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Motivation

Inverse problem: Estimation of an object of interest x ∈ R
N

obtained by minimizing an objective function

G = F + R

where

◮ F is a data-fidelity term related to the observation model

◮ R is a regularization term related to some a priori assumptions
on the target solution
 e.g. an a priori on the smoothness of an image,
 e.g. a support constraint.
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Motivation

Inverse problem: Estimation of an object of interest x ∈ R
N

obtained by minimizing an objective function

G = F + R

where

◮ F is a data-fidelity term related to the observation model

◮ R is a regularization term related to some a priori assumptions
on the target solution

In the context of large scale problems, how to find an optimization
algorithm able to deliver a reliable numerical solution
in a reasonable time, with low memory requirement ?

⇒ Block alternating minimization.

⇒ Introduction of a variable metric.
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Minimization problem

Problem

Find x̂ ∈ Argmin{G = F + R},

where:

• F : RN → R is differentiable ,

and has an L-Lipschitz gradient on domR , i.e.
(
∀(x , y) ∈ (domR)2

)
‖∇F (x)−∇F (y)‖ ≤ L‖x − y‖,

• R : RN →]−∞,+∞] is proper, lower semicontinuous.

• G is coercive, i.e. lim‖x‖→+∞ G (x) = +∞,

and is non necessarily convex .
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Forward-Backward algorithm

FB Algorithm

Let x0 ∈ R
N

For ℓ = 0, 1, . . .⌊
xℓ+1 ∈ proxγℓ R (xℓ − γℓ∇F (xℓ)) , γℓ ∈]0,+∞[.

◮ Let x ∈ R
N . The proximity operator is defined by

proxγℓ R(x) = Argmin
y∈RN

R(y) +
1

2γℓ
‖y − x‖2.

 When R is nonconvex:

• Non necessarily uniquely defined.
• Existence guaranteed if R is bounded from below by an affine

function.
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Forward-Backward algorithm

FB Algorithm

Let x0 ∈ R
N

For ℓ = 0, 1, . . .⌊
xℓ+1 ∈ proxγℓ R (xℓ − γℓ∇F (xℓ)) , γℓ ∈]0,+∞[.

◮ Let x ∈ R
N . The proximity operator is defined by

proxγℓ R(x) = Argmin
y∈RN

R(y) +
1

2γℓ
‖y − x‖2.

 When R is nonconvex:

• Non necessarily uniquely defined.
• Existence guaranteed if R is bounded from below by an affine

function.

◮ Slow convergence.
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Variable Metric Forward-Backward algorithm

VMFB Algorithm

Let x0 ∈ R
N

For ℓ = 0, 1, . . .
xℓ+1 ∈ prox

γ−1
ℓ

Aℓ(xℓ) ,R

(
xℓ − γℓ Aℓ(xℓ)

−1∇F (xℓ)
)
,

with γℓ ∈]0,+∞[, and Aℓ(xℓ) a SPD matrix.

◮ Let x ∈ R
N . The proximity operator relative to the metric

induced by Aℓ(xℓ) is defined by

prox
γ−1
ℓ

Aℓ(xℓ) ,R
(x) = Argmin

y∈RN

R(y) +
1

2γℓ
‖y − x‖2

Aℓ(xℓ)
.
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Variable Metric Forward-Backward algorithm

VMFB Algorithm

Let x0 ∈ R
N

For ℓ = 0, 1, . . .
xℓ+1 ∈ prox

γ−1
ℓ

Aℓ(xℓ) ,R

(
xℓ − γℓ Aℓ(xℓ)

−1∇F (xℓ)
)
,

with γℓ ∈]0,+∞[, and Aℓ(xℓ) a SPD matrix.

◮ Let x ∈ R
N . The proximity operator relative to the metric

induced by Aℓ(xℓ) is defined by

prox
γ−1
ℓ

Aℓ(xℓ) ,R
(x) = Argmin

y∈RN

R(y) +
1

2γℓ
‖y − x‖2

Aℓ(xℓ)
.

◮ Convergence is established for a wide class of nonconvex
functions G and (Aℓ(xℓ))ℓ∈N are general SPD matrices in
[Chouzenoux et al. - 2013]
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Block separable structure

◮ R is an additively block separable function.
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Block separable structure

◮ R is an additively block separable function.

x ∈ R
N

x
(1)∈ R

N1

x
(2)∈ R

N2

x
(J)∈ R

NJ

N =
J∑

̇=1

Ṅ
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Block separable structure

◮ R is an additively block separable function.

xR = R =
J∑

̇=1

Ṙ(x
(̇))

(∀̇ ∈ {1, . . . , J}) Ṙ : R
Ṅ →]−∞,+∞] is a lsc, proper function,

continuous on its domain and bounded from below by an affine function.

x
(1)

x
(2)

x
(J)
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BC Forward-Backward algorithm

BC-FB Algorithm [Bolte et al. - 2013]

Let x0 ∈ R
N

For ℓ = 0, 1, . . .
Let ̇ℓ ∈ {1, . . . , J},

x
(̇ℓ)
ℓ+1 ∈ proxγℓ Ṙℓ

(
x
(̇ℓ)
ℓ − γℓ∇̇ℓF (xℓ)

)
, γℓ ∈]0,+∞[,

x
(ℓ)
ℓ+1 = x

(ℓ)
ℓ .

◮ Advantages of a block coordinate strategy:

• more flexibility,

• reduce computational cost at each iteration,

• reduce memory requirement.
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BC Variable Metric Forward-Backward algorithm

BC-VMFB Algorithm

Let x0 ∈ R
N

For ℓ = 0, 1, . . .

Let ̇ℓ ∈ {1, . . . , J},

x
(̇ℓ)
ℓ+1 ∈ prox

γ−1
ℓ

Ȧℓ
(xℓ), Ṙℓ

(
x
(̇ℓ)
ℓ − γℓ Ȧℓ(xℓ)

−1∇̇ℓF (xℓ)
)
,

x
(ℓ)
ℓ+1 = x

(ℓ)
ℓ ,

with γℓ ∈]0,+∞[, and Ȧℓ(xℓ) a SPD matrix.

Our contributions:

• How to choose the preconditioning matrices (Ȧℓ(xℓ))ℓ∈N?
 Majorize-Minimize principle.

• How to define a general update rule for (̇ℓ)ℓ∈N?
 Quasi-cyclic rule.
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Majorize-Minimize assumption [Jacobson et al. - 2007]

MM Assumption

(∀ℓ ∈ N) there exists a lower and upper
bounded SPD matrix Ȧℓ(xℓ) ∈ R

Ṅℓ
×Ṅℓ

such that (∀y ∈ R
Ṅℓ )

Q̇ℓ(y | xℓ) = F (xℓ) + (y − x
(̇ℓ)
ℓ )⊤∇̇ℓF (xℓ)

+ 1
2
‖y − x

(̇ℓ)
ℓ ‖2Ȧℓ

(xℓ)
,

is a majorant function on domṘℓ of the

restriction of F to its jℓ-th block at x
(̇ℓ)
ℓ , i.e.,

(∀y ∈ domṘℓ)

F
(

x
(1)
ℓ , . . . , x

(̇ℓ−1)
ℓ , y , x

(̇ℓ+1)
ℓ , . . . , x

(J)
ℓ

)

≤ Q̇ℓ(y | xℓ).

F (x
(1)
ℓ , . . . , x

(̇ℓ−1)
ℓ , ·, x

(̇ℓ+1)
ℓ , . . . , x

(J)
ℓ )

Q̇ℓ(· | xℓ)

x
(̇ℓ)
ℓ
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Majorize-Minimize assumption [Jacobson et al. - 2007]

MM Assumption

(∀ℓ ∈ N) there exists a lower and upper
bounded SPD matrix Ȧℓ(xℓ) ∈ R

Ṅℓ
×Ṅℓ

such that (∀y ∈ R
Ṅℓ )

Q̇ℓ(y | xℓ) = F (xℓ) + (y − x
(̇ℓ)
ℓ )⊤∇̇ℓF (xℓ)

+ 1
2
‖y − x

(̇ℓ)
ℓ ‖2Ȧℓ

(xℓ)
,

is a majorant function on domṘℓ of the

restriction of F to its jℓ-th block at x
(̇ℓ)
ℓ , i.e.,

(∀y ∈ domṘℓ)

F
(

x
(1)
ℓ , . . . , x

(̇ℓ−1)
ℓ , y , x

(̇ℓ+1)
ℓ , . . . , x

(J)
ℓ

)

≤ Q̇ℓ(y | xℓ).

F (x
(1)
ℓ , . . . , x

(̇ℓ−1)
ℓ , ·, x

(̇ℓ+1)
ℓ , . . . , x

(J)
ℓ )

Q̇ℓ(· | xℓ)

x
(̇ℓ)
ℓ

domR is convex and F is
L-Lipschitz differentiable ⇒

The above assumption holds if
(∀ℓ ∈ N) Ȧℓ(xℓ) ≡ L IṄℓ
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Convergence results

Additional assumptions

◮ G satisfies the Kurdyka- Lojasiewicz inequality [Attouch et al. - 2011]:

For every ξ ∈ R, for every bounded E ⊂ R
N , there exist κ, ζ > 0 and

θ ∈ [0, 1) such that, for every x ∈ E such that |G (x) − ξ| ≤ ζ,
(

∀r ∈ ∂R(x)
)

‖∇F (x) + r‖ ≥ κ|G (x) − ξ|θ.

Technical assumption satisfied for a wide class of nonconvex functions

• semi-algebraic functions
• real analytic functions
• ...



A Preconditioned Forward-Backward Approach with Application to Spectral Unmixing 9/1

Convergence results

Additional assumptions

◮ G satisfies the Kurdyka- Lojasiewicz inequality [Attouch et al. - 2011]:

For every ξ ∈ R, for every bounded E ⊂ R
N , there exist κ, ζ > 0 and

θ ∈ [0, 1) such that, for every x ∈ E such that |G (x) − ξ| ≤ ζ,
(

∀r ∈ ∂R(x)
)

‖∇F (x) + r‖ ≥ κ|G (x) − ξ|θ.

Technical assumption satisfied for a wide class of nonconvex functions

• semi-algebraic functions
• real analytic functions
• ...

 Almost every function you can imagine!
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Convergence results

Additional assumptions

◮ G satisfies the Kurdyka- Lojasiewicz inequality [Attouch et al. - 2011]:

For every ξ ∈ R, for every bounded E ⊂ R
N , there exist κ, ζ > 0 and

θ ∈ [0, 1) such that, for every x ∈ E such that |G (x) − ξ| ≤ ζ,
(

∀r ∈ ∂R(x)
)

‖∇F (x) + r‖ ≥ κ|G (x) − ξ|θ.

Technical assumption satisfied for a wide class of nonconvex functions

◮ Blocks (̇ℓ)ℓ∈N updated according to a quasi-cyclic rule, i.e., there exists
K ≥ J such that, for every ℓ ∈ N, {1, . . . , J} ⊂ {̇ℓ, . . . , ̇ℓ+K−1}.
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Convergence results

Additional assumptions

◮ G satisfies the Kurdyka- Lojasiewicz inequality [Attouch et al. - 2011]:

For every ξ ∈ R, for every bounded E ⊂ R
N , there exist κ, ζ > 0 and

θ ∈ [0, 1) such that, for every x ∈ E such that |G (x) − ξ| ≤ ζ,
(

∀r ∈ ∂R(x)
)

‖∇F (x) + r‖ ≥ κ|G (x) − ξ|θ.

Technical assumption satisfied for a wide class of nonconvex functions

◮ Blocks (̇ℓ)ℓ∈N updated according to a quasi-cyclic rule, i.e., there exists
K ≥ J such that, for every ℓ ∈ N, {1, . . . , J} ⊂ {̇ℓ, . . . , ̇ℓ+K−1}.

◮ The step-size is chosen such that:

• ∃(γ, γ) ∈ (0,+∞)2 such that (∀ℓ ∈ N) γ ≤ γℓ ≤ 1 − γ.

• For every ̇ ∈ {1, . . . , J}, Ṙ is a convex function and
∃(γ, γ) ∈ (0,+∞)2 such that (∀ℓ ∈ N) γ ≤ γℓ ≤ 2 − γ.
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Convergence results

Convergence theorem

Let (xℓ)ℓ∈N be a sequence generated by the BC-VMFB algorithm.

◮ Global convergence:
 (xℓ)ℓ∈N converges to a critical point x̂ of G .

 (G (xℓ))ℓ∈N is a nonincreasing sequence converging to
G (x̂).

◮ Local convergence:
If (∃υ > 0) such that G (x0) ≤ infx∈RN G (x) + υ,
then (xℓ)ℓ∈N converges to a solution x̂ to the minimization
problem.
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Spectral unmixing problem
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Proposed criterion

Observation model: Y = U V + E  Y = ΩT V + E ,

with • Ω ∈ R
S×Q a known spectra library of size Q ≫ P ,

• T ∈ R
Q×P an unknown matrix assumed to be sparse.

Objective: Find estimates of T and V .
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Proposed criterion

Observation model: Y = ΩT V + E ,

minimize
T∈RQ×P ,V∈RP×M

(G (T ,V ) = F (T ,V ) + R1(T ) + R2(V )) ,

• F (T ,V ) = 1
2‖Y − ΩTV ‖2F ,

• R1(T ) =
Q∑

q=1

P∑
p=1

(
ι[Tmin,Tmax](T

(q,p)) + ηϕβ(T
(q,p))

)
,

with ϕβ a nonconvex penalization promoting the sparsity, defined in
[Chartrand, 2012] for β ∈]0, 1], and (η,Tmin,Tmax) ∈]0,+∞[3.

• R2(V ) = ιV(V ),

with V = {V ∈ R
P×M | (∀m ∈ {1, . . . ,M})

∑P

p=1 V
(p,m) = 1,

(∀p ∈ {1, . . . ,P})(∀m ∈ {1, . . . ,M})V (p,m) ≥ Vmin},
where Vmin > 0.
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Construction of the preconditioning matrices

Let (T ′,V ′) ∈ domR1 × domR2.

T 7→ F (T ,V ′) = 1
2‖Y − ΩTV ‖2F is majorized on domR1 by

Q1(T |T ′
,V

′) = F (T ′
,V

′) + tr
(

(T − T
′)∇1F (T ′

,V
′)⊤

)

+
1

2
tr
(

(

(T − T
′) ⊙ A1(T ′

,V
′)
)

(T − T
′)⊤

)

,

where A1(T
′,V ′) = ((Ω⊤Ω)T ′(V ′V ′⊤))⊘ T ′.

V 7→ F (T ′,V ) = 1
2‖Y − ΩTV ‖2F is majorized on domR2 by

Q2(V |T ′
,V

′) = F (T ′
,V

′) + tr
(

(V − V
′)∇2F (T ′

,V
′)⊤

)

+
1

2
tr
(

(

(V − V
′) ⊙ A2(T ′

,V
′)
)

(V − V
′)⊤

)

,

where A2(T
′,V ′) = ((ΩT ′)⊤ΩT ′V ′)⊘ V ′.
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Numerical results

0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

wavelength (µm)

• Continuous lines:
Exact endmembers T ,

• Dashed lines:
Estimated endmembers T̂ .

0 200 400 600
1

2

3

4

5
x 10

−3

Time (s.)

r
(T

ℓ
)

• Dashed line:
BC-VMFB algorithm
[Chouzenoux et al. - 2013],

• Continuous line:
PALM algorithm
[Bolte et al. - 2013].
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Conclusion

 Proposition of a new BC-VMFB algorithm for minimizing the
sum of

• a nonconvex smooth function F ,

• a nonconvex non necessarily smooth function R .

 Convergence results both on the iterates and the function
values.

 Blocks updated according to a flexible quasi-cyclic rule.

 Acceleration of the convergence thanks to the choice of
matrices (Ȧℓ(xℓ))ℓ∈N based on MM principle.

Combining variable metric strategy with
a block alternating scheme leads to a significant

acceleration in terms of decay of the error on the iterates.
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Thank you ! Questions ?

E. Chouzenoux, J.-C. Pesquet and A. Repetti.
Variable Metric Forward-Backward Algortihm for Minimizing the Sum of a

Differentiable Function and a Convex Function.
To appear in J. Optim. Theory Appl, 2013.

E. Chouzenoux, J.-C. Pesquet and A. Repetti.
A Block Coordinate Variable Metric Forward-Backward algorithm.
Tech. Rep., 2013. Available on
http://www.optimization-online.org/DB HTML/2013/12/4178.html.
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