A Preconditioned Forward-Backward Approach with Application to Large-Scale Nonconvex Spectral Unmixing Problems

Audrey Repetti, Emilie Chouzenoux, and Jean-Christophe Pesquet Laboratoire d'Informatique Gaspard Monge - UMR CNRS 8049, Université Paris-Est, France.

ICASSP 2014-Firenze - 7 May 2014

Motivation

Inverse problem: Estimation of an object of interest $\bar{x} \in \mathbb{R}^{N}$ obtained by minimizing an objective function

$$
G=F+R
$$

where

- F is a data-fidelity term related to the observation model
- R is a regularization term related to some a priori assumptions on the target solution
\rightsquigarrow e.g. an a priori on the smoothness of an image,
\rightsquigarrow e.g. a support constraint.

Motivation

Inverse problem: Estimation of an object of interest $\bar{x} \in \mathbb{R}^{N}$ obtained by minimizing an objective function

$$
G=F+R
$$

where

- F is a data-fidelity term related to the observation model
- R is a regularization term related to some a priori assumptions on the target solution

In the context of large scale problems, how to find an optimization algorithm able to deliver a reliable numerical solution in a reasonable time, with low memory requirement ?
\Rightarrow Block alternating minimization.
\Rightarrow Introduction of a variable metric.

Minimization problem

Problem

Find $\quad \hat{x} \in \operatorname{Argmin}\{G=F+R\}$,
where:

- $F: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is differentiable,
and has an L-Lipschitz gradient on dom R, i.e.

$$
\left(\forall(x, y) \in(\operatorname{dom} R)^{2}\right) \quad\|\nabla F(x)-\nabla F(y)\| \leq L\|x-y\|
$$

- $\left.\left.R: \mathbb{R}^{N} \rightarrow\right]-\infty,+\infty\right]$ is proper, lower semicontinuous.
- G is coercive, i.e. $\lim _{\|x\| \rightarrow+\infty} G(x)=+\infty$, and is non necessarily convex.

Forward-Backward algorithm

FB Algorithm

Let $x_{0} \in \mathbb{R}^{N}$
For $\ell=0,1, \ldots$
$\left.x_{\ell+1} \in \operatorname{prox}_{\gamma_{\ell} R}\left(x_{\ell}-\gamma_{\ell} \nabla F\left(x_{\ell}\right)\right), \quad \gamma_{\ell} \in\right] 0,+\infty[$.
\rightarrow Let $x \in \mathbb{R}^{N}$. The proximity operator is defined by

$$
\operatorname{prox}_{\gamma_{\ell} R}(x)=\underset{y \in \mathbb{R}^{N}}{\operatorname{Argmin}} R(y)+\frac{1}{2 \gamma_{\ell}}\|y-x\|^{2} .
$$

\rightsquigarrow When R is nonconvex:

- Non necessarily uniquely defined.
- Existence guaranteed if R is bounded from below by an affine function.

Forward-Backward algorithm

FB Algorithm

Let $x_{0} \in \mathbb{R}^{N}$
For $\ell=0,1, \ldots$

$$
\left.x_{\ell+1} \in \operatorname{prox}_{\gamma_{\ell} R}\left(x_{\ell}-\gamma_{\ell} \nabla F\left(x_{\ell}\right)\right), \quad \gamma_{\ell} \in\right] 0,+\infty[
$$

\rightarrow Let $x \in \mathbb{R}^{N}$. The proximity operator is defined by
$\operatorname{prox}_{\gamma_{\ell} R}(x)=\underset{y \in \mathbb{R}^{N}}{\operatorname{Argmin}} R(y)+\frac{1}{2 \gamma_{\ell}}\|y-x\|^{2}$.
\rightsquigarrow When R is nonconvex:

- Non necessarily uniquely defined.
- Existence guaranteed if R is bounded from below by an affine function.
- Slow convergence.

Variable Metric Forward-Backward algorithm

VMFB Algorithm

Let $x_{0} \in \mathbb{R}^{N}$
For $\ell=0,1, \ldots$.

$$
\begin{aligned}
& x_{\ell+1} \in \operatorname{prox}_{\gamma_{\ell}^{-1}} A_{\ell}\left(x_{\ell}\right), R \\
& \text { with } \left.\gamma_{\ell} \in\right] 0,+\infty\left[x_{\ell}-\gamma_{\ell} A_{\ell}\left(x_{\ell}\right){ }^{-1} \nabla F\left(x_{\ell}\right)\right), \\
& A_{\ell}\left(x_{\ell}\right) \text { a SPD matrix. }
\end{aligned}
$$

\Rightarrow Let $x \in \mathbb{R}^{N}$. The proximity operator relative to the metric induced by $A_{\ell}\left(x_{\ell}\right)$ is defined by

$$
\operatorname{prox}_{\gamma_{\ell}^{-1} A_{\ell}\left(x_{\ell}\right), R}(x)=\underset{y \in \mathbb{R}^{N}}{\operatorname{Argmin}} R(y)+\frac{1}{2 \gamma_{\ell}}\|y-x\|_{A_{\ell}\left(x_{\ell}\right)}^{2} .
$$

Variable Metric Forward-Backward algorithm

VMFB Algorithm

Let $x_{0} \in \mathbb{R}^{N}$
For $\ell=0,1, \ldots$.

$$
\begin{aligned}
& x_{\ell+1} \in \operatorname{prox}_{\gamma_{\ell}^{-1}} A_{\ell}\left(x_{\ell}\right), R \\
& \text { with } \left.\gamma_{\ell} \in\right] 0,+\infty\left[x_{\ell}-\gamma_{\ell} A_{\ell}\left(x_{\ell}\right)^{-1} \nabla F\left(x_{\ell}\right)\right) \\
& A_{\ell}\left(x_{\ell}\right) \text { a SPD matrix. }
\end{aligned}
$$

\Rightarrow Let $x \in \mathbb{R}^{N}$. The proximity operator relative to the metric induced by $A_{\ell}\left(x_{\ell}\right)$ is defined by

$$
\operatorname{prox}_{\gamma_{\ell}^{-1} A_{\ell}\left(x_{\ell}\right), R}(x)=\underset{y \in \mathbb{R}^{N}}{\operatorname{Argmin}} R(y)+\frac{1}{2 \gamma_{\ell}}\|y-x\|_{A_{\ell}\left(x_{\ell}\right)}^{2} .
$$

- Convergence is established for a wide class of nonconvex functions G and $\left(A_{\ell}\left(x_{\ell}\right)\right)_{\ell \in \mathbb{N}}$ are general SPD matrices in [Chouzenoux et al. - 2013]

Block separable structure

- R is an additively block separable function.

Block separable structure

- R is an additively block separable function.

$$
\begin{aligned}
& {\left[\begin{array}{c}
{\left[\begin{array}{c}
x^{(1)} \\
x \\
{\left[x^{(2)}\right]}
\end{array} \in \mathbb{R}^{N_{1}}\right.} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\left.x^{(J)}\right]
\end{array}\right] \in \mathbb{R}^{N_{1}}} \\
& N=\sum_{j=1}^{J} N_{j}
\end{aligned}
$$

Block separable structure

- R is an additively block separable function.

$\left.\left.(\forall j \in\{1, \ldots, J\}) R_{j}: \mathbb{R}^{N_{j}} \rightarrow\right]-\infty,+\infty\right]$ is a Isc, proper function, continuous on its domain and bounded from below by an affine function.

BC Forward-Backward algorithm

BC-FB Algorithm

Let $x_{0} \in \mathbb{R}^{N}$
For $\ell=0,1, \ldots$.

$$
\begin{aligned}
& \text { Let } j_{\ell} \in\{1, \ldots, J\}, \\
& \left.x_{\ell+1}^{\left(j_{\ell}\right)} \in \operatorname{prox}_{\gamma_{\ell} R_{j_{\ell}}}\left(x_{\ell}^{\left(j_{\ell}\right)}-\gamma_{\ell} \nabla_{j_{\ell}} F\left(x_{\ell}\right)\right), \quad \gamma_{\ell} \in\right] 0,+\infty[, \\
& x_{\ell+1}^{\left(\bar{j}_{\ell}\right)}=x_{\ell}^{\left(\overline{(}_{\ell}\right)} .
\end{aligned}
$$

- Advantages of a block coordinate strategy:
- more flexibility,
- reduce computational cost at each iteration,
- reduce memory requirement.

BC Variable Metric Forward-Backward algorithm

BC-VMFB Algorithm

Let $x_{0} \in \mathbb{R}^{N}$
For $\ell=0,1, \ldots$.
Let $j_{\ell} \in\{1, \ldots, J\}$,
$x_{\ell+1}^{\left(j_{\ell}\right)} \in \operatorname{prox}_{\gamma_{\ell}^{-1}} A_{j_{\ell}}\left(x_{\ell}\right), R_{j_{\ell}}\left(x_{\ell}^{\left(j_{\ell}\right)}-\gamma_{\ell} A_{j_{\ell}}\left(x_{\ell}\right){ }^{-1} \nabla_{j_{\ell}} F\left(x_{\ell}\right)\right)$,
$x_{\ell+1}^{\left(\bar{j}_{\ell}\right)}=x_{\ell}^{\left(\bar{亏}_{\ell}\right)}$,
with $\left.\gamma_{\ell} \in\right] 0,+\infty\left[\right.$, and $A_{j \ell}\left(x_{\ell}\right)$ a SPD matrix.
OUR CONTRIBUTIONS:

- How to choose the preconditioning matrices $\left(A_{j_{\ell}}\left(x_{\ell}\right)\right)_{\ell \in \mathbb{N}}$? \rightsquigarrow Majorize-Minimize principle.
- How to define a general update rule for $\left(j_{\ell}\right)_{\ell \in \mathbb{N}}$?
\rightsquigarrow Quasi-cyclic rule.

Majorize-Minimize assumption

MM Assumption

$(\forall \ell \in \mathbb{N})$ there exists a lower and upper bounded SPD matrix $A_{j_{\ell}}\left(x_{\ell}\right) \in \mathbb{R}^{N_{j_{\ell}} \times N_{j_{\ell}}}$ such that $\left(\forall y \in \mathbb{R}^{N_{j_{\ell}}}\right)$
$Q_{j_{\ell}}\left(y \mid x_{\ell}\right)=F\left(x_{\ell}\right)+\left(y-x_{\ell}^{\left(j_{\ell}\right)}\right)^{\top} \nabla_{j_{\ell}} F\left(x_{\ell}\right)$

$$
+\frac{1}{2}\left\|y-x_{\ell}^{\left(j_{\ell}\right)}\right\|_{A_{j_{\ell}}\left(x_{\ell}\right)}^{2}
$$

is a majorant function on $\operatorname{dom} R_{j_{\ell}}$ of the restriction of F to its j_{ℓ}-th block at $x_{\ell}^{\left(j_{\ell}\right)}$, i.e., $\left(\forall y \in \operatorname{dom} R_{j_{\ell}}\right)$

$$
\begin{aligned}
F\left(x_{\ell}^{(1)}, \ldots, x_{\ell}^{\left(j_{\ell}-1\right)}, y, x_{\ell}^{\left(j_{\ell}+1\right)}\right. & \left., \ldots, x_{\ell}^{(J)}\right) \\
& \leq Q_{j_{\ell}}\left(y \mid x_{\ell}\right) .
\end{aligned}
$$

Majorize-Minimize assumption

[Jacobson et al. - 2007]

MM Assumption

$(\forall \ell \in \mathbb{N})$ there exists a lower and upper bounded SPD matrix $A_{j_{\ell}}\left(x_{\ell}\right) \in \mathbb{R}^{N_{j_{\ell}} \times N_{j_{\ell}}}$ such that $\left(\forall y \in \mathbb{R}^{N_{j_{\ell}}}\right)$
$Q_{j_{\ell}}\left(y \mid x_{\ell}\right)=F\left(x_{\ell}\right)+\left(y-x_{\ell}^{\left(j_{\ell}\right)}\right)^{\top} \nabla_{j_{\ell}} F\left(x_{\ell}\right)$

$$
+\frac{1}{2}\left\|y-x_{\ell}^{\left(j_{\ell}\right)}\right\|_{A_{j_{\ell}}\left(x_{\ell}\right)}^{2}
$$

is a majorant function on $\operatorname{dom} R_{j_{\ell}}$ of the restriction of F to its j_{ℓ}-th block at $x_{\ell}^{\left(j_{\ell}\right)}$, i.e., ($\forall y \in \operatorname{dom} R_{j_{\ell}}$)

$$
\begin{aligned}
F\left(x_{\ell}^{(1)}, \ldots, x_{\ell}^{\left(j_{\ell}-1\right)}, y, x_{\ell}^{\left(j_{\ell}+1\right)}\right. & \left., \ldots, x_{\ell}^{(J)}\right) \\
& \leq Q_{j_{\ell}}\left(y \mid x_{\ell}\right) .
\end{aligned}
$$

$\operatorname{dom} R$ is convex and F is L-Lipschitz differentiable
$F\left(x_{\ell}^{(1)}, \ldots, x_{\ell}^{\left(j_{\ell}-1\right)}, \cdot, x_{\ell}^{\left(j_{\ell}+1\right)}, \ldots, x_{\ell}^{(J)}\right)$

The above assumption holds if $\Rightarrow \quad(\forall \ell \in \mathbb{N}) A_{j_{\ell}}\left(x_{\ell}\right) \equiv L I_{N_{j_{\ell}}}$

Convergence results

Additional assumptions

- G satisfies the Kurdyka-Łojasiewicz inequality [Attouch et al. - 2011]: For every $\xi \in \mathbb{R}$, for every bounded $E \subset \mathbb{R}^{N}$, there exist $\kappa, \zeta>0$ and $\theta \in[0,1)$ such that, for every $x \in E$ such that $|G(x)-\xi| \leq \zeta$,

$$
(\forall r \in \partial R(x)) \quad\|\nabla F(x)+r\| \geq \kappa|G(x)-\xi|^{\theta}
$$

Technical assumption satisfied for a wide class of nonconvex functions

- semi-algebraic functions
- real analytic functions
- ...

Convergence results

Additional assumptions

- G satisfies the Kurdyka-Łojasiewicz inequality [Attouch et al. - 2011]:

For every $\xi \in \mathbb{R}$, for every bounded $E \subset \mathbb{R}^{N}$, there exist $\kappa, \zeta>0$ and $\theta \in[0,1)$ such that, for every $x \in E$ such that $|G(x)-\xi| \leq \zeta$,

$$
(\forall r \in \partial R(x)) \quad\|\nabla F(x)+r\| \geq \kappa|G(x)-\xi|^{\theta}
$$

Technical assumption satisfied for a wide class of nonconvex functions

- semi-algebraic functions
- real analytic functions
\rightsquigarrow Almost every function you can imagine!

Convergence results

Additional assumptions

- G satisfies the Kurdyka-Łojasiewicz inequality [Attouch et al. - 2011]: For every $\xi \in \mathbb{R}$, for every bounded $E \subset \mathbb{R}^{N}$, there exist $\kappa, \zeta>0$ and $\theta \in[0,1)$ such that, for every $x \in E$ such that $|G(x)-\xi| \leq \zeta$,

$$
(\forall r \in \partial R(x)) \quad\|\nabla F(x)+r\| \geq \kappa|G(x)-\xi|^{\theta}
$$

Technical assumption satisfied for a wide class of nonconvex functions

- Blocks $\left(j_{\ell}\right)_{\ell \in \mathbb{N}}$ updated according to a quasi-cyclic rule, i.e., there exists $K \geq J$ such that, for every $\ell \in \mathbb{N},\{1, \ldots, J\} \subset\left\{j_{\ell}, \ldots, j_{\ell+K-1}\right\}$.

Convergence results

Additional assumptions

- G satisfies the Kurdyka-Łojasiewicz inequality [Attouch et al. - 2011]:

For every $\xi \in \mathbb{R}$, for every bounded $E \subset \mathbb{R}^{N}$, there exist $\kappa, \zeta>0$ and $\theta \in[0,1)$ such that, for every $x \in E$ such that $|G(x)-\xi| \leq \zeta$,

$$
(\forall r \in \partial R(x)) \quad\|\nabla F(x)+r\| \geq \kappa|G(x)-\xi|^{\theta}
$$

Technical assumption satisfied for a wide class of nonconvex functions

- Blocks $\left(j_{\ell}\right)_{\ell \in \mathbb{N}}$ updated according to a quasi-cyclic rule, i.e., there exists $K \geq J$ such that, for every $\ell \in \mathbb{N},\{1, \ldots, J\} \subset\left\{j_{\ell}, \ldots, j_{\ell+K-1}\right\}$.
- The step-size is chosen such that:
- $\exists(\underline{\gamma}, \bar{\gamma}) \in(0,+\infty)^{2}$ such that $(\forall \ell \in \mathbb{N}) \underline{\gamma} \leq \gamma_{\ell} \leq 1-\bar{\gamma}$.
- For every $j \in\{1, \ldots, J\}, R_{j}$ is a convex function and $\exists(\underline{\gamma}, \bar{\gamma}) \in(0,+\infty)^{2}$ such that $(\forall \ell \in \mathbb{N}) \underline{\gamma} \leq \gamma_{\ell} \leq 2-\bar{\gamma}$.

Convergence results

Convergence theorem

Let $\left(x_{\ell}\right)_{\ell \in \mathbb{N}}$ be a sequence generated by the BC-VMFB algorithm.

- Global convergence:
$\rightsquigarrow\left(x_{\ell}\right)_{\ell \in \mathbb{N}}$ converges to a critical point \hat{x} of G.
$\rightsquigarrow\left(G\left(x_{\ell}\right)\right)_{\ell \in \mathbb{N}}$ is a nonincreasing sequence converging to $G(\widehat{x})$.
- Local convergence:

If $(\exists v>0)$ such that $G\left(x_{0}\right) \leq \inf _{x \in \mathbb{R}^{N}} G(x)+v$, then $\left(x_{\ell}\right)_{\ell \in \mathbb{N}}$ converges to a solution \widehat{x} to the minimization problem.

Spectral unmixing problem

Endmembers $\bar{U} \in \mathbb{R}^{S \times P}$

Unmixing

Abundances
$\overline{\mathrm{V}} \in \mathbb{R}^{\mathrm{P} \times \mathrm{M}}$

$$
Y=\bar{U} \bar{V}+E
$$

Proposed criterion

ObSERVATION MODEL: $Y=\bar{U} \bar{V}+E \quad Y=\Omega \bar{T} \bar{V}+E$, with $\bullet \Omega \in \mathbb{R}^{S \times Q}$ a known spectra library of size $Q \gg P$,

- $\bar{T} \in \mathbb{R}^{Q \times P}$ an unknown matrix assumed to be sparse.

Objective: Find estimates of \bar{T} and \bar{V}.

Proposed criterion

$$
\text { ObSERVATION Model: } Y=\Omega \bar{T} \bar{V}+E
$$

$$
\operatorname{minimize}_{T \in \mathbb{R}^{Q \times P}, V \in \mathbb{R}^{P \times M}}\left(G(T, V)=F(T, V)+R_{1}(T)+R_{2}(V)\right),
$$

- $F(T, V)=\frac{1}{2}\|Y-\Omega T V\|_{F}^{2}$,
- $R_{1}(T)=\sum_{q=1}^{Q} \sum_{p=1}^{P}\left(\iota_{\left[T_{\text {min }}, T_{\text {max }}\right]}\left(T^{(q, p)}\right)+\eta \varphi_{\beta}\left(T^{(q, p)}\right)\right)$,
with φ_{β} a nonconvex penalization promoting the sparsity, defined in [Chartrand, 2012] for $\beta \in] 0,1]$, and $\left.\left(\eta, \boldsymbol{T}_{\text {min }}, \boldsymbol{T}_{\text {max }}\right) \in\right] 0,+\infty\left[^{3}\right.$.
- $R_{2}(V)=\iota \nu(V)$,
with $\mathcal{V}=\left\{V \in \mathbb{R}^{P \times M} \mid(\forall m \in\{1, \ldots, M\}) \sum_{p=1}^{P} V^{(p, m)}=1\right.$,

$$
\left.(\forall p \in\{1, \ldots, P\})(\forall m \in\{1, \ldots, M\}) V^{(p, m)} \geq V_{\text {min }}\right\}
$$

where $V_{\min }>0$.

Construction of the preconditioning matrices

Let $\left(T^{\prime}, V^{\prime}\right) \in \operatorname{dom} R_{1} \times \operatorname{dom} R_{2}$.
$T \mapsto F\left(T, V^{\prime}\right)=\frac{1}{2}\|Y-\Omega T V\|_{F}^{2}$ is majorized on $\operatorname{dom} R_{1}$ by $Q_{1}\left(T \mid T^{\prime}, V^{\prime}\right)=F\left(T^{\prime}, V^{\prime}\right)+\operatorname{tr}\left(\left(T-T^{\prime}\right) \nabla_{1} F\left(T^{\prime}, V^{\prime}\right)^{\top}\right)$

$$
+\frac{1}{2} \operatorname{tr}\left(\left(\left(T-T^{\prime}\right) \odot A_{1}\left(T^{\prime}, V^{\prime}\right)\right)\left(T-T^{\prime}\right)^{\top}\right)
$$

where $A_{1}\left(T^{\prime}, V^{\prime}\right)=\left(\left(\Omega^{\top} \Omega\right) T^{\prime}\left(V^{\prime} V^{\prime \top}\right)\right) \oslash T^{\prime}$.
$V \mapsto F\left(T^{\prime}, V\right)=\frac{1}{2}\|Y-\Omega T V\|_{F}^{2}$ is majorized on $\operatorname{dom} R_{2}$ by

$$
\begin{aligned}
& Q_{2}\left(V \mid T^{\prime}, V^{\prime}\right)=F\left(T^{\prime}, V^{\prime}\right)+\operatorname{tr}\left(\left(V-V^{\prime}\right) \nabla_{2} F\left(T^{\prime}, V^{\prime}\right)^{\top}\right) \\
&+\frac{1}{2} \operatorname{tr}\left(\left(\left(V-V^{\prime}\right) \odot A_{2}\left(T^{\prime}, V^{\prime}\right)\right)\left(V-V^{\prime}\right)^{\top}\right),
\end{aligned}
$$

where $A_{2}\left(T^{\prime}, V^{\prime}\right)=\left(\left(\Omega T^{\prime}\right)^{\top} \Omega T^{\prime} V^{\prime}\right) \oslash V^{\prime}$.

Numerical results

- Continuous lines: Exact endmembers \bar{T},
- Dashed lines: Estimated endmembers \widehat{T}.

- Dashed line: BC-VMFB algorithm [Chouzenoux et al. - 2013],
- Continuous line:

PALM algorithm
[Bolte et al. - 2013].

Conclusion

\rightsquigarrow Proposition of a new BC-VMFB algorithm for minimizing the sum of

- a nonconvex smooth function F,
- a nonconvex non necessarily smooth function R.
\rightsquigarrow Convergence results both on the iterates and the function values.
\rightsquigarrow Blocks updated according to a flexible quasi-cyclic rule.
\rightsquigarrow Acceleration of the convergence thanks to the choice of matrices $\left(A_{j_{\ell}}\left(x_{\ell}\right)\right)_{\ell \in \mathbb{N}}$ based on MM principle.

Combining variable metric strategy with a block alternating scheme leads to a significant acceleration in terms of decay of the error on the iterates.

Thank you! Questions ?

E. Chouzenoux, J.-C. Pesquet and A. Repetti.

Variable Metric Forward-Backward Algortihm for Minimizing the Sum of a Differentiable Function and a Convex Function.
To appear in J. Optim. Theory Appl, 2013.
B
E. Chouzenoux, J.-C. Pesquet and A. Repetti.

A Block Coordinate Variable Metric Forward-Backward algorithm.
Tech. Rep., 2013. Available on
http://www.optimization-online.org/DB_HTML/2013/12/4178.html.

