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Abstract. We propose a new client-side data-caching schem&992), caching aims to avoid disk traffic and is done on the
for relational databases with a central server and multipleserver-side only, based on buffering of frequently accessed
clients. Data are loaded into each client cache based odisk blocks or pages. The assumption is that clients are low-
gueries executed on the central database at the server. Themed workstations that are likely to be overloaded by local
queries are used to form predicates that describe the cachtata processing; their function is therefore limited to trans-
contents. A subsequent query at the client may be satisfiethission of SQL queries across the network to the server
in its local cache if we can determine that the query resultand presentation of the received results to the user. How-
is entirely contained in the cache. This issue is catlache ever, with the continuing rapid growth in the performance of
completenessA separate issuasache currencydeals with  workstations, the validity of this assumption becomes ques-
the effect on client caches of updates committed at the centionable. It is increasingly common to find clients that are
tral database. We examine the various performance tradeoftsigh-end workstations with the server being a mainframe
and optimization issues involved in addressing the queser a minicomputer. Such clients are capable of perform-
tions of cache currency and completeness using predicateg intensive computations on their own, using the database
descriptions and suggest solutions that promote good dyas a remote resource that is accessed only when necessary.
namic behavior. Lower query-response times, reduced medncreased local functionality and autonomy can potentially
sage traffic, higher server throughput, and better scalabillead to less network traffic, improved utilization of local
ity are some of the expected benefits of our approach ovecomputing power, faster response times and higher server
commonly used relational server-side and object ID-basedhroughput, as well as better scalability.
or page-based client-side caching. Several technigues to provide caching facilities at client
sites using object IDs have been recently investigated (Wang
Key words: Caching — Relational databases — Multiple and Rowe 1991; Wilkinson and Neimat 1990). In these
clients — Cache completeness — Cache currency schemes, storage, retrieval, and maintainance of cached ob-
jects at client sites are done based on object IDs. Such
caching can only support ID-based operations likead-
ObjectandUpdateObjectvithin transactions; an associative
1 Introduction query that accesses database objects using a predicate on a
relation or an object class, e.g., through a WHERE clause
This paper addresses the issue of data caching in clienin @ SELECT-FROM-WHERE SQL statement, cannot be

server relational databases with a central server and multipléandled locally in these systems. Similar observations can
clients that are individually connected to the server by a lo-beé made for the page-based caches presented in Carey et
cal area network. The database is resident at the server, a (1991, 1994) and Franklin (1993) — these approaches do
transactions are initiated from client sites, with the servernot address the question of associative query execution. We
providing facilities for shared data access. Dynamic localbelieve this issue is very important for caching in relational
caching of query results at client sites can enhance the ovefystems, where associative queries are common and are in-
all performance of such a system, especially when the operdeed one of the major reasons for their success.
ational data spaces of clients are mostly disjoint. In effect, ~Associative access may be supported in an object-ID or
such caching of locally pertinent and frequently used datdP@ge-based client cache by using indexes defined on the
constitutes a form of dynamic data replication, whereby eacilatabase at the server, as is done in some object-oriented
client dynamically defines its own data space of interest. databases. Relevant index pages can be used in either a cen-
In typical commercial relational databases with client- tralized or a distributed manner to answer an associative

server configurations (Oracle 7 Server Concepts Manuafiuery. In the centralized scheme, index pages are managed
solely by the server and cannot be cached by clients. A
Correspondence toA.M. Keller
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client submits each associative query to the server, whiclactions commit updates, invalidation of appropriate cached
responds with a list of qualifying object IDs. The client then data and predicates, or refresh upon demand by a subsequent
locally checks its cache for object availability and fetchesquery. Both automatic and by-demand refresh procedures
missing data objects or pages as necessary. The centralizathy either be recomputations or incremental, i.e., performed
index scheme requires communication with the server for alkither by cached query re-execution or by differential main-
index-based queries and index updates and may cause tienance methods. Which method performs best depends very
server to become a bottleneck in the system. A distributednuch on the characteristics of the database system environ-
alternative is to allow clients to fetch, cache, and use in-ment, such as the volume and nature of updates, pattern of
dex pages locally. This approach requires the enforcemerbcal queries, and constraints on query response times. In
of a consistency-control protocol on index pages. Becauseur scheme, the maintenance method adopted is allowed to
an index page relates to many more objects compared to wary by client and also for different query results cached at a
data page, index pages generally have very high contentioalient. A client may have results of frequently posed queries
and may be subject to frequent invalidation or update. Dis-automatically refreshed and may choose to invalidate upon
tributed index maintenance is therefore likely to be expen-update what is perceived as a random query result. Cached
sive even in systems that have low-to-moderate update aauery results may also have their method of maintenance up-
tivity, causing increased network traffic and slower responsegraded or downgraded as access patterns change over time.
times. Examination and maintenance of cached tuples via pred-
In our approach, database index pages need not be refeicate descriptions entail determining satisfiability of predi-
enced to answer associative queries locally. Instead, queriesates, and concerns about overhead and scalability may nat-
executed at the server are used to load the client cache andally arise over reasoning with large numbers of predicates
predicate descriptionderived from these queries are stored in a dynamic and real-time caching environment. In this pa-
at both the client and the server to examine and maintaimper, we attempt to address the practical design issues and
the contents of the cache. If a client determines from itstradeoffs that pertain to this environment, with the concep-
local cache description that a new query is not completelytual structure as our primary focus.
computable locally, then the query (or a part of it) is sent  To reduce the complexity of the reasoning process, we
to the server for processing. The result of this remote quenallow approximate algorithms that might sometimes err caus-
is optionally added to the client cache, whose descriptioning inefficiency, but can never produce incorrect results. A
is updated appropriately. On the other hand, a locally com-cache description used for determiniogche completeness
putable query is executed by the client on its cached datdi.e., whether a query can be completely or partially eval-
(the effect of such local query evaluation on concurrencyuated locally) need not be exact, and cancbeservative
control is discussed later). Each cache can have its owin other words, data claimed to be in the client cache must
locally maintained indexes or access paths to facilitate lo-actually be present in it, so that local query evaluation does
cal query evaluation. To ensure the currency and validity ofnot produce incomplete results; however, it is not an error if
cached data, predicate descriptions of client cache contentm object residing in the cache is re-fetched from the server.
are used by the server to notify each client of committedAnother description of a client’s cache is maintained by the
updates that are possibly relevant for its cache. server for alerting the client of changes to its cached ob-
Consider, for example, an employee database managgdcts (thecache=currencyissue). This description can also
by a central server, in which a table EMPLOYER(pno, be approximate, but the approximation can onlyliberal
name, job, salary, deptl) records a unique employee num- in nature, that is, occasionally notifying a client of an irrel-
ber and other details of each employee. Suppose that avant update is not a problem, but failure to notify a client
client caches the result of a query for all employees inthat its cached object has changed can result in significant
department 100, along with a predicate descriptieptid error. The conservative and liberal approximations must be
= 100 for these tuples. Assuming that no update at theapplied carefully, so that they do not produce persistent neg-
server has affected these EMPLOYEE tuples, a subsequeative impacts on system performance.
qguery at the same client for all managers in department Apart from the above approximation technigues, we in-
100, i.e., those employees that satighetid = 100) AND  vestigate local query evaluation by predicate containment
(job="manager’), can be answered using the cache associaeasoning and several optimizations applicable in that con-
tively and without referencing server index pages or com-text. Predicate=indexingnechanisms are used to speed up
municating with the server (except, if deemed necessarythe examination of predicate descriptions and the retrieval of
for purposes of concurrency control such as locking thecached tuples. Simplification of cache descriptions through
accessed objects at the server). Another query representgiledicate mergingand query augmentatioan help reduce
by the predicatgob="manager’ asking for all managers can long-term caching costs (although the details of these tech-
only be partially answered from the cache. In this case, theniques are beyond the scope of this paper). The expected
database could be requested either for all managers or onlyet effect is a decrease in query response times and in-
for those not in department 100. This choice is an importantrease in server throughput compared to other systems and
new optimization decision that can potentially speed up datamproved scalability with respect to the number of clients.
transmission and query processing. Appropriately extended, our scheme is also applicable in the
The situation is more complex if the cached data are outontexts of object-oriented and distributed databases with
of date as a result of updates committed at the server. Therdient-server architectures.
are several choices for maintaining the currency of data The paper is organized as follows. Section 2 gives an
cached at a client: automatic refresh by the server as transverview of related work. We present a formal model in
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Sect. 3, and describe the details of our scheme in Sect. 4opoulos (1992). In the “Enhanced Client-Server” system
Implementation issues and tradeoffs at the client and servenvestigated in this work, query results retrieved from the
sites are addressed in Sections 5 and 6, respectively. Finallgerver(s) are cached on local disks of client workstations.
we summarize our contributions, discuss work currently inUpdate logs are maintained by the server(s), and each query
progress and outline future plans in Sect. 7. against cached data at a client results in an explicit refresh
request to the server(s) to compute and propagate the rele-
vant differential changes from these logs. Rather predictably,
2 Related work Delis and Roussopoulos (1992) report that fetching incre-
mental update logs from the server(s) was found to be a
Our caching scheme is reminiscent medicate locksused  bottleneck with increasing number of clients and updates and
for concurrency control (Eswaran et al. 1976), where a transexamines a log-buffering scheme to alleviate the problem. In
action can request a lock on all tuples of a relation that satcontrast, we follow an incremental and flexible notification
isfy a given predicate. Predicate lock implementations havestrategy at the server and attempt to split the workload of
not been very successful, mainly due to their execution costefreshing cached results more evenly among the clients and
(Gray and Reuter 1993) and because they can excessivegerver.
reduce concurrency. Two predicates intersecting in the at- A caching subsystem that can reason with stored rela-
tribute space, but without any tuples in their intersectiontions and views is proposed in tH&rAID system (Sheth
for the particular database instance, will nonetheless preand O’Hare 1991) to integrate Al systems with relational
vent two different transactions from simultaneously locking DBMSs. Some aspects &rAID that pertain to local query
these predicates. This rule protects aggastntomsbut can ~ processing, such as query subsumption and local versus re-
cause fewer transactions to execute concurrently and thumote query execution, are very relevant for our system.
reduce overall system performance. In contrast, our cachinglowever, consistency maintenance of multiple client caches
scheme supports predicate-based notification that is mori the presence of database updates is an important issue not
optimistic, in that two transactions using cached predicatesaddressed in this work. A predicate-bagettial indexing
at different clients conflict (and are notified by the server of scheme for materialized results of procedure-valued relation
the conflict) only when a tuple in the intersection of sharedattributes was outlined in Sellis (1987). The ideas are appli-
predicates is actually updated or inserted. A similar schemeable in conventional database systems also, but were not
called precision lockswas proposed in (Jordan et al. 1981) developed and explored in that context, or in the context
for centralized systems. of client-server architectures. The work of Kamel and King
Query containment (Sagiv and Yannakakis 1980) is a(1992) deals with intelligent database caching, but is meant
topic closely related to the cache completeness questiorior applications that have a predetermined set of queries
Query evaluation on a set aferived relationsis examined  requiring repetitive reevaluation, such as for integrity con-
in Larson and Yang (1987). Efficient maintenance of mate-straint checking.
rialized views has also been the subject of much research In the area of natural languages, queries are typically
(Blakeley et al. 1986; Ceri and Widom 1991; Gupta et al.issued in context, allowing elliptical expression, such as
1993) and is related to the cache currency issues examined IiWhere is the meeting that you are attending?” followed
this paper. For example, our update notification scheme inby “How long are you staying there?” or “In which hotel
volves detecting whether an update has an effect on a clierdire you staying?”
cache, and this question has much in common with the elim-  The work of Davidson (1982) considered these elliptical
ination of updates that are irrelevant for a view (Blakeley queries and what they mean for databases, since the context
et al. 1989). The above techniques of query containmenis necessary to have well-formed queries. King (1984) used
and materialized view maintenance, though relevant for outhe knowledge of context as an opportunity for optimization,
scheme, have mostly been designed for relatively static sitas formalized here, taking advantage of the data cached from
uations with small numbers of queries or pre-defined viewsearlier queries to reduce the search space for the elliptical
Performance problems in handling large numbers of dynamisuccessor queries, much in the spirit of this work.
queries and views in a client-server environment have not Rule systems for triggers and active databases (Hanson
been considered in these papers. and Widom 1993) are related to our notification scheme,
As noted in the Introduction, client-side data cachingin the sense that for such systems efficient identification of
has been investigated in several recent studies (Wilkinsompplicable rules is desired for each database update. Such
and Neimat 1990; Carey et al. 1991, 1994; Wang and Roweules are generally specified in thendition-actionor event-
1991; Franklin et al. 1993; Lomet 1994; Adya et al. 1995). condition-action format, where thecondition part is ex-
However, the issue of associative query execution, which igpressed as a predicate over one or more relations. Hence,
an important consideration for relational databases, has natetection of firing of a rule involves determining satisfiabil-
been examined in any of the above works. ity of predicates, and efficiency issues similar to ours arise
Among other related work, Roussopoulos (1991) pro-for such systems. One difference is that for our caching, no-
poses a view-caching scheme that uses the notiorex-of tification by the server can afford to be approximate as long
tended logical access pathnd incremental access meth- as it is liberal. Additionally, our notification scheme has the
ods A workstation-mainframe database architecture basedapability of directly propagating certain update commands
on view cachetechniques is described in Roussopoulos ando relevant clients for local execution on cached data, in-
Kang (1986). Simulated performance of related schemes iistead of always propagating the tuples modified by the up-
a client-server environment is studied in Delis and Rous-date. Therefore, unlike rule systems in active databases, we
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require that the notification system employed by the server Note that a point query is a special case of a range query;

handle not only single modified tuples, but also general predwe distinguish between the two only because they are pro-

icates involved in update commands. cessed somewhat differently at the implementation level for
reasons of efficiency. A query predicate with a join condi-
tion, e.g., EMPLOYEHEiept id = DEPARTMENT dept id,

3 Our approach is also a special instance of a range-query predicate. Join-
query predicates may in general have one or more attribute

We propose a predicate-based client-side caching Schemvéalue ranges specified in terms of other join attributes.

that aims to reduce query-response times and network traffic

between the clients and the server by attempting to answer ) .

queries locally from the cached tuples using associated prec-2 A formal model of predicate-based caching

icate descriptions. The database is assumed to be resident at

the central server, with users originating transactions fromWe now formalize our terminology using the usual predi-
client sites. Each client executes transactions sequentiallygate=calculus notation. Suppose that thereramdients in
with at most one transaction active at any time (concurrencythe client-server system, witfl; representing théth client,
control of simultaneous transactions at individual clients canl < i < n. Let QF, where the superscripgf denotesexact

be incorporated in our scheme, but is not considered in thi@ndQF > 0, be the actual number of query predicates such
paper). that the results of all queries corresponding to these predi-
cates are cached at clie@t. We denote byPi’J‘? the query
predicate corresponding to thigh query result cached at
client C;. The superscripf in Pi? represents the fact that
these are the exact forms of cached query predicates, without
any approximations applied. Other information related to a
query may be associated with its query predicate, e.g., the
list of visible attributes retained after a projection operation
on the tuples selected by a WHERE clause.

3.1 Class of queries

Queries specify their target set of objects usingry pred-
icates as in the WHERE clause of a SELECT-FROM-
WHERE SQL query. We allow general SELECT-PROJECT-
JOIN queries over one or more relations, with the restriction
that the keys of all relations participating in a query must beDefinition 1: An exact cache descriptioRC D; for the ith
included in the query result. We feel this is not overly re- client C; is defined to be the set of exact-query predicates
strictive, since a query posed by the user that does not satis 5 corresponding to all query results cached at the client:
this constraint may optionally baugmentedy a client to

retrieve these keys from the server. User-transparent quengCD; = {P7 | 1< j < QF}.

augmentation (discussed in Sect.5.6) is in many cases a Vvi- | L . dicat b it
able technique for reducing long-term costs of maintaining N a rea-iile scenario, query predicates may be quite
cached query results. One major performance benefit is thac[omplex, and performance problems may arise if precise

tuples need not be stored in duplicate. Query results to bgredicate—cont_ainment reasoning is dong. To alleviate such
cached may be split up into constituent subtuples of parproblems, we introduce the notion approximatecache de-

ticipating relations (possibly with some non-key attributes SCTPUONS. A client may use a simpler, lxanservativever-

projected out), and stored in local partial copies of originalSlon of the exact .cag:he descrlpuor} for.determmmg cache
database relations. compl_eteness_,. _Thmkmg t_hat an o_bject is not in the c_ache
Transactions may also execute insert, delete, and upda%hen in fact it is there will result in re-fetching the object
commands on a single relation. Insert commands that us i?ar:t tggr:ggogﬁs\sl\(l)eurgcgrgvggﬁ;&ilgggroﬁﬂhg%y 22 Ilgr?ﬁl:as
subqueries to specify inserted tuples are not considered i ’ : P - Aslong
ata thought to be in the cache are actually present in it, lo-

this paper. Our scheme can be easily extended to handcal evaluation of queries will produce correct and complete
such commands, and future work will explore this issue. q P P

Query predicates specified as above are classified as gfNSWers.

ther point=query or range=querypredicates. A point-query Definition 2: A conservative cache descriptiafiCD; for
predicate specifies a unique tuple (that may or may not existihe ;th client C; is a collection of zero or more predicates
in a single relation, by conjunctively specifying exact values pS such that the union of these predicates is contained in the
for all attributes that constitute its primary key, and possi-union of the predicates in the exact cache descripfi6iD;

bly values for other non-key attributes as well. Point=queryfor the client! Let Q¢ denote the number of predicates in
predicates arise frequently during navigation among tupleg*cp,. Formally,

of different relations using foreign key references, e.g., a

query about a tuple in the relation DEPARTMENBptid, =~ CCD; ={P§ | 1<k < Qf},

deptname, directoy based on the matching value in the
foreign keydeptid of an EMPLOYEE tuple. In contrast, a
range=query predicate over one or more relations specifie

eith%r aqsin)ékiJ value or a value range for one or mgre atEJ 1<k<QY PZ% € CCD; = U 1<<QP Pi? € ECD;.
tributes, and in general has zero, one, or more tuples in its

target set. For examplealary > 50000 is a valid range- 1 CCD; may also be thought of as thtient cache description, since it
guery predicate on the EMPLOYEE relation. is used only by clienC;.

where
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The superscripC in P and Q¢ stands forconserva-
tive. The symbol = denotes the material implication opera- liberal
tor, and in the context of query predicates has the following an‘r?s'm“fAf et i
meaning: ifQ = P, then the result of the query corre- 7 ; )
sponding to predicaté€) is contained in and is computable N [ comservaive
from the result of the query corresponding to predicate | sl

One example of conservative approximation of a query ST
predicate is its simplification by discarding a disjunctive con- Do [] tivea
dition. For other possible differences betwegi®’D; and
CCD;, consider some cached EMPLOYEE tuples that were Valuesof attribute A2
fetched through a number of point queries, as well as through
a few range querie<’CD; may consist only of the range- Fig. 1. Exact, conservative, and liberal cache descriptions for a relation
query predicates, wheredsCD; includes all cached pred- R(ALA2)
icates, both point and rang€!CD; is thus simpler than
ECD;, having eliminated point-query predicates. The effect E . L )
of this appro?dmation is thF:';\t caghedyrgsults of point queriesU 1j<qp P € BODi = ) 1cnsqr Pik € LCD:
are not taken into consideration when addressing the cache-
completeness question for range queries, likely speeding upefinition 4. The server=cache descriptio§CD is the col-
the reasoning process. Therefore, if all EMPLOYEE tupleslection of liberal cache descriptions for ail clients of the
in department 100 have been fetched and cached througgerver:
separate _point queries,_ a range query on the EI\/I_PLOYEESCD = {LOD; | 1<i<n}.
relation with query predicatéept id = 100 will result in re- T ) ) )
fetching these tuples from the server. Such a remote access BY the above definitions, attributes projected out in a
is only inefficient and not incorrect and will not recur if the query must notbe part of a conservative description, but
range-query predicate gets cachedl@D;. mayoptionally be part of the liberal one. Thus, one example

It is important to note that the conservative approxima-©f @ redundant notification occurs when a client is notified
tion pertains to the cache description only, amat to the ~ Of & change to a relation attribute that it does not cache.
cache contents. In the above example, single EMPLOYEFANOther instance of liberal notification may happen when
tuples cached through point queries are still locally avail-2 tuple that could possibly affect a cached join result is
able at clientC;. Although these tuples cannot be accessednserted at the central database. The server may be able to
throughC'CD;, they are still present in the cache and can be€liminate a tuple that isinconditionallyirrelevant for the
used to answer point queries (as discussed below, the servistin (Blakeley et al 1989), i.e., irrelevant independent of
will notify the client of changes to these tuples, so their localthe database state; however, determining whether the tuple
usage cannot result in erroneous operation). A conventionactually affects the join result for the particular database
index based on the primary key of the relation EMPLOYEE State requires more work. The client may in this case be
may be constructed locally at the client to speed up the proinformed of the inserted tuple and can subsequently take
cessing of point queries. actions based on local conditions prevailing at the client site

Let us now consider the cache-currency issue. The servelfurther details on cached joins are provided in Sect. 4.2.6).
maintains a consolidated predicate description of all client ~Figure 1 shows a pictorial representation of the exact,
caches and uses it to generate notifications as transactiof@nservative, and liberal cache descriptions for some cached
commit updates. Since the server handles:allients, each ~ query predicates for a single relatighwith two attributes
of which may be caching tens or hundreds of query resultsA1 and A2.
it is crucial to control the complexity of issuing notifications
using such descriptions. For this purpose, we propose th
use ofliberally approximateclient=cache descriptions at the
server thatoverthe exact descriptions of the client caches.

| Exact

3 Effects of database operations

Database operations executed by transactions may affect the
o Eontents of the central database, as well as the contents and
exact ones, but must generate all necessary notifications. It 'E’escriptions of local caches. Client-cache contents and pred-
at most inefficient and not an error if a client i_s qccasionallyicate descriptions at the cliént and server sites also change
!nformed of an update at the database that is irrelevant fOElynamicaIIy over time, as query results are cached or purged
its local cache. by the clients. We now consider the effects of the differ-
ent events that may occur in the system, in the context
of a sample concurrency control scheme defined below in
Sect. 4.1. The architecture of a client-server system support-
e|T°1g predicate-based client-side caching is shown in Fig. 2.

Definition 3: A liberal cache description.CD; for the ith
client C; is a set of zero or more predicat®s such that the
union of these predicates contains the union of the predicat
in the exact cache descriptiddCD; for the client. LetQF
denote the number of predicatesfi®’D;. Formally,
4.1 Concurrency control
LCD; = {P§ | 1< k < QF},
Several different forms of concurrency control can be em-
where ployed in our caching scheme. For the purposes of this
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CLIENT 1 CLIENT 2 CLIENT 3

can observe that if a tuple was first read or written locally,
and subsequently locked at the server during a remote fetch
m W W or upon a commit request, then there is a window of time
between locally accessing the tuple and acquiring a lock on
[ oot | [ ooz | [ ccops | it at the_server where it may have been r_nod_ified by other
transactions. In order to prevent synchronization errors due
to network delays, the server must ensure that the client has
seen its most recent notification message before the commit
is confirmed and the deferred updates are posted to the cen-
tral database after locking tuples as necessary. As discussed
in Wilkinson and Neimat (1990), this checking can be done
by assigning a sequential message number to every message
sent from the server to a client and by a handshake between
the client and the server before the commit is declared to be
successful. Notification messages are issued by the server
— upon each successful transaction commit, and these mes-
CENTRAL Queries and st sages may abort the current transactipn at a notified client if
DATABASE || P N its read/write tuplg sets or query predicates for locally eval-
Notifications Ubon commit uated range queries conflict with the updates at the central
database.

The above protocol thus handles cache hits and misses
differently — for hits, an incremental notification-bassmi-
section, we assume the following protocol. The scheme atoptimistic scheme is employed, whereas normal two-phase
tempts to minimize unnecessary aborts of transactions whilgocking is done at the server for all cache misses. The rea-
reducing communication with the server and is suitableson for the difference is that a cache miss always implies
for systems without overly contentious data-sharing among:ommunication with the server, which is utilized also to lock
clients [it is similar in many respects to the notify-locks- any fetched tuples. When a transaction commits or aborts, all
based cache-consistency algorithm studied in Wilkinson angocks held by it are released at the server and at the client.
Neimat (1990) for object ID-based caches]. We assumeHowever, cached tuples need not purged upon commit or
that the server supports conventional two-phase tuple-leveibort and may be retained in the cache for intertransaction
read/write locking, but it may or may not provide protection reuse. In order to maintain the currency of a cache cor-
against phantoms. rectly, the server must be kept informed of all point- and

Whenever queried data are locally available, a client oprange-query predicates cached by the client past a transac-
timistically assumes that its cache is up to date — the transtion boundary (i.e., past a commit or abort), which in effect
action operates on local copies of tuples, and locks are naojct as predicate-based notify locks. If transactions are serial-
obtained immediately from the server, but only recorded lo-izable in the original database, they will remain serializable
cally at the client (however, as we discuss below, the schemg this concurrency control scheme (a formal proof is beyond
is not purely optimistic). If a query is not computable locally, the scope of this paper). Also, if the original database pro-
it is submitted to the server. A request for remote query exwides protection against phantoms (e.g., by locking an index
ecution is accompanied by any local (uncommitted) updatesr key range), the same behavior carries over to this scheme.
of which the server has not yet been informed. Tuples acin fact, phantom protection is provided for all locally cached

cessed by the remote query and by the (uncommitted) uppredicates in our scheme through predicate-based notifica-
dates are read-locked and write-locked, respectively, in thejon.

usual two-phase manner at the server during remote fetches.

The uncommitted updates are also recorded as such by the

server and made visible to the remote query as it exeéutes4.2 DML operations
A remote-query submission may also be accompanied by

deferredread-lock requests for tuples read locally since theBelow we consider the effects of various DML operations
last communication with the server. Such locking can helpthat may be performed by clients. The discussion below is
reduce aborts of transactions due to concurrent conflictingvith respect to the cache at thith client C;. Apart from
updates by other clients and subsequent notlflcatlon withoubML operations, space constraints may prompt a client to
incurring much extra cost (since they are “piggy-backed” onpurge some tuples in its cache and alter its cache description.

remote requests). Note that these lock requests are only forhe effect of such an action in discussed briefly in Sect. 5.
those tuples that have been accessed via the local cache and

not through a remote fetch within the transaction.
A commit at the client sends all remaining updates (and4.2.1 Query submission at cliefit;
possibly any deferred read-lock requests) to the server. One

2 Transmission of local updates along with remote queries is necessarconSider a SELECT-PROJECT-JOIN query with predicate

since a query within a particular transaction must be able to see the effect that is submitted at clienC. If Q is a point=query
of all (as yet uncommitted) updates made by that transaction when thepredmate on a single relation, or can be split up into point
query is evaluated at the remote server site. queries on several relations, then the tuple(s) satisfging

Cal

QR QR QR

sc /

ALCDl‘ ‘LCDZ‘ ‘LCD3L

I QU

SERVER

Fig. 2. Architecture of a predicate-based client-side caching system
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may be found using locally defined and maintained indexesnissing tuples inQ are fetched from the server after lock-
(see Sect.5.2) on primary keys of the relation(s) cached aihg them and locally cached:CD; may be optionally aug-
C;. If the tuples are found and have all selected attributeamented. Tuples satisfyin@ are then deleted locally in the
visible, we use them. If not, we have to determine whethercache, but marked asmcommitted The server is informed
the tuples exist, i.e., whethé} is contained in the scope of of the deleted tuples upon transaction commit (or earlier, if a
the cache, so we treat it as a range query and handle it aemote query is submitted before the commit). Timeom-

described below. mittedtag is removed from the cache if commit is successful.
If @ is a range query predicate, thén is compared If the predicate@ is cached past the transaction boundary
againstCCD;. Three different situations may arise: (even though its tuples may have been deletéd)) must

. , . . be updated before the locks on the tuples are released.
B g é%,cﬁr?#;azfsgrogﬂ ':LTelel;ms%rt]iscf):/irt%e(i?raer?lc):a;rf n Retaining predicates i€'CD; whose tuples have been
v ' P y geleted can potentially reduce query-response times at the

locally accessed in the cache. There is no effect on either,. ) S
CCD; or SCD. client by allowing local determination of the fact that a sub-

A e . . sequent query result is empty and avoiding a trip to the
grelﬁi::r;?:g?rrggg@?ﬁ:rlﬁgI:sgi7n7)th(i)sf ::gieungt fet?:_ remote server. For example, let all EMPLOYEE tuples with

motely fetched from the server. As outlined in the con- deptid > 300 be cached a’;. If EMPLOYEE tuples sat-

isfying deptid = 500 are now deleted by a transaction, the
gj(:arcel:]t?gnci%nggéopnz()tgﬁ% dagovaer,] thtﬁ rl?a Zuliitaflor rf;?joéiassertion that the cache holds all EMPLOYEE tuples with
b y any tup y the propertydeptid > 300 is still valid after the deletion.

updated by the transaction since the last communicatior))\ : : o
: : subsequent query with predicateptid = 500 can be
with the server. The server locks the tuples appropriately valuateg Iocall?/ pr%ducing 0 tuplesF;n its result set.

and also records the uncommitted updates before execut:
ing @, locking the tuples accessed by it, and returning
the result taC;. The new tuples are placed in the cache at
C;, with CCD; beingoptionally augmented. If these tu-
ples are cached past the transaction boundaty) must

be updated before the locks on the tuples are released

4.2.4 Tuple update at cliert;

gtone or more tuples are updated at cligrit using query

: . dicate@, then the actions taken by cliedf; and the

the server (upon transaction commit or abért). pre : - v

— @ is partially contained in the union of the predicates in effects onC'CD; and SCD are similar to the deletion case
CCD;. As in the preceding case, the query can be eXe_above, except that the update may move some tuples from

cuted remotely at the server. One possible optimizationOne cached predicate to another predicate (which may or may

is totrim the query before submission to eliminate tuples an:tlre%ad% gjc%afﬁelgs@t;)r’edsgsglgclin%euF())?wréi t?r?eaéglrgmlz;on
or attributes available locally at the client. Tradeoffs in- P ) P y P

L A . : of the transaction, either the individual tuples or a single
;ﬁ)ll\ggr Igetgtlizrzpe of optimization are discussed briefly modified predicatelescribing tuples after the updataistbe

inserted inSCD andmayoptionally be inserted int@'CD,;.

4.2.2 Tuple insertion at client; . . .
P ) 4.2.5 Transaction commit at cliedt;

When a tuple is inserted by a transaction running at client . . . o

C;, itis placed locally in the cache with amcommittedag. When a transaction commits at clie@t, the server is in-

If the transaction later commits successfully at the server, théormed of all local updates that have not yet been commu-

new tuple is inserted into the central database, incorporateficated to it. The propagation of updates can either be in the

into SCD, and theuncommittediag is removed a€;. We form ofupdat_ed tuples and (_:orrespondlng update commands,

have assumed here that the new data are likely to be pertineRf for large-sized updates, in the form of update commands

for C; and hence cached by it past the boundary of the®nly (to minimize network traffic and message-processing

current transaction. The insertion of this tuple may also affec€0Sts)-Ci is notified of the result of the commit operation.

caches of clients other thaf (this case is discussed below). If the commit was successful (according to the concurrency
control protocol), theuncommittedtags on tentatively up-

dated data are removed from the cachey otherwise,
4.2.3 Tuple deletion at cliert; the changes are undone. In either case, all locks held by the
transaction are released at the seraéter the server has up-

Assume that one or more tuples are deleted at clientsing ~ dated.SCD to record all new predicates and tuples cached
query predicat&). If all tuples satisfyingQ are not locally by the client beyond the transaction.
available in the cache, the procedure outlined in Sect.4.2.1

for a selection query is followed fo€. All or only the
4.2.6 Tuple insertion at client’;
3 Note that it is useful to record that a predicate is cached even when
there are no tuples satisfying the predicate, since it can be used to determi . . . VR
locally that the result of a (point or range) query is empty. r§uppose thata trans.ac.tlon runn.mg at C"@WZ # J, Inserts
41t is not necessary to upda®CD at the time the tuples are fetched; a tuplet. The tu_ple IS '”Serte‘?' into the database when the
locking tuples at the server provides the usual level of isolation from con-CUrrent transaction at’; commits. The server checksCD

current transactions. to determine which clients other thaii; are affected by
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the insertion. Client’; will be notified of the change, along consist of primary keys of deleted tuples, or for large-sized
with the new tuple, ift is contained in somé, whereP € deletions, simply the delete command itself. If cligrt is
LCD;. If C; is notified, it inserts the new tuple into its cache notified, it must execute the delete command on its cache.
whenever it satisfies any predicate rCD;, and discards No changes are required t6CD; or LCD;. A transaction
it otherwise. No changes are necessary to eittietD; or running atC; must be aborted if any tuples it read locally
SCD. Alternative courses of action are also possible, e.g.get deleted due to the notificatidn.
the client may choose to extend a nearby existing predicate
to include the new tuple, or flush fro@CD; all predicates
invalidated by the insertion (e.g., join predicates). 4.2.8 Tuple update at clierdt;
According to the concurrency protocol adopted in this
paper, a transaction running at cligfif must be aborted if If one or more tuples are updated using query predi¢ate
the inserted tuple falls within the purview of any cached at clientC;, i # j, then the updated tuples, or simply the
predicate that has been used to evaluate locally one ocorresponding update command for large-sized updates, are
more queries within the transaction. lAzy strategy may sent to the server when or before the transaction issues a
be adopted by the client in processing notifications, in thattommit request at the client. The server posts the changes
those messages that apply to relations and predicates not yet the central database if the commit is successful. The no-
accessed by the current transaction may be deferred until atfication procedure is more complex than that for the delete
access actually happens. Such pending notifications can bmase above, since the values of the changed tupleshbesth
processed after the transaction commits and before the nefbre and after the update must be considered to determine
transaction is allowed to commence. which client caches are affected. The set of clients to be no-
Note that a new tuple may be sent over to a client be-ified by the server depends not only on the query predicate,
cause it possibly participates in a cached join result. Conbut also on the updated attributes.
sider a client that has cached the join result EMPLOYEE If the number of updated tuples is not too large, the up-
DEPARTMENT through the join-query predicate EMPLOY- date can be treated as a single delete command, followed
EEdept id = DEPARTMENTdept id on the EMPLOYEE by insertion of new tuple$.The procedures outlined above
relation. Also assume that the client has no other cachedbr deletion and insertion then apply. If many tuples are af-
predicates for the EMPLOYEE relation. Now suppose thatfected by the update, then this option may be too expensive.
a new EMPLOYEE tuple with a non-NULHdeptid field is In this case, if amodified predicatalescribing tuples after
inserted at the server. Whether a notification is absolutelythe update can be easily computed, updates irrelevant for a
necessary is dependent on the differential join involving theclient may be screened out by comparing its cached predi-
new tuple. The differential join may either be computed atcates with@Q and the modified predicate [exact algorithms
the server prior to issuing a notification, or the server mayappear in Blakeley et al. (1989)]. Notification may again be
instead choose to liberally inform the client of the new tu- in terms of updated tuples or simply the update command
ple. One option at the client is to invalidate the join result that is to be executed on the local cache. In the latter case,
(the invalidation may be temporary, with possibly a differ- additional checks must be made to ensure that the update is
ential refresh upon demand from a subsequent query). Alautonomously computab(Blakeley et al. 1989) at the local
ternatively, if all DEPARTMENT tuples are locally avail- site if invalidation of cached predicates is to be avoided. For
able (possibly from other cached query results involving theexample, consider a cliedt; that caches the query predicate
DEPARTMENT relation), then the differential join igu-  salary > 50000 for EMPLOYEE tuples. Now suppose that
tonomously computabi@lakeley et al. 1989) at the clieht. the salary field of all EMPLOYEE tuples is updated, say,
The new EMPLOYEE tuple is either discarded or cached,by giving everyone a 5% raise. The entire update command
depending on whether the result of this local computation iscan be propagated t6; and be executed on its cache. How-
empty. A desired maintenance method for a cached quergver,C; must still ensure that it has all tuples satisfying the
result may be specifiedl priori to the server and be upgraded cached predicatefter the update is effected. That is, tuples
or downgraded as access patterns change over time. that now satisfysalary > 50000 as a result of the update
either must have been present in the client cache before the
update or else they must now be transmitted to the client;
4.2.7 Tuple deletion at client’; otherwise, the cached predicate must be invalidated.
Note that all updated tuples that no longer satisfy any
Let one or more tuples be deleted using query predi€ate cached predicate should be discardedy or else LCD;
at clientCj, ¢« # j. Tuples satisfyingl) are deleted from at the server must be augmented to include them. Precise
the database when the current transactiorC’atcommits  screening of each updated tuple with respect to the cache
successfully. The server must again notify clients other tharcan be done locally at a client site instead of at the central
C; that are affected by the deletion, by comparigwith server, thereby distributing some work in maintaining cached
SCD. Client C; will be notified of the deletion ifdP ¢ results to individual clients. The tradeoff is between local
LCD; such that Q@ N P # ¢). The notification message may computation as opposed to global communication.

5 The tuples corresponding to the invalidated predicates may or may not 7 We allow negated terms in query predicates, but do not consider queries
be removed immediately from the cache. They may still be used individuallyinvolving the difference operator.
for answering point queries locally. 8 A deletion-insertion pair will work as far as the cache maintenance

6 Note that detection of such autonomously computable updates must balgorithms are concerned. However, the separation of updates into deletions
based on the exact or conservative client-cache description. and insertions can confuse constraints and triggers.
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5 Design issues and tradeoffs at a client 5.3 Effective management of space

A client must locally examine and evaluate queries, as wellwe briefly consider the various issues in managing cached
as process update notifications from the server. We conside(iples at a client site. Further work remains to be done in

below some performance tradeoffs and optimization questhis area. We us€'CD in this section to denote the cache
tions that pertain to a client site. Details of these issues arglescription at any client in the system.

beyond the scope of this paper.

- 5.3.1 To cache or not to cache
5.1 Determining cache completeness

The cache description at a client, though conservative, ma}l,lpon fetching in a new set of tuples from the server, a client

grow to be quite complex as more query predicates are lo'> faced with a choice of whether or not to cache these tu-

cally cached. We useredicate=indexingtechniques (Sel- ples past the termination point of the current transaction. The

lis and Lin 1992) to efficiently support examination of a client performs an approximate predicate-based cost-benefit

client=cache description in answering the cachezcomplete"-malySiS similar to that outlined in Stonebraker et al. (1990)

ness question. Our predicate-indexing mechanisms are sinf® estimat.e the long-term penefits of caching the tuples in the
ilar to those proposed in Hanson et al. (1990), with ex-New predicate. The algorithm is based on the LRU scheme

tensions to handle general range=query predicates. A onénd extended to take into account the sizes of cached tu-

dimensional index is dynamically defined on an attribute ofplIe stets and atnt|C|patec(jj tfutgre tuiagg ptatterns.' dThetfoIIowmtg
a relation whenever cached predicates can be organized e‘f}-\'etn Paft’?‘me erstne;:‘ ?j t'e athen In ?\ cc()jn5| ?ri lon (nto €
ficiently along that dimension. Predicate-indexing scheme at one-time costs ot updaling the cache descriptions, stor=

Ing the tuples in the cache, etc. are not taken into account,

will be examined in detail in our future work. . thev d t affect the | ¢ benefits):
Since the major motivation for our caching scheme jsSihce they do not aftect the fong-term benet S):

effective reuse of local data, it is important that the pro- g sjze of the result set for thih cached predicat®,
cess of determining cache completeness be intelligent. Norz:. cost of fetching tuples satisfying; from the server
mally, query-containment algorithms do not take into ac- .- Cost of accessing and reading the tuple®;jrif cached
count application-specific semantic information like integrity locally

constraints. Consider the cached join result of the query;.. Cost of maintaining the tuples ifi; if cached locally

jected out. If the client encounters a subsequent query fo;ji: Frequency of updates by other clients that affect tuples
all EMPLOYEE tuples, the general answer to the query-  covered by predicat®,

containment question is that only a subset of the required ’

tuples is cached locally. However, if it is known that all The expected cost per unit timé&;, of the caching the
employees must have a valid department, then there arwples inith predicatep; is:

no dangling EMPLOYEE tuples with respect to this join, . .

and the join predicate EMPLOYE#eptid = DEPART- 7, = {”RﬁuiUi if P; is cached
MENT.deptid on EMPLOYEE may simply be replaced by rili if P; is not cached
the predicate “TRUE” (i.e., all EMPLOYEE tuples appear
in the join result). Although using general semantic informa-
tion may be too complex, simplification of query predicates
using such referential integrity and non-NULL constraints B; = r; F; — (r; R; + u; U;).
on attribute domains can be quite effective. Techniques de-
veloped for semantic query optimization (Bertino and Musto
1992; King 1984) are applicable in this context.

Thus, the expected benefi}; of caching predicate’;
locally is:

Notice that the above analysis represents only a client’s

view of the costs and benefits of caching a predicate. A cost

model that applies to the server or to the entire system may

be developed along similar lines. Work in progress addresses

5.2 Evaluation of queries on the local cache the formulation of such analytical cost models to estimate
response times and server throughput.

Queries may need to be executed locally in the cache, e.g.,

to answer a query posed by a transaction or in response to

an update command in a notification message. It is not a re5.3.2 Reclaiming space

quirement of our system that all cached tuples be in the main

memory. We also do not maintain cached query results inWhenever space needs to be reclaimed, predicates and tuples

the form of individual materialized views (as mentioned ear-are flushed using a predicate-ranking algorithm. ik IV;

lier, they are mapped into sub-tuples of database relationspf predicateP; is defined as the benefit per unit size:

Thus, efficient local evaluation of frequent queries involving ,, _

joins or many tuples may require that appropriate indexes be

constructed locally at a client site for either main memory Cached predicates may be sorted in descending order of their

or secondary storage. These local access paths will dependnks. At any stage, only those predicates in the cache that

on data usage at individual clients, and may in particular benhave ranks equal to or higher than a certain cutoff rank may

different from those in place at the server. be kept in the cache.
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Once a predicaté’ is chosen for elimination, a delete The query predicate can in the first case tienmed (by
command with query predicat® can be executed on the removal or annotation of locally available parts) before sub-
cache to determine which tuples are candidates for deletionmission to the server. Trimming a query can potentially re-
Not all tuples satisfyingP can be deleted, however, since duce the time required to materialize a query result at the
a tuple may be purged from the cache only if it does notclient. If the query predicate overlaps multiple predicates in
satisfy any cached predicate for the relation. For this rea- CCD, then the query may be trimmed in more than one way.
son, a reference count is associated with a cached tuple tb is an optimization decision whether and how to trim the
indicate the number of predicatesdiCD that are currently — query, involving factors such as cost estimates of evaluating
satisfied by it. A tuple may be flushed from the cache onlyand transmitting the trimmed versus untrimmed result sets,
when its reference count is 0. Also, recall that tuples re-communication costs, and update activity on the cached data.
trieved through point queries may be accessed directly via &he decision may be left to the server (by annotating as “op-
primary key index instead of'CD. Individual tuple usage tional” parts of a submitted query that are locally available),
must be tracked using standard LRU techniques to reclainwith the client appropriately skipping or performing the lo-
their space. cal evaluation step. Some strategies for query trimming have

been explored in the context &rAID (Sheth and O’Hare
1991).
5.4 Maintaining theC'CD

Reclaiming space based on predicate usage as discussg® Query augmentation
above will result in predicates being purged from the client-

cache description. Th¢'CD mustbe changed to account query augmentation is an interesting optimization strategy
for purging of tuples and predicates, whereas such a changgat can be explored in our caching scheme. A query pred-
may optionally be re_zflected on th8CD at the server. Pres- jcate or the set of attributes projected by a query may be
ence of extra predicates at the server can at most lead tQgmentedy a client before submission to the server so as
an increase in irrelevant notifications to the client. Henceig make the query result more suitable for caching. Possi-
updatingSCD in this case can be treated as a low-priority pie penefits of query augmentation are: (1) simplification of
task to be performed at times of light load and preferablythe query predicate and cache descriptions at both the client
before issuing too many notifications. _ and the server, thereby reducing costs of determining cache

Whenever new tuples are cached, the associat€®)  ompleteness and currency; (2) local processing of a larger
may optionally be augmented with one or more predicateshymper of future queries, due to pre-fetching of tuples and
that describe all or a subset of the new tuples. These tuplege augmented predicate; (3) augmenting a query result to
may remain in the client cache irrespective of Whether thenclude any missing primary keys of participating relations,
CCD is updated, as long as €D is augmented to include  thys allowing a user query to conform to the restrictions
the tuples. This method ensures correct operation, since a#nposed on our cached query predicates for reasons of im-
necessary notifications Wi|! be generqted._ plementation efficiency.

_ Additionally, conservative approximations may be ap-' A major performance benefit of adding relation keys to a
plied to the client-cache description as the number of cachequery is that cached information need not be stored in dupli-
query predicates increases and as access patterns change Q¥gfe or in the form of individual query results. Tuples to be
time. For example, if a cached predicdtéhas not been used cached may be split up into constituent subtuples of partici-
in a certain period of time, it may be dropped fraffCD  pating relations (possibly with some non-key attributes pro-
using an LRU policy (or reduced to a more conservativejected out) and stored in local partial copies of the database
version). However, individual tuples satisfying may or  re|ations, thereby simplifying their access and maintenance.
may not be flushed from the client cache, although reference  The main costs of query augmentation are: (1) possibly
counts will need to be decremented by 1 for these tuplessjgnificant increase in result-set size and response time for
these tuples can be locally reused until resource constrainig,e query and (2) wastage of server and client resources
prompt the client to inform the server thatis to be flushed iy maintenance and storage of information that might never
from SCD Thus, because of our liberal notification scheme,pe referenced by future queries. The cost-benefit analysis
only asynchronous coordination with the server is requiredyy query augmentation involves examining the nature (e.g.,
for purging of predicates from &CD. Incorrect operation  sglectivity, complexity, and size) of the query predicate, the

can never result as long as all operations on all client angyata distribution, size and access paths of the relation, space
the server cache descriptions always obey the constraint 5y4jlability in the cache, etc.

(Vi, 1 <1i <n)(CCD; C ECD; C LCD;). As a simple example of a situation where query augmen-

tation is appropriate, consider the query predicatet id #

100 on the relation DEPARTMENT. Suppose that there are
5.5 Query trimming 50 tuples in the current instance of the DEPARTMENT re-

lation, and that they are subject to change very infrequently.
Whenever cached predicates partially overlap with a queryThe query predicate in this case may be augmented to re-
predicate at a client, there are two possible courses of actiormove the restriction odept id. Thus, the client fetches all
The query may either be executed partially in the local caché0 tuples intead of 49; the cost of transmitting and storing
and the missing tuples obtained through a remote fetch, oone extra tuple is negligible, as is the maintenance cost in
the query can be submitted to the server in its original form.this particular scenario. Savings include faster execution at
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the server and faster query examination at the client, sincehould be decremented by an amount that is one less than
the check step is eliminated. The pre-fetch will also help an-this number in order to correctly account for predicate over-
swer any subsequent queries involving all DEPARTMENT laps. This scheme incurs a one-time overhead at the time of
tuples locally, e.g., the tuples satisfyidg-ector = ‘Smith’. predicate merging. The expense may be deemed to be unnec-
essary in a scenario where predicates are frequently merged
but not purged as often, in which case the following alterna-
5.7 Predicate merging tive scheme may be employed. gkedicate=merge history
graph may be maintained for each client cache to record
The problem of handling large number of predicates in awhich predicates were merged to produce new predicates.
cache description may arise at both client and server sited¥hen space needs to be reclaimed by purging a predicate
We suggest predicate merging as an optimization method téhat was previously generated from other predicates, the con-
address this issue. Two or more predicates in a cache descrigtituent predicates can be individually executed to decrement
tion may be replaced with a single predicate whenever théyy one the reference counts of cached tuples that they each
mergedpredicate is equal to the union of the spaces covere@atisfy. Following the usual rule, a tuple can be removed
by the individual predicates. In fact, since the cache descripfrom the cache if its reference count drops to zero during
tion at a client can be conservative, the merged predicate ahis process. The flushing of a predicate fror€@D must
a client site can be a subset of the union of the constituenalso update the predicate-merge history graph as necessary.
predicates. Similarly, the server cache description is allowed
to be liberal, and therefore a merged predicate at the server o
can be a superset of the union of the individual predicates® Design issues and tradeoffs at the server

Such predicate merging an_d _simplification can pro_duce qhe server supports a number of clients and manages the
tmhoreﬁc_:o_mpact fcache.d_escrlpno.n an;jtﬁanl_thetreb% 'n;prov%entral repository of data. It executes remote queries sub-

ee |C|en$¥ ot.examTngﬂ?liﬁnesl.a i N E'ﬁ? anad o p_rr?]'mitted by clients, controls access to shared data, maintains
cessing notincations at bo e client an € SEIVer. TN%jient cache descriptions, and generates notifications. The

tradeoff is that communicafion betwee.n the qllents and th%erver performance therefore determines to a large extent
SErver may increase due to conservative or liberal approXisna overall performance of the system. Below we consider
mations applied to the cache descriptions in the process q ome major issues at the server site

merging predicates.
As an example, consider a cached predicate

Py : (100< dept id < 300) AND (hiredate > 1980) 6.1 Concurrency control

for the EMPLOYEE re|ati0n' |f two new predicates We W0u|d ||ke to emphasize that many diﬁerent forms Of
concurrency control can be supported in our framework, pos-

P, : (dept id > 100) AND (hiredate < 1985) sibly even varying by client depending on the requirements

and specific to a site. For example, either two-phase or opti-
mistic locking could be used, with locks being specified in

Ps: (dept id > 200) AND (hiredate > 1975) terms of predicates or object identifiers. Using notify locks

are subsequently added to the cache description, the unidf conjunction with an optimistic scheme adds another di-
of the three predicates can be reduced to a single equivalefR€nsion, in that the behavior of a purely optimistic scheme

i becomessemi-optimistic since a transaction may abort be-
predicate . . . s o X
. fore it reaches its commit point if notified of committed
Py=P,UP,U P =dept id > 100, updates to the objects in its read/write set. Using techniques

Well-established algebraic techniques exist for mergingoum“?d in Boral and Gold (1984), the correctness of various
predicates — using distributive, associative, and commutac®mpinations of these strategies can be proved.
tive laws of the boolean AND and OR operators, two or !N this paper, we have assumedsemi-optimisticcon-
more predicates may be replaced with an equivalent singl€urrency-control scheme for cache hits (see Sect.4.1). For
one. However, purely algebraic techniques have exponentieﬂ“e_”ts Wlth_ contentious data sharing, one p_OSS|bIe modifi-
complexity, since all possible subsets of the set of predi-Cat'O” to this scheme is to reduce the optimism and always
cates have to be considered in determining the applicabilityocK all locally accessed objects at the server. Thus, a query
of an algebraic rule. Future work will investigate the use of would not be re-executed at the server if the result is locally

auxiliary indexing mechanisms to speed up the process ofivailable, but the objects involved in answering the query
detecting mergeable predicates. would be locked at the server. Note that it is possible to

Now consider the effect of predicate merging on tuple-do such locking, since we have object IDs or relation keys

reference counts that are maintained for space managemelfl‘P.r all cached tuples. Predicate-based notification would still
If there is no overlap among the predicates being merged, ne required to support incremental refreshing of the cached

special action is necessary; otherwise, reference counts mudgta.

be appropriately adjusted for those tuples in the intersection

of any two or more predicates being merged. One way of upg Issuing liberal notifications

dating reference counts is to determine for each tuple in the

final merged predicate the number of constituent predicate¥he server uses liberal descriptions of client caches to gen-
that are satisfied by it. The reference count for such a tuplerate notifications. If notification is over-liberal, it results in
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wasted work at client sites, and if too detailed, may havequery space with a region where caching is disallowed for
prohibitive overhead at the server. Hence, it is importantthe client.

to control thedegreeof liberal approximation at the server.

Ideally, the server should be able to adapt the degree of ap- )

proximation according to its current workload. Lighter loads 7 Conclusions

may allow precise screening of relevant updates with respect

to cached predicates, while notification may be more liberal n t?]i_s pabper, (\j/ve have introdt:jgedtthe Xoncept of dclier:t-sidg
at times of high load in order to distribute some of the work caching based on query predicates. A major advantage IS

involved in maintaining cache currency to the clients. In in_?sstpmatlve ac&;ess :10 (;h_e fcontetnts cif a cach(;a, a!{lowmg eft-
stances of liberal natification, it is assumed that precise up—e.c Ive reuse or cached information. incréased autonomy a
date screening is more expensive than communication wit lient sites, less network tfaﬁ'c’ and better scalability are a
a client. Future work will investigate the tradeoffs between ew other expected bene_ﬁts over_object ID-based caching
chemes. We have examined design and performance ques-

the precision of update screening performed by the servet? lating. t h let q h
and the amount of communication with clients. lons relating to cacheé completeness and cache currency

Predicate indexing and merging mechanisms similar toin order to determine the practicality of using our scheme

those at client sites can be employed at the server to facili" @ dynamic caching environment. Approximate reasoning

tate generation of notifications from ti$~'D which, though on cache_ descripti_ons, suitable query processing and upd_ate
liberal, may grow to be arbitrarily complex with increas- Propagation techniques, and predicate indexing and merging

ing number of clients. Indexes to speed up the examinatiorﬁneChanlsms will be employed to furnish our scheme with

of SCD may use a “coarse” grid to partition the domain goog dynamic pfrolpertlias. tai t be based d
space of a relation. A certain partition can be (liberally) ny successiul impiementation must be based on a goo

marked as being in use by the appropriate client wheneve?Orlceptual structure and de§|gn. In this paper, we haye at-
a cached point or range-query predicate intersects the par empted to addfe.ss some major conceptual and design issues.
e are developing an experimental testbed to evaluate the

tion. A more adaptable approach is to mark a grid partition”.

with references to cached predicates that overlap with it an |ab|I(|jty lc.’f otur_gpproaﬁh, usmgt a p;ototypel otf a plr%dltcaée—
to maintain separately exact descriptions of all query pred- ased client-side caching system for a rélational database

icates, including which clients cache them. Association ofwith four clients and a central server. Detailed design of our
predicate references instead of client identifiers with a gridEXpe”mer;LS 1S CLerrentIy n pr?grlttszss. ?'mmat'%n StUd'ﬁs to
partition would permit detailed examination of cached pred_compare € performances of ajternalive caching schemes
icates to be done in times of light load. During heavy Ioads,aga'nSt ours for larger numbers of clients and queries are

: ; : .~ _-also planned.
checking the actual predicates may be skipped, resulting it .
an even more liberal notification to a client. Apart from the planned performance studies, many other

important issues remain unexplored in this paper. Work cur-

rently in progress addresses implementation questions on
suitable predicate-indexing techniques, optimization strate-
gies, performance tuning, local index creation, and effective
Ornanagement of space by a client. Development of analyti-

al system models, heuristics for effective conservative and
iberal approximations of cache descriptions, and intelligent
query-containment algorithms for determining cache com-
pleteness are topics for future efforts.

6.3 Caching privileges

To control replication of database hotspots, and to avoi
runaway notification costs at the server as the number o
clients increases, clients may be grantaghing rightsto a
relation or to a part thereof. Denial of caching rights to a
client implies that no naotification message will be sent to the
client when the given relation (or a specific portion of the
relation) is updated and the client is caching some tuples in ificknowledgementsiWe would like to thank Kurt Shoens, Gio Wiederhold,
past the boundary of the current transaction. The client maﬁmd thg anonymous referees for th'eir he_lpful comments. We.alsc.) thank
reuse such cached data with the understanding that the datfﬁeﬂ;:rc'ﬂﬁ] Hamon for many useful discussions. This work was inspired by

. 2 g issues introduced in the contextiefv=objectsin the Penguin
might be out of date. If currency of the data is important, project (Barsalou et al. 1991).
the query should be resubmitted at the server.

Caching privileges may be specified statically if the ac-

cess pattern is knowa priori or can be anticipated. If the References
unit of specification of caching rights is an entire relation,
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