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Abstract. In this paper we consider the solution of linear systems of saddle point type by
preconditioned Krylov subspace methods. A preconditioning strategy based on the symmetric/
skew-symmetric splitting of the coefficient matrix is proposed, and some useful properties of the
preconditioned matrix are established. The potential of this approach is illustrated by numerical
experiments with matrices from various application areas.
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1. Introduction. We consider the solution of systems of linear equations with
the following block 2 × 2 structure:

[

A BT

B −C

] [

u
p

]

=

[

f
g

]

,(1.1)

where A ∈ R
n×n, B ∈ R

m×n, C ∈ R
m×m, f ∈ R

n, g ∈ R
m, and m ≤ n. We further

assume that matrices A, B, and C are large and sparse. Systems of the form (1.1) arise
in a variety of scientific and engineering applications, including computational fluid
dynamics [1, 20, 22, 24, 27, 44], mixed finite element approximation of elliptic PDEs
[12, 48, 60], optimization [5, 25, 26, 32, 39, 43], optimal control [9, 35], weighted and
equality constrained least squares estimation [10], structural analysis [56], electrical
networks [56], inversion of geophysical data [34], computer graphics [42], and others.

An important special case of (1.1) is when A is symmetric positive semidefinite,
C = O, rank(B) = m, and N (A) ∩ N (B) = {0}. In this case (1.1) corresponds to a
saddle point problem, and it has a unique solution.

In this paper we consider generalized saddle point problems, i.e., systems of the
form (1.1) satisfying all of the following assumptions:

• A has positive semidefinite symmetric part H = 1
2 (A + AT );

• rank(B) = m;
• N (H) ∩N (B) = {0};
• C is symmetric positive semidefinite.

As shown below (Lemma 1.1), these assumptions guarantee existence and unique-
ness of the solution. Although very often A is symmetric positive definite, we are
especially interested in cases where A is either symmetric and singular (i.e., only pos-
itive semidefinite), or nonsymmetric with positive definite symmetric part H (i.e.,
A is positive real). The latter situation arises when the steady-state Navier–Stokes
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equations are linearized by a Picard iteration, leading to the Oseen equations; see
[20, 22]. In this case, the A block corresponds to an appropriate discretization of a
convection-diffusion operator.

A number of solution methods have been proposed in the literature. Besides spe-
cialized sparse direct solvers [16, 17] we mention, among others, Uzawa-type schemes
[11, 21, 24, 27, 62], block and approximate Schur complement preconditioners [4, 15,
20, 22, 41, 45, 46, 48, 51], splitting methods [18, 30, 31, 49, 57], indefinite precon-
ditioning [23, 35, 39, 43, 48], iterative projection methods [5], iterative null space
methods [1, 32, 54], and preconditioning methods based on approximate factorization
of the coefficient matrix [25, 50]. Several of these algorithms are based on some form
of reduction to a smaller system, for example, by projecting the problem onto the
null space of B, while others work with the original (augmented) matrix in (1.1). The
method studied in this paper falls in the second category.

When A is symmetric positive (semi-)definite, the coefficient matrix in (1.1) is
symmetric indefinite, and indefinite solvers can be used to solve problem (1.1). Al-
ternatively, one can solve instead of (1.1) the equivalent nonsymmetric system

[

A BT

−B C

] [

u
p

]

=

[

f
−g

]

, or Ax = b,(1.2)

where A is the coefficient matrix in (1.2), x = [uT , pT ]T and b = [fT , −gT ]T . The
nonsymmetric formulation is especially natural when A is nonsymmetric, but positive
real. Whether A is symmetric or not, the nonsymmetric matrix A has certain desirable
properties, which are summarized in the following result.

Lemma 1.1. Let A ∈ R
(n+m)×(n+m) be the coefficient matrix in (1.2). Assume

H = 1
2 (A+AT ) is positive semidefinite, B has full rank, C = CT is positive semidef-

inite, and N (H) ∩N (B) = {0}. Let σ(A) denote the spectrum of A. Then

(i) A is nonsingular.

(ii) A is semipositive real: 〈Av,v〉 = vTAv ≥ 0 for all v ∈ R
n+m.

(iii) A is positive semistable, that is, the eigenvalues of A have nonnegative real

part: ℜ(λ) ≥ 0 for all λ ∈ σ(A).
(iv) If, in addition, H = 1

2 (A+AT ) is positive definite, then A is positive stable:
ℜ(λ) > 0 for all λ ∈ σ(A).

Proof. To prove (i), let x = [up ] be such that Ax = 0. Then

Au + BT p = 0 and −Bu + Cp = 0.(1.3)

Now, from Ax = 0 we get xTAx = uTAu + pTCp = 0, and therefore it must be
uTAu = 0 and pTCp = 0, since both of these quantities are nonnegative. But uTAu =
uTHu = 0, which implies u ∈ N (H) since H is symmetric positive semidefinite (see
[36, p. 400]). Similarly, pTCp = 0 with C symmetric positive semidefinite implies
Cp = 0 and therefore (using the second of (1.3)) Bu = 0. Therefore u = 0 since
u ∈ N (H)∩N (B) = {0}. But if u = 0 then from the first of (1.3) we obtain BT p = 0
and therefore p = 0 since B has full column rank. Therefore the only solution to
Ax = 0 is the trivial solution, and A is nonsingular.

To prove (ii) we observe that for any v ∈ R
n+m we have vTAv = vTHv, where

H = 1
2 (A + AT ) =

[

H O
O C

]

is the symmetric part of A. Clearly H is positive semidefinite, hence vTAv ≥ 0.
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To prove (iii), let (λ,v) be an eigenpair of A, with ||v||2 = 1. Then v∗Av = λ

and (v∗Av)∗ = v∗ATv = λ̄. Therefore 1
2v

∗(A + AT )v = λ+λ̄
2 = ℜ(λ). To conclude

the proof, observe that

v∗(A + AT )v = ℜ(v)T (A + AT )ℜ(v) + ℑ(v)T (A + AT )ℑ(v),

a real nonnegative quantity.
To prove (iv), assume (λ,v) is an eigenpair of A with v = [up ]. Then

ℜ(λ) = u∗Hu + p∗Cp = ℜ(u)THℜ(u) + ℑ(u)THℑ(u) + ℜ(p)TCℜ(p) + ℑ(p)TCℑ(p).

This quantity is nonnegative, and it can be zero only if u = 0 (since H is assumed to be
positive definite) and Cp = 0. But if u = 0 then from the first of (1.3) we get BT p = 0,
hence p = 0 since B has full column rank. Hence v = 0, a contradiction.

Thus, by changing the sign of the last m equations in (1.1) we may lose sym-
metry (when A is symmetric), but we gain positive (semi-)definiteness. This can be
advantageous when using certain Krylov subspace methods, like restarted GMRES;
see [19, 53].

In this paper we propose a new approach for preconditioning generalized saddle
point problems based on an alternating symmetric/skew-symmetric splitting [2] ap-
plied to (1.2). This approach is very general in that it does not require the submatrix
A to be nonsingular or symmetric; hence, it is applicable to a broad class of problems.
The splitting method is described in section 2, and some of its convergence proper-
ties are studied in section 3. The use of the splitting as a preconditioner for Krylov
subspace methods is considered in section 4. Numerical experiments are presented in
section 5. Finally, in section 6 we draw our conclusions.

2. The alternating splitting iteration. In [2], the following stationary iter-
ative methods for solving positive real linear systems Ax = b was proposed. Write
A = H + S, where

H = 1
2 (A + AT ), S = 1

2 (A−AT )

are the symmetric and skew-symmetric part of A, respectively. Let α > 0 be a param-
eter. Similar in spirit to the classical alternating direction implicit (ADI) method [58],
consider the following two splittings of A:

A = (H + αI) − (αI − S)

and

A = (S + αI) − (αI −H).

Here I denotes the identity matrix. The algorithm is obtained by alternating between
these two splittings (see [7] for a general study of alternating iterations). Given an
initial guess x0, the symmetric/skew-symmetric iteration computes a sequence {xk}
as follows:

{

(H + αI)xk+ 1
2 = (αI − S)xk + b,

(S + αI)xk+1 = (αI −H)xk+ 1
2 + b.

(2.1)

It is shown in [2] that if H is positive definite, the stationary iteration (2.1) converges
for all α > 0 to the solution of Ax = b.
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Let us now consider the application of (2.1) to generalized saddle point problems
in the form (1.2). In this case we have

H =

[

H O
O C

]

and S =

[

S BT

−B O

]

,

where S = 1
2 (A − AT ) is the skew-symmetric part of A. Hence, A is positive real

only when submatrices H and C are both symmetric positive definite (SPD), which is
almost never the case in practice. Therefore, the convergence theory developed in [2]
does not apply, and a more subtle analysis is required. We provide this analysis in
the next section.

A few remarks are in order. At each iteration of (2.1), it is required to solve two
sparse linear systems with coefficient matrices H + αI and S + αI. Note that under
our assumptions, both of these matrices are invertible for all α > 0. Clearly, the choice
of the solution methods used to perform the two half-steps in (2.1) is highly problem-
dependent, and must be done on a case-by-case basis. The alternating algorithm (2.1)
is just a general scheme that can incorporate whatever solvers are appropriate for a
given problem.

Nevertheless, it is possible to make some general observations. The first half-step
of algorithm (2.1) necessitates the solution of two (uncoupled) linear systems of the
form

{

(H + αIn)uk+ 1
2 = αuk − Suk + f −BT pk,

(C + αIm)pk+ 1
2 = αpk − g + Buk.

(2.2)

Both systems in (2.2) are SPD, and any sparse solver for SPD systems can be applied.
This could be a sparse Cholesky factorization, or a preconditioned conjugate gradient
(PCG) scheme, or some specialized solver. Note that the addition of a positive term
α to the main diagonal of H (and C) improves the condition number. This, in turn,
tends to improve the rate of convergence of iterative methods applied to (2.2). More
precisely, if H is normalized so that its largest eigenvalue is equal to 1, then for the
spectral condition number of H + αI we have

κ(H + αI) =
1 + α

λmin(H) + α
≤ 1 +

1

α
,

independent of the size of the problem. Note that even a fairly small value of α, such
as α = 0.1, yields a small condition number (κ(H +αI) ≤ 11). Unless α is very small,
rapid convergence of the CG method applied to (2.2) can be expected, independent
of the number n of unknowns.

The second half-step of algorithm (2.1) is less trivial. It requires the solution of
two coupled linear systems of the form

{

(αIn + S)uk+1 + BT pk+1 = (αIn −H)uk+ 1
2 + f ≡ fk,

−Buk+1 + αpk+1 = (αIm − C)pk+ 1
2 − g ≡ gk.

(2.3)

This system can be solved in several ways. Of course, a sparse LU factorization could
be used if the problem is not too large. An alternative approach is to eliminate uk+1

from the second equation using the first one (Schur complement reduction), leading
to a smaller (order m) linear system of the form

[B(In + α−1S)−1BT + α2Im]pk+1 = B(In + α−1S)−1fk + αgk.(2.4)
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Once the solution pk+1 to (2.4) has been computed, the vector uk+1 is given by
uk+1 = (αIn + S)−1(fk −BT pk+1). When S = O, system (2.4) simplifies to

(BBT + α2Im)pk+1 = Bfk + αgk,(2.5)

and uk+1 = 1
α (fk − BT pk+1). If BBT is sufficiently sparse, system (2.5) could be

formed explicitly and solved by a sparse Cholesky factorization. Otherwise, a PCG
iteration with a simple preconditioner not requiring access to all the entries of the
coefficient matrix BBT + α2Im could be used. However, when S 
= O the coefficient
matrix in (2.4) is generally dense. A nonsymmetric Krylov method could be used to
solve (2.4), requiring matrix-vector products with the matrix B(In + α−1S)−1BT +
α2Im. In turn, this requires solving a linear system of the form (αIn + S)v = z at
each step.

Also note that up to a scaling factor, the coefficient matrix of the coupled system
in (2.3) is a normal matrix of the form “identity-plus-skew-symmetric.” There are
various Lanczos-type methods that can be applied to systems of this kind; see [14, 61]
and, more generally, [38]. Other iterative methods for the solution of shifted skew-
symmetric systems can be found, e.g., in [47] and [29].

Yet another possibility is to regard (2.3) as a general nonsymmetric system and
to use preconditioned GMRES (say). Many of these schemes can benefit form the
fact that for even moderate values of α > 0, the condition number of S + αI is often
rather small.

It is important to stress that the linear systems in (2.1) need not be solved exactly.
The use of inexact solves was considered in [2] for the positive real case. The upshot
is that inexact solves can be used to greatly reduce the cost of each iteration, at the
expense of somewhat slower convergence. Typically, in practical implementations,
inexact solves result in a much more competitive algorithm. Here we observe that
when the alternating scheme is used as a preconditioner for a Krylov method, inexact
solves are a natural choice, and there is no theoretical restriction on the accuracy of
the inner solves. Inexact solutions are often obtained by iterative methods, leading
to an inner-outer scheme; in this case, a flexible solver like FGMRES [52] should be
used for the outer iteration. However, inexact solves may also be done by means of
incomplete factorizations. In this case, standard GMRES can be used for the outer
iteration.

Finally, we note that the scalar matrix αI in (2.1) could be replaced by a matrix
of the form αF , where F is SPD. This idea, in the context of ADI methods, goes
back to Wachspress and Habetler [59]; see also [58, p. 242]. It is straightforward to see
that this is equivalent to applying the alternating iteration (2.1) to the symmetrically
preconditioned system

Âx̂ = b̂, Â := F−1/2AF−1/2, x̂ = F1/2x, b̂ = F−1/2b.(2.6)

In this paper we limit ourselves to the case where F is the (n+m)× (n+m) diagonal
matrix having the ith diagonal entry equal to the ith diagonal entry of A if this is
nonzero, and one otherwise. As we show in the section on numerical experiments, in
many cases this simple diagonal preconditioning may considerably improve the rate
of convergence.

In the next section we turn to the study of the convergence of the general scheme
(2.1), assuming that the solves in (2.2) and (2.3) are performed exactly (rather than
approximately, as in an inexact inner-outer setting).
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3. Analysis of the stationary iteration. To analyze the convergence of (2.1),

we eliminate the intermediate vector xk+ 1
2 and write the iteration in fixed point form

as

xk+1 = Tαxk + c,(3.1)

where

Tα := (S + αI)−1(αI −H)(H + αI)−1(αI − S)

is the iteration matrix of the method, and c := (S+αI)−1[I+(αI−H)(H+αI)−1]b.
The fixed point iteration (3.1) converges for arbitrary initial guesses x0 and right-hand
sides b to the solution x = A−1b if and only if ρ(Tα) < 1, where ρ(Tα) denotes the
spectral radius of Tα.

It was shown in [2] that when A is positive real (i.e., H is SPD), the stationary
iteration is unconditionally convergent: ρ(Tα) < 1 for all α > 0. However, in the
context of generalized saddle point problems (1.2), the matrix H is only positive
semidefinite and generally singular. In this case, the analysis in [2] does not apply.
Indeed, for matrices whose symmetric part is positive semidefinite and singular, the
alternating iteration is not convergent in general.

However, as the following theorem shows, the alternating iteration converges for
a broad class of generalized saddle point problems.

Theorem 3.1. Consider problem (1.2) and assume that A is positive real, C
is symmetric positive semidefinite, and B has full rank. Then the iteration (3.1) is

unconditionally convergent; that is, ρ(Tα) < 1 for all α > 0.
Proof. The iteration matrix Tα is similar to

T̂α = (αI −H)(αI + H)−1(αI − S)(αI + S)−1 = R U ,

where R := (αI−H)(αI+H)−1 is symmetric and U := (αI−S)(αI+S)−1 orthogonal
(see [37, p. 440]). Now, R is orthogonally similar to the (n + m) × (n + m) diagonal
matrix

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

α−µ1

α+µ1
α−µ2

α+µ2

. . .
α−µn

α+µn

α−ν1

α+ν1
α−ν2

α+ν2

. . .
α−νm

α+νm

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where µ1, µ2, . . . , µn are the (positive) eigenvalues of H and ν1, ν2, . . . , νm are the
(nonnegative) eigenvalues of C. That is, there is an orthogonal matrix V of order
n + m such that

VTRV = D =

[

D1 O
O D2

]

,

where D1 and D2 are diagonal matrices of order n and m, respectively.
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Note that
∣

∣

∣

∣

α− µi

α + µi

∣

∣

∣

∣

< 1 for 1 ≤ i ≤ n and

∣

∣

∣

∣

α− νi
α + νi

∣

∣

∣

∣

≤ 1 for 1 ≤ i ≤ m.

It follows that RU is orthogonally similar to

VTRUV = (VTRV)(VTUV) = DQ,

where Q := VTUV, being a product of orthogonal matrices, is orthogonal. Hence, the
iteration matrix Tα is similar to DQ, and therefore

ρ(Tα) = ρ(DQ) = ρ(QD).

We claim that ρ(QD) < 1 for all α > 0. To show this, partition Q conformally to D:

Q =

[

Q11 Q12

Q21 Q22

]

.

Then

QD =

[

Q11D1 Q12D2

Q21D1 Q22D2

]

.

Now, let λ ∈ C be an eigenvalue of QD and let x ∈ C
n+m be a corresponding

eigenvector with ||x||2 = 1. We assume λ 
= 0, or else there is nothing to prove. We
want to show that |λ| < 1. Clearly, QDx = λx implies Dx = λQTx and taking
norms:

||Dx||2 = |λ| ||QTx||2 = |λ|.

Therefore

|λ|2 = ||Dx||22 =

n
∑

i=1

(

α− µi

α + µi

)2

xix̄i +

n+m
∑

i=n+1

(

α− νi
α + νi

)2

xix̄i ≤ ||x||22 = 1.(3.2)

Hence, the spectral radius of Tα cannot exceed unity.
To prove that |λ| < 1 (strictly), we show that there exists at least one i (1 ≤ i ≤ n)

such that xi 
= 0. Using the assumption that B has full rank, we will show that xi = 0
for all 1 ≤ i ≤ n implies x = 0, a contradiction. Indeed, if the eigenvector x is of the
form x = [ 0

x̂ ] (where x̂ ∈ C
m), the identity QDx = λx becomes

QDx =

[

Q11D1 Q12D2

Q21D1 Q22D2

] [

0
x̂

]

=

[

Q12D2x̂
Q22D2x̂

]

=

[

0
λx̂

]

(3.3)

so that, in particular, it must be Q12D2x̂ = 0. We will prove shortly that Q12 has full
column rank; hence, it must be D2x̂ = 0. But by (3.3) we have λx̂ = Q22D2x̂ = 0,
and since λ 
= 0 by assumption, it must be x̂ = 0 (a contradiction, since x 
= 0).

To conclude the proof we need to show that Q12 ∈ R
n×m has full column rank.

Recall that Q = VTUV with

V =

[

V11 O
O V22

]

,
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where V11 ∈ R
n is the orthogonal matrix that diagonalizes (αIn−H)(αIn+H)−1 and

V22 ∈ R
m is the orthogonal matrix that diagonalizes (αIm − C)(αIm + C)−1. Recall

that the orthogonal matrix U is given by

(αI − S)(αI + S)−1 =

[

αIn − S −BT

B αIm

] [

αIn + S BT

−B αIm

]−1

=

[

U11 U12

U21 U22

]

.

An explicit calculation reveals that

U12 = −[(αIn − S)(αIn + S)−1 + In]BT [αIm + B(αIn + S)−1BT ]−1.

Clearly, −1 cannot be an eigenvalue of the orthogonal matrix (αIn − S)(αIn + S)−1,
hence (αIn −S)(αIn +S)−1 + In is nonsingular. The matrix αIm +B(αIn +S)−1BT

is also nonsingular, since B(αIn +S)−1BT is positive real. Indeed (αIn +S)−1, being
the inverse of a positive real matrix, is itself positive real and since B has full column
rank, so is B(αIn + S)−1BT .

Furthermore,

Q = VTUV =

[

V T
11U11V11 V T

11U12V22

V T
22U21V11 V T

22U22V22

]

and therefore

Q12 = V T
11U12V22 = −V T

11[(αIn−S)(αIn+S)−1+In]BT [αIm+B(αIn+S)−1BT ]−1V22,

showing that Q12 has full column rank since V T
11 and V22 are orthogonal and BT has

full column rank. This completes the proof.
Remark 3.1. It is easy to see that there is a unique splitting A = M−N with M

nonsingular such that the iteration matrix Tα is the matrix induced by that splitting,

i.e., Tα = M−1N = I −M−1A. An easy calculation shows that

M ≡ Mα = 1
2α (H + αI)(S + αI).(3.4)

It is therefore possible to rewrite the iteration (2.1) in correction form:

xk+1 = xk + M−1
α rk, rk = b −Axk.

This will be useful when we consider Krylov subspace acceleration.

The restriction in Theorem 3.1 that A be positive real is not essential. If A is
only semipositive real (singular), the alternating iteration (2.1) is still well defined,
but it may happen that ρ(Tα) = 1 for all values of α > 0. A simple example with
n = 2, m = 1 is given by

A =

[

1 0
0 0

]

, B =
[

0 1
]

, C = [0].

Nevertheless, a simple modification of the basic algorithm yields a convergent iter-
ation. To this end, recall that ρ(Tα) ≤ 1 for all α > 0; see (3.2). Also, note that
1 /∈ σ(Tα) since A is nonsingular. Let β ∈ (0, 1) be a parameter; then the matrix
(1 − β)I + βTα has spectral radius less than 1 for all α > 0. Indeed, the eigenvalues
of (1− β)I + βTα are of the form 1− β + βλ, where λ ∈ σ(Tα). It is easy to see that
since |λ| ≤ 1 and λ 
= 1, all the quantities 1 − β + βλ have magnitude strictly less
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than 1. This trick is routinely used in the solution of singular systems and Markov
chains; see, e.g., [40].

Thus, for any choice of the initial guess x̂0 = x0, the sequence {x̂k} defined by

x̂k+1 = (1 − β)x̂k + βxk+1 = (1 − β)x̂k + β(Tαx̂k + c)

(k = 0, 1, . . .) converges to the unique solution of problem (1.2) for all β ∈ (0, 1)
and all α > 0. In this way, the alternating iteration is applicable to any generalized
saddle point problem. The presence of the parameter β, unfortunately, adds another
complication to the method. Numerical experiments suggest that a value of β slightly
less than 1, like β = 0.99, should be used. When Krylov subspace acceleration is used,
however, there is no need to use this technique (that is, one can use β = 1 even when
H is singular).

Under the assumptions of Theorem 3.1, the asymptotic rate of convergence of the
alternating iteration is governed by the spectral radius of Tα, so it makes sense to try
to choose α so as to make ρ(Tα) as small as possible. In general, finding such a value
α = αopt is a difficult problem. Some results in this direction can be found in [2, 3, 6].
The results in [2] yield an expression of the optimal α for the case of A positive real,
too restrictive in our setting where H is usually singular.

Of course, choosing α so as to minimize the spectral radius of the iteration matrix
is not necessarily the best choice when the algorithm is used as a preconditioner for a
Krylov subspace method. Remarkably, it can be shown that for certain problems the
alternating iteration results in an h-independent preconditioner for GMRES when α
is chosen sufficiently small, corresponding to a spectral radius very close to 1; see [6]
and the numerical experiments in section 5.1 below.

Also, minimizing the spectral radius or even the number of GMRES iterations
does not imply optimal performance in terms of CPU time. Indeed, the efficient
implementation of the method almost invariably requires that the two linear systems
(2.2) and (2.3) be solved inexactly. Clearly, the choice of α will influence the cost of
performing the two solves. Indeed, “large” values of α will make the iterative solution
of (2.2) and (2.3) easy; on the other hand, it is clear from (3.2) that the nonzero
eigenvalues of Tα approach 1 as α → ∞ (and also as α → 0), and convergence of
the outer iteration slows down. Hence, there is a trade-off involved. If we define the
“optimal” value of α as the one that minimizes the total amount of work needed to
compute an approximate solution, this will not necessarily be the same as the α that
minimizes the number of (outer) iterations. Overall, the analytic determination of
such an optimal value for α appears to be daunting.

4. Krylov subspace acceleration. Even with the optimal choice of α, the
convergence of the stationary iteration (2.1) is typically too slow for the method to
be competitive. For this reason we propose using a nonsymmetric Krylov subspace
method like GMRES, or its restarted version GMRES(m), to accelerate the conver-
gence of the iteration.

It follows from Remark 3.1 that the linear system Ax = b is equivalent to (i.e.,
has the same solution as) the linear system

(I − Tα)x = M−1
α Ax = c,

where c = M−1
α b. This equivalent (left-preconditioned) system can be solved with

GMRES. Hence, the matrix Mα can be seen as a preconditioner for GMRES. Equiva-
lently, we can say that GMRES is used to accelerate the convergence of the alternating
iteration applied to Ax = b.
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Note that as a preconditioner we can use

Mα = (H + αI)(S + αI)

instead of the expression given in (3.4), since the factor 1
2α has no effect on the

preconditioned system. Application of the alternating preconditioner within GMRES
requires solving a linear system of the form Mαz = r at each iteration. This is done
by first solving

(H + αI)v = r(4.1)

for v, followed by

(S + αI)z = v.(4.2)

The GMRES method can also be applied to the right-preconditioned system
AM−1

α y = b where y = Mαx. Note that M−1
α A and AM−1

α are similar and there-
fore have the same eigenvalues. In principle, the convergence behavior of GMRES can
be different depending on whether left- or right-preconditioning is being used, but in
our numerical experiments we noticed little or no difference.

Under the assumptions of Theorem 3.1, since M−1
α A = I − Tα it is readily seen

that for all α > 0 the eigenvalues of the preconditioned matrix M−1
α A (or of AM−1

α )
are entirely contained in the open disk of radius 1 centered at (1, 0). In particular, the
preconditioned matrix is positive stable. The smaller the spectral radius of Tα, the
more clustered the eigenvalues of the preconditioned matrix (around 1); a clustered
spectrum often translates in rapid convergence of GMRES.

If a matrix is positive real, then it is positive stable; the converse, however, is not
true. A counterexample is given by a matrix of the form

A =

[

1 0
a 1

]

,

where a is any real number with |a| ≥ 2. The question then arises whether M−1
α A

(or AM−1
α ) is positive real, for in this case the convergence of GMRES(m) would be

guaranteed for all restarts m; see [19] and [53, p. 866]. Unfortunately, this is not true
in general. However, when A is SPD and C = O we can prove that the preconditioned
matrix is positive real provided that α is sufficiently large.

Theorem 4.1. Assume A is SPD, C = O, and B has full rank. Then there

exists α∗ > 0 such that M−1
α A is positive real for all α > α∗. An analogous result

holds for the right-preconditioned matrix, AM−1
α .

Proof. For brevity, we prove the theorem only for the left-preconditioned matrix;
the proof for the right-preconditioned one is similar. Up to a positive scalar multiple,
the symmetric part of the preconditioned matrix M−1

α A is given by

B = (S + αI)−1(H + αI)−1A + AT (H + αI)−1(αI − S)−1

(where we have used the fact that ST = −S). This matrix is congruent to

(S + αI)B(S + αI)T = (H + αI)−1A(αI − S) + (S + αI)AT (H + αI)−1,

which, in turn, is congruent to the inverse-free matrix

Z = A(αI − S)(H + αI) + (H + αI)(S + αI)AT .
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A direct calculation shows that

Z =

[

Zα −2αABT

−2αBA 2αBBT

]

,

where

Zα := 2αA2 + 2αBTB + 2α2A + BTBA + ABTB.

We want to show that Z is SPD for sufficiently large α. To this end, we observe that
Z can be split as

Z = 2

[

αA2 −αABT

−αBA αBBT

]

+

[

Mα O
O O

]

,(4.3)

where

Mα := 2α2A + 2αBTB + BTBA + ABTB.

The first matrix on the right-hand side of (4.3) is symmetric positive semidefinite,
since

[

αA2 −αABT

−αBA αBBT

]

=

[

αA O
−αB Im

] [

α−1In O
O O

] [

αA −αBT

O Im

]

.

Next, we observe that

Mα = α(2BTB + 2αA) + (BTBA + ABTB)

is similar to a matrix of the form αIn + W , where W = WT is generally indefinite.
This matrix can be made SPD by taking α sufficiently large. Specifically, Mα is SPD
for all α > α∗, where

α∗ = −λmin(BTBA + ABTB)

(note that BTBA + ABTB is generally indefinite). Hence, for α > α∗ the matrix
Z is the sum of two symmetric positive semidefinite matrices; therefore, it is itself
symmetric positive semidefinite. Finally, it must be nonsingular for all α > α∗ (and
therefore positive definite). Indeed, it is clear from (4.3) that when Mα is positive
definite, any null vector of Z must be of the form

x =

[

0
x̂

]

, where x̂ ∈ R
m.

But then

Zx = 2

[

αA2 −αABT

−αBA αBBT

] [

0
x̂

]

=

[

−2αABT x̂
2αBBT x̂

]

,

which cannot be zero unless x̂ = 0, since BT has full column rank and A is nonsingular.
Hence Z has no nontrivial null vectors for α > α∗. This shows that the symmetric
part of the preconditioned matrix is SPD for all α > α∗, since it is congruent to a
matrix which is SPD for all such values of α.

It is worth mentioning that in all cases that we were able to check numerically,
we found the symmetric part of the preconditioned operator to be positive definite
already for rather small values of α.

More refined bounds and clustering results for the eigenvalues of M−1
α A can be

found in [55].



PRECONDITIONING GENERALIZED SADDLE POINT PROBLEMS 31

5. Numerical experiments. In this section we present a sample of numerical
experiments conducted in order to assess the effectiveness of the alternating algorithm
(2.1) both as a stationary iterative scheme and as a preconditioner for GMRES. All
experiments were performed in Matlab. Our codes have not been optimized for highest
efficiency and therefore we do not report timings, but we do provide cost estimates
for some of the test problems. We think that the results of the experiments presented
here provide evidence of the fact that our approach is worth further consideration.

We target matrices from different application areas, but mostly from PDE prob-
lems. In all our runs we used a zero initial guess and stopped the iteration when
the relative residual had been reduced by at least six orders of magnitude (i.e., when
||b −Axk||2 ≤ 10−6||b||2).

5.1. Second order equations in first order system form. Let Ω ⊂ R
d

(d = 2, 3) be a bounded open set. Here we consider the numerical solution of boundary
value problems for the following second order elliptic PDE:

−∇ · (K∇ p) = g in Ω,(5.1)

where K = K(r) is a strictly positive function or tensor for r ∈ Ω̄ and g(r) is a given
forcing term. Equation (5.1) is complemented by appropriate boundary conditions.

The PDE (5.1) is equivalent to the following system of two first order PDEs:

{

K−1 u −∇ p = 0,
−∇ · u = g.

(5.2)

Discretization of these equations leads to large sparse linear systems in saddle point
form (1.2).

We begin with the simplest possible case, namely, Poisson’s equation on the unit
square:

−∆p = −∇ · (∇ p) = g in Ω = [0, 1] × [0, 1].

This corresponds to taking K ≡ 1 in (5.1). We discretize form (5.2) of the problem
using finite differences with a forward difference for the gradient and a backward
difference for the divergence. Using an N ×N uniform grid with mesh size h = 1

N+1

results in a linear system of type (1.2) with n = 2N2 and m = N2, for a total system
size of 3N2 equations in as many unknowns.

As shown in [6], for this model problem Fourier analysis at the continuous (differ-
ential operator) level can be used to completely analyze the spectrum of the iteration
operator Tα. This allows us to find the optimal value αopt of the parameter as a func-
tion of h, showing that the spectral radius for the stationary iteration (2.1) behaves

as 1 − c
√
h as h → 0. The optimal value αopt itself behaves as h− 1

2 as h → 0. More
interestingly, the spectral analysis in [6] indicates that when GMRES acceleration is
used, a better choice is to use a small value of α, for it can be shown that for α ∈ (0, 1)
the eigenvalues of the preconditioned matrix lie in two intervals which depend on α,
but do not depend on h, resulting in h-independent convergence. In particular, α can
always be chosen so as to have convergence within 2–3 iterations, uniformly in h.

This behavior is illustrated in Table 5.1. We take the forcing term to be the
function g(x, y) = sinπx sinπy and we impose Neumann boundary conditions for
x = 0, x = 1, and homogeneous Dirichlet boundary conditions for y = 0, y = 1. The
numerical results are in agreement with the theoretical analysis. In particular, note
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Table 5.1

Two-dimensional Poisson’s equation. Comparison of iterative scheme optimized as an itera-

tive solver, full GMRES without preconditioner, GMRES with the optimized iterative scheme as a

preconditioner and iterative scheme optimized for GMRES.

GMRES
h Iterative No Prec. Preconditioned Optimized

1/10 66 54 14 2
1/25 103 140 19 2
1/50 146 286 25 2
1/100 207 574 34 2

that convergence is attained in two steps (independent of h) when the iteration is
optimized for GMRES acceleration. Here we used α = 0.001, but the behavior of the
preconditioned iteration is not very sensitive to the choice of α ∈ (0, 1).

In Figure 5.1 we display the eigenvalues of the preconditioned matrix M−1
α A in

the case of h = 1
10 for two values of α. On the left we used the value α = αopt that

minimizes the spectral radius, which is given by ρ(Tαopt
) = 0.8062. On the right we

used α = 0.01, showing the clustering near 0 and 2 predicted by the theory developed
in [6]. Now the spectral radius of the iteration matrix is very close to 1. The cluster
near 0 contains m = 81 eigenvalues, the one near 2 the remaining n = 162. It should
be noted that the (tiny) imaginary part in Figure 5.1(b) is due to round-off error,
since the eigenvalues are real for small α; see [6, 55].
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Fig. 5.1. Eigenvalues of preconditioned matrices for the Poisson problem on a 10 × 10 grid.

Next we consider a somewhat harder problem, namely, the anisotropic equation

−100 pxx − pyy = g in Ω = [0, 1] × [0, 1].

Since this problem has constant coefficients, the technique used in [6] for Poisson’s
equation can be used to optimize the method. The results in Table 5.2 show that the
anisotropy in the coefficients drastically decreases the rate of convergence. However,
in this case there is an easy fix: as the results reported in Table 5.3 show, it is enough
to apply the scaling (2.6) to restore the effectiveness of the solver. We note that a
similar scaling has been used in [13] in a somewhat different context.



PRECONDITIONING GENERALIZED SADDLE POINT PROBLEMS 33

Table 5.2

Results for two-dimensional problem with anisotropic coefficients.

GMRES
h Iterative No Prec. Preconditioned Optimized

1/10 709 186 34 29
1/25 > 1000 651 44 31
1/50 > 1000 > 1000 52 31
1/100 > 1000 > 1000 59 31

Table 5.3

Results for two-dimensional problem with anisotropic coefficients, diagonally scaled.

GMRES
h Iterative No Prec. Preconditioned Optimized

1/10 138 100 15 2
1/25 210 344 17 2
1/50 292 > 500 22 2
1/100 400 > 500 29 2

Finally, we consider a more difficult problem with large jumps in the coefficients
K. The system is discretized using a discontinuous Galerkin finite element scheme.
This radiation diffusion problem arises in a nuclear engineering application and was
supplied to us by James Warsa of Los Alamos National Laboratory. For more details,
see [60] and the references therein. For this problem n = 2592, m = 864, n+m = 3456,
and A contains 93,612 nonzero entries. Here C 
= O (and indeed it is SPD).

The results for this problem are presented in Table 5.4, where the entries in the
first row correspond to GMRES with diagonal preconditioning (2.6). We give results
for full GMRES and for restarted GMRES with restart every 20 steps. Here we
cannot apply Fourier analysis to optimize the choice of α as we did in the constant
coefficient cases. Therefore, we experiment with different values of α. While the
fastest convergence rate for the stationary iterative methods correspond to α = 0.25,
a somewhat bigger α works best if the method is used as a preconditioner for GMRES.
In any case the method is not overly sensitive to the choice of α when GMRES
acceleration is used. We stress here again the importance of the diagonal scaling
(2.6), which results in a reduction by a factor of two in the number of iterations for
this problem.

5.2. Stokes and Oseen problems. In this section we present a few results for
discretizations of Stokes and Oseen problems. Recall that the Stokes system is

{−∆u + ∇ p = f ,
∇ · u = 0

(5.3)

in Ω ⊂ R
d, together with suitable boundary conditions. Here u denotes the velocity

vector field and p the pressure scalar field. Discretization of (5.3) using stabilized
finite elements leads to saddle point problems of the type (1.2) with a symmetric
positive definite A and a symmetric positive semidefinite C.

The Oseen equations are obtained when the steady-state Navier–Stokes equations
are linearized by Picard iteration:

{−ν∆u + (v · ∇)u + ∇ p = f ,
∇ · u = 0 .

(5.4)

Here the vector field v is the approximation of u from the previous Picard iteration.
The parameter ν > 0 represents viscosity. Various approximation schemes can be used
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Table 5.4

Results for discontinuous radiation diffusion equations.

α Iterative GMRES GMRES(20)
– 697 > 1000

0.1 750 155 239
0.2 375 100 113
0.25 257 97 101
0.3 304 89 100
0.4 404 85 95
0.5 504 85 100
0.6 604 81 98
0.7 704 80 108
0.8 805 80 115
0.9 905 80 120
1.0 1005 82 135

to discretize the Oseen problem (5.4) leading to a generalized saddle point system
of type (1.2). Now the A block corresponds to a discretization of the convection-
diffusion operator L[u] := −ν∆u+(v ·∇)u. It is nonsymmetric, but for conservative
discretizations, the symmetric part is positive definite.

We generated several test problems using the IFISS software package written
by Howard Elman, Alison Ramage, and David Silvester. We used this package to
generate discretizations of leaky lid driven cavity problems for both the Stokes and
Oseen equations. The discretization used is stabilized Q1-P0 finite elements. In
all cases the default value of the stabilization parameter (β = 0.25) was used. It
should be mentioned that the matrices generated by this package are actually singular,
since B has rank m − 2. This does not cause any difficulty to the iterative solvers
considered here. In particular, even if λ = 1 is now an eigenvalue of the iteration
matrix Tα = I − M−1

α A, the stationary iteration is still convergent, with a rate of
convergence governed by γ(Tα) := max{ |λ|; λ ∈ σ(Tα), λ 
= 1}.

For the Stokes problem we used a 16 × 16 grid. For the Oseen problem we used
two grids, 16 × 16 and 32 × 32. The first grid corresponds to n = 578 and m = 256,
for a total of 834 unknowns. For the second grid n = 2178 and m = 1024, for a
total of 3202 unknowns. Two values of the viscosity parameter were used for the
Oseen problems, ν = 0.01 and ν = 0.001. We experiment with both full GMRES and
GMRES(20). Diagonal scaling (2.6) greatly improves the rate of convergence in all
cases, and it is used throughout.

Table 5.5 contains results for the Stokes problem with both exact and inexact
solves. Although there is no value of α that yields convergence in two steps, the al-
ternating iteration is able to significantly improve the convergence of GMRES. Note
that the behavior of the preconditioned iteration is not overly sensitive to the choice
of α; in contrast, the rate of convergence of the stationary iteration without GMRES
acceleration depends strongly on α. Since the (average) cost of a preconditioned
GMRES(20) iteration is approximately three times the cost of an unpreconditioned
iteration, the preconditioner allows for a saving of about a factor of two over un-
preconditioned GMRES(20), when using the “best” values of α. Better results are
obtained with inexact solves corresponding to incomplete factorizations. We used
drop tolerance-based incomplete Cholesky for the first system in (2.1) and ILU for
the second one. In both cases the drop tolerance was set to tol = 0.05. For α ≥ 0.1 the
incomplete Cholesky factor of H+αI is very sparse, with about 25% of the nonzeros
in the coefficient matrix itself. The ILU factors of S+αI, for this particular example,
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Table 5.5

Results for Stokes problem.

Exact solves Inexact solves
α Iterative GMRES GMRES(20) GMRES GMRES(20)
– 103 194

0.01 > 1000 101 205 210 > 500
0.1 801 53 60 58 62
0.2 135 33 36 35 36
0.3 78 29 30 32 30
0.4 107 29 34 33 35
0.5 134 30 39 37 41
0.6 137 32 47 40 48
0.7 165 35 51 42 54
0.8 222 37 58 44 59
0.9 250 39 63 45 64
1.0 277 42 67 46 68

Table 5.6

Results for Oseen problem on 16 × 16 grid, ν = 0.01.

Exact solves Inexact solves
α Iterative GMRES GMRES(20) GMRES GMRES(20)
– 353 > 500

0.01 > 1000 105 268 179 > 500
0.1 > 1000 58 66 163 > 500
0.2 > 1000 38 39 107 > 500
0.3 > 1000 29 29 82 166
0.4 842 25 25 70 114
0.5 474 23 23 61 89
0.6 301 22 22 50 62
0.7 203 23 23 43 52
0.8 149 23 23 40 50
0.9 157 24 25 39 49
1.0 170 26 27 40 55
1.1 183 27 30 37 46
1.2 197 29 33 38 51

have around 35% of the nonzeros in the complete factors. As a result, the cost of
applying the preconditioner is reduced by about a factor of four (from 62.6 × 103 to
15.4×103 operations, per iteration). It can be seen that the rate of convergence dete-
riorates only slightly. This deterioration is more than compensated by the lower cost
per iteration. Moreover, the set-up cost goes down from 292× 103 operations for the
complete factorizations to 81 × 103 for the incomplete ones. Compared to the exact
case, the overall reduction in the total number of operations is more than a factor of
two for α between 0.4 and 1, while total storage for the preconditioner is reduced by
almost a factor of three. Also note that with inexact solves, the (average) cost of a
preconditioned GMRES(20) iteration is approximately one and a half times the cost
of an unpreconditioned iteration. Hence, for the best values of α, the preconditioner
results in a reduction of the cost of GMRES(20) by more than a factor of four.

Table 5.6 contains experimental results for the Oseen problem on the small
(16 × 16) grid with viscosity ν = 0.01. The results for GMRES with diagonal scal-
ing (2.6), reported in the first row, indicate that the Oseen problem is harder than
the Stokes problem. Here we see a surprising result: while the stationary iteration
tends to converge more slowly than for the Stokes problem, the preconditioned GM-
RES iteration now tends to converge faster. We think this could be due to the fact
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Table 5.7

Results for Oseen problem on 16 × 16 grid, ν = 0.001.

Exact solves Inexact solves
α Iterative GMRES GMRES(20) GMRES GMRES(20)
– 616 > 1000

0.01 > 1000 69 177 162 > 1000
0.1 > 1000 42 55 149 > 1000
0.2 > 1000 32 37 131 > 1000
0.3 > 1000 22 28 112 > 1000
0.4 > 1000 22 22 101 > 1000
0.5 > 1000 22 22 90 > 1000
0.6 > 1000 21 21 86 > 1000
0.7 965 21 21 70 664
0.8 713 21 21 76 > 1000
0.9 552 21 21 71 275
1.0 444 22 22 60 166
1.1 364 22 23 53 228
1.2 302 23 24 54 108
1.5 239 25 29 53 137
2.0 286 31 42 56 151

that the coefficient matrix has a more substantial skew-symmetric part in this case,
and preconditioning with the (shifted) skew-symmetric part becomes more effective.
Now GMRES(20) does not converge within 500 iterations without preconditioning.
Full GMRES requires about 5.7 times more flops than the stationary iteration with
α = 0.8, and about 17 times more than the preconditioned iteration. Note that this
estimate includes the set-up time for the preconditioner. The results obtained with
inexact solves (by incomplete factorization) show some deterioration (about a fac-
tor of two for the “best” α) in convergence rates. This deterioration is more than
compensated by the reduced cost of each preconditioned iteration.

In Table 5.7 we report results for the Oseen problem on the 16 × 16 grid and
a viscosity parameter ν = 0.001. Generally speaking, the Oseen problem becomes
harder to solve as the viscosity gets smaller; see the results for diagonally scaled
GMRES, and for the stationary iteration. However, the combination of the iteration
and GMRES acceleration results in even faster convergence than in the previous
case of ν = 0.01. In Figure 5.2 we display the eigenvalues of the preconditioned
matrix corresponding to the Oseen problem on the 16× 16 grid. The plot on the left
corresponds to a viscosity ν = 0.01 and the one on the right to ν = 0.001; we used the
values of α that resulted in the smallest number of preconditioned GMRES iterations
(α = 0.6 and α = 0.8, respectively). Note the stronger clustering of the spectrum for
the case with ν = 0.001.

Unfortunately, this apparent robustness with respect to ν is lost as soon as the
exact solves in (2.1) are replaced by inexact solves by incomplete factorization, espe-
cially with restarted GMRES. The same value of the drop tolerance tol = 0.05 was
used in all cases. Whether it is possible to solve the inner problems inexactly and still
preserve robustness with respect to ν remains an open question.

Finally, in Table 5.8 we present results for the Oseen problem with ν = 0.001 on
the finer grid. The preconditioned GMRES iteration appears to be fairly robust with
respect to the mesh size h and the viscosity parameter ν when exact solves are used.

5.3. A problem with singular A. Finally, we consider a saddle point problem
arising in geophysics and supplied to us by Eldad Haber of Emory University; see
[28, 33, 34]. In this application the submatrix A is symmetric positive semidefinite
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Fig. 5.2. Eigenvalues of preconditioned matrices for the Oseen problem on a 16 × 16 grid.

Table 5.8

Results for Oseen problem with exact solves on 32 × 32 grid, ν = 0.001.

α Iterative GMRES GMRES(20)
– > 1000 > 1000

0.1 > 1000 52 58
0.2 > 1000 36 38
0.3 > 1000 32 32
0.4 > 1000 29 30
0.5 > 1000 28 29
0.6 > 1000 28 34
0.7 > 1000 28 40
0.8 > 1000 39 42
0.9 757 31 44
1.0 574 33 47
1.5 684 43 55
2.0 864 53 121

and singular. In the example at hand n = 1241, m = 729, n + m = 1970, and A
contains 25,243 nonzeros. The A block has rank(A) = 876. In this problem, C = O.

We present results for this problem in Table 5.9. Diagonal scaling (2.6) drastically
improves the convergence of the preconditioned iterations. However, the convergence
of the stationary iteration (2.1) without GMRES acceleration remains extremely slow.
Likewise for GMRES with no preconditioning or diagonal preconditioning alone. The
results with inexact solves in Table 5.9 were obtained by replacing the exact solve
with no-fill incomplete factorizations, IC(0) and ILU(0). Again we see a deteriora-
tion in convergence rates, but each iteration is now far cheaper than in the case of
exact solves, resulting in huge savings. When α = 0.3 (but similar results hold for
all the other values of α in the table), the Cholesky factorization of H + αI requires
1.7×106 operations using a minimum degree ordering, resulting in a triangular factor
with 31.5 × 103 nonzeros. The complete factorization of S + αI (using minimum
degree as the initial ordering) costs a staggering 207 × 106 operations with a total
number of nonzeros in the factors exceeding 837× 103. In contrast, the IC(0) factor-
ization of H + αI only required 17.6 × 103 operations and resulted in an incomplete
Cholesky factor with just 5.2× 103 nonzeros; the ILU(0) factorization of S +αI took
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Table 5.9

Results for geophysics problem with singular A.

Exact solves Inexact solves
α Iterative GMRES GMRES(30) GMRES GMRES(30)
– > 500 > 500

0.1 > 1,000 49 60 85 177
0.2 > 1,000 42 42 68 110
0.3 > 1,000 44 62 60 112
0.4 > 1,000 48 92 58 93
0.5 > 1,000 51 98 62 104

76.1× 103 operations and resulted in a total of 21.4× 103 nonzeros in the incomplete
factors.

6. Conclusions and future work. In this paper we have studied the extension
of the alternating method of [2] to generalized saddle point problems. Because these
linear systems have coefficient matrices with singular symmetric part, they are not
positive real. Thus, the convergence analysis carried out in [2] for the positive real
case does not apply, and convergence has to be established using different arguments
from those used in [2]. Other approaches to studying convergence have been proposed
recently in [3] and [6]; see also [8] and [55].

Rather than used as a stand-alone solver, the stationary iteration is best used as
a preconditioner for a nonsymmetric Krylov subspace method, such as GMRES. Here
we have established theoretical properties of the preconditioned matrices that were
relevant for restarted GMRES, at least from a qualitative point of view.

Our numerical experiments with test matrices from several different applications
suggest that the combination of GMRES and the alternating iteration is fairly robust,
and not overly sensitive to the choice of the parameter α. As demonstrated already
in [6] for some model problems, there are important examples of systems of PDEs
where the combination of iteration (2.1) with an appropriate choice of the optimization
parameter α and GMRES acceleration results in an h-independent solver, or with a
weak dependence on h.

Our numerical experiments show that diagonal scaling (2.6) greatly improves the
convergence of the outer iteration. We have also performed some experiments with
inexact solves. For several of our test problems, the rate of convergence suffered
relatively little deterioration, leading to a reduction in overall costs in many cases.
However, we also found problems where inexactness in the inner solves resulted in
slow convergence, at least when incomplete factorizations were used.

Future work should focus on developing efficient implementations of the algo-
rithm, with particular attention to the problem of striking a balance between the rate
of convergence of the outer (preconditioned) iteration, and the amount of work spent
performing the inner (inexact) solves. Here we have presented a few results using
incomplete factorizations, but iterative methods may be a better (more flexible) op-
tion. For the Oseen equations with small viscosity parameter ν, it may be difficult
to find inexact inner solves that do not lead to a serious deterioration of the rate of
convergence of the outer iteration. The shifted symmetric part (4.1) has condition
numbers often of the order of 10 or less, and is typically very easy to solve, at least in
PDE problems. The solution of the shifted skew-symmetric part (4.2), on the other
hand, is somewhat more problematic and warrants further research. Preliminary re-
sults show that when α is not too small, fairly accurate approximate solutions to the
linear system (4.2) can be obtained in just 3–4 iterations of GMRES preconditioned



PRECONDITIONING GENERALIZED SADDLE POINT PROBLEMS 39

with an incomplete factorization. This inner-outer scheme, which requires using a
flexible Krylov method (like FGMRES) as the outer iteration, is currently being in-
vestigated.
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