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A Preconditioning Technique for Indefinite
Systems Resulting from Mixed Approximations

of Elliptic Problems*
By James H. Bramble and Joseph E. Pasciak

Abstract. This paper provides a preconditioned iterative technique for the solution of
saddle point problems. These problems typically arise in the numerical approximation of
partial differential equations by Lagrange multiplier techniques and/or mixed methods.
The saddle point problem is reformulated as a symmetric positive definite system, which
is then solved by conjugate gradient iteration. Applications to the equations of elasticity
and Stokes are discussed and the results of numerical experiments are given.

1. Introduction. This paper provides and analyzes some new methods for
the iterative solution of the algebraic systems corresponding to saddle point prob-
lems. Such systems typically arise in 'multiplier' or mixed discretizations of partial
differential equations. Important examples of saddle point problems include the
systems of discrete equations which result from the approximation of the equations
of elasticity and Stokes [13], [14], [16]. Other examples result from the Lagrange
multiplier and mixed formulations of second-order elliptic problems [2], [4], [5], [20].
Applications to mixed formulations for second-order problems will be described in
a subsequent paper.

The elasticity/Stokes equations are perhaps the most important applications for
the iterative methods to be described. Accordingly, we shall consider this appli-
cation in detail. In addition, we shall include numerical examples illustrating the
performance of the iterative method for these problems.

We shall develop the iterative methods in a general saddle point framework.
Specifically, we consider systems of the form

(i £)(?)-(S)-
Here F € S1 and G G S2 are given, X e S1 and Y e S2 are to be determined, and
S1 and S2 are Hubert spaces. We assume that the operator A is positive definite,
C is positive semidefinite (it may be 0), and B* is the adjoint of B. In practice,
the above operators are often the matrices which determine the nodal values of the
discrete solution corresponding to a finite element approximation.
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2 JAMES H. BRAMBLE AND JOSEPH E. PASCIAK

A sufficient condition for the solvability of (1.1) is the so-called 'inf-sup' condition
[1], [9]. Applying block Gaussian elimination to (1.1) shows that Y is the solution
of
(1.2) (C + BA~lB*)Y = BA~lF-G.

Equation (1.2) will be solvable if the symmetric system BA_1B* is positive definite.
A direct computation gives

(BA~XB*V,V) = (AA^B^A^B'V) = supi/ € S1^
(1.3)

= sup U e S

(AU,U)
i(V,BUf

(AU,U)
Here and in the remainder of the paper, (•, •) will denote the inner product on
either S1 or S2, as will be clear from the context. Thus (1.2) is solvable if there is
a positive constant c satisfying

(1.4) SUp[/e51^^>c||V||2    for all VeS2,

where ||-|| is the norm on S2. Equation (1.4) is equivalent to the inf-sup condition.
If (1.4) holds, then (C + BA~lB*) is a symmetric positive definite system. One

can then solve (1.2) by applying any of the standard iterative methods for positive
definite systems, for example, the conjugate gradient method or a simple linear
iteration. Then, once Y is known, X is given by
(1.5) X = A~l{F - B*Y).

We note here that the well-known Uzawa Algorithm is a linear iteration technique
applied to the solution of (1.2). In the case of the discretizations of the equations of
elasticity and Stokes by mixed methods [16], the convergence rate of these iterative
methods is usually independent of the number of unknowns in the discrete system.
Each step of the iteration requires the evaluation of the operator (C + BA~*B*)
on some residual vector.

One drawback of the above solution processes (and, in particular, the Uzawa
Algorithm) is that the action of A-1 must be computed on various vectors. In
many important applications, the cost of computing the action of A-1 may be
much more than the cost of evaluating the action of some other symmetric positive
definite operator Aq1 which is a preconditioner for A. One is then faced with the
question of how to effectively use the preconditioner Aq1 to obtain the solution
to (1.1). Naively, one could use a double iteration, i.e., use a conjugate gradient
iteration for (1.2) as an outer iterative scheme and use a preconditioned conjugate
gradient iteration to evaluate A-1. The problem with this approach is that in
order to ensure convergence of the outer iteration, it becomes necessary to iterate
the inner until it converges within computer roundoff, thus making the overall
solution process somewhat costly.

In this paper, we will develop a single-level iteration approach for the solution of
(1.1) which utilizes Aq1 and does not require the computation of the action of A-1.
We develop a positive definite reformulation of (1.1) and iterate for its solution. In
many applications, the amount of work required to solve (1.1) with this single-level
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MIXED APPROXIMATIONS OF ELLIPTIC PROBLEMS 3

iteration is comparable to that required for one evaluation of A~l in the double
iteration.

We should remark that in the case of the equations of elasticity and Stokes
with the boundary conditions considered in this paper, the operator A is equiva-
lent to two copies of a second-order elliptic operator in one variable. Thus, with
the iterative techniques to be developed, the problem of efficiently solving the dis-
crete Stokes systems reduces to the problem of preconditioning the discrete systems
corresponding to second-order elliptic equations. Preconditioners for second-order
equations have been a topic of intensive theoretical and computational research and
many techniques have appeared in the literature ([3], [7], [8], [10] and the included
references).

It is possible to use the preconditioner Aq1 in an Arrow-Hurwicz [23] 'like'
algorithm to obtain the solution of (1.1). This Arrow-Hurwicz algorithm requires
the selection of iteration parameters. In contrast, the application of the conjugate
gradient method with the reformulation to be developed in this paper does not
require any parameters and leads to an 'optimally' converging scheme.

The outline of the remainder of the paper is as follows. In Section 2 we reformu-
late the saddle point problem as a symmetric positive definite system, and a general
comparison theorem is given for the reformulated system. In Section 3 we describe
the application of this technique to the equations of elasticity and Stokes. We con-
sider applications to the Lagrange multiplier formulation of Dirichlet's problem in
Section 4. Finally, the results of numerical experiments illustrating the iterative
method's performance are given in Section 5.

2. The Positive Definite Reformulation. In this section we shall describe
a way to develop a positive definite system for solving (1.1). The evaluation of this
system and the implementation of the corresponding iterative method does not
require the evaluation of A'1 and takes full advantage of available preconditioners
for A. We prove a comparison theorem which can be used to estimate the condition
number of this system. In the applications described in later sections, this theorem
can be used to show that the new systems will be either well conditioned or easily
preconditioned.

Let Aq be a preconditioner for A. To be effective, Aq should satisfy two criteria.
Firstly, the cost of applying the inverse of Aq on a vector should be considerably less
than the cost of applying A-1. The second condition required for the effectiveness
of Aq is that there exist positive constants a0 and a\ whose ratio cti/a0 is small
(preferably bounded independently of the dimension of S1) such that

(2.1) a0{AU,U)<(A0U,U)<ai(AU,U)   iorallUeS1.

We shall make the additional assumption that

(2.2) ou < 1.

Note that for a — 1 — atç,,

(2.3) 0 < ((A - A0)U,U) < a(AU,U)

holds for all U ¿0 in S1.
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4 JAMES H. BRAMBLE AND JOSEPH E. PASCIAK

(2.5)

i^B*      \(X\ = (     A^F      \
BA^B*)\Y)      {bA^F-GJ-

[(v).(' = (AU,W)-(A0U,W) + (V,X).

(2.6)

To derive the positive definite system, we again apply row operations to the
matrix (1.1). Straightforward manipulations give

™ *(?):■ («$-*> c?
As a consequence of (2.3), we can define the following inner product on S1 x S2

w
We note that

M(^y^[)^=((AAQ1A-A)U,W) + ((A-Ao)Aö1B*V,W)

+ (BAq\A - A0)U,X) + ((C + BAq'B^V, X),
and hence the operator M is symmetric in the inner product defined by (2.5). We
will show (see Theorem 1) that M is also positive definite. Thus we can apply
any of a number of iterative techniques [19], [24] to solve (2.4). In the Appendix,
we include a discussion of the application of the conjugate gradient method in the
inner product (2.5) for the solution of (2.4).

Remark 1. In applications, a preconditioner is usually selected which a priori
may not satisfy (2.2). It is easy to compute an appropriate scaling factor for the
preconditioner so that the scaled preconditioner satisfies (2.2). This can be done,
for example, by using the power method to estimate the lowest eigenvalue of A^A
with the unsealed operator Aq 1. The cost of this computation is small compared
to the cost of the subsequent iteration for the solution of (2.4). Note that the
computation of the action of the inverse of the scaled operator is no more difficult
than that corresponding to the unsealed operator, and the comparison ratio ai/a-o
remains unchanged.

The following result provides a basic conditioning estimate for the operator M.

THEOREM l.   Let M be given by
0

C + BA-(2.7) MS(J
Then the following inequalities hold:

'B*)

(2.8)

where
HvHvM^vHvh-^ivUv)}
A0 = and     Ai =

1-a '

Remark 2. In the case of the Stokes equation, M is well conditioned and hence
the theorem implies that M is also. In other applications, the theorem is used
to show that any preconditioner for M can be used as a preconditioner for M.
Thus, the problem of constructing a preconditioner for M is reduced to that of
constructing one for (1.2).

Remark 3. The constants appearing in the inequalities of (2.8) tend to one as a
tends to zero. This means that as the preconditioner tends to A in an appropriate
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way, the eigenvalues of M~lM tend uniformly to one. Thus, it is advantageous
to scale the preconditioner so that (2.3) holds with a as small as possible. This is
equivalent to scaling the preconditioner so that at is close to 1.

Remark 4. The theorem also gives some indication of how well the iterative
scheme behaves when the condition number K of Aq xA becomes large. In this
case, if Aq is appropriately scaled, (1 -a)-1 grows like K. The theorem guarantees
that the condition number for M~lM grows at most proportional to K.

Proof. To prove the theorem, we shall use an appropriate decomposition in
S1 x S2. Let (U,V) e S1 x S2, and write

where Uh is the unique function in S1 satisfying

AU h + B*V = 0.

It is then straightforward to verify that

0)
(Ü)

and

(iii)

(AUH,U„) = (BA-1B*V,V),

M(""H"")= (BA~1B*V,V) + {CV,V),

"(v)'(v)]-Ko)-(ï)] + Kv)-(v)
We start by proving the first inequality of (2.8). By definition,

M (vHv) = ((A - A0)U, U) + ((C + BA-'B^V, V)

Thus,

(2.9)

M (?)•(?) <(l + i)((A-A0)Uo,Uo)

+ (l + 7-1)((^-^o)^,í/íí)

+ (BA-1B*V,V) + {CV,V)
holds for any positive 7. Combining (2.3) and (i) gives

(2.10)

Hence,

(2.11)

But

(2.12)

((A - A0)Uh,Uh) < aiBA-'B^V)

M v)\ <(l + i)((A-AQ)Uo,U0)

+ (1 + (1 + 7-1)a)(JB.4-15*V, V) + (CV,V).

M(?) ' (i)   = {{A * ^V^ - Ao)Uo,U0) + ((A - Ao)U0,Uo)
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6 JAMES H. BRAMBLE AND JOSEPH E. PASCIAK

Combining (2.11), (2.12), and (ii) gives

(2.13)
tmih^HtHt)

+ (l + (l+7    )<*) M
(-),(-)

The first inequality of (2.8) follows from (iii) and (2.13) with

a       /       a2= 2+Va + T-
We next prove the second inequality of (2.8). We shall consider the two terms

of (iii) separately. For the first term, by (2.1) and (2.3), it follows that

(2.14) (VlW < T^—((A-A0ylW,W).
1 — a

Using (2.12) and (2.14) yields

(2.15)
M (?)■(?)]

<(l-a)-l((A-Ao)U0,U0)

<(l-a)-1{(l + 7)((A-4>)tf,E0
+ (l + 7-1)((4-Ao)i/iî,cM}.

By (2.10), (ii), (iii) and (2.15),

(2.16)
M (?)•(?) <i±2{(A-Ao)U,U)1 — a

+ (l + "^ta^) C<BA~lB*V'V) + (^W)-

The second inequality of (2.8) follows from taking 7 = y/ct in (2.16).
To see that the bounds in Theorem 1 are essentially sharp, we consider the

following example. Let A be a symmetric positive definite operator on Rn. We
apply the reformulation of Section 2 to the system

(¿ ?)(?)-(2)
with Ao = (1 - a)A and 0 < a < 1. The reformulated system M is given by

A"1/2'
(2.17) M = (!-«)- (Jv,   ̂ ").
For this example, M is the identity. It is easy to show that M has only the two
eigenvalues 70 = (1 - y/a)/(l - a) and 71 = (1 + N/â)/(l - a). Thus the estimate
for Xi in the theorem is sharp. The estimate for Arj in the theorem is essentially
sharp in that

(i) both Arj and 70 remain bounded away from zero for 0 < a < 1, and
(ii) both 1 - Ao and 1 - 70 tend to zero like y/â as a tends to zero.

3. The Elasticity — Stokes Application. In this section we shall apply the
reformulation developed in Section 2 to the steady state Stokes equations and the
equations of linear elasticity. Let fi be a domain in TV-dimensional Euclidean space
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MIXED APPROXIMATIONS OF ELLIPTIC PROBLEMS 7

for N = 2 or N — 3. The velocity-pressure formulation of the steady state Stokes
problem is: Find u and p satisfying

(3.1) _£^.(u) + g=fl     inn,

(3.2) V • u = 0     in n,
N

(3.3) ^2 £ij(u)nj -prii = 0    on Ti,
i=i

(3.4) u = 0     on r2,

(3.5) f p = 0     ifTi=0
for t = 1,... , N. Here we have partitioned the boundary of fi into Ti U T2, and
Sij (u) is the usual symmetric strain tensor defined by

, .      1 Í dui      diij 1

To get the equations of linear elasticity, we replace Eq. (3.2) by

(3.6) --L-V«^.
In Eq. (3.6), 0 < v < 1/2 is Poisson's ratio. We note that the iterative methods to
be described converge to the discrete solution with rates independent of v.

The two types of boundary conditions (3.3) and (3.4) are interesting in the
case of linear elasticity. Condition (3.3) corresponds to a free boundary where the
material is allowed to deform at the boundary. Condition (3.4) corresponds to
a fixed boundary where the material is clamped. Two other types of boundary
conditions are possible, but will not be treated in this paper.

We consider a weak formulation of problem (3.1)-(3.6). Let (•,•) denote the
L2(Q) inner product and ||-|| the corresponding norm. Let if(fi) be the set of func-
tions defined on fi which vanish on T2 and which along with their first derivatives
are square integrable on f2. Define H(f2) = H(Q) x H(Q) and let || • ||i denote the
corresponding norm. To simplify the presentation, we shall assume that T2 ^ 0.**
Let n = L2(Ü) if Ti ¿ 0 and n = L2(Q)/R = {4>e L2(Ü)\ /n <f> dx = 0} if I\ = 0.
A weak formulation of (3.1)-(3.6) is then given by

(3.7) A(u,v)-(p,V-v) = (F,v)    forallveH(n)
and

(3.8) (V-u,g)+7(p,ç)=0   for all q € n,
where 7 = 0 in the Stokes case (3.2), and 7 = 1 - 2v in the elasticity case (3.6).
Here the form À is defined by

(3.9) A(w,v)= V  / eij(w)eij(y) dx.
_ i%J"

"If T2 = 0, then for existence of solutions to (3.1)-(3.6) compatibility assumptions must be
made on F. In such cases, solutions are determined only modulo a rigid motion. This results in
some changes in the algorithms.
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8 JAMES H. BRAMBLE AND JOSEPH E. PASCIAK

We note that an alternative weak form may be derived in the special case when
Ti = 0. For example, we consider the Stokes application; the situation is com-
pletely analogous for the equations of linear elasticity. Equation (3.1) can be rewrit-
ten

(3.10) -^Au + Vp = F     infi.¿à
Then for Ti = 0, (3.10) implies that u satisfies the alternative weak formulation

(3.11) Í£(u,v)-(p,V-y) = (F,v)   for all v G H(ÍÍ),
(3.12) (V • u, q) = 0   for all qeU.

Here,

(3.13) D(w,v) = D(w1,vi) + D(w2,v2),

and D(-,-) is the Dirichlet form defined by

D(v, w) = I Vu ■ Vu dx.
Jn

Computationally, formulation (3.11)-(3.12) is easier to handle than (3.7)-(3.8) since
there are no cross terms between the components of w and v in the form D.

To approximately solve (3.7)-(3.8) or (3.11)—(3.12), we introduce a pair of ap-
proximation subspaces H/,,^ indexed by h in the interval 0 < h < 1. Functions
in H(fi) and n will be approximated by functions in H^ and n^, respectively. We
will assume that the inf-sup condition holds for the pair of spaces; i.e., we assume
that there is a constant c which does not depend upon h such that

(3.14) inf Q e nh sup V 6 Hh ^ j^j > c.

Many subspace pairs satisfying (3.14) have been studied, and their approximation
properties are well known [16], [18], [21]. The bibliography of [18] contains addi-
tional references.

The approximations to the functions u, p are defined by replacing the spaces
in (3.7)-(3.8) by their discrete counterparts. Specifically, the approximations are
defined as the functions U € H/, and P € Uh satisfying

(3.15) A(U,V)-(F,V-V) = (F,V)    for all V G H,,

and

(3.16) (V-U,Q) + 7(^Q) = 0   for all g en/,.

The variables U and P satisfy a system of the form (1.1). To see this, we need
only cast (3.15)-(3.16) in the notation of Section 1. First, we set S1 = H/, and
S2 = nh. Define A: S1 ^ S1 by AV s W, where W satisfies

(W,X)=A(V,X)    forallXeS1.

Define B: S1 >- S2 by BY = Q, where Q satisfies

(Q,R) = -(V-V,R)   îoraMReS2.
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MIXED APPROXIMATIONS OF ELLIPTIC PROBLEMS 9

Finally, set C to be 7 times the identity operator on S2. Then for appropriate F,

(- -c) (?)-(:)■
Hence, we can apply the reformulation (2.4) as well as Theorem 1 for the solution
U, P. We then have the following theorem.

THEOREM 2. Assume that a preconditioner Aq1 is given and satisfies (2.3)
with constant a. Let M be given by (2.4) with A, B, and C as above, and assume
that (3.14) holds. Then the solution of (3.15) -(3.16) satisfies the system

"(?)-(£')■

and the condition number of M is bounded by c(l — a)  1.   Here c is a positive
constant which is independent of h.

Proof. We only need to estimate the condition number of M. By Theorem 1,
it suffices to show that there are positive constants cq and ci not depending on h
satisfying

Co IIQH2 < ((C + BA~lB*)Q,Q) < a IIQH2    for all Q € ÜÄ.
The form Ä(-, ■) is equivalent to ||-||2 on Hh. We have by (1.3) and (3.14) that

((C + ßA-15*)g,g)=7||Q||2 + supV€Hh^^

>c0||g||2.

By (1.3) and the Schwarz inequality, it follows that

((C + BA-*B*)Q, Q) < \\Q\\2 L + ̂ iXJlL j < Cl HQll2 .

This completes the proof of the theorem.
Note that if a is independent of h, then the condition number of M is bounded

independently of h. This holds when A0 is such that (2.1) is satisfied with etc, and
«i independent of h.

4. The Lagrange Multiplier Method for Dirichlet's Problem. In this
section we apply the reformulation of Section 2 to Lagrange multiplier type methods
for the numerical approximation of second-order elliptic equations. We will consider
in detail the Lagrange multiplier method for Dirichlet's problem as developed in
[2], [4]. In this case, we shall see that the resulting operator M of Theorem 1
will not be uniformly well conditioned (independent of h). In a similar way, the
techniques of Section 2 could be applied to the discrete systems developed in [5] for
magnetostatic field problems. However, a complete description of this application
is somewhat involved and will not be given.

We shall consider the problem of approximating the solution u satisfying

Lu = f     in f2
(4.1) u = g    on dQ,
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10 JAMES H. BRAMBLE AND JOSEPH E. PASCIAK

where Q is a bounded domain in RN with smooth boundary. Here L is given by

Lu=-Eé¡(a^)+au-

The assumptions on a and atJ are as in [4].
To define the Lagrange multiplier approximation to (4.1), we shall need to intro-

duce two sets of finite element approximation subspaces. The first set {Sh, 0 < h <
1} consists of approximation spaces defined on Í1 The second set {Sk, 0 < k < 1}
consists of approximation spaces defined on dQ. We shall not give explicit assump-
tions and descriptions of these spaces; these details are available in [4]. Let us,
however, note that functions in Sh are not required to satisfy essential boundary
conditions and that k must be appropriately related to h.

We shall also use a generalized Dirichlet integral Aß(-, •) defined by

A0(v,w)= Y*  / a„ — -—dx + (av,w) + ß(v,w).
~¿íjn     dxidxj

Here, ß is a nonnegative constant, (•,•) denotes the L2 inner product on fi, and
(•, •) denotes the I? inner product on dQ.

We next define some discrete operators. As in [4], let T/,: i/_1(Q) i-» Sh and
Gh : H~1/2(dü) H+ Sh be defined by

A0(Th9,V) = (6,V)    îor all VeSh,

and
Aß{Gho,V) = (<r,V)    for all ^ e Sh.

The Lagrange multiplier approximation to the solution u of (4.1) is the function
Uh € Sh defined by

(4.2) Uh = Ghcrk+Thf,

where ok is the function in Sk which satisfies

(4.3) PkGhOk = Pk{g-Thf).

Here, Pk is defined to be the L2 projection onto Sk-
We shall see that £//, and ok satisfy a system of the form (1.1). First, we set

S1 = Sh and S2 = Sk. We next define the operator A: Hl(Q) *-* Sh by

(Av,W) = A0(v,W)    for all W £ Sh.

Straightforward manipulation of (4.2) and (4.3) gives

(.; -T)(u:)-(-D-
We then set B = -Pk and (7 = 0. The matrix in (4.4) has the form of (1.1) since

(4.5) (PkW, 6) = Aß(Gh6, W) = (AGhS, W).

Note that (4.3) can be derived from (4.4) in exactly the same way that (1.2) was
derived from (1.1).
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Reference [4] discusses an algorithm for computing [//, when one is willing to
invert the Aß(-, ■) form , i.e., evaluate the action of Th and Gh- In that algorithm,
a preconditioned iteration is set up for computing ak, the solution of (4.3). It is
shown in [4] that the form (Ghd,a), when restricted to Sk, is equivalent to the
square of the norm of a in H~1/2(dü). Accordingly, the operator PkGh exhibits
a condition number growth like 0(/i_1) and should be preconditioned. Techniques
for constructing efficient preconditioners / for PkGh are discussed in [4] and [5].
For these preconditioners, there exist positive constants Co and ci independent of
h and k satisfying
(4.6) cQ(Ï6,6) < (Gh6, S) < a(Ï6,6)   for all 6 G Sk.

It is often much more economical to compute the action of a preconditioner Aq 1
than to evaluate the operators T/, and Gh- In this case, we can use the technique
of Section 2 to derive a well-conditioned iteration. The following theorem is a
consequence of Theorem 1 and (4.6).

THEOREM 3. Assume that a preconditioner Aq 1 has been given which satisfies
(2.3). Let M be given by (2.4) with A, B, and C as above. Then the solution of
(4.2)-(4.3) satisfies
(4-7) M(Uh) = (       ^fi    )
[   ' W7    [Pkig-A^f))-
If (4.6) holds, then there are positive constants ßo and ß\ not depending on h such
that

<"' *[J(T)-(T)]^KT).(T)
where Hi ?)■

Theorem 3 shows that the system J 1 M is uniformly well conditioned if a is
bounded away from one. Thus, preconditioned iteration for the solution of (4.7),
with preconditioner J-1, will converge rapidly. To apply such a scheme, we must
evaluate the action of M. Suppose the operator Aq : H1 (Q) »-► Sh is defined using
another form A by
(4.9) (AqV, 9) = Ä(V, 6) for all 9 € Sh-
To apply M to a vector (V, q)*, i.e., compute

(:)■<)•
we first compute W = Aq1(AV + B*q) and then r = Pk(W - V). It is not difficult
to see that W solves

(AqW, 9) = A0(v, 9) + (q, 9)    for all 9 e Sh-
Thus, neither the action of Th nor Gh is required for the computation.

In an analogous manner, we can apply the reformulation of Section 2 to the dis-
crete equations resulting from mixed methods for second-order elliptic equations,
using, for example, the Raviart-Thomas elements [20]. The resulting operator M
(and hence M) is not uniformly well conditioned. The derivation of effective pre-
conditioners for M will be considered in a subsequent paper.

ßi
1-a

■T-T
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12 JAMES H. BRAMBLE AND JOSEPH E. PASCIAK

5. Numerical Examples. In this section we shall present some results of
numerical experiments using the reformulation described in Section 2. All of our
examples will be for problems discussed in Section 3. We shall use the conjugate
gradient method applied to the symmetric positive definite systems corresponding
to either (1.2) or (2.4).

We first define the subspace pair {H/,,^}. For simplicity of exposition, we
shall only describe these spaces when fi is the unit square. Generalizations to more
complex domains are possible.

Let n > 0 be given. We start by breaking the square into 2n x 2n square shaped
subregions and define h — l/2n (see Figure 5.1). Let Xi = ih and y¿ = jh for
i,j = 1,... ,2n. We partition the square subregions into pairs of triangles using
one of the subregion's diagonals (for example, the diagonal going from the bottom
right corner to the upper left corner). Let H h be the collection of functions which
vanish on the boundary of the square and are piecewise linear and continuous on
this triangulation. The subspace H/j is defined by Hh x Hh-

FIGURE 5.1
The triangular mesh.

To define the space n^, we first consider the space Ylh which is defined to be the
space of functions which are piecewise constant on the square regions (see Figure
5.2). It is interesting to note [17] that the subspace pair {Hh,Ùh} is not stable in
L2, i.e., the inequality

(5.1) infQeñhsupV6Hh-—^^¡->c>0
llKlljj>(rj) llvllL2(n)

does not hold for c independent of h. To get a stable subspace, we shall consider
a somewhat smaller subspace of Tlh. Let 9ki for k, I = 1,... , 2n be the function
which is one on the subregion [xk-i,xk] x [yi-i,yi] and vanishes elsewhere. We
define the functions faj E fl/,, for i,j = 1,... , n, by

(5-2) 4>ij = 02t-l,2,j-l - #2i,2j-l - #2t-l,2¿ + #2i,2j-

We then define Tlh by

Uh = {Q € ñhKQ,^) = 0 for i,j = 1,... ,n}.

An estimate of the form of (5.1) holds with c independent of h for the subspace pair
{H/,,nh} [17]. Furthermore, the exclusion of the functions of the form (5.2) does
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FIGURE 5.2
The rectangular mesh used for LI/,; the support (shaded)

and values for a typical faj ■

not result in a change in the order of approximation for the space (we obviously
still have the subspace of constants on the mesh of size 2h).

Remark 5. The exclusion of functions of the form (5.2) poses no difficulty in
practice. In fact, it only affects the definition of B in a trivial way. By definition,
BY = Q, where Qell/, solves

(Q,R) = -(V-V,R)   forallÄenh.

It is easy to see that Q is the L2 orthogonal projection of the function Q G Tlh
satisfying

(5.3) (Q, R) = -(V • V, R)   for all R e Ùh-
This projection is a trivial local operation since the supports of the functions {<j>ij}
are disjoint. Furthermore, the computation of Q is straightforward since the Gram
matrix for (5.3) is diagonal (with the obvious choice of basis).

Remark 6. Other authors suggest solving for U, P in the space H/,, Tlh [17]. Then
an accurate solution U, P can be computed by projecting the resulting pressure P
into the space Tlh- This seems to be computationally more difficult than working
in the smaller space Tlh since the discrete system with Tlh is not well conditioned,
i.e., the constant c in (5.1) grows like h~2 [17].

Example 1. For our first example, we consider the Stokes equation

-Au + Vp = F     in fi,
V • u = 0    in fi,

(5-4) u = 0    on dfi,

Lp = 0.

Since Ti = 0, we can use the alternative weak formulation (3.11)-(3.12). The
matrix A then reduces to two copies of the discrete Laplace operator. In this case,
there are many efficient methods for computing the action of A-1 (see, for example,
[22]) and hence we can apply either (1.2) or (2.4).

To investigate the efficiency of the iteration method of Section 2, we shall com-
pare condition number and iteration results for the systems (1.2) and (2.4). For
simplicity, we have taken Aq to be .8A in (2.4). We give the condition numbers Kx
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14 JAMES H. BRAMBLE AND JOSEPH E. PASCIAK

and K2 corresponding to the systems resulting from (1.2) and (2.4), respectively, in
Table 5.1. The condition number of the system*** can be used to provide bounds
on the rate of iterative convergence. We also give the observed number of conju-
gate gradient iterations Ni and N2 necessary to reduce the discrete L2 norm of the
residual by a factor of .001.

Note that in this simple example the use of the full system (i.e., that corre-
sponding to (2.4)) is artificial since the action of A-1 is no more difficult than the
evaluation of Aq1. Later examples illustrate applications where (2.4) gives rise
to algorithms which are more efficient since only preconditioners for A need be
evaluated.

TABLE 5.1

Convergence results for (1.2) (Ki and Ni)

and (2.4) (K2 and N2) applied to (5.4)

Ki Ni K2 N2

1/8
1/16
1/32
1/64

4.5
4.9
5.2
5.2

6
7
7
7

9.0
9.5
9.8
9.9

11
11
11
11

Example 2. We consider a variable-coefficient Stokes problem in this example.
Although this example may also be somewhat artificial, it illustrates the behavior
of the composite method (2.4) on a nontrivial problem. We consider the solution
of the following "Stokes like" problem:

(5.5)

-V • /iVu + Vp = F     in fi,
V • u = 0     in fi,
u = 0     on <9fi,

Lp = 0,

where ß(x,y) = 1 + xy + x2 — y2/2. In this example, we use .5 times the discrete
Laplace operator in each component as a preconditioner. This preconditioner can be
'fast solved' by, for example, Fourier techniques [22]. In contrast, if we were to use
(1.2) to solve the discrete equations corresponding to (5.5), we would have to solve
variable coefficient discrete Dirichlet problems on fi. Although many techniques
exist for the solution of such problems [12], [15], much more complicated and less
efficient algorithms must be introduced. Table 5.2 gives convergence results for this
example.

***As is well known [19], the rate of iterative convergence for conjugate gradient applied to
the solution of the problem Mx = b can be bounded in terms of the condition number K of M
by the expression (Me,, e,) < 4yj2'(Meo,eo). Here e¿ £ x - z¿, {i,} is the sequence of iterates
generated by the conjugate gradient algorithm, and p = (\/K - 1)/(V~K + 1).
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TABLE 5.2

Convergence results for Example 2.

1/8
1/16
1/32
1/64

K
60
74
82
97

TV
25
28
31
31

Example 3. In this example, we consider a Stokes equation with mixed boundary
conditions. Specifically, we consider (3.1)-(3.4) with fi the unit square and Ti =
{(x,y)\x = 0 or a; = 1}. Accordingly, the functions in H h are only required to
vanish on T2 = dft/Ti. In addition, we must use the weak formulation (3.7)-(3.8),
and A becomes the 'stiffness matrix' derived from the form (3.9). Note that for
this case, A does not correspond to two component-wise copies of the discretization
of an elliptic operator but contains cross terms between the components. However,
Korn's inequality [11] gives

(5.6) cD(V,V) < Ä{V,V) < CD(V,V).

Equation (5.6) implies that the A of this example can be preconditioned by A¿"x,
where An is the stiffness matrix corresponding to .5 times the form £>(•, ■) on H/, x
H/,. The equations for computing A0~1v decouple component-wise and can be solved
using 'fast' direct methods. The condition number K and the number of iterations
N are given in Table 5.3 as a function of h.

TABLE 5.3
Convergence results for Example 3.

1/8
1/16
1/32
1/64

K
34
39
40
40

TV

19
20
20
20

Appendix

For completeness, we include a discussion of the application of the conjugate
gradient method to the solution of (2.4) in the inner product given by (2.5). We
also include a remark which can be used to simplify these computations.

The conjugate gradient algorithm for the iterative solution of (2.4) in the inner
product (2.5) is defined as follows. Let Zq be an initial approximation (for example,
the zero vector) to the solution pair (X, Y)1. Let

-{bAq1!
F

F-G
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and define Pq = Rq = F - MZq. Then define

_    [Ri,Pj\
1     \MPt,PiY

Zi+i = Zi + otiPi,
Ri+i = F-MZi+i,

_ [MRj+i,Pi\
P%        [MPi,Pi\   '

Pi+l = Ri+1 — ßiPi-

Remark 7. The evaluation of Ao is not necessary for the implementation of the
above algorithm, even though it appears implicitly in the definition of the inner
product [•,•]. Note that the evaluation of Ao is not necessary for the computation
of [MPi,Pi] or [MRi+i,Pi] since the first component of either M Pi or MRi+i is
Aq1 applied to a known vector. The same holds for [Í2¿,P¿]. This observation
is essential when using, for example, substructuring [6], [7], [8] or multigrid [3]
preconditioners , where the action of the preconditioner Aq1 is defined as a process
whose inverse is not easily computed.
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