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Abstract. We propose a new client-side data-caching scheme
for relational databases with a central server and multiple
clients. Data are loaded into each client cache based on
queries executed on the central database at the server. These
queries are used to form predicates that describe the cache
contents. A subsequent query at the client may be satisfied
in its local cache if we can determine that the query result
is entirely contained in the cache. This issue is calledcache
completeness. A separate issue,cache currency, deals with
the effect on client caches of updates committed at the cen-
tral database. We examine the various performance tradeoffs
and optimization issues involved in addressing the ques-
tions of cache currency and completeness using predicate
descriptions and suggest solutions that promote good dy-
namic behavior. Lower query-response times, reduced mes-
sage traffic, higher server throughput, and better scalabil-
ity are some of the expected benefits of our approach over
commonly used relational server-side and object ID-based
or page-based client-side caching.

Key words: Caching – Relational databases – Multiple
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1 Introduction

This paper addresses the issue of data caching in client-
server relational databases with a central server and multiple
clients that are individually connected to the server by a lo-
cal area network. The database is resident at the server, and
transactions are initiated from client sites, with the server
providing facilities for shared data access. Dynamic local
caching of query results at client sites can enhance the over-
all performance of such a system, especially when the oper-
ational data spaces of clients are mostly disjoint. In effect,
such caching of locally pertinent and frequently used data
constitutes a form of dynamic data replication, whereby each
client dynamically defines its own data space of interest.

In typical commercial relational databases with client-
server configurations (Oracle 7 Server Concepts Manual
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1992), caching aims to avoid disk traffic and is done on the
server-side only, based on buffering of frequently accessed
disk blocks or pages. The assumption is that clients are low-
end workstations that are likely to be overloaded by local
data processing; their function is therefore limited to trans-
mission of SQL queries across the network to the server
and presentation of the received results to the user. How-
ever, with the continuing rapid growth in the performance of
workstations, the validity of this assumption becomes ques-
tionable. It is increasingly common to find clients that are
high-end workstations with the server being a mainframe
or a minicomputer. Such clients are capable of perform-
ing intensive computations on their own, using the database
as a remote resource that is accessed only when necessary.
Increased local functionality and autonomy can potentially
lead to less network traffic, improved utilization of local
computing power, faster response times and higher server
throughput, as well as better scalability.

Several techniques to provide caching facilities at client
sites using object IDs have been recently investigated (Wang
and Rowe 1991; Wilkinson and Neimat 1990). In these
schemes, storage, retrieval, and maintainance of cached ob-
jects at client sites are done based on object IDs. Such
caching can only support ID-based operations likeRead-
ObjectandUpdateObjectwithin transactions; an associative
query that accesses database objects using a predicate on a
relation or an object class, e.g., through a WHERE clause
in a SELECT-FROM-WHERE SQL statement, cannot be
handled locally in these systems. Similar observations can
be made for the page-based caches presented in Carey et
al. (1991, 1994) and Franklin (1993) – these approaches do
not address the question of associative query execution. We
believe this issue is very important for caching in relational
systems, where associative queries are common and are in-
deed one of the major reasons for their success.

Associative access may be supported in an object-ID or
page-based client cache by using indexes defined on the
database at the server, as is done in some object-oriented
databases. Relevant index pages can be used in either a cen-
tralized or a distributed manner to answer an associative
query. In the centralized scheme, index pages are managed
solely by the server and cannot be cached by clients. A
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client submits each associative query to the server, which
responds with a list of qualifying object IDs. The client then
locally checks its cache for object availability and fetches
missing data objects or pages as necessary. The centralized
index scheme requires communication with the server for all
index-based queries and index updates and may cause the
server to become a bottleneck in the system. A distributed
alternative is to allow clients to fetch, cache, and use in-
dex pages locally. This approach requires the enforcement
of a consistency-control protocol on index pages. Because
an index page relates to many more objects compared to a
data page, index pages generally have very high contention
and may be subject to frequent invalidation or update. Dis-
tributed index maintenance is therefore likely to be expen-
sive even in systems that have low-to-moderate update ac-
tivity, causing increased network traffic and slower response
times.

In our approach, database index pages need not be refer-
enced to answer associative queries locally. Instead, queries
executed at the server are used to load the client cache and
predicate descriptionsderived from these queries are stored
at both the client and the server to examine and maintain
the contents of the cache. If a client determines from its
local cache description that a new query is not completely
computable locally, then the query (or a part of it) is sent
to the server for processing. The result of this remote query
is optionally added to the client cache, whose description
is updated appropriately. On the other hand, a locally com-
putable query is executed by the client on its cached data
(the effect of such local query evaluation on concurrency
control is discussed later). Each cache can have its own
locally maintained indexes or access paths to facilitate lo-
cal query evaluation. To ensure the currency and validity of
cached data, predicate descriptions of client cache contents
are used by the server to notify each client of committed
updates that are possibly relevant for its cache.

Consider, for example, an employee database managed
by a central server, in which a table EMPLOYEE(empno,
name, job, salary, deptid) records a unique employee num-
ber and other details of each employee. Suppose that a
client caches the result of a query for all employees in
department 100, along with a predicate descriptiondeptid
= 100 for these tuples. Assuming that no update at the
server has affected these EMPLOYEE tuples, a subsequent
query at the same client for all managers in department
100, i.e., those employees that satisfy (deptid = 100) AND
(job=‘manager’), can be answered using the cache associa-
tively and without referencing server index pages or com-
municating with the server (except, if deemed necessary,
for purposes of concurrency control such as locking the
accessed objects at the server). Another query represented
by the predicatejob=‘manager’ asking for all managers can
only be partially answered from the cache. In this case, the
database could be requested either for all managers or only
for those not in department 100. This choice is an important
new optimization decision that can potentially speed up data
transmission and query processing.

The situation is more complex if the cached data are out
of date as a result of updates committed at the server. There
are several choices for maintaining the currency of data
cached at a client: automatic refresh by the server as trans-

actions commit updates, invalidation of appropriate cached
data and predicates, or refresh upon demand by a subsequent
query. Both automatic and by-demand refresh procedures
may either be recomputations or incremental, i.e., performed
either by cached query re-execution or by differential main-
tenance methods. Which method performs best depends very
much on the characteristics of the database system environ-
ment, such as the volume and nature of updates, pattern of
local queries, and constraints on query response times. In
our scheme, the maintenance method adopted is allowed to
vary by client and also for different query results cached at a
client. A client may have results of frequently posed queries
automatically refreshed and may choose to invalidate upon
update what is perceived as a random query result. Cached
query results may also have their method of maintenance up-
graded or downgraded as access patterns change over time.

Examination and maintenance of cached tuples via pred-
icate descriptions entail determining satisfiability of predi-
cates, and concerns about overhead and scalability may nat-
urally arise over reasoning with large numbers of predicates
in a dynamic and real-time caching environment. In this pa-
per, we attempt to address the practical design issues and
tradeoffs that pertain to this environment, with the concep-
tual structure as our primary focus.

To reduce the complexity of the reasoning process, we
allow approximate algorithms that might sometimes err caus-
ing inefficiency, but can never produce incorrect results. A
cache description used for determiningcache completeness
(i.e., whether a query can be completely or partially eval-
uated locally) need not be exact, and can beconservative.
In other words, data claimed to be in the client cache must
actually be present in it, so that local query evaluation does
not produce incomplete results; however, it is not an error if
an object residing in the cache is re-fetched from the server.
Another description of a client’s cache is maintained by the
server for alerting the client of changes to its cached ob-
jects (thecache=currencyissue). This description can also
be approximate, but the approximation can only beliberal
in nature, that is, occasionally notifying a client of an irrel-
evant update is not a problem, but failure to notify a client
that its cached object has changed can result in significant
error. The conservative and liberal approximations must be
applied carefully, so that they do not produce persistent neg-
ative impacts on system performance.

Apart from the above approximation techniques, we in-
vestigate local query evaluation by predicate containment
reasoning and several optimizations applicable in that con-
text. Predicate=indexingmechanisms are used to speed up
the examination of predicate descriptions and the retrieval of
cached tuples. Simplification of cache descriptions through
predicate mergingandquery augmentationcan help reduce
long-term caching costs (although the details of these tech-
niques are beyond the scope of this paper). The expected
net effect is a decrease in query response times and in-
crease in server throughput compared to other systems and
improved scalability with respect to the number of clients.
Appropriately extended, our scheme is also applicable in the
contexts of object-oriented and distributed databases with
client-server architectures.

The paper is organized as follows. Section 2 gives an
overview of related work. We present a formal model in
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Sect. 3, and describe the details of our scheme in Sect. 4.
Implementation issues and tradeoffs at the client and server
sites are addressed in Sections 5 and 6, respectively. Finally,
we summarize our contributions, discuss work currently in
progress and outline future plans in Sect. 7.

2 Related work

Our caching scheme is reminiscent ofpredicate locksused
for concurrency control (Eswaran et al. 1976), where a trans-
action can request a lock on all tuples of a relation that sat-
isfy a given predicate. Predicate lock implementations have
not been very successful, mainly due to their execution cost
(Gray and Reuter 1993) and because they can excessively
reduce concurrency. Two predicates intersecting in the at-
tribute space, but without any tuples in their intersection
for the particular database instance, will nonetheless pre-
vent two different transactions from simultaneously locking
these predicates. This rule protects againstphantoms, but can
cause fewer transactions to execute concurrently and thus
reduce overall system performance. In contrast, our caching
scheme supports predicate-based notification that is more
optimistic, in that two transactions using cached predicates
at different clients conflict (and are notified by the server of
the conflict) only when a tuple in the intersection of shared
predicates is actually updated or inserted. A similar scheme
called precision lockswas proposed in (Jordan et al. 1981)
for centralized systems.

Query containment (Sagiv and Yannakakis 1980) is a
topic closely related to the cache completeness question.
Query evaluation on a set ofderived relationsis examined
in Larson and Yang (1987). Efficient maintenance of mate-
rialized views has also been the subject of much research
(Blakeley et al. 1986; Ceri and Widom 1991; Gupta et al.
1993) and is related to the cache currency issues examined in
this paper. For example, our update notification scheme in-
volves detecting whether an update has an effect on a client
cache, and this question has much in common with the elim-
ination of updates that are irrelevant for a view (Blakeley
et al. 1989). The above techniques of query containment
and materialized view maintenance, though relevant for our
scheme, have mostly been designed for relatively static sit-
uations with small numbers of queries or pre-defined views.
Performance problems in handling large numbers of dynamic
queries and views in a client-server environment have not
been considered in these papers.

As noted in the Introduction, client-side data caching
has been investigated in several recent studies (Wilkinson
and Neimat 1990; Carey et al. 1991, 1994; Wang and Rowe
1991; Franklin et al. 1993; Lomet 1994; Adya et al. 1995).
However, the issue of associative query execution, which is
an important consideration for relational databases, has not
been examined in any of the above works.

Among other related work, Roussopoulos (1991) pro-
poses a view-caching scheme that uses the notions ofex-
tended logical access pathand incremental access meth-
ods. A workstation-mainframe database architecture based
on view cachetechniques is described in Roussopoulos and
Kang (1986). Simulated performance of related schemes in
a client-server environment is studied in Delis and Rous-

sopoulos (1992). In the “Enhanced Client-Server” system
investigated in this work, query results retrieved from the
server(s) are cached on local disks of client workstations.
Update logs are maintained by the server(s), and each query
against cached data at a client results in an explicit refresh
request to the server(s) to compute and propagate the rele-
vant differential changes from these logs. Rather predictably,
Delis and Roussopoulos (1992) report that fetching incre-
mental update logs from the server(s) was found to be a
bottleneck with increasing number of clients and updates and
examines a log-buffering scheme to alleviate the problem. In
contrast, we follow an incremental and flexible notification
strategy at the server and attempt to split the workload of
refreshing cached results more evenly among the clients and
server.

A caching subsystem that can reason with stored rela-
tions and views is proposed in theBrAID system (Sheth
and O’Hare 1991) to integrate AI systems with relational
DBMSs. Some aspects ofBrAID that pertain to local query
processing, such as query subsumption and local versus re-
mote query execution, are very relevant for our system.
However, consistency maintenance of multiple client caches
in the presence of database updates is an important issue not
addressed in this work. A predicate-basedpartial indexing
scheme for materialized results of procedure-valued relation
attributes was outlined in Sellis (1987). The ideas are appli-
cable in conventional database systems also, but were not
developed and explored in that context, or in the context
of client-server architectures. The work of Kamel and King
(1992) deals with intelligent database caching, but is meant
for applications that have a predetermined set of queries
requiring repetitive reevaluation, such as for integrity con-
straint checking.

In the area of natural languages, queries are typically
issued in context, allowing elliptical expression, such as
“Where is the meeting that you are attending?” followed
by “How long are you staying there?” or “In which hotel
are you staying?”

The work of Davidson (1982) considered these elliptical
queries and what they mean for databases, since the context
is necessary to have well-formed queries. King (1984) used
the knowledge of context as an opportunity for optimization,
as formalized here, taking advantage of the data cached from
earlier queries to reduce the search space for the elliptical
successor queries, much in the spirit of this work.

Rule systems for triggers and active databases (Hanson
and Widom 1993) are related to our notification scheme,
in the sense that for such systems efficient identification of
applicable rules is desired for each database update. Such
rules are generally specified in thecondition-actionor event-
condition-action format, where thecondition part is ex-
pressed as a predicate over one or more relations. Hence,
detection of firing of a rule involves determining satisfiabil-
ity of predicates, and efficiency issues similar to ours arise
for such systems. One difference is that for our caching, no-
tification by the server can afford to be approximate as long
as it is liberal. Additionally, our notification scheme has the
capability of directly propagating certain update commands
to relevant clients for local execution on cached data, in-
stead of always propagating the tuples modified by the up-
date. Therefore, unlike rule systems in active databases, we
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require that the notification system employed by the server
handle not only single modified tuples, but also general pred-
icates involved in update commands.

3 Our approach

We propose a predicate-based client-side caching scheme
that aims to reduce query-response times and network traffic
between the clients and the server by attempting to answer
queries locally from the cached tuples using associated pred-
icate descriptions. The database is assumed to be resident at
the central server, with users originating transactions from
client sites. Each client executes transactions sequentially,
with at most one transaction active at any time (concurrency
control of simultaneous transactions at individual clients can
be incorporated in our scheme, but is not considered in this
paper).

3.1 Class of queries

Queries specify their target set of objects usingquery pred-
icates, as in the WHERE clause of a SELECT-FROM-
WHERE SQL query. We allow general SELECT-PROJECT-
JOIN queries over one or more relations, with the restriction
that the keys of all relations participating in a query must be
included in the query result. We feel this is not overly re-
strictive, since a query posed by the user that does not satisfy
this constraint may optionally beaugmentedby a client to
retrieve these keys from the server. User-transparent query
augmentation (discussed in Sect. 5.6) is in many cases a vi-
able technique for reducing long-term costs of maintaining
cached query results. One major performance benefit is that
tuples need not be stored in duplicate. Query results to be
cached may be split up into constituent subtuples of par-
ticipating relations (possibly with some non-key attributes
projected out), and stored in local partial copies of original
database relations.

Transactions may also execute insert, delete, and update
commands on a single relation. Insert commands that use
subqueries to specify inserted tuples are not considered in
this paper. Our scheme can be easily extended to handle
such commands, and future work will explore this issue.

Query predicates specified as above are classified as ei-
ther point=queryor range=querypredicates. A point-query
predicate specifies a unique tuple (that may or may not exist)
in a single relation, by conjunctively specifying exact values
for all attributes that constitute its primary key, and possi-
bly values for other non-key attributes as well. Point=query
predicates arise frequently during navigation among tuples
of different relations using foreign key references, e.g., a
query about a tuple in the relation DEPARTMENT(dept id,
deptname, director) based on the matching value in the
foreign keydeptid of an EMPLOYEE tuple. In contrast, a
range=query predicate over one or more relations specifies
either a single value or a value range for one or more at-
tributes, and in general has zero, one, or more tuples in its
target set. For example,salary ≥ 50000 is a valid range-
query predicate on the EMPLOYEE relation.

Note that a point query is a special case of a range query;
we distinguish between the two only because they are pro-
cessed somewhat differently at the implementation level for
reasons of efficiency. A query predicate with a join condi-
tion, e.g., EMPLOYEE.dept id = DEPARTMENT.dept id,
is also a special instance of a range-query predicate. Join-
query predicates may in general have one or more attribute
value ranges specified in terms of other join attributes.

3.2 A formal model of predicate-based caching

We now formalize our terminology using the usual predi-
cate=calculus notation. Suppose that there aren clients in
the client-server system, withCi representing theith client,
1 ≤ i ≤ n. Let QE

i , where the superscriptE denotesexact
andQE

i ≥ 0, be the actual number of query predicates such
that the results of all queries corresponding to these predi-
cates are cached at clientCi. We denote byPE

ij the query
predicate corresponding to thejth query result cached at
client Ci. The superscriptE in PE

ij represents the fact that
these are the exact forms of cached query predicates, without
any approximations applied. Other information related to a
query may be associated with its query predicate, e.g., the
list of visible attributes retained after a projection operation
on the tuples selected by a WHERE clause.

Definition 1: An exact cache descriptionECDi for the ith
client Ci is defined to be the set of exact-query predicates
PE
ij corresponding to all query results cached at the client:

ECDi = {PE
ij | 1≤ j ≤ QE

i }.
In a real-life scenario, query predicates may be quite

complex, and performance problems may arise if precise
predicate-containment reasoning is done. To alleviate such
problems, we introduce the notion ofapproximatecache de-
scriptions. A client may use a simpler, butconservativever-
sion of the exact cache description for determining cache
completeness. Thinking that an object is not in the cache
when in fact it is there will result in re-fetching the object
from the remote source; while the approach may be ineffi-
cient, correct answers are nonetheless produced. As long as
data thought to be in the cache are actually present in it, lo-
cal evaluation of queries will produce correct and complete
answers.

Definition 2: A conservative cache descriptionCCDi for
the ith client Ci is a collection of zero or more predicates
PC
ik such that the union of these predicates is contained in the

union of the predicates in the exact cache descriptionECDi

for the client.1 Let QC
i denote the number of predicates in

CCDi. Formally,

CCDi = {PC
ik | 1≤ k ≤ QC

i },
where⋃

1≤k≤QC
i

PC
ik ∈ CCDi =⇒

⋃
1≤j≤QE

i
PE
ij ∈ ECDi.

1 CCDi may also be thought of as theclient cache description, since it
is used only by clientCi.
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The superscriptC in PC
ik andQC

i stands forconserva-
tive. The symbol =⇒ denotes the material implication opera-
tor, and in the context of query predicates has the following
meaning: ifQ =⇒ P , then the result of the query corre-
sponding to predicateQ is contained in and is computable
from the result of the query corresponding to predicateP .

One example of conservative approximation of a query
predicate is its simplification by discarding a disjunctive con-
dition. For other possible differences betweenECDi and
CCDi, consider some cached EMPLOYEE tuples that were
fetched through a number of point queries, as well as through
a few range queries.CCDi may consist only of the range-
query predicates, whereasECDi includes all cached pred-
icates, both point and range.CCDi is thus simpler than
ECDi, having eliminated point-query predicates. The effect
of this approximation is that cached results of point queries
are not taken into consideration when addressing the cache-
completeness question for range queries, likely speeding up
the reasoning process. Therefore, if all EMPLOYEE tuples
in department 100 have been fetched and cached through
separate point queries, a range query on the EMPLOYEE
relation with query predicatedept id = 100 will result in re-
fetching these tuples from the server. Such a remote access
is only inefficient and not incorrect and will not recur if the
range-query predicate gets cached inCCDi.

It is important to note that the conservative approxima-
tion pertains to the cache description only, andnot to the
cache contents. In the above example, single EMPLOYEE
tuples cached through point queries are still locally avail-
able at clientCi. Although these tuples cannot be accessed
throughCCDi, they are still present in the cache and can be
used to answer point queries (as discussed below, the server
will notify the client of changes to these tuples, so their local
usage cannot result in erroneous operation). A conventional
index based on the primary key of the relation EMPLOYEE
may be constructed locally at the client to speed up the pro-
cessing of point queries.

Let us now consider the cache-currency issue. The server
maintains a consolidated predicate description of all client
caches and uses it to generate notifications as transactions
commit updates. Since the server handles alln clients, each
of which may be caching tens or hundreds of query results,
it is crucial to control the complexity of issuing notifications
using such descriptions. For this purpose, we propose the
use ofliberally approximateclient=cache descriptions at the
server thatcover the exact descriptions of the client caches.
Such liberal descriptions are expected to be simpler than the
exact ones, but must generate all necessary notifications. It is
at most inefficient and not an error if a client is occasionally
informed of an update at the database that is irrelevant for
its local cache.

Definition 3: A liberal cache descriptionLCDi for the ith
clientCi is a set of zero or more predicatesPL

ik such that the
union of these predicates contains the union of the predicates
in the exact cache descriptionECDi for the client. LetQL

i
denote the number of predicates inLCDi. Formally,

LCDi = {PL
ik | 1≤ k ≤ QL

i },

where

liberal
ofValues

attribute A1

Values of attribute A2

exact

conservative
Conservative

Exact

Liberal

Fig. 1. Exact, conservative, and liberal cache descriptions for a relation
R(A1,A2)

⋃
1≤j≤QE

i
PE
ij ∈ ECDi =⇒

⋃
1≤k≤QL

i
PL
ik ∈ LCDi.

Definition 4: Theserver=cache descriptionSCD is the col-
lection of liberal cache descriptions for alln clients of the
server:

SCD = {LCDi | 1≤ i ≤ n}.
By the above definitions, attributes projected out in a

query must notbe part of a conservative description, but
mayoptionally be part of the liberal one. Thus, one example
of a redundant notification occurs when a client is notified
of a change to a relation attribute that it does not cache.
Another instance of liberal notification may happen when
a tuple that could possibly affect a cached join result is
inserted at the central database. The server may be able to
eliminate a tuple that isunconditionally irrelevant for the
join (Blakeley et al 1989), i.e., irrelevant independent of
the database state; however, determining whether the tuple
actually affects the join result for the particular database
state requires more work. The client may in this case be
informed of the inserted tuple and can subsequently take
actions based on local conditions prevailing at the client site
(further details on cached joins are provided in Sect. 4.2.6).

Figure 1 shows a pictorial representation of the exact,
conservative, and liberal cache descriptions for some cached
query predicates for a single relationR with two attributes
A1 and A2.

4 Effects of database operations

Database operations executed by transactions may affect the
contents of the central database, as well as the contents and
descriptions of local caches. Client-cache contents and pred-
icate descriptions at the client and server sites also change
dynamically over time, as query results are cached or purged
by the clients. We now consider the effects of the differ-
ent events that may occur in the system, in the context
of a sample concurrency control scheme defined below in
Sect. 4.1. The architecture of a client-server system support-
ing predicate-based client-side caching is shown in Fig. 2.

4.1 Concurrency control

Several different forms of concurrency control can be em-
ployed in our caching scheme. For the purposes of this
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Fig. 2. Architecture of a predicate-based client-side caching system

section, we assume the following protocol. The scheme at-
tempts to minimize unnecessary aborts of transactions while
reducing communication with the server and is suitable
for systems without overly contentious data-sharing among
clients [it is similar in many respects to the notify-locks-
based cache-consistency algorithm studied in Wilkinson and
Neimat (1990) for object ID-based caches]. We assume
that the server supports conventional two-phase tuple-level
read/write locking, but it may or may not provide protection
against phantoms.

Whenever queried data are locally available, a client op-
timistically assumes that its cache is up to date – the trans-
action operates on local copies of tuples, and locks are not
obtained immediately from the server, but only recorded lo-
cally at the client (however, as we discuss below, the scheme
is not purely optimistic). If a query is not computable locally,
it is submitted to the server. A request for remote query ex-
ecution is accompanied by any local (uncommitted) updates
of which the server has not yet been informed. Tuples ac-
cessed by the remote query and by the (uncommitted) up-
dates are read-locked and write-locked, respectively, in the
usual two-phase manner at the server during remote fetches.
The uncommitted updates are also recorded as such by the
server and made visible to the remote query as it executes.2

A remote-query submission may also be accompanied by
deferredread-lock requests for tuples read locally since the
last communication with the server. Such locking can help
reduce aborts of transactions due to concurrent conflicting
updates by other clients and subsequent notification, without
incurring much extra cost (since they are “piggy-backed” on
remote requests). Note that these lock requests are only for
those tuples that have been accessed via the local cache and
not through a remote fetch within the transaction.

A commit at the client sends all remaining updates (and
possibly any deferred read-lock requests) to the server. One

2 Transmission of local updates along with remote queries is necessary
since a query within a particular transaction must be able to see the effects
of all (as yet uncommitted) updates made by that transaction when the
query is evaluated at the remote server site.

can observe that if a tuple was first read or written locally,
and subsequently locked at the server during a remote fetch
or upon a commit request, then there is a window of time
between locally accessing the tuple and acquiring a lock on
it at the server where it may have been modified by other
transactions. In order to prevent synchronization errors due
to network delays, the server must ensure that the client has
seen its most recent notification message before the commit
is confirmed and the deferred updates are posted to the cen-
tral database after locking tuples as necessary. As discussed
in Wilkinson and Neimat (1990), this checking can be done
by assigning a sequential message number to every message
sent from the server to a client and by a handshake between
the client and the server before the commit is declared to be
successful. Notification messages are issued by the server
upon each successful transaction commit, and these mes-
sages may abort the current transaction at a notified client if
its read/write tuple sets or query predicates for locally eval-
uated range queries conflict with the updates at the central
database.

The above protocol thus handles cache hits and misses
differently – for hits, an incremental notification-basedsemi-
optimistic scheme is employed, whereas normal two-phase
locking is done at the server for all cache misses. The rea-
son for the difference is that a cache miss always implies
communication with the server, which is utilized also to lock
any fetched tuples. When a transaction commits or aborts, all
locks held by it are released at the server and at the client.
However, cached tuples need not purged upon commit or
abort and may be retained in the cache for intertransaction
reuse. In order to maintain the currency of a cache cor-
rectly, the server must be kept informed of all point- and
range-query predicates cached by the client past a transac-
tion boundary (i.e., past a commit or abort), which in effect
act as predicate-based notify locks. If transactions are serial-
izable in the original database, they will remain serializable
in this concurrency control scheme (a formal proof is beyond
the scope of this paper). Also, if the original database pro-
vides protection against phantoms (e.g., by locking an index
or key range), the same behavior carries over to this scheme.
In fact, phantom protection is provided for all locally cached
predicates in our scheme through predicate-based notifica-
tion.

4.2 DML operations

Below we consider the effects of various DML operations
that may be performed by clients. The discussion below is
with respect to the cache at theith client Ci. Apart from
DML operations, space constraints may prompt a client to
purge some tuples in its cache and alter its cache description.
The effect of such an action in discussed briefly in Sect. 5.

4.2.1 Query submission at clientCi

Consider a SELECT-PROJECT-JOIN query with predicate
Q that is submitted at clientCi. If Q is a point=query
predicate on a single relation, or can be split up into point
queries on several relations, then the tuple(s) satisfyingQ
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may be found using locally defined and maintained indexes
(see Sect. 5.2) on primary keys of the relation(s) cached at
Ci. If the tuples are found and have all selected attributes
visible, we use them. If not, we have to determine whether
the tuples exist, i.e., whetherQ is contained in the scope of
the cache, so we treat it as a range query and handle it as
described below.3

If Q is a range query predicate, thenQ is compared
againstCCDi. Three different situations may arise:

– Q is computable from the union of the predicates in
CCDi. In this case, all tuples satisfyingQ (if any) are
locally accessed in the cache. There is no effect on either
CCDi or SCD.

– Q is independent(Rissanen 1977) of the union of the
predicates inCCDi. The tuples in this case must be re-
motely fetched from the server. As outlined in the con-
currency control protocol above, the request for remote
execution is accompanied by any tuples locally read or
updated by the transaction since the last communication
with the server. The server locks the tuples appropriately
and also records the uncommitted updates before execut-
ing Q, locking the tuples accessed by it, and returning
the result toCi. The new tuples are placed in the cache at
Ci, with CCDi beingoptionally augmented. If these tu-
ples are cached past the transaction boundary,SCD must
be updated before the locks on the tuples are released at
the server (upon transaction commit or abort).4

– Q is partially contained in the union of the predicates in
CCDi. As in the preceding case, the query can be exe-
cuted remotely at the server. One possible optimization
is to trim the query before submission to eliminate tuples
or attributes available locally at the client. Tradeoffs in-
volved in this type of optimization are discussed briefly
in later sections.

4.2.2 Tuple insertion at clientCi

When a tuple is inserted by a transaction running at client
Ci, it is placed locally in the cache with anuncommittedtag.
If the transaction later commits successfully at the server, the
new tuple is inserted into the central database, incorporated
into SCD, and theuncommittedtag is removed atCi. We
have assumed here that the new data are likely to be pertinent
for Ci and hence cached by it past the boundary of the
current transaction. The insertion of this tuple may also affect
caches of clients other thanCi (this case is discussed below).

4.2.3 Tuple deletion at clientCi

Assume that one or more tuples are deleted at clientCi using
query predicateQ. If all tuples satisfyingQ are not locally
available in the cache, the procedure outlined in Sect. 4.2.1
for a selection query is followed forQ. All or only the

3 Note that it is useful to record that a predicate is cached even when
there are no tuples satisfying the predicate, since it can be used to determine
locally that the result of a (point or range) query is empty.

4 It is not necessary to updateSCD at the time the tuples are fetched;
locking tuples at the server provides the usual level of isolation from con-
current transactions.

missing tuples inQ are fetched from the server after lock-
ing them and locally cached.CCDi may be optionally aug-
mented. Tuples satisfyingQ are then deleted locally in the
cache, but marked asuncommitted. The server is informed
of the deleted tuples upon transaction commit (or earlier, if a
remote query is submitted before the commit). Theuncom-
mittedtag is removed from the cache if commit is successful.
If the predicateQ is cached past the transaction boundary
(even though its tuples may have been deleted),SCD must
be updated before the locks on the tuples are released.

Retaining predicates inCCDi whose tuples have been
deleted can potentially reduce query-response times at the
client by allowing local determination of the fact that a sub-
sequent query result is empty and avoiding a trip to the
remote server. For example, let all EMPLOYEE tuples with
deptid ≥ 300 be cached atCi. If EMPLOYEE tuples sat-
isfying dept id = 500 are now deleted by a transaction, the
assertion that the cache holds all EMPLOYEE tuples with
the propertydeptid ≥ 300 is still valid after the deletion.
A subsequent query with predicatedept id = 500 can be
evaluated locally, producing 0 tuples in its result set.

4.2.4 Tuple update at clientCi

If one or more tuples are updated at clientCi using query
predicateQ, then the actions taken by clientCi and the
effects onCCDi andSCD are similar to the deletion case
above, except that the update may move some tuples from
one cached predicate to another predicate (which may or may
not already be cached atCi), depending upon the attributes
updated. If such tuples are cached beyond the completion
of the transaction, either the individual tuples or a single
modified predicatedescribing tuples after the updatemustbe
inserted inSCD andmayoptionally be inserted intoCCDi.

4.2.5 Transaction commit at clientCi

When a transaction commits at clientCi, the server is in-
formed of all local updates that have not yet been commu-
nicated to it. The propagation of updates can either be in the
form of updated tuples and corresponding update commands,
or for large-sized updates, in the form of update commands
only (to minimize network traffic and message-processing
costs).Ci is notified of the result of the commit operation.
If the commit was successful (according to the concurrency
control protocol), theuncommittedtags on tentatively up-
dated data are removed from the cache byCi; otherwise,
the changes are undone. In either case, all locks held by the
transaction are released at the server,after the server has up-
datedSCD to record all new predicates and tuples cached
by the client beyond the transaction.

4.2.6 Tuple insertion at clientCj

Suppose that a transaction running at clientCj , i /= j, inserts
a tuple t. The tuple is inserted into the database when the
current transaction atCj commits. The server checksSCD
to determine which clients other thanCj are affected by
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the insertion. ClientCi will be notified of the change, along
with the new tuple, ift is contained in someP , whereP ∈
LCDi. If Ci is notified, it inserts the new tuple into its cache
whenever it satisfies any predicate inCCDi, and discards
it otherwise. No changes are necessary to eitherCCDi or
SCD. Alternative courses of action are also possible, e.g.,
the client may choose to extend a nearby existing predicate
to include the new tuple, or flush fromCCDi all predicates
invalidated by the insertion (e.g., join predicates).5

According to the concurrency protocol adopted in this
paper, a transaction running at clientCi must be aborted if
the inserted tuple falls within the purview of any cached
predicate that has been used to evaluate locally one or
more queries within the transaction. Alazy strategy may
be adopted by the client in processing notifications, in that
those messages that apply to relations and predicates not yet
accessed by the current transaction may be deferred until an
access actually happens. Such pending notifications can be
processed after the transaction commits and before the next
transaction is allowed to commence.

Note that a new tuple may be sent over to a client be-
cause it possibly participates in a cached join result. Con-
sider a client that has cached the join result EMPLOYEEon
DEPARTMENT through the join-query predicate EMPLOY-
EE.dept id = DEPARTMENT.dept id on the EMPLOYEE
relation. Also assume that the client has no other cached
predicates for the EMPLOYEE relation. Now suppose that
a new EMPLOYEE tuple with a non-NULLdeptid field is
inserted at the server. Whether a notification is absolutely
necessary is dependent on the differential join involving the
new tuple. The differential join may either be computed at
the server prior to issuing a notification, or the server may
instead choose to liberally inform the client of the new tu-
ple. One option at the client is to invalidate the join result
(the invalidation may be temporary, with possibly a differ-
ential refresh upon demand from a subsequent query). Al-
ternatively, if all DEPARTMENT tuples are locally avail-
able (possibly from other cached query results involving the
DEPARTMENT relation), then the differential join isau-
tonomously computable(Blakeley et al. 1989) at the client.6

The new EMPLOYEE tuple is either discarded or cached,
depending on whether the result of this local computation is
empty. A desired maintenance method for a cached query
result may be specified̀a priori to the server and be upgraded
or downgraded as access patterns change over time.

4.2.7 Tuple deletion at clientCj

Let one or more tuples be deleted using query predicateQ
at client Cj , i /= j. Tuples satisfyingQ are deleted from
the database when the current transaction atCj commits
successfully. The server must again notify clients other than
Cj that are affected by the deletion, by comparingQ with
SCD. Client Ci will be notified of the deletion if∃P ∈
LCDi such that (Q∩P /= φ). The notification message may

5 The tuples corresponding to the invalidated predicates may or may not
be removed immediately from the cache. They may still be used individually
for answering point queries locally.

6 Note that detection of such autonomously computable updates must be
based on the exact or conservative client-cache description.

consist of primary keys of deleted tuples, or for large-sized
deletions, simply the delete command itself. If clientCi is
notified, it must execute the delete command on its cache.
No changes are required toCCDi or LCDi. A transaction
running atCi must be aborted if any tuples it read locally
get deleted due to the notification.7

4.2.8 Tuple update at clientCj

If one or more tuples are updated using query predicateQ
at clientCj , i /= j, then the updated tuples, or simply the
corresponding update command for large-sized updates, are
sent to the server when or before the transaction issues a
commit request at the client. The server posts the changes
to the central database if the commit is successful. The no-
tification procedure is more complex than that for the delete
case above, since the values of the changed tuples bothbe-
fore and after the update must be considered to determine
which client caches are affected. The set of clients to be no-
tified by the server depends not only on the query predicate,
but also on the updated attributes.

If the number of updated tuples is not too large, the up-
date can be treated as a single delete command, followed
by insertion of new tuples.8 The procedures outlined above
for deletion and insertion then apply. If many tuples are af-
fected by the update, then this option may be too expensive.
In this case, if amodified predicatedescribing tuples after
the update can be easily computed, updates irrelevant for a
client may be screened out by comparing its cached predi-
cates withQ and the modified predicate [exact algorithms
appear in Blakeley et al. (1989)]. Notification may again be
in terms of updated tuples or simply the update command
that is to be executed on the local cache. In the latter case,
additional checks must be made to ensure that the update is
autonomously computable(Blakeley et al. 1989) at the local
site if invalidation of cached predicates is to be avoided. For
example, consider a clientCi that caches the query predicate
salary≥ 50 000 for EMPLOYEE tuples. Now suppose that
the salary field of all EMPLOYEE tuples is updated, say,
by giving everyone a 5% raise. The entire update command
can be propagated toCi and be executed on its cache. How-
ever,Ci must still ensure that it has all tuples satisfying the
cached predicateafter the update is effected. That is, tuples
that now satisfysalary ≥ 50 000 as a result of the update
either must have been present in the client cache before the
update or else they must now be transmitted to the client;
otherwise, the cached predicate must be invalidated.

Note that all updated tuples that no longer satisfy any
cached predicate should be discarded byCi, or elseLCDi

at the server must be augmented to include them. Precise
screening of each updated tuple with respect to the cache
can be done locally at a client site instead of at the central
server, thereby distributing some work in maintaining cached
results to individual clients. The tradeoff is between local
computation as opposed to global communication.

7 We allow negated terms in query predicates, but do not consider queries
involving the difference operator.

8 A deletion-insertion pair will work as far as the cache maintenance
algorithms are concerned. However, the separation of updates into deletions
and insertions can confuse constraints and triggers.
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5 Design issues and tradeoffs at a client

A client must locally examine and evaluate queries, as well
as process update notifications from the server. We consider
below some performance tradeoffs and optimization ques-
tions that pertain to a client site. Details of these issues are
beyond the scope of this paper.

5.1 Determining cache completeness

The cache description at a client, though conservative, may
grow to be quite complex as more query predicates are lo-
cally cached. We usepredicate=indexingtechniques (Sel-
lis and Lin 1992) to efficiently support examination of a
client=cache description in answering the cache=complete-
ness question. Our predicate-indexing mechanisms are sim-
ilar to those proposed in Hanson et al. (1990), with ex-
tensions to handle general range=query predicates. A one-
dimensional index is dynamically defined on an attribute of
a relation whenever cached predicates can be organized ef-
ficiently along that dimension. Predicate-indexing schemes
will be examined in detail in our future work.

Since the major motivation for our caching scheme is
effective reuse of local data, it is important that the pro-
cess of determining cache completeness be intelligent. Nor-
mally, query-containment algorithms do not take into ac-
count application-specific semantic information like integrity
constraints. Consider the cached join result of the query
EMPLOYEE on DEPARTMENT with no attributes pro-
jected out. If the client encounters a subsequent query for
all EMPLOYEE tuples, the general answer to the query-
containment question is that only a subset of the required
tuples is cached locally. However, if it is known that all
employees must have a valid department, then there are
no dangling EMPLOYEE tuples with respect to this join,
and the join predicate EMPLOYEE.deptid = DEPART-
MENT.dept id on EMPLOYEE may simply be replaced by
the predicate “TRUE” (i.e., all EMPLOYEE tuples appear
in the join result). Although using general semantic informa-
tion may be too complex, simplification of query predicates
using such referential integrity and non-NULL constraints
on attribute domains can be quite effective. Techniques de-
veloped for semantic query optimization (Bertino and Musto
1992; King 1984) are applicable in this context.

5.2 Evaluation of queries on the local cache

Queries may need to be executed locally in the cache, e.g.,
to answer a query posed by a transaction or in response to
an update command in a notification message. It is not a re-
quirement of our system that all cached tuples be in the main
memory. We also do not maintain cached query results in
the form of individual materialized views (as mentioned ear-
lier, they are mapped into sub-tuples of database relations).
Thus, efficient local evaluation of frequent queries involving
joins or many tuples may require that appropriate indexes be
constructed locally at a client site for either main memory
or secondary storage. These local access paths will depend
on data usage at individual clients, and may in particular be
different from those in place at the server.

5.3 Effective management of space

We briefly consider the various issues in managing cached
tuples at a client site. Further work remains to be done in
this area. We useCCD in this section to denote the cache
description at any client in the system.

5.3.1 To cache or not to cache

Upon fetching in a new set of tuples from the server, a client
is faced with a choice of whether or not to cache these tu-
ples past the termination point of the current transaction. The
client performs an approximate predicate-based cost-benefit
analysis similar to that outlined in Stonebraker et al. (1990)
to estimate the long-term benefits of caching the tuples in the
new predicate. The algorithm is based on the LRU scheme
and extended to take into account the sizes of cached tu-
ple sets and anticipated future usage patterns. The following
client parameters need to be taken into consideration (note
that one-time costs of updating the cache descriptions, stor-
ing the tuples in the cache, etc. are not taken into account,
since they do not affect the long-term benefits):

Si: Size of the result set for theith cached predicatePi
Fi: Cost of fetching tuples satisfyingPi from the server
Ri: Cost of accessing and reading the tuples inPi if cached

locally
Ui: Cost of maintaining the tuples inPi if cached locally
ri: Frequency of usage of predicatePi at the client
ui: Frequency of updates by other clients that affect tuples

covered by predicatePi

The expected cost per unit time,Ti, of the caching the
tuples inith predicatePi is:

Ti =

{
riRi + uiUi if Pi is cached
riFi if Pi is not cached

Thus, the expected benefitBi of caching predicatePi
locally is:

Bi = riFi − (riRi + uiUi).

Notice that the above analysis represents only a client’s
view of the costs and benefits of caching a predicate. A cost
model that applies to the server or to the entire system may
be developed along similar lines. Work in progress addresses
the formulation of such analytical cost models to estimate
response times and server throughput.

5.3.2 Reclaiming space

Whenever space needs to be reclaimed, predicates and tuples
are flushed using a predicate-ranking algorithm. TherankNi

of predicatePi is defined as the benefit per unit size:

Ni = Bi/Si.

Cached predicates may be sorted in descending order of their
ranks. At any stage, only those predicates in the cache that
have ranks equal to or higher than a certain cutoff rank may
be kept in the cache.
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Once a predicateP is chosen for elimination, a delete
command with query predicateP can be executed on the
cache to determine which tuples are candidates for deletion.
Not all tuples satisfyingP can be deleted, however, since
a tuple may be purged from the cache only if it does not
satisfy any cached predicate for the relation. For this rea-
son, a reference count is associated with a cached tuple to
indicate the number of predicates inCCD that are currently
satisfied by it. A tuple may be flushed from the cache only
when its reference count is 0. Also, recall that tuples re-
trieved through point queries may be accessed directly via a
primary key index instead ofCCD. Individual tuple usage
must be tracked using standard LRU techniques to reclaim
their space.

5.4 Maintaining theCCD

Reclaiming space based on predicate usage as discussed
above will result in predicates being purged from the client-
cache description. TheCCD must be changed to account
for purging of tuples and predicates, whereas such a change
mayoptionally be reflected on theSCD at the server. Pres-
ence of extra predicates at the server can at most lead to
an increase in irrelevant notifications to the client. Hence,
updatingSCD in this case can be treated as a low-priority
task to be performed at times of light load and preferably
before issuing too many notifications.

Whenever new tuples are cached, the associatedCCD
may optionally be augmented with one or more predicates
that describe all or a subset of the new tuples. These tuples
may remain in the client cache irrespective of whether the
CCD is updated, as long as theSCD is augmented to include
the tuples. This method ensures correct operation, since all
necessary notifications will be generated.

Additionally, conservative approximations may be ap-
plied to the client-cache description as the number of cached
query predicates increases and as access patterns change over
time. For example, if a cached predicateP has not been used
in a certain period of time, it may be dropped fromCCD
using an LRU policy (or reduced to a more conservative
version). However, individual tuples satisfyingP may or
may not be flushed from the client cache, although reference
counts will need to be decremented by 1 for these tuples;
these tuples can be locally reused until resource constraints
prompt the client to inform the server thatP is to be flushed
from SCD. Thus, because of our liberal notification scheme,
only asynchronous coordination with the server is required
for purging of predicates from aCCD. Incorrect operation
can never result as long as all operations on all client and
the server cache descriptions always obey the constraint

(∀i, 1≤ i ≤ n)(CCDi ⊆ ECDi ⊆ LCDi).

5.5 Query trimming

Whenever cached predicates partially overlap with a query
predicate at a client, there are two possible courses of action.
The query may either be executed partially in the local cache
and the missing tuples obtained through a remote fetch, or
the query can be submitted to the server in its original form.

The query predicate can in the first case betrimmed (by
removal or annotation of locally available parts) before sub-
mission to the server. Trimming a query can potentially re-
duce the time required to materialize a query result at the
client. If the query predicate overlaps multiple predicates in
CCD, then the query may be trimmed in more than one way.
It is an optimization decision whether and how to trim the
query, involving factors such as cost estimates of evaluating
and transmitting the trimmed versus untrimmed result sets,
communication costs, and update activity on the cached data.
The decision may be left to the server (by annotating as “op-
tional” parts of a submitted query that are locally available),
with the client appropriately skipping or performing the lo-
cal evaluation step. Some strategies for query trimming have
been explored in the context ofBrAID (Sheth and O’Hare
1991).

5.6 Query augmentation

Query augmentation is an interesting optimization strategy
that can be explored in our caching scheme. A query pred-
icate or the set of attributes projected by a query may be
augmentedby a client before submission to the server so as
to make the query result more suitable for caching. Possi-
ble benefits of query augmentation are: (1) simplification of
the query predicate and cache descriptions at both the client
and the server, thereby reducing costs of determining cache
completeness and currency; (2) local processing of a larger
number of future queries, due to pre-fetching of tuples and
the augmented predicate; (3) augmenting a query result to
include any missing primary keys of participating relations,
thus allowing a user query to conform to the restrictions
imposed on our cached query predicates for reasons of im-
plementation efficiency.

A major performance benefit of adding relation keys to a
query is that cached information need not be stored in dupli-
cate or in the form of individual query results. Tuples to be
cached may be split up into constituent subtuples of partici-
pating relations (possibly with some non-key attributes pro-
jected out) and stored in local partial copies of the database
relations, thereby simplifying their access and maintenance.

The main costs of query augmentation are: (1) possibly
significant increase in result-set size and response time for
the query and (2) wastage of server and client resources
in maintenance and storage of information that might never
be referenced by future queries. The cost-benefit analysis
of query augmentation involves examining the nature (e.g.,
selectivity, complexity, and size) of the query predicate, the
data distribution, size and access paths of the relation, space
availability in the cache, etc.

As a simple example of a situation where query augmen-
tation is appropriate, consider the query predicatedept id /=
100 on the relation DEPARTMENT. Suppose that there are
50 tuples in the current instance of the DEPARTMENT re-
lation, and that they are subject to change very infrequently.
The query predicate in this case may be augmented to re-
move the restriction ondept id. Thus, the client fetches all
50 tuples intead of 49; the cost of transmitting and storing
one extra tuple is negligible, as is the maintenance cost in
this particular scenario. Savings include faster execution at
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the server and faster query examination at the client, since
the check step is eliminated. The pre-fetch will also help an-
swer any subsequent queries involving all DEPARTMENT
tuples locally, e.g., the tuples satisfyingdirector = ‘Smith’.

5.7 Predicate merging

The problem of handling large number of predicates in a
cache description may arise at both client and server sites.
We suggest predicate merging as an optimization method to
address this issue. Two or more predicates in a cache descrip-
tion may be replaced with a single predicate whenever the
mergedpredicate is equal to the union of the spaces covered
by the individual predicates. In fact, since the cache descrip-
tion at a client can be conservative, the merged predicate at
a client site can be a subset of the union of the constituent
predicates. Similarly, the server cache description is allowed
to be liberal, and therefore a merged predicate at the server
can be a superset of the union of the individual predicates.
Such predicate merging and simplification can produce a
more compact cache description and can thereby improve
the efficiency of examining queries at the client and of pro-
cessing notifications at both the client and the server. The
tradeoff is that communication between the clients and the
server may increase due to conservative or liberal approxi-
mations applied to the cache descriptions in the process of
merging predicates.

As an example, consider a cached predicate

P1 : (100≤ dept id ≤ 300) AND (hiredate ≥ 1980)

for the EMPLOYEE relation. If two new predicates

P2 : (dept id ≥ 100) AND (hiredate ≤ 1985),

and

P3 : (dept id ≥ 200) AND (hiredate ≥ 1975)

are subsequently added to the cache description, the union
of the three predicates can be reduced to a single equivalent
predicate

P4 = P1 ∪ P2 ∪ P3 = dept id ≥ 100.

Well-established algebraic techniques exist for merging
predicates – using distributive, associative, and commuta-
tive laws of the boolean AND and OR operators, two or
more predicates may be replaced with an equivalent single
one. However, purely algebraic techniques have exponential
complexity, since all possible subsets of the set of predi-
cates have to be considered in determining the applicability
of an algebraic rule. Future work will investigate the use of
auxiliary indexing mechanisms to speed up the process of
detecting mergeable predicates.

Now consider the effect of predicate merging on tuple-
reference counts that are maintained for space management.
If there is no overlap among the predicates being merged, no
special action is necessary; otherwise, reference counts must
be appropriately adjusted for those tuples in the intersection
of any two or more predicates being merged. One way of up-
dating reference counts is to determine for each tuple in the
final merged predicate the number of constituent predicates
that are satisfied by it. The reference count for such a tuple

should be decremented by an amount that is one less than
this number in order to correctly account for predicate over-
laps. This scheme incurs a one-time overhead at the time of
predicate merging. The expense may be deemed to be unnec-
essary in a scenario where predicates are frequently merged
but not purged as often, in which case the following alterna-
tive scheme may be employed. Apredicate=merge history
graph may be maintained for each client cache to record
which predicates were merged to produce new predicates.
When space needs to be reclaimed by purging a predicate
that was previously generated from other predicates, the con-
stituent predicates can be individually executed to decrement
by one the reference counts of cached tuples that they each
satisfy. Following the usual rule, a tuple can be removed
from the cache if its reference count drops to zero during
this process. The flushing of a predicate from aCCD must
also update the predicate-merge history graph as necessary.

6 Design issues and tradeoffs at the server

The server supports a number of clients and manages the
central repository of data. It executes remote queries sub-
mitted by clients, controls access to shared data, maintains
client cache descriptions, and generates notifications. The
server performance therefore determines to a large extent
the overall performance of the system. Below we consider
some major issues at the server site.

6.1 Concurrency control

We would like to emphasize that many different forms of
concurrency control can be supported in our framework, pos-
sibly even varying by client depending on the requirements
specific to a site. For example, either two-phase or opti-
mistic locking could be used, with locks being specified in
terms of predicates or object identifiers. Using notify locks
in conjunction with an optimistic scheme adds another di-
mension, in that the behavior of a purely optimistic scheme
becomessemi-optimistic, since a transaction may abort be-
fore it reaches its commit point if notified of committed
updates to the objects in its read/write set. Using techniques
outlined in Boral and Gold (1984), the correctness of various
combinations of these strategies can be proved.

In this paper, we have assumed asemi-optimisticcon-
currency-control scheme for cache hits (see Sect. 4.1). For
clients with contentious data sharing, one possible modifi-
cation to this scheme is to reduce the optimism and always
lock all locally accessed objects at the server. Thus, a query
would not be re-executed at the server if the result is locally
available, but the objects involved in answering the query
would be locked at the server. Note that it is possible to
do such locking, since we have object IDs or relation keys
for all cached tuples. Predicate-based notification would still
be required to support incremental refreshing of the cached
data.

6.2 Issuing liberal notifications

The server uses liberal descriptions of client caches to gen-
erate notifications. If notification is over-liberal, it results in
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wasted work at client sites, and if too detailed, may have
prohibitive overhead at the server. Hence, it is important
to control thedegreeof liberal approximation at the server.
Ideally, the server should be able to adapt the degree of ap-
proximation according to its current workload. Lighter loads
may allow precise screening of relevant updates with respect
to cached predicates, while notification may be more liberal
at times of high load in order to distribute some of the work
involved in maintaining cache currency to the clients. In in-
stances of liberal notification, it is assumed that precise up-
date screening is more expensive than communication with
a client. Future work will investigate the tradeoffs between
the precision of update screening performed by the server
and the amount of communication with clients.

Predicate indexing and merging mechanisms similar to
those at client sites can be employed at the server to facili-
tate generation of notifications from theSCD which, though
liberal, may grow to be arbitrarily complex with increas-
ing number of clients. Indexes to speed up the examination
of SCD may use a “coarse” grid to partition the domain
space of a relation. A certain partition can be (liberally)
marked as being in use by the appropriate client whenever
a cached point or range-query predicate intersects the parti-
tion. A more adaptable approach is to mark a grid partition
with references to cached predicates that overlap with it and
to maintain separately exact descriptions of all query pred-
icates, including which clients cache them. Association of
predicate references instead of client identifiers with a grid
partition would permit detailed examination of cached pred-
icates to be done in times of light load. During heavy loads,
checking the actual predicates may be skipped, resulting in
an even more liberal notification to a client.

6.3 Caching privileges

To control replication of database hotspots, and to avoid
runaway notification costs at the server as the number of
clients increases, clients may be grantedcaching rightsto a
relation or to a part thereof. Denial of caching rights to a
client implies that no notification message will be sent to the
client when the given relation (or a specific portion of the
relation) is updated and the client is caching some tuples in it
past the boundary of the current transaction. The client may
reuse such cached data with the understanding that the data
might be out of date. If currency of the data is important,
the query should be resubmitted at the server.

Caching privileges may be specified statically if the ac-
cess pattern is knowǹa priori or can be anticipated. If the
unit of specification of caching rights is an entire relation,
the scheme works in a manner similar to the usual autho-
rization mechanisms for performing a selection or update on
a relation. Permission to cache a query result is checked at
the server when a query is submitted by a client, the client
being informed of the outcome along with the answer tu-
ples. The right to cache may also be granted on parts of a
relation by defining predicates that specify attribute ranges
where caching is prohibited for the client. Processing of such
rather detailed caching rights would be approximate in the
sense that the server may denote an entire query result as
“not eligible for caching” if there is any intersection of the

query space with a region where caching is disallowed for
the client.

7 Conclusions

In this paper, we have introduced the concept of client-side
caching based on query predicates. A major advantage is
associative access to the contents of a cache, allowing ef-
fective reuse of cached information. Increased autonomy at
client sites, less network traffic, and better scalability are a
few other expected benefits over object ID-based caching
schemes. We have examined design and performance ques-
tions relating to cache completeness and cache currency
in order to determine the practicality of using our scheme
in a dynamic caching environment. Approximate reasoning
on cache descriptions, suitable query processing and update
propagation techniques, and predicate indexing and merging
mechanisms will be employed to furnish our scheme with
good dynamic properties.

Any successful implementation must be based on a good
conceptual structure and design. In this paper, we have at-
tempted to address some major conceptual and design issues.
We are developing an experimental testbed to evaluate the
viability of our approach, using a prototype of a predicate-
based client-side caching system for a relational database
with four clients and a central server. Detailed design of our
experiments is currently in progress. Simulation studies to
compare the performances of alternative caching schemes
against ours for larger numbers of clients and queries are
also planned.

Apart from the planned performance studies, many other
important issues remain unexplored in this paper. Work cur-
rently in progress addresses implementation questions on
suitable predicate-indexing techniques, optimization strate-
gies, performance tuning, local index creation, and effective
management of space by a client. Development of analyti-
cal system models, heuristics for effective conservative and
liberal approximations of cache descriptions, and intelligent
query-containment algorithms for determining cache com-
pleteness are topics for future efforts.
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