int aintr;

302 APPENDIX C. COMPUTER CODE

 if (irq < 8)
 aintr = 0x08 + irq;
 else
 aintr = 0x68 + irq;

 disable();
 outportb(aMask_M,maskmaster);
 outportb(aMask_S,maskslave);

 setvect(aintr,oldhandler);
 enable();
}

void bye(int err)
{
 BoardInitialize(printlevel);
 intr_remove(NIintr);
 FreeArrays();

 exit(err);
}

void DefHP(double *a, float *p)
/* digital high-pass filter using the trapezoid rule
 u[z] = (1-f*T/2) / (1+f*T/2) u[z-1]
 + G / (1+f*T/2) e[z]
 - G / (1+f*T/2) e[z-1] */
{
 double
 d1,
 f = (double)p[1], /* corner frequency (Hz) */
 Ghf = (double)p[0]; /* high-frequency gain */

 d1 = 1.0 / (1.0+f*dT/2.0);

 a[0] = (1.0-f*dT/2.0)*d1;
 a[1] = Ghf*d1;
 a[2] = -a[1];
}

void DefLP(double *a, float *p)
/* digital low-pass filter using the trapezoid rule:
 u[z] = (1-f*T/2) / (1+f*T/2) u[z-1]
 + G*f*T/2 / (1+f*T/2) e[z]
 + G*f*T/2 / (1+f*T/2) e[z-1] */
{
 double
 d1,
 f = (double)p[1], /* corner frequency (Hz) */
 Gdc = (double)p[0]; /* DC gain */

 d1 = 1.0 / (1.0+f*dT/2.0);

 a[0] = (1.0-f*dT/2.0)*d1;
 a[1] = Gdc*f*dT/2.0*d1;
 a[2] = a[1];
}

void DefCD(double *a, float *p)
/* digital lead compensator using the trapezoid rule
 u[z] = (1-f1*T/2) / (1+f1*T/2) u[z-1]
 + G*f1/f2 * (1+f2*T/2) / (1+f1*T/2) e[z]
 - G*f1/f2 * (1-f2*T/2) / (1+f1*T/2) e[z-1] */
{
 double
 d1, d2,

 fl = (double)p[1], /* lower corner frequency (Hz) */
 fu = (double)p[2], /* upper corner frequency (Hz) */
 Gdc = (double)p[0]; /* DC gain */

 d1 = 1.0/(2.0+fl*dT);
 d2 = Gdc*(fl/fu);

 a[0] = (2.0-fl*dT)*d1;
 a[1] = d2*(2.0+fu*dT)*d1;
 a[2] = -d2*(2.0-fu*dT)*d1;
}

void DefCU(double *a, float *p)
/* digital lag compensator using the trapezoid rule
 u[z] = (1-f2*T/2) / (1+f2*T/2) u[z-1]
 + G*f2/f1 * (1+f1*T/2) / (1+f2*T/2) e[z]
 - G*f2/f1 * (1-f1*T/2) / (1+f2*T/2) e[z-1] */
{
 double
 d1, d2,
 fl = (double)p[1], /* lower corner frequency (Hz) */
 fu = (double)p[2], /* upper corner frequency (Hz) */
 Gdc = (double)p[0]; /* DC gain */

 d1 = 1.0/(2.0+fu*dT);
 d2 = Gdc*(fu/fl);

 a[0] = (2.0-fu*dT)*d1;
 a[1] = d2*(2.0+fl*dT)*d1;
 a[2] = -d2*(2.0-fl*dT)*d1;
}

int fgetline(FILE *f_fp, char line[], int *l, char tc)
/*
 Read at most "l" characters from stream "f_fp" into string "line"
until a character "tc" is encountered. "l" returns with the number
of characters read.
*/
{
 char c;
 int i = 0;

 if (*l == 0) return FALSE;
 while(((c=fgetc(f_fp)) != tc) && (c != EOF) && (i < *l)) {
 line[i++] = c;
 }
 if ((i==*l) && (c!=tc) && (c!=EOF)) {
 line[i-1] = ’\0’;
 return TRUE;
 }
 line[i] = ’\0’;
 *l = i;
 return FALSE;
}

double gainchange(int itg)
/*
 Change the active gain of the last enabled element of the active channel by
a factor "modconst"^"itg". Note that this change does not affect the
definition of that element. It only changes the coefficients in the
real-time evaluation.
*/
{
 int i,ie,itf;
 float p[3];

 itg = -itg;
 itf = (bab) ? Atf: Btf;

 /* find the last enabled element in the active TF */
 for(i=tfnelem[itf]-1; i>=0 && !tfes[itf][tfepos[itf][i]]; i--);
 ie = tfepos[itf][i]; /* element index */
 p[0] = tfeparm[itf][ie][0] * modfact[itg];
 p[1] = tfeparm[itf][ie][1];
 p[2] = tfeparm[itf][ie][2];
 SetElement(bab,tfe[itf][ie],i,p);
 return modfact[itg];
}

int DecodeTFElement(char lstr[])
/*
 Scan string "lstr" for first recognizable transfer function element.
Return an integer corresponding to the element type found:
 -1 = unknown element
 0 = HP
 1 = LP
 2 = CU
 3 = CD
The scan is case sensitive but ignores leading and trailing white space.
*/
{
 int tfe = -1;
 int i,l;

 l = strlen(lstr);
 for(i=0; i<l && isspace(lstr[i]); i++); /* skip leading white space */
 if (i < l) {
 if (strncmp(lstr+i,"HP",2) == 0) tfe = 0;
 else if (strncmp(lstr+i,"LP",2) == 0) tfe = 1;
 else if (strncmp(lstr+i,"CU",2) == 0) tfe = 2;
 else if (strncmp(lstr+i,"CD",2) == 0) tfe = 3;
 }
 return tfe;
}

void SetTF(int itf, int id)
/*
 Convert TF parmeters indexed by "itf" into nummerical constants used
to evaluate the TF in realtime.
*/
{
 int i,ie;

 for(i=0; i<tfnelem[itf]; i++) {
 ie = tfepos[itf][i];
 SetElement(id,tfe[itf][ie],i,tfeparm[itf][ie]);
 }
}

void SetElement(int id, int elem, int pos, float *p)
/*
 Convert TF parmeters of element type "elem" found in array "p[]"
into nummerical constants used to evaluate the TF in realtime. Store these
constants in position "pos" of the space determined by "id" as follows:
 id==0: tfB Active TF space A
 id==1: tfA Active TF space B
 id==2: tfTO Turn-on TF space
*/
{
 switch(id) {
 case 0:
 switch(elem) {
 case 0: DefHP(tfB[pos],p); break;
 case 1: DefLP(tfB[pos],p); break;
 case 2: DefCU(tfB[pos],p); break;
 case 3: DefCD(tfB[pos],p); break;
 }

 break;
 case 1:
 switch(elem) {
 case 0: DefHP(tfA[pos],p); break;
 case 1: DefLP(tfA[pos],p); break;
 case 2: DefCU(tfA[pos],p); break;
 case 3: DefCD(tfA[pos],p); break;
 }
 break;
 case 2:
 switch(elem) {
 case 0: DefHP(tfTO[pos],p); break;
 case 1: DefLP(tfTO[pos],p); break;
 case 2: DefCU(tfTO[pos],p); break;
 case 3: DefCD(tfTO[pos],p); break;
 }
 break;
 }
}

int isnumb(char c)
/* Is "c" a digit, decimal point, minus sign, or plus sign? */
{
 return isdigit(c) || (c==’.’) || (c==’-’) || (c==’+’);
};

void FreeArrays(void)
{
 free_imatrix(tfes,0,(int)NTF-1,0,(int)NELEMMAX-1);
 free_imatrix(tfe,0,(int)NTF-1,0,(int)NELEMMAX-1);
 free_imatrix(tfepos,0,(int)NTF-1,0,(int)NELEMMAX-1);
 free_imatrix(tfpose,0,(int)NTF-1,0,(int)NELEMMAX-1);
 free_f3tensor(tfeparm,0,(int)NTF-1,0,(int)NELEMMAX-1,0,2);
 free_dmatrix(tfA,0,(int)NELEMMAX-1,0,2);
 free_dmatrix(tfB,0,(int)NELEMMAX-1,0,2);
 free_dmatrix(tfTO,0,(int)NELEMMAX-1,0,2);
}

void DisplayTF(FILE *fp, int tfi)
/* Display transfer function "tfi" to stream "fp" */
{
 int i, ie, ip;

 fprintf(fp,"-");
 for(ip=0; ip<tfnelem[tfi]; ip++) {
 ie = tfepos[tfi][ip]; /* element index */
 fprintf(fp,"%s-",tfenm[tfi][ie]);
 }
 fprintf(fp,"\n");
 for(ip=0; ip<tfnelem[tfi]; ip++) {
 ie = tfepos[tfi][ip]; /* element index */
 fprintf(fp,"%s: %s(%.3f",tfenm[tfi][ie],enm[tfe[tfi][ie]],
 tfeparm[tfi][ie][0]);
 for(i=1; i<nparme[tfe[tfi][ie]]; i++)
 fprintf(fp,",%.3f",tfeparm[tfi][ie][i]);
 fprintf(fp,") %s\n",esnm[tfes[tfi][ie]]);
 }
}

Bibliography

[1] P. Sommerfeld. Ann. Phys., 51:1, 1916.

[2] Toichiro Kinoshita. The Þne structure constant. Rep. Prog. Phys., 59:1459�1492,

1996.

[3] P. J. Mohr and B. N. Taylor. Codata recommended values of the fundamental

constants: 1998. Rev. Mod. Phys., 72:351�495, 2000.

[4] Jr. R. S. Van Dyck, P. B. Schwinberg, and H. G. Dehmelt. The Electron. Kluwer

Academic, Netherlands, 1991.

[5] Scott Thomas, 2001. Private communication.

[6] Robert S. Van Dyck, Jr., Paul B. Schwinberg, and Hans G. Dehmelt. New

high-precision comparison of electron and positron g factors. Phys. Rev. Lett.,

59:26�29, 1987.

[7] Dean L. Farnham, Robert S. Van Dyck, Jr., and Paul B. Schwinberg. Deter-

mination of the electron�s atomic mass and the proton/electron mass ratio via

Penning trap mass spectroscopy. Phys. Rev. Lett., 75:3598�3601, 1995.

[8] J. L. Hall, C. J. Bordé, and K. Uehara. Direct optical resolution of the recoil

effect using saturated absorption spectroscopy. Phys. Rev. Lett., 37:1339�1342,

1976.

[9] B. C. Young. A measurement of the Þne-structure constant using atom interfer-

ometry. PhD thesis, Stanford University, 1997.

303

304 BIBLIOGRAPHY

[10] Ch. J. Bordé, Ch. Salomon, S. Avrillier, A. Van Lerberghe, Ch. Bréant, D. Bassi,

and G. Scoles. Optical Ramsey fringes with traveling waves. Phys. Rev. A,

30:1836�1848, 1984.

[11] F. Riehle, Th. Kisters, A. Witte, J. Helmcke, and Ch. J. Bordé. Optical Ramsey

spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer.

Phys. Rev. Lett., 67:177�180, 1991.

[12] Pippa Storey and Claude Cohen-Tannoudji. The Feynman path integral ap-

proach to atomic interferometry. A tutorial. J. Phys. II France, 4:1999�2027,

1994.

[13] R. Friedberg and S. R. Hartmann. Billiard balls and matter-wave interferometry.

Phys. Rev. A, 48:1446�1472, 1993.

[14] A. Peters, K.Y. Chung, and S. Chu. Measurement of gravitational acceleration

by dropping atoms. Nature, 400:849�852, 1999.

[15] T. L. Gustavson, A. Landragin, and M. A. Kasevich. Rotation sensing with a

dual atom-interferometer sagnac gyroscope. Class. Quantum Grav., 17:2385�

2398, 2000.

[16] J. Oreg, F. T. Hioe, and J. H. Eberly. Adiabatic following in multilevel systems.

Phys. Rev. A, 29:690�697, 1984.

[17] U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Külz, and K. Bergmann.

Population switching between vibrational levels in molecular beams. Chem. Phys.

Lett., 149:463�468, 1988.

[18] J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann. Adiabatic population

transfer in a three-level system driven by delayed laser pulses. Phys. Rev. A,

40:6741�6744, 1989.

[19] P. Marte, P. Zoller, and J. L. Hall. Coherent atomic mirrors and beam splitters

by adiabatic passage in multilevel systems. Phys. Rev. A, 44:R4118�R4121, 1991.

BIBLIOGRAPHY 305

[20] U. Gaubatz, P. Rudecki, S. Schiemann, and K. Bergmann. Population transfer

between molecular vibrational levels by stimulated Raman scattering with par-

tially overlapping laserÞelds. A new concept and experimental results. J. Chem.

Phys., 92:5363�5376, 1990.

[21] P. Pillet, C. Valentin, R.-L. Yuan, and J. Yu. Adiabatic population transfer in

a multilevel system. Phys. Rev. A, 48:845�848, 1993.

[22] John Lawall and Mara Prentiss. Demonstration of a novel atomic beam splitter.

Phys. Rev. Lett., 72:993�996, 1994.

[23] Lori S. Goldner, C. Gerz, R. J. C. Spreeuw, S. L. Rolston, C. I. Westbrook, W. D.

Phillips, P. Marte, and P. Zoller. Momentum transfer in laser-cooled cesium by

adiabatic passage in a light Þeld. Phys. Rev. Lett., 72:997�1000, 1994.

[24] M. Weitz, B. C. Young, and S. Chu. Atom manipulation based on delayed laser

pulses in three- and four-level systems: Light shifts and transfer efficiencies.

Phys. Rev. A, 50:2438�2444, 1994.

[25] Martin Weitz, Brenton C. Young, and Steven Chu. Atomic interferometer based

on adiabatic population transfer. Phys. Rev. Lett., 73:2563�2566, 1994.

[26] A. Peters, K.Y. Chung, and S. Chu. High precision gravity measurement using

atom interferometry. Metrol., 38:25�61, 2001.

[27] D. S. Weiss. A Precision Measurement of the Photon Recoil of an Atom using

Atomic Interferometry. PhD thesis, Stanford University, 1993.

[28] Kathryn Moler, David S. Weiss, Mark Kasevich, and Steven Chu. Theoretical

analysis of velocity-selective Raman transitions. Phys. Rev. A, 45:342�348, 1992.

[29] E. L. Raab, M. Prentiss, Alex Cable, Steven Chu, and D. E. Pritchard. Trapping

of neutral sodium atoms with radiation pressure. Phys. Rev. Lett., 59:2631�2634,

1987.

306 BIBLIOGRAPHY

[30] D. W. Sesko, T. G. Walker, and C. E. Weiman. Behavior of neutral atoms in a

spontaneous force trap. J. Opt. Soc. Am. B, 8:946�958, 1991.

[31] A. M. Steane and C. J. Foot. Laser cooling below the Doppler limit in a magneto-

optical trap. Europhys. Lett., 14:231�236, 1991.

[32] A. N. Nesmeianov. Vapor Pressure of Chemical Elements. Elsevier, Amsterdam,

1963.

[33] N. F. Ramsey. Molecular Beams. Oxford Univ. Press, Oxford, 1956.

[34] J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson. Optical heterodyne satu-

ration spectroscopy. Appl. Phys. Lett., 39:680�682, 1981.

[35] E. D. Black. An introduction to Pound-Drever-Hall laser frequency stabilization.

Am. J. Phys., 69:79�87, 2001.

[36] G. White and G. M. Chin. Traveling wave electro-optic modulators. Opt. Com-

mun., 5:374�379, 1972.

[37] W. Ertmer, R. Blatt, J. L. Hall, and M. Zhu. Laser manipulation of atomic

beam velocities: Demonstration of stopped atoms and velocity reversal. Phys.

Rev. Lett., 54:996�999, 1985.

[38] Y. Castin, H. Wallis, and J. Dalibard. Limit of Doppler cooling. J. Opt. Soc.

Am. B, 6:2046�2057, 1989.

[39] P. J. Ungar, D. S. Weiss, E. Riis, and Steven Chu. Optical molasses and multilevel

atoms: Theory. J. Opt. Soc. Am. B, 6:2058�2071, 1989.

[40] David S. Weiss, Erling Riis, Yaakov Shevy, P. Jeffrey Ungar, and Steven Chu.

Optical molasses and multilevel atoms: Experiment. J. Opt. Soc. Am. B, 6:2072�

2083, 1989.

[41] J. Dalibard and C. Cohen-Tannoudji. Laser cooling below the Doppler limit by

polarization gradients: Simple theoretical models. J. Opt. Soc. Am. B, 6:2023�

2045, 1989.

BIBLIOGRAPHY 307

[42] Carl E. Wieman and Leo Hollberg. Using diode lasers for atomic physics. Rev.

Sci. Instrum., 62:1�20, 1991.

[43] B. E. A. Saleh and M. C. Teich. Fundamentals of Photonics. John Wiley & Sons,

New York, 1991.

[44] David DolÞ, 2000. Private communication.

[45] http://tycho.usno.navy.mil/time.html.

[46] J. M. Hensley, A. Peters, and S. Chu. Active low frequency vertical vibration

isolation. Rev. Sci. Instrum., pages 2735�2741, 1999.

[47] J. Vanier and C. Audoin. The Quantum Physics of Atomic Frequency Standards.

Adam Hilger, Bristol, 1989.

[48] T. J. Sumner, J. M. Pendlebury, and K. F. Smith. Conventional magnetic shield-

ing. J. Phys. D, 20:1095�1101, 1987.

[49] David Lunt, 1999. Private communication.

[50] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical

Recipes in C: The Art of ScientiÞc Computing. Cambridge University Press,

New York, second edition, 1992.

[51] D. S. Weiss, B. C. Young, and S. Chu. Precision measurement of the photon

recoil of an atom using atomic interferometry. Phys. Rev. Lett., 70:2706, 1993.

[52] D. S. Weiss, B. C. Young, and S. Chu. Precision measurement of h̄/mCs based on

photon recoil using laser-cooled atoms and atomic interferometry. Appl. Phys.

B, 59:217�256, 1994.

[53] A single repetition of the recoil measurement consists of four interferometers:

1 , 2 , 3 , and 4 . As discussed in section 5.1, we Þt the fringe data from each

of these interferometers with a sinusoidal function. To calculate a value for the

recoil frequency we combine the resulting four phase Þt parameters and their cor-

responding Þt uncertainties as follows. We Þrst calculate two intermediate values:

308 BIBLIOGRAPHY

(a) the difference between the normal interferometers 1 (down) - 2 (up) and

(b) the difference between the inverted interferometers (all recoil directions in-

verted) 3 (up) - 4 (down), where we combine the individual uncertainties in

quadrature. We then compute (c) the unweighted arithmetic mean between the

normal and inverted interferometer differences: 1

2

h³
1 − 2

´
+
³
3 − 4

´i
. Its

uncertainty comes from the uncertainties of the normal and inverted interfereme-

ter differences summed in quadrature and divided by two. The value (c) and its

uncertainty thus represents a single repetition of the recoil frequency frec. Finally,

we calculate the weighted mean of all repetitions of the normal interferometers

(a) and plot them as solid circles (�) without error bars. The weighted mean of

all inverted interferometers (b) are shown as hollow circles (◦), and the weighted
mean of all mean values (c) are plotted with single standard deviation error bars

as solid triangles (
6666
). All of these values are plotted in parts per billion (ppb)

relative to an arbitrary but Þxed value of fÞx = 15 006.278 875 Hz for the real

value frec.

[54] A. Peters. High precision gravity measurements using atom interferometry. PhD

thesis, Stanford University, 1998.

[55] T. Miller and B. Bederson. Atomic and molecular polarizabilities: review of

recent advances. Adv. At. Mol. Phys., 13:1�55, 1977.

[56] K. J. Boller, A. Imamoglu, and S. E. Harris. Observation of electromagnetically

induced transparency. Phys. Rev. Lett., 66:2593�2596, 1991.

[57] M. O. Scully and M. Fleischhauer. High-sensitivity magnetometer based on

index-enhanced media. Phys. Rev. Lett., 69:1360�1363, 1992.

[58] Kurt Gibble and Steven Chu. Laser-cooled Cs frequency standard and a mea-

surement of the frequency shift due to ultracold collisions. Phys. Rev. Lett.,

70:1771�1774, 1993.

BIBLIOGRAPHY 309

[59] S. Ghezali, P. Laurent, S. Lea, and A. Clairon. An experimental study of the spin-

exchange frequency shift in a laser-cooled cesium fountain frequency standard.

Europhys. Lett., 36:25�30, 1996.

[60] J. Anandan. Curvature effects in interferometry. Phys. Rev. D, 30:1615�1624,

1984.

[61] J. Audretsch and C. Lammerzahl. New inertial and gravitational effects made

measurable by atomic-beam interferometry. Appl. Phys. B, 54:351�354, 1992.

[62] S. Wajima, M. Kasai, and T. Futamase. Post-Newtonian effects of gravity on

quantum interferometry. Phys. Rev. D, 55:1964�1970, 1997.

[63] T. Udem, J. Reichert, R. Holzwarth, and T. W. Haensch. Absolute optical

frequency measurement of the cesium D-1 line with a mode-locked laser. Phys.

Rev. Lett., 82:3568�3571, 1999.

[64] M. P. Bradley J. V. Porto, S. Rainville, J. K. Thompson, and D. E. Pritchard.

Penning trap measurements of the masses Cs-133, Rb-87, Rb-85, and Na-23 with

uncertainties ≤ 0.2 ppb. Phys. Rev. Lett., 83:4510�4513, 1999.

[65] J. P. Gordon and A. Ashkin. Motion of atoms in a radiation trap. Phys. Rev.

A, 21:1606, 1980.

[66] L. Young, W. T. Hill III, S. J. Sibener, Stephen D. Price, C. E. Tanner, C. E.

Weiman, and Stephen R. Leone. Precision lifetime measurements of Cs 6p 2P1/2

and 6p 2P3/2 levels by single-photon counting. Phys. Rev. A, 50:2174�2181, 1994.

[67] Bruce W. Shore. The theory of coherent atomic excitation, Volume 2: Multilevel

atoms and Incoherence. John Wiley & Sons, New York, third edition, 1990.

310

Index

2-photon transitions, 9, 20

adiabatic passage, 45, 47, 53, 225

contrast limit, 55, 58, 59

lineshape, 132, 133, 229

pulse shape, 52, 84

efficiency, 50, 58, 133, 218, 225

noise, 169

off-resonant Raman, 45, 48, 255

ac-stark effect, 60, 202

adiabatic transfer beams, see

Raman beams

angular matrix elements, 260, 263

cesium (D1), 261

argon ion laser, 67, 81

atom cloud

density, 214, 218

rms size, 75

rms velocity, 75

velocity distribution, 213

bright state, 46, 218

cesium, 44, 110

angular matrix elements, 261

collisional shift, 244

dc-stark effect, 201

nuclear spin, 110

photon cross-section, 263

quadratic Zeeman shift, 207

saturation intensity, 259, 262

source, 63, 64, 65, 66

chirp, see Raman beams,

difference frequency chirp

classical action, 13, 16�17, 25�26, 32,

37

clearing, 70, 75, 130

Clebsch-Gordon coefficients, see

angular matrix elements

common switch AOM, 82, 85, 119

computer code

Þt routines, 290

interferometer pattern generation,

266�284

vibration isolation, 297

cross-section

cesium-photon, 263

crystal Þlters, 158, 200

dark state, 46, 47, 53, 218

probability of falling back into, 57,

217

dc-stark effect, 201

311

312 INDEX

differential, 202

detection, see probe, signal

detuning, 43, 190, 191

dipole matrix element, 256

direct digital synthesizer (DDS), 92, 93,

114, 139, 140, 193

frequency strobe, 116

performance, 142, 143

phase correction, 143, 144

previous version, 137, 145

Doppler shift, 6, 50, 96, 133, 156, 190,

196, 197, 199, 213, 215, 244

Doppler-free (DF) Raman, 70, 75, 76,

78, 110, 130

electric dipole, 257

electric Þeld, 43, 256

intensity, 262

electro-optic modulator (EOM)

3.53 MHz, 94

9 GHz, 82, 83, 92, 93, 264

traveling wave, 69

Fabry-Perot cavity, see Þlter cavity

Þbers, 86, 87, 90

Þlter cavity, 82, 84

Þne structure constant, 1

accepted value, 1, 252

determinations of, 2

measured using

ac Josephson effect, 1, 3

atom interferometry, 4

electron g − 2, 1
muonium hyperÞne structure, 1,

3

neutron interferometry, 1, 3

quantum Hall effect, 1

recoil frequency of cesium, 252

Þt routines, see interferometer, data,

Þt routines

frequency measurement

D1 line of cesium, 4, 252

Gaussian beam, 174, 176

Hamiltonian, 46

high-frequency beatnote, see

microwave beatnote

hyperÞne splitting

cesium, 44, 110

collisional shift, 244

differential dc-stark shift, 202

quadratic Zeeman shift, 207

index of refraction, see Raman beams,

frequency dispersion

interferometer, 10

additional recoils, 11, 36, 134, 231

conjugate geometry, 24, 39

data, 163�167

Þt routines, 161, 230, 290

enclosed area, 234�239

fringes, 135, 136, 163�167

resolution, 167

paths that do not close, 225

INDEX 313

pattern generation

beam direction

controller, 118, 120, 121

chirp synthesizers, 118, 122, 123

difference frequency

switching, 116

difference frequency chirp, 114

direct digital

synthesizer, 114, 118

gate synthesizer, 115, 118

phase compensation system, 147�

149

pulse shape, 115, 116, 118

pulse shape linearization, 117

timing diagrams, 125�130

trigger synchronization, 124

variable rf

attenuators, 117, 123, 146

variable rf

phase shifters, 123, 146, 147

shifted and unshifted paths, 14

interferometer

platform, 99, 222

interferometer phase, 42

due to lasers, 18

−ωt term, 22, 27, 34, 38

φ term, 22, 35, 38

kz term, 19, 26, 34, 37

geometry 1 , 23, 35, 39

geometry 2 , 28, 35, 39

geometry 3 , 40

geometry 4 , 40

normal/inverted mean, 41

up/down difference, 35, 41

interferometer platform, 90, 100

keff , 10, 153

Lagrangian, 13

laser diode, 70, 76, 78, 98

LORAN C, 92, 93, 98, 124, 157, 193,

200, 220

magnetic Þeld, 77, 110, 112, 133

bias Þeld, 111, 112, 185, 189, 209,

210, 216

trim coils, 111, 189

MOT gradient, 67, 71

quadratic Zeeman shift, 207

shielding, 66, 111, 112, 126, 130,

136, 160, 180, 209

magnetic sublevel, 44, 47, 57, 77, 80,

110, 130, 134, 163, 168, 184,

189, 207, 210, 216, 263

sensitive detection, see

Doppler-free (DF) Raman

magneto-optic trap (MOT), 65, 66

launch, 66, 72, 125, 126, 130, 168,

175, 235, 239, 240, 242

loading, 72, 125, 126

MOT beams, 66, 67, 70, 71

MOT coils, 65, 66, 72, 222, 223

MOT trim coils, 66, 72, 80, 222,

223, 224

314 INDEX

mass ratio

cesium to proton, 4, 252

proton to electron, 4, 252

microwave beatnote, 82, 91, 92, 93, 169

microwave reference, 92, 93, 169, 189

phase lock loop, 92, 93, 98, 100, 138,

169, 196, 205, 264

phase vs. T correction, 226, 228, 249,

250, 251

photon recoil, see recoil frequency

π-pulse, 45, 48, 49, 130, 132, 225, 231

velocity selecting, 131, 132

π/2-pulse, 45, 49, 50, 134, 225

probe, 70, 75, 130, 175, 178, 214, 242

signal, 73, 74, 168, 175, 214, 280

background, 168

quartz crystal, 99

Rabi frequency, 43, 257, 263

effective, 47

in terms of

saturation intensity, 258, 259

Raman beams, 81, 82

absolute frequency, 96, 190

alignment to gravity, 177�178

collimation, 89, 90, 150, 151

parallel plate tester, 150, 152

shear plate tester, 150

difference frequency, 83, 92, 93,

116, 191, 264

difference frequency chirp, 114,

122, 123, 198

direction control, 118, 120, 121

frequency dispersion, 212, 216

Guoy phase, 174

intensity, 262

intensity balance, 120, 121, 156

phase lock loop, 93, 169, 196, 264

polarization, 90, 91, 189

pulse shape, 115, 116, 118, 158,

159

relative angle, 153�155, 183, 184

spatial Þltering, see Þbers

switchyard, 86, 87, 98, 118, 121

far AOMs, 86, 87, 121

leakage, 88, 121

near AOMs, 86, 87, 121

wavefront motion, 170

recoil frequency, 4, 6, 20

basic measurement, 7, 8

determined from slope, 226

Þnal value

corrected with intercept, 251

from slope of vs. T data, 251

Þxed value, 160

interferometer

measurement, 11, 136

recoil shift, see recoil frequency

recoil temperature (D2), 75

recoil velocity (D2), 75

repumping, 67, 70, 78, 79, 80

INDEX 315

resonance condition, 7, 21

rotations, see Sagnac effect

Earth�s, 234

Rydberg constant, 3, 252

Sagnac effect, 234

saturation intensity, 257

cesium (D1), 262

cesium (D2), 259

saturation spectroscopy, 67, 95, 96

shaping AOMs, 82, 84, 146, 158, 159

shutter, 70, 72, 75, 202, 219, 222, 223

slope, see recoil frequency,

determined from slope

slowing beam, 65, 66, 69, 70, 72

spontaneous emission, 45, 47, 54, 72,

79, 185, 231

statistics, 231

standard deviation, 250

uncertainty of the mean, 248

weighted mean, 248

superposition state, 7, 14, 20, 21, 48,

134, 135, 157, 162, 190, 229

swing transition, 257, 261

switchyard, see

Raman beams, switchyard

systematic errors

π/2-pulses, 255

absolute laser frequency, 191, 254

ac-stark effect from Raman laser,

205�206

ac-stark effect from tracer, 203�205

bad frequencies, 199

beam clipping, 181

beam collimation, 179�180

beam polarization, 185, 186, 189,

254

beam speckle, 181

collisional shifts, 244, 255

comparing N odd with N even, 196

computer arithmetic, 201

correction from, 173, 246, 247

dc-stark effect, 202

difference frequency, 193, 224

difference frequency chirp, 197, 198

difference frequency switching, 194

dispersion

cold atoms, 219, 255

hot background atoms, 215

error budget, 246, 247

Þt routines, 231

ßuctuations synchronized

with launch, 223, 224

fringe spacing, 227, 228

from π/2-pulses, 228, 249

gravitational red shift, 245

gravity gradient, 199

magnetic Þelds, 208�211, 254

missed recoils, 233

motion transverse

to the beams, 175�178

oscillations at 60 Hz, 220, 221

relative angle of Raman beams, 183

316 INDEX

relativistic effects, 244

rf components, 195, 196

Sagnac effect, 233�242, 254

sloping background, 230

timing errors, 225

uncertainty of, 173, 246, 247

value for gravity, 192

wavefront curvature, 175, 176, 179

tilt sensor, 103, 139, 177

titanium-sapphire laser, 68

Coherent, 81

lock to cesium, 94, 95, 190

output frequency, 95, 96

SEO, 70

lock to cesium, 69

output frequency, 68

tracer, 78, 82, 97, 203, 264

phase lock loop, 98, 100, 138, 169,

205, 264

wavelength difference, 102, 170

vacuum chamber, 65, 66

vibration isolation, 103, 104, 222

computer code, 297

error signal, 107, 108

performance, 109, 170, 223

sensitivity function, 108, 223

Wigner-Eckhart theorem, see angular

matrix elements

Zeeman pumping, 70, 80

Zeeman shift, see magnetic Þeld

quadratic, 207

This photo of Steve Chu, the author, and Kurt Franke (left-to-right) was taken

in Steve�s office as we discussed the photon recoil measurement. It appeared

in the New York Times Science Section. At the time, for a caption, Steve

suggested, �Kurt Franke meets with two unknown physicists�.

Andreas Wicht and the author in front of the photon recoil apparatus.

317

