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Motivation

: Estimation of an object of interest x € RV
obtained by minimizing an objective function

where
> related to the observation model
> related to some a priori assumptions

on the target solution
~> e.g. an a priori on the smoothness of an image,
~> e.g. a support constraint.
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Motivation

. Estimation of an object of interest x € RV
obtained by minimizing an objective function

» [ is a data-fidelity term related to the observation model

where

» R is a regularization term related to some a priori assumptions
on the target solution

In the context of large scale problems, how to find an optimization
algorithm able to deliver a reliable numerical solution
in a reasonable time, with low memory requirement 7

= Block alternating minimization.
= Introduction of a variable metric.
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Minimization problem

Problem

Find X € Argmin{G = F + R},

where:

o F:RY R is differentiable

and has an L-Lipschitz gradient on dom R, i.e.
(V(x,y) € (domR)?)  |[VF(x) = VF(y)Il < LlIx =yl
e R: RN —] — 0o, +00] is proper, lower semicontinuous.

e G is coercive, i.e. lim,|_ 400 G(x) = +00,
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Forward-Backward algorithm

FB Algorithm

Let xp € RN
For ¢=0,1,...
| xer1 € prox,, g (xe — % VF(xe)), e €]0,+o0l.

» Let x € RV. The _ is defined by

prox., r(x) = Argmin R(y) + —uy — x].
ye]R

~~ When R is nonconvex:

e Non necessarily uniquely defined.
e Existence guaranteed if R is bounded from below by an affine
function.
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Forward-Backward algorithm

FB Algorithm

Let xp € RN
For /=0,1,.
| xeq1 € prox., (xz vV F(x)), ¢ €]0,+o0].

» Let x € RV, The _ is defined by

1
prox,, g(x) = Argmin R(y) + —||y — x|
yGR

~» When R is nonconvex:

e Non necessarily uniquely defined.
e Existence guaranteed if R is bounded from below by an affine
function.

» Slow convergence.
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Variable Metric Forward-Backward algorithm

VMEB Algorithm

Let XoGRN
For £=0,1,...

B 1
Xe+1 € PFOX7;1-7 " <Xz ’Yz- VF (Xe)> ;

with 7 €]0, +oo[, and - a SPD matrix.

» Let x € RN, The proximity operator relative to the metric
induced by Ay(x;) is defined by

1
B . - _ 2
ProX, 1, (), R(X) = A;E]{;”N'” RO gl =l
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Variable Metric Forward-Backward algorithm

VMEB Algorithm

Let X()ERN
For ¢=0,1,...

_ il
X1 € pFOX’YIZ_IE7 R <X£ ’Ye_l VF(X@)) )

with 7 €]0, +ocl, and u a SPD matrix.

» Let x € RN, The proximity operator relative to the metric
induced by Ay(x;) is defined by
: 1 5
prOX‘Y[lAe(Xe) , R(X) - A;g}g}:n R(y) + 2_'72Hy B X”Az(xz)'
» Convergence is established for a wide class of nonconvex
functions G and (As(x¢)),cny are general SPD matrices in
[Chouzenoux et al. - 2013]
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e V0 - e e e

Block separable structure

» R is an additively block separable function.
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Block separable structure

» R is an additively block separable function.

e RN

x(Me RM

x(2) e RN
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Block separable structure
> R is an additively block separable function.

)
@)
J .
R| | x = R| °~ = Y Ri(xW)
: &

U

(Vie{1,...,J}) R;: RNi =] — 00, +oc] is a Isc, proper function,
continuous on its domain and bounded from below by an affine function.
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BC Forward-Backward algorithm

Let xp € RV
For £ =0,1,...
Let jo e {1,...,J},
Xgﬁ € prox,, Rj, (Xé%) - ’yngZF(Xg)> , e 6]0, +OO[,
50— ()
+1 4

» Advantages of a block coordinate strategy:

e more flexibility,
e reduce computational cost at each iteration,

e reduce memory requirement.
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BC Variable Metric Forward-Backward algorithm

BC-VMFB Algorithm

Let xp € RV
For £=0,1,...
Let jo€{1,...,J},

(Jz) € prox . ( (je) _ - 1V;, F(x) )
X(Je) — X(Je) !
l+1 {2

with v, €]0, +o0[, and i a SPD matrix.

OUR CONTRIBUTIONS:

e How to choose the preconditioning matrices (Aj,(x¢)),cn?
~ Majorize-Minimize principle.

e How to define a general update rule for (j),cn?
~» Quasi-cyclic rule.
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Majorize-Minimize assumption

MM Assumption

(V¢ € N) there exists a lower and upper

bounded SPD matrix Aj,(x;) € RMie*Nie

such that (Vy € R"ir)

Qi %) = F(xe) + (v = ) V3, F(x)
+3 1y = xR, )

is a majorant function on dom R;, of the

restriction of F to its j,-th block at xlf”),

(Yy € dom R;,)

= (Xél) xlf”‘l) y xéjﬁl) Xng))

< Qj,(y | xe)-

ie.,

[Jacobson et al. - 2007]

i,

(Je—1) (Je+1)
X, S5 X S

Qi x)

S X
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Majorize-Minimize assumption

MM Assumption

(V¢ € N) there exists a lower and upper
bounded SPD matrix Aj,(x;) € RMie*Nie
such that (Vy € RMi)

Qio (v | xe) = F(xe) + (v — xI) TV, F(xe)
+3 1y = xR, )

is a majorant function on dom R;, of the

[Jacobson et al. - 2007]

F(X(l) X(J'rl)7 . Xéj[+1)’ . ,X[SJ))

¢ X

Q- [x0)

restriction of F to its j,-th block at xéj‘), ie.,
(Yy € dom R;,)
F (xél), . ,xlg”_l), Y, xéj”l), . ,XéJ)) Xlgj,_;)
< Qi (y [ xe).
dom R is convex and F is The above assumption holds if
L-Lipschitz differentiable = (V€ € N) Aj,(xe) = Ly,
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e V0 - e e e
Convergence results

Additional assumptions

> G satisfies the Kurdyka-tojasiewicz inequality [Attouch et al. - 2011]:
For every £ € R, for every bounded E C RV, there exist x,¢ > 0 and
0 € [0,1) such that, for every x € E such that |G(x) —&| <,
(Vr € 9R(x))  [IVF(x) +r|| > k| G(x) — €|’
Technical assumption satisfied for a wide class of nonconvex functions

o semi-algebraic functions
o real analytic functions
o ...
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Convergence results

Additional assumptions

> G satisfies the Kurdyka-tojasiewicz inequality [Attouch et al. - 2011]:

For every £ € R, for every bounded E C RV, there exist x,¢ > 0 and
0 € [0,1) such that, for every x € E such that |G(x) — £] < ¢,

(Vr € 9R(x))  [IVF(x) +r|| > k| G(x) — €|’
Technical assumption satisfied for a wide class of nonconvex functions

o semi-algebraic functions
o real analytic functions
e ...

~~ Almost every function you can imagine!
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Convergence results

Additional assumptions

> G satisfies the Kurdyka-tojasiewicz inequality [Attouch et al. - 2011]:

For every £ € R, for every bounded E C RV, there exist x,¢ > 0 and
0 € [0,1) such that, for every x € E such that |G(x) — £] < ¢,

(Vr € OR(x))  [IVF(x) +r|| > k| G(x) — €|°.

Technical assumption satisfied for a wide class of nonconvex functions

> Blocks (j¢)een updated according to a quasi-cyclic rule, i.e., there exists
K > J such that, for every £ € N, {1,...,J} C {je, ..., jesk—1}-
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Convergence results

Additional assumptions

> G satisfies the Kurdyka-tojasiewicz inequality [Attouch et al. - 2011]:

For every & € R, for every bounded E C R", there exist x,¢ > 0 and
0 € [0,1) such that, for every x € E such that |G(x) —&] < ¢,

(Vr € 8R(x)) IVF(x)+rll > £|G(x) — §|9.
Technical assumption satisfied for a wide class of nonconvex functions

> Blocks (j¢)een updated according to a quasi-cyclic rule, i.e., there exists
K > J such that, for every £ € N, {1,...,J} C {je, ..., jesk—1}-

» The step-size is chosen such that:
e 3(7,7) € (0,+00)” such that (V¢ € N) v <, < 1—7.

e Forevery j€{1,...,J}, R;is a convex function and
3(7,7) € (0,400)? such that (V/ € N) v <, <2 —7.
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Convergence results

Convergence theorem

Let (x¢)een be a sequence generated by the BC-VMFB algorithm.

» Global convergence:
~ (x¢)een converges to a critical point X of G.

~~ (G(x¢))een is a nonincreasing sequence converging to
G(x).

» Local convergence:
If (3v > 0) such that G(xp) < inf cgn G(x) + v,
then (x¢)sen converges to a solution X to the minimization
problem.
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Spectral unmixing problem

Y = [Y(U, . ..,Y(M)] € RSM

S -
Y™ e R Endmembers

|

[| Unmixing

reflectance

wavelength Abundances
Measured spectra at the m-th pixel V € RPM

Y=UV+E
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Proposed criterion
OBSERVATION MODEL: Y =UV+E ~ Y =QTV+E,
with e Q € R3*@ a known spectra library of size Q > P,

o T € R?*P an unknown matrix assumed to be sparse.

Ongrcrivi: Find estimates of T and V.
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Proposed criterion

- Y=QT V+E,

minimize (G(T,V)=F(T,V)+ Ri(T)+ R(V)),
TeROXP yeRPXM

o F(T,V)=13|lY —QTV|3,

o Ri(T) = Z Z (T T (T@P)) + o (T(P)Y),

q=1p=1
with g a nonconvex penalization promoting the sparsity, defined in
[Chartrand, 2012] for 8 €]0,1], and (1, Tmin, Tmax) €]0, +oo[>.

° Ra(V) = w(V),
with V ={V e R”M|(Yme {1,...,M}) X0 VP =1,

(Vpe{l,....,P)(Yme{1,...,M}) VPm > v, .}

where Viin > 0.
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Construction of the preconditioning matrices

Let (T', V') € dom Ry x dom Ro.

Tw— F(T,V)= %HY — QT V||% is majorized on dom Ry by
QT T, V') = F(T', V) +tr (T = TYiF(T, V)T)
" tr(((T T)oA(T V) (T-T)T),

where A (T, V)= (QTQ)T(V'VT)) o T.

Vi F(T', V) =3|Y — QT V|2 is majorized on dom R by
@V [T, V)= F(T' V) +tr ((V = V)V2F (T, V)T
+ %tr (((v — VYO AT, V) (V - v’)T) ,
where Ay(T', V') = ((QT)TQT'V) o V.




A Preconditioned Forward-Backward Approach with Application to Spectral Unmixing 14/1

Numerical results
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Conclusion

Proposition of a new BC-VMFB algorithm for minimizing the
sum of

e a nonconvex smooth function F,

e a nonconvex non necessarily smooth function R.

Convergence results both on the iterates and the function
values.

Blocks updated according to a flexible quasi-cyclic rule.
Acceleration of the convergence thanks to the choice of

matrices (A;,(x¢))ecn based on MM principle.

Combining with
a leads to a significant
acceleration in terms of decay of the error on the iterates.
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Thank you ! Questions 7

E. Chouzenoux, J.-C. Pesquet and A. Repetti.
Variable Metric Forward-Backward Algortihm for Minimizing the Sum of a
Differentiable Function and a Convex Function.
To appear in J. Optim. Theory Appl, 2013.

E. Chouzenoux, J.-C. Pesquet and A. Repetti.
A Block Coordinate Variable Metric Forward-Backward algorithm.
Tech. Rep., 2013. Available on
http://www.optimization-online.org/DB_HTML/2013/12/4178.html.
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