
A Predictable and Command-Level Priority-Based
DRAM Controller for Mixed-Criticality Systems

Hokeun Kim∗, David Broman†∗, Edward A. Lee∗, Michael Zimmer∗, Aviral Shrivastava‡ and Junkwang Oh∗
∗Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley
†School of Information and Communication Technology, KTH Royal Institute of Technology

‡Dept. of Computer Science and Engineering, Arizona State University
Email: ∗{hokeunkim, eal, mzimmer}@eecs.berkeley.edu, †dbro@kth.se, ‡aviral.shrivastava@asu.edu, ∗jkooh@berkeley.edu

Abstract—Mixed-criticality systems have tasks with different
criticality levels running on the same hardware platform. Today’s
DRAM controllers cannot adequately satisfy the often conflicting
requirements of tightly bounded worst-case latency for critical
tasks and high performance for non-critical real-time tasks.
We propose a DRAM memory controller that meets these
requirements by using bank-aware address mapping and DRAM
command-level priority-based scheduling with preemption. Many
standard DRAM controllers can be extended with our approach,
incurring no performance penalty when critical tasks are not
generating DRAM requests. Our approach is evaluated by replay-
ing memory traces obtained from executing benchmarks on an
ARM ISA-based processor with caches, which is simulated on the
gem5 architecture simulator. We compare our approach against
previous TDM-based approaches, showing that our proposed
memory controller achieves dramatically higher performance for
non-critical tasks, without any significant impact on the worst-
case latency of critical tasks.

I. INTRODUCTION

A recent trend in real-time systems is to integrate tasks and
components of different criticality levels on the same hardware
platform. The objective of such mixed-criticality systems [1],
[2] is to save space, weight, or energy by reducing the number
of computation platforms, and to give safety guarantees for the
critical components of the system.

Timing predictability is an important property when design-
ing such systems, especially for the safety-critical components.
Worst-case execution time (WCET) analysis [3], [4] becomes
significantly easier if the hardware is more predictable. Many
researchers have explored the possibility of designing pre-
dictable processors [5]–[8] and predictable memory hierar-
chies [9], [10]. Memory access times are more predictable if
the programs are small enough to fit on fast, local SRAM
memories, but for larger programs, the memory hierarchy
needs to include larger, cheaper memories.

DRAM memories are larger and cheaper than SRAMs,
but are particularly problematic for achieving predictable tim-
ing; they are relatively slow, access times are variable, and
they require refreshes that can affect timing dynamically.
Recently, several DRAM controllers have been designed for
predictability. For instance, memory requests can be isolated
using bank privatization [11] or restricted to certain patterns
(e.g. [12]) that use bank interleaving; these patterns can be
predictably scheduled with dynamic [13], [14] or static time-
division multiplexing (TDM)-based techniques [15].

However, for mixed-criticality systems, designing solely
for predictability is not enough. The overall problem when
designing memory controllers for mixed-criticality systems
concerns the conflicting requirements of partitioning the sys-
tem for safety, and sharing resources for cost efficient usage.
DRAM controllers designed explicitly for mixed-criticality
systems exist [14], [15], but they achieve isolation or worst-
case latency bounds at a considerable cost to non-critical
task performance. In a mixed-criticality system, critical tasks
may not dominate resource usage. For example, a system
could include a small processor as a real-time unit, such as
Texas Instruments’ Programmable Real-Time Unit Subsystem
(PRUSS), for critical tasks that share the DRAM memory with
multiple high-performance cores executing non-critical tasks.
In this case and others, non-critical task performance is still
quite important.

In this paper, we propose a novel design of a DRAM
controller that does not sacrifice non-critical task performance
to provide tightly bounded worst-case latency. To improve
worst-case latency bounds for critical tasks, previous work
for mixed-criticality DRAM controllers [14], [15] requires all
requests to be bank interleaved with a close-page policy, at
the cost of non-critical task performance. In contrast, we use
bank privatization and priority-based scheduling at the DRAM
command level just for critical tasks. This enables us to still
use an open-page policy, as done in standard commercial
high performance DRAM controllers. The mechanisms of our
DRAM controller can be implemented on top of many standard
DRAM controllers, with no performance penalty for non-
critical tasks when critical tasks are not accessing the DRAM.
More specifically, we make the following contributions.

• We propose a DRAM controller designed for mixed-
criticality systems. The novelty of the design is the sep-
aration of critical and non-critical memory access groups
(MAGs), where memory requests are prioritized at the
DRAM command level (Section IV).
• We define algorithms for computing safe and tight upper

bounds of worst-case latencies, resulting in predictable
memory accesses for critical MAGs (Section V).
• Compared to competing TDM-based approaches, we de-

scribe experiments that show that our approach gives signif-
icantly shorter average access times for non-critical tasks,
with only slightly longer worst-case latencies for critical
tasks (Section VI).

317978-1-4799-8603-3/15/$31.00 ©2015 IEEE

hokeunkim
Typewritten Text
Proceedings of the 21st IEEE Real-Time and Embedded Technology and Application Symposium (RTAS), Seattle, WA, USA, April 13-16, 2015

DRAM%Device%

DRAM%Array%

DRAM%Array%

DRAM%Array%

DRAM%Device%

DRAM%Array%

DRAM%Array%

DRAM%Array%

DRAM%Device%

DRAM%Array%

DRAM%Array%

DRAM%Array%

DRAM%Device%

DRAM%Array%

DRAM%Array%

DRAM%Array%

Rank%

Bank%0%

Bank%1%

Bank%7%

Address%&Command%

Data%

n%

4n%

n% n% n%

Mux% SEL% Mux% SEL% Mux% SEL% Mux% SEL%

Fig. 1. Abstract DRAM organization

Precharging*

Ac,ve*

Idle*

Reading*

Wri,ng*

Refreshing*

ACTIVATE*

PRECHARGE*
READ*

WRITE*

REFRESH*

Fig. 2. Simplified DRAM state diagram [16]

II. BACKGROUND - DRAM BASICS

A. DRAM organization

Figure 1 depicts how a modern DRAM is organized. DRAM
devices are basic blocks composing a DRAM memory. Each of
them includes data storage, control logic, and I/O mechanisms.
To achieve higher bandwidth, multiple devices are accessed in
parallel. This group of DRAM devices is called a DRAM rank.
DRAM devices in the same rank share a bus for an address
and command, and another bus for data.

A DRAM device consists of multiple DRAM arrays to store
data. Each DRAM array can be accessed independently and it
requires time called a busy period for data access. Thanks to
their independent structure, we can access other DRAM arrays
while a DRAM array is busy, to hide access latency. A group
of DRAM arrays in different DRAM devices that are accessed
together is called a DRAM bank as depicted in Fig. 1.

A DRAM array is a two-dimensional array of DRAM cells.
Since a DRAM cell stores a bit in a capacitor, DRAM cells
need to be refreshed periodically to keep data. DRAM cells
connected to the same word line is called a row. When a
row is accessed, the entire row is stored in a row buffer. A
row contains multiple groups of DRAM cells, called columns.
Thanks to the row buffer, columns in the same row can be
accessed without reading the row again.

B. DRAM access commands

DRAM cells are accessed through a series of DRAM
commands or DRAM operations. Important DRAM commands
include PRECHARGE, ACTIVATE, READ, WRITE and RE-
FRESH. Each command triggers a state transition of DRAM
arrays in the same bank. Essential states of a DRAM bank
are illustrated in Fig. 2. Solid lines indicate state transitions
caused by DRAM commands and dashed lines mean transi-
tions triggered by time elapse.

A DRAM bank enters into Idle state after bit lines are
precharged and it is ready to access a row. ACTIVATE selects a
row and transfers data from DRAM cells to the row buffer. And
then, the bank makes a transition to Active state. Within the
Active state, we can send either READ or WRITE. After read-
ing or writing data while in Reading state or Writing state, the
DRAM bank comes back to Active state. PRECHARGE should
be issued before accessing a different row. The PRECHARGE
causes the bank to enter Precharging state to precharge bit
lines. When bit lines are fully precharged, the bank goes back
to Idle state. When REFRESH is sent, target banks and rows
are determined implicitly by a bank counter and a row counter
within the DRAM. To prevent data from decaying, therefore, it
is enough to send sufficient the number of REFRESHes within
a specified interval.

C. Page management policies: open-page vs. close-page

The pattern of generated DRAM commands can differ
depending on page management policies and previous memory
states. There are two possible policies depending on default
states after memory accesses. An open-page policy keeps a
bank in Active state after a memory access so that subsequent
accesses to the same row can be done with a single READ
or WRITE. This policy is optimized for sequential memory
accesses such as a direct memory access (DMA). In contrast,
we can keep a bank in Idle state after an access by precharging
the bank immediately so as to hide precharging overhead. This
policy is called a close-page policy, and it can perform better
for random accesses across different rows. In general, an open-
page policy better exploits spatial and temporal locality of
memory accesses, leading to better performance.

D. Timing constraints between commands

To guarantee correct operations of a DRAM, timing con-
straints, or minimum delays, between DRAM commands
should be satisfied. There are two types of timing constraints
between commands: (1) to the same bank (intra-bank) and (2)
to different banks (inter-bank).

1) Intra-bank timing constraints: Each DRAM command
triggers events in a bank, such as combinational logic delays,
data movement, charging wires, etc. Each command takes a
certain amount of time, thus, timing delays between commands
to the same bank should be respected. Here are several
important intra-bank timing constraints that are relevant to
our approach. They are device-specific and can be found in
the DRAM specification.

• tRP (Row Precharge time) – the minimum interval between
PRECHARGE and a following command to the same bank.
• tRCD (Row-to-Column Delay) – the minimum interval

between ACTIVATE and a following READ or WRITE to
the same bank.
• tRAS (Row Access Strobe) – the minimum interval be-

tween ACTIVATE and a following PRECHARGE to the
same bank.
• tRC (Row Cycle) – the minimum interval between accesses

to different rows in the same bank, tRC = tRP + tRAS.
• tCAS (Column Access Strobe) – a delay to retrieve the

first data from a row buffer, affects read access latency.

318

2) Inter-bank timing constraints: Inter-bank timing con-
straints between commands to different banks should also
be respected. As explained in Section II-A, DRAM arrays
for different banks are in the same DRAM device, thus they
share hardware resources. In addition, DRAM devices in the
same rank share buses for address and commands, and for
data. Therefore, even commands to different banks have timing
constraints to avoid conflicts in hardware resources or buses.
Here are a couple of important inter-bank timing constraints.

• tRRD (Row activation to Row activation Delay) – the
minimum interval between ACTIVATEs to different banks

• tBURST (data burst duration) – a busy period of the data
bus, affects timing between READs and WRITEs

III. RELATED WORK

Techniques for predictable real-time DRAM controllers
have been proposed in previous work, although not all are
suitable for mixed-criticality systems—non-critical task per-
formance cannot be sacrificed too much for critical task
predictability. Figure 3 shows how our approach (labelled
CMD-PRIORITY) relates to several others. In a typical system,
multiple requesters each generate memory requests to the
memory controller, which generates and schedules low-level
DRAM commands to best fulfill the requests (upper part of
figure). In a real-time system, bounded latency and interference
must be considered in addition to overall throughput and
fairness. When limited to commercial off-the-shelf (COTS)
DRAM controllers, techniques must be applied at the software
level (top-left of figure). When designing a custom memory
controller, techniques (bottom-right of figure) will mainly
focus on either scheduling the memory requests, controlling
command generation, or scheduling the commands, although
none of the techniques is limited to just a single part of the
memory controller. The most suitable address mapping and
page policy scheme depends on the technique used.

For systems with certain COTS DRAM controllers, the
memory interference can be bounded or reduced using soft-
ware (labelled SW-BANK-PRIO). Kim et al. [17] propose an
analysis method for a tight worst-case bound on memory in-
terference. By including command re-ordering in the analysis,
the method is readily applicable to many COTS DRAM con-
trollers, which are susceptible to memory interference between
requesters. To reduce memory interference using software,
Yun et al. [18] propose a modification to page-based virtual
memory system that allocates pages to private banks, but the
technique only works if virtual memory can modify the bits
used in bank mapping.

Critical tasks require a small latency bound for smaller
WCET estimates; a custom DRAM controller can perform
much better than COTS for this metric. One approach (la-
belled PRET), proposed by Reineke et al. [11], uses bank
privatization to consider DRAM memory as a set of private
resources, one for each requester. By scheduling the requesters
with TDM and producing DRAM commands in a predefined
sequence, each requester’s memory request latency is isolated
and tightly bounded, useful for critical tasks. Unfortunately
for mixed-criticality systems, there is no throughput flexibility
between tasks and unused memory request slots cannot be used
by non-critical tasks.

DRAM%Controller%
!

DRAM%DRAM%
Controller%

Cache%

DMA%

Requesters%

I/O%

Command!
Genera+on!

Command!
scheduling!

Request!queues!
with!schedulers!

Memory!
Requests!

DRAM!
Commands!

CSSP!

REQ8SCHEDULE% PRET!

TDM8PATTERN%
CMD8PRIORITY%

Can%use%open8page%policy%

Main!focus,!
but!not!limited!to!
BankDinterleaved!
memory!mapping!

Bank!priva+za+on!
(for!cri+cal!tasks)!

CPU%

RTU%

OperaEng%
Systems%/%

Middle%Ware%

SWDBANKDPRIO!

Requires%close8page%policy%

Fig. 3. Summary of related work in predictable DRAM controllers. Ap-
proaches primarily designed for mixed-criticality systems are in bold. Our
proposed approach is underlined.

A different approach is to restrict memory requests to cer-
tain patterns [12], which results in predictable access latencies
when bank interleaving and a close-page policy are used with
a predefined command sequence. Compared to our work, the
predefined sequences can make it harder to apply DRAM
command scheduling used in many COTS DRAM controllers
for high performance. Depending on the desired behavior,
different request-level scheduling approaches can be used.
Dynamic memory-request schedulers can efficiently handle
varying memory request patterns, but do not provide isolation
between requesters. For example, Akesson et al. [13] use a
Credit-Controlled Static-Priority (labelled CCSP) to provide
minimum bandwidth guarantees for each requester along with
bounded latencies.

Paolieri et al. [14] focus on bounding latency for hard
real-time multicore architectures to reduce WCET estimates,
and their approach can be used for mixed-criticality systems.
In addition to describing an analytical model for providing
latency bounds for several memory configurations, they also
propose a memory controller (labelled REQ-SCHEDULE) to
minimize the impact of non-critical tasks. There is one queue
per core for critical tasks and one queue shared by non-
critical tasks. Non-critical memory requests are handled unless
there is one or more critical memory requests, in which case
preemption occurs and critical memory requests in queues
are handled in round-robin order. The main advantage of this
approach is in the absence of critical memory requests, non-
critical memory requests are constantly handled. Compared to
our work, this approach is restricted to a close-page policy, thus
can have lower performance in general. Plus, there can be more
interference between critical memory requests because critical
tasks are mapped to the same banks with bank interleaving.

To provide isolation between requesters for composability,
similar to the PRET approach but with less isolation and more
flexibility, Goossens et al. [15] use a TDM-based approach
(labelled TDM-PATTERN) that can be reconfigured during
runtime. By allocating each slot in the TDM schedule to some
requester, each requester is isolated from memory interference
and can be given different throughput guarantees. Non-critical
tasks can be allocated slots, but slots are wasted if no memory
request occurs, limiting overall throughput in mixed-criticality
systems. These slots could be filled with non-critical tasks, this
extension is considered in the comparison in Section VI.

319

Bank%0% Bank%1% Bank%2% Bank%3% Bank%4% Bank%5% Bank%6% Bank%7%

Rows%

cm0={s0}% cm1={s1}% cm2={m0,&m1}%

Cri7cal%space%
cmi:%Cri7cal%memory%access%groups%
nm:%NonBcri7cal%memory%access%group%

NonBcri7cal%space%
si:%Safety%cri7cal%tasks%
mi:%Mission%cri7cal%tasks%
ti&:%NonBcri7cal%tasks%

Physical/Address/Space/of/a/DRAM/

cm3={m2,&m3,&m4}%
nm/=/{t0,&t1,&t2,&t3,&t4,&t5}%

Fig. 4. An example critical space allocation and configuration of tasks in
mixed-criticality systems with three categories of criticality

Bank%0% Bank%1% Bank%2% Bank%3% Bank%4% Bank%5% Bank%6% Bank%7%
[31:24]%%8%bits% [23:21]%[20:18]%[17:15]%[14:12]% [11:9]% [8:6]% [5:3]% [2:0]%

1%bit%for%each%bank% Number%of%rows%reserved%for%each%bank%

Bank%0,2,4% 4K%rows%

(a)$

(b)$

Bank%0% Bank%1% Bank%2% Bank%3% Bank%4% Bank%5% Bank%6% Bank%7%
10101000% 001% 000% 000% 000% 010% 000% 000% 000%

2K%rows% 6K%rows%

Fig. 5. (a) A 32-bit representation of critical space (b) An example
representation of critical space

IV. TECHNICAL APPROACH

A. Bank-aware physical address allocation

The proposed DRAM controller distinguishes different
types of memory requests. In this paper, we define a memory
access group (MAG) as a set of tasks accessing the DRAM.
We also define two types of MAGs, one is a critical MAG, the
other is a non-critical MAG. Our memory controller provides
bounded memory access latency for each critical MAG. A crit-
ical MAG can include multiple critical tasks so we can control
an upper bound of memory access latency of each critical task
within a same critical MAG through task scheduling. Thus, we
can change memory access latency bounds of a critical task
depending on the task’s criticality level in mixed-criticality
systems. This software scheduling problem at a high level is
beyond the scope of this paper, but we note that we do not
limit the number of critical tasks in each MAG. Meanwhile,
non-critical tasks belong to a single non-critical MAG.

In our approach, separate physical memory address space,
namely critical space, is reserved for each critical MAG to
provide each with bounded memory access latency. We allocate
one critical MAG for each bank. This eliminates intra-bank
timing constraints between different critical MAGs, and thus
leads to bounded worst-case latency, by limiting effects of
memory requests from different critical MAGs. We call this
allocation scheme bank-aware allocation of physical address
space. An example of critical space allocation is shown in
Fig. 4. We use three categories of criticality for tasks in this
paper: safety critical, mission critical, and non-critical. In
this example, we assign one safety critical task per critical
MAG for the highest predictablity, while we assign more
than one mission critical task per critical MAG for the next
level of criticality, assuming appropriate scheduling policies

CPU$ CPU$ RTU$ I/O$

DRAM%Memory%Controller%
$

Request$
(Reorder)$
Queue$

Preemp7ve$
Command$
Generator$

Controllerfor
Bank%0%

Priority$
Slotfor
Cri7cal$
Requests$

PHY$
(Command$!$DRAM$Signal)$

Command$
Generator$

Refresher$
Module$

Refresh$
Timer$

Command$
Snooping$

PriorityIbased$Arbiter$with%
Cri7cal$Request$Detec7on$

PriorityIbased$Arbitra7on$&$
Timing$Constraint$Check$$

Preemp7ve$
Command$
Generator$

Controllerfor
Bank%1%

Preemp7ve$
Command$
Generator$

Controllerfor
Bank%7%

Requesters$

DRAM%

Fig. 6. An overview of processing memory requests in the proposed DRAM
controller

for mission critical tasks. The rest of physical address space,
or non-critical space, is used by the non-critical MAG.

The proposed DRAM controller does critical space allo-
cation with a 32-bit hardware register as depicted in Fig.
5 (a). With this register, we can allocate different numbers
of rows of memory as critical for each bank. One bit for
each bank indicates whether part of the bank is reserved as
critical. Remaining bits indicate how many rows within each
bank are reserved. The DRAM used for our experiments,
Micron LPDDR2 SDRAM S4 [16], has eight banks and 16K
(16 × 1024) rows for each bank. We use the most significant
eight bits of the register to reserve each bank, and divide
remaining 24 bits into 8 octal numbers with 3 bits to represent
the number of rows reserved, where 0 means 2K, 1 means
4K, 2 means 6K rows, etc. Figure 5 (b) depicts an example
usage of this register. We can detect critical requests simply
by comparing this register and physical addresses of requests.

B. Command-level prioritization of critical requests

Once a request is detected as critical (i.e. from a critical
MAG), the proposed DRAM controller prioritizes the request
as illustrated in Fig. 6. The critical request preempts any non-
critical request waiting to be issued. We assume an architecture
where each requester is connected to the memory controller
through an arbiter that can detect critical requests. At the top
of the Fig. 6, we see two CPUs, one RTU (Real-Time Unit),
and an I/O device are connected to this arbiter. This arbiter
sends requests from each requester to the memory controller
as soon as the controller becomes ready to receive the request.
When the DRAM controller has an empty queue slot for a
request, it becomes ready for a requester. When more than
one requester is ready to send memory requests, it forwards
critical requests first. For more than one requester with critical
requests, it forwards them in round-robin fashion.

320

Refresh'window'
Busy'

A'single'refresh' Refresh'window'
(a)' (b)'

Fig. 7. Refresh scheduling (a) to maximize throughput (b) to minimize
worst-case refresh overhead by distribution of refreshes. See [21].

Since the proposed DRAM controller can be viewed as
an extension of a general DRAM controller, we first explain
how a general DRAM controller works, and then explain
our extension. A general DRAM controller has queues to
store requests for each bank as described in Chapter 12 of
[19]. Memory requests waiting in request queues can be
reordered to increase throughput [20]. For example, assuming
a memory controller with an open-page policy (see Section
II-C), scheduling requests accessing the same row adjacently
reduces the number of DRAM commands and thus, reduces
the total access time. This scheduling policy is called open-
row scheduling. Open-row scheduling is used for non-critical
tasks in our memory controller. Then, a bank controller in the
memory controller takes the request at the head of this queue
and generates one or more DRAM commands for the request.

As part of the extension, our DRAM controller adds a
priority slot reserved for critical requests for each bank to
avoid reordering. The selected memory request is converted
into one or more DRAM commands by our special preemptive
command generator in each bank controller. When there
is a critical request in the priority slot, DRAM commands
from the critical request immediately preempt any outstanding
non-critical DRAM commands to the same bank. We call
this technique command-level priority-based scheduling with
preemption, which clearly distinguishes our proposed approach
from others using request-level scheduling. After a non-critical
request is preempted, the preemptive command generator gen-
erates additional compensation commands for the preempted
request when there is no critical request. We implement this
by holding a non-critical request at the head of queue and
resuming command generation for the preempted request.

DRAM commands are sent out to logic specialized for
priority-based arbitration and timing constraint check. This
logic assigns a higher priority for the commands of critical
requests than non-critical requests. Then, it schedules com-
mands with the same priority in round-robin fashion. The
logic also checks timing constraints between the previously
sent command and the currently scheduled command. It sends
the scheduled command to PHY as soon as all the timing
constraints are resolved. PHY converts DRAM commands into
DRAM signals and sends the signals to the DRAM.

C. Making DRAM refresh predictable

DRAM cells need to be refreshed every certain amount of
time to prevent data from decaying as described in Section
II-B. Each REFRESH command refreshes a specified number
of rows. Thus, a predefined number of refresh commands
should be sent to the DRAM within a specified time window
called a refresh window. DRAM refreshes can cause signifi-
cantly higher worst-case latency depending on refresh policies.

There has been a diversity of approaches to make the
DRAM refresh predictable [22] [23]. Among those approaches,

N"CR%
CMD%

PREC%

CR%
CMD%

Last%non(cri,cal%command%
Sent%before%cri,cal%commands%

Cri,cal%command%to%target%
address%

Intervening%cri,cal%command%%
from%other%cri,cal%MAGs%

PREC% Command%from%refresh%
opera,on%

Data% Data%transfer%on%data%bus%

Intra(bank%,ming%constraints%
Inter(bank%,ming%constraints%

CR%
CMD% PREC%N"CR%

CMD% ACT%CR%
CMD% READ%CR%

CMD%

(b)%

PREC%N"CR%
CMD%

(d)% Refresh%overhead%

ACT% PREC% REF% ACT% READ%

tRP% tRFC%tRAS%

CR%
CMD% PREC%N"CR%

CMD%
CR%
CMD%

CR%
CMD%

CR%
CMD% ACT%CR%

CMD%
CR%
CMD%

CR%
CMD% READ%CR%

CMD%
CR%
CMD%

(c)%

ACT% READ%PREC%N"CR%
CMD%

(a)%

tRP% tRCD%

Data% Data%

tCAS% tBURST%dinitCR%

Fig. 8. Worst-case examples for (a) one critical MAG, (b) two critical MAGs,
(c) more critical MAGs, and (d) precharge intervention

we choose one of the simplest approaches, where we uniformly
distribute the refresh commands as shown in 7 (b), rather
than maximizing throughput by sending a burst of refresh
commands when DRAM is not busy as shown in 7 (a). This
is realized by a refresher module with an internal periodic
timer, as depicted at the right side of Fig. 6. Although we
choose this simple technique, however, we believe that more
advanced techniques for predictable DRAM refresh can be
easily combined with our proposed memory controller later.

V. WORST-CASE BOUND ANALYSIS

A. Estimation of worst-case latency bounds

In order to provide strict upper bounds on memory la-
tency for critical MAGs, it is necessary to calculate and
estimate latency bounds for each memory request. Thanks
to the proposed techniques described in Section IV, DRAM
commands for a critical request are sent within a bounded
time. For convenience, we denote a minimum required time
delay between a preceding command X and a following
command Y as dcondXtoY . For the subscript cond, we use
either intra and inter to refer to intra-bank and inter-bank,
respectively. We also use an abbreviation for each command:
P for PRECHARGE, A for ACTIVATE, R for READ, W
for WRITE, and F for REFRESH. For example, dintraWtoP
refers to the minimum intra-bank time delay between com-
mands WRITE and following PRECHARGE to the same bank.

The bounds for the worst-case latency of read requests from
critical MAGs depend on the number of critical MAGs. Let
us begin with a simple example with only one critical MAG.
When a memory read request arrives, the DRAM controller
generates just one READ command if the previously ac-
cessed row matches the currently accessed row, or it generates
PRECHARGE-ACTIVATE-READ otherwise. For the worst-
case latency, considering the latter is enough as shown in Fig.
8 (a). When PRECHARGE of the critical request becomes
ready, other non-critical DRAM commands cannot be sent.
PRECHARGE can be sent as soon as the timing constraint with
a previously sent command is resolved. Thus, we need to figure
out the worst-case delay between the previous non-critical
command and the first critical command. We call this dinitCR.

321

We can find this by trying all combinations of possible com-
mands. In general, candidates for dinitCR are dintraAtoP and
dintraWtoP , depending on the specification of the DRAM.
The worst-case latency is dinitCR + tRP + tRCD + tCAS
(see Section II-D1 for details).

A worst-case latency example for two critical MAGs is
shown in Fig. 8 (b). In this case, intervening critical commands
should be considered as well. By the benefit of priority-based
round-robin scheduling illustrated in Section IV-B, there will
be at most one intervening critical request for each critical re-
quester. In addition, we only need to consider inter-bank timing
constraints between temporally adjacent critical commands due
to bank-aware memory allocation explained in Section IV-A.
We can find worst-case latency by finding the combination of
intervening critical commands that yields the highest latency.
Intra-bank timing constraints between critical commands to
the same bank should also be considered as shown in Fig. 8
(b). This is because they can be greater than inter-bank timing
constraints between adjacent critical commands.

Figure 8 (c) shows the worst-case latency example for more
than two critical MAGs. When there are more than enough
(depending on DRAM specification but usually three) critical
MAGs, inter-bank timing constraints become dominant. Thus,
we need not consider intra-bank constraints for estimating the
worst-case latency. Adjacent READs or WRITEs have greater
inter-bank timing constraints than other command sequences
because READ and WRITE have to wait for the previous data
burst on the shared bus to be finished. Especially, dinterWtoR
has the greatest timing delay because the direction of the
data bus is reversed. Therefore, we can find the worst-case
latency for a critical request by considering combinations of
intervening critical commands consisting of only READs and
WRITEs when there are enough critical MAGs.

Overhead from intervening REFRESHes also needs to be
considered to estimate the worst-case latency. As described in
Section IV-C, the proposed DRAM controller triggers refresh
operations periodically. Because the refresh is so important,
any other commands cannot be issued during a refresh oper-
ation. Figure 8 (d) shows the worst-case refresh intervention,
where a refresh operation to the same bank is enabled right
after ACTIVATE of a critical request, provided that there is one
critical MAG. This leads to the worst-case scenario because
the PRECHARGE which precedes the REFRESH cancels
the effect of the previous ACTIVATE, causing an additional
ACTIVATE to be sent. In this case, the worst-case overhead
caused by the refresh operation is tRAS + tRP + tRFC,
where tRFC means Refresh Cycle time, which is the minimum
interval between the REFRESH and following ACTIVATE to
the same bank. If there is more than one critical MAG, the
additional overhead for the worst-case latency from the refresh
will decrease because the delays of commands associated with
the refresh can be hidden in the worst-case scenario.

B. Procedures to compute worst-case latency

In this section, we present mechanical procedures to find
a combination that leads to the worst case and to compute
the worst-case latency for a given number of critical MAGs.
Algorithm 1 describes a procedure iterating all command
sequences that can potentially lead to the worst-case latency

Algorithm 1 Compute worst-case latency by trying all possible
combinations of command sequences
1: procedure WORSTCASELATENCY(numCriticalMAG)
2: wcLatency ← 0;
3: while remainingCandidates = true do
4: cmdSeq ←NEXTCOMBINATION(numCriticalMAG);
5: latency ←GETLATENCY(cmdSeq);
6: if latency > wcLatency then wcLatency ← latency;
7: end if
8: end while
9: return wcLatency + tCAS + tBURST ;

10: end procedure

Algorithm 2 Get latency to send all commands in cmdSeq
1: procedure GETLATENCY(cmdSeq)
2: int d[len(cmdSeq)];
3: d← 0; . initialize array elements to zero
4: for i = 1 to len(cmdSeq)−1 do
5: for j = i− 1 down to 0 do
6: (cmdfrom, bankfrom)← cmdSeq[j];
7: (cmdto, bankto)← cmdSeq[i];
8: if bankfrom = bankto then
9: t← d[j]+intraDelay(cmdfrom, cmdto);

10: else
11: t← d[j]+interDelay(cmdfrom, cmdto);
12: end if
13: if t > d[i] then d[i]←t;
14: end if
15: if (d[i]−d[j]) ≥ maxDelay then break;
16: end if
17: end for
18: end for
19: return d[len(cmdSeq)−1];
20: end procedure

for the given number of critical MAGs, numCriticalMAG.
We define a set C = {PRECHARGE, ACTIVATE, READ,
WRITE}, as a set of four access-related commands. We also
define cmdSeq : Array of (C × N), an array of tuples, each
with a command in C and a target bank number.

A key idea of this procedure is that the worst-case
command sequence always looks like Fig. 8 (c). The
maximum number of intervening commands is 1 + 3 ×
(numCriticalMAG− 1), because there will be at most one
non-critical command and at most numCriticalMAG − 1
commands before each of PRECHARGE, ACTIVATE and
READ. If there are fewer commands, it will not lead to the
worst-case latency. Thanks to the round-robin scheduling on
critical commands, we know that the bank number of each
critical command will also go round-robin in the worst case.
Moreover, we know that the first non-critical command has
to have the same bank number as the first critical command
in the worst case. Given the total number of intervening
commands and their bank numbers for the worst case, we
only have to consider is the combination of commands marked
as N-CR CMD (non-critical command) and CR CMD (critical
command) in Fig. 8 (c). Intuitively, we can view each combi-
nation sequence of commands as a quaternary (4-ary) number
with 1 + 3× (numCriticalMAG− 1) digits. The procedure
NEXTCOMBINATION in Algorithm 1 can return a next combi-
nation in this way, by increasing this quaternary number. We
need not consider PRECHARGE and ACTIVATE when there
are enough critical MAGs as discussed in section V-A, except
for the first two commands with intra-bank constraints.

322

CR0$CR1$CR2$CR3$ NC$
f$=$5$slots$

Worst2case$arrival$8mefora$cri8cal$request$from$CR0$
WCRT:6slots$

CR0$CR1$CR2$CR3$ NC$ CR0$CR1$CR2$CR3$ NC$

Fig. 9. An example time slot allocation and its iterations in the TDM-based
approach [15]. CRn stands for a TDM slot for the critical MAG with ID n,
while NC stands for a TDM slot for the non-critical MAG.

With 8 banks, a common upper bound for current DDR2
and DDR3 SDRAMs, we can have at most 8 critical MAGs.
In this case, the total number of possible combinations to
get the worst-case latency bound is 42 × 2(7×3−1), which is
about 16.8 million. We were able to execute this within several
hours on a laptop. Fortunately, because all the timing constraint
numbers are fixed for a device, this computation only needs
to be performed once for each DRAM configuration.

Algorithm 2 shows a procedure to compute the latency
of each combination. A DRAM specification gives us the
minimum intervals between two consecutive commands. We
present the minimum intervals with two matrices, intraDelay ,
interDelay : C × C → N ∪ {⊥}, one for the intra-bank
delays and the other for the inter-bank delays. Some pairs of
commands in the matrix intraDelay can be invalid, and they
will never appear in the real DRAM commands. To express
this, we also include a bottom element ⊥ in intraDelay .
Each element d[i] of an integer array denoted as d represents
the time when the ith command in cmdSeq can be sent. By
updating elements of d gradually, we can compute the time
when the last command can be sent, which is the total delay
caused by the given sequence. Every iteration, the algorithm
computes d[i] by comparing the delays required between ith
and previous commands through the inner loop at line 5.
We can stop the inner for loop early at line 15. This breaks
the inner loop when the difference between d[i] and d[j]
is greater than maxDelay , which is the maximum delay of
elements in intraDelay and interDelay . This is because we
know that the further inner loop iterations cannot update d[i].

Finally, Algorithm 2 returns the time when the last com-
mand in the sequence can be sent, d[len(cmdSeq)−1], at
line 19. Algorithm 1 has the maximum of these latency values
in wcLatency. We also need to add tCAS + tBURST to
calculate the time when the whole data is returned from a
DRAM. Finally, Algorithm 1 returns the worst-case latency,
wcLatency + tCAS + tBURST at line 9.

C. Comparison with a previous approach

In this section, we compare the worst-case latency bounds
of our approach against a recent previous approach [15] that
also targets mixed-criticality. By this comparison, we show
that our proposed memory controller can achieve comparable
latency bounds for critical memory requests.

Figure 9 depicts how TDM slots are modeled in the
previous TDM-based approach [15]. The size of TDM slots
is determined by finding a predictable and composable access
pattern as explained in [15], depending on the specification
of DRAMs. For evaluation of the TDM-based approach, we
allocate one slot for each critical MAG (CRn) and one slot for
the non-critical MAG (NC) as in Fig. 9. A frame, denoted as
f in the figure, is a predefined periodic pattern of a sequence

10
6$

12
8$

15
0$ 17
2$ 19
4$ 21
6$ 23
8$ 26
0$

10
2$

12
7$

14
7$ 17
5$ 20
3$ 23
1$ 25
9$ 28
7$

0$

100$

200$

300$

400$

1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$
Number'of'cri,cal'MAGs'

DDR26800,'AG=64bytes'
TDM/based$
Priority/based$

W
or
st
6c
as
e'
la
te
nc
y'
(c
yc
le
s)
'

10
6$

12
8$

15
0$ 17
2$ 19
4$ 21
6$ 23
8$ 26
0$

10
2$

12
7$

14
7$ 17
5$ 20
3$ 23
1$ 25
9$ 28
7$

0$

100$

200$

300$

400$

1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$
Number'of'cri,cal'MAGs'

DDR26800,'AG=64bytes'
TDM/based$
Priority/based$

W
or
st
6c
as
e'
la
te
nc
y'
(c
yc
le
s)
'

10
5$

12
9$

15
3$ 17
7$ 22
5$ 24
9$ 27
3$ 29
7$

92
$

12
4$

15
0$ 18
9$ 24

5$ 28
4$ 31
7$ 35
6$

0$

100$

200$

300$

400$

1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$
Number'of''cri,cal'MAGs''

LPDDR28800,'AG=64bytes'
TDM/based$

Priority/based$

W
or
st
8c
as
e'
la
te
nc
y'
(c
yc
le
s)
'

10
5$

12
9$

15
3$ 17
7$ 22
5$ 24
9$ 27
3$ 29
7$

92
$

12
4$

15
0$ 18
9$ 24

5$ 28
4$ 31
7$ 35
6$

0$

100$

200$

300$

400$

1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$
Number'of''cri,cal'MAGs''

LPDDR28800,'AG=64bytes'
TDM/based$

Priority/based$

W
or
st
8c
as
e'
la
te
nc
y'
(c
yc
le
s)
'

.96$.99$.98$ 1.02$
1.05$ 1.07$

1.09$
1.10$

.88$.96$.98$
1.07$

1.09$
1.14$ 1.16$

1.20$

Fig. 10. Worst-case latency bounds of the TDM-based approach [15] and the
proposed priority-based approach on DDR2-800 and LPDDR2-800 DRAMs
with 64 bytes of access granularity (AG). The numbers on top of the bars
denote Priority-based / TDM-based ratios for each case.

of TDM slots. In the worst scenario, the worst-case response
time (WCRT) becomes f +1, in terms of the number of slots.

We use two types of DRAMs for worst-case latency
bound analysis, DDR2 and LPDDR2, both with a data rate of
800MHz and eight banks. DDR2 is chosen because it is one of
the selected target memories in the TDM-based approach, and
the sizes of TDM slots for DDR2 are clearly shown in [24]. We
also select LPDDR2 (Low-Power DDR2) since the LPDDR
standard is widely used in mobile and embedded systems.
LPDDR2 is also employed in Section VI below for realistic
experiments because a Verilog behavioral model of LPDDR2
by Micron Technology is available online and it can be directly
attached to our DRAM controller for timing simulation.

We determine time slots for LPDDR2 in the most favorable
way for the TDM approach [15]. Firstly, we use READs and
WRITEs with auto-precharge because they have lower latency
than the standalone READs and WRITEs followed by explicit
PRECHARGEs. Secondly, we choose an optimal combination
of the burst length (BL) and burst count (BC) to achieve the
same access granularity (AG) of 64 bytes per request.

In addition, the worst-case overhead from refreshes should
be considered for the worst-case latency. We use a refresh
pattern defined in [15] for the TDM-based approach, and the
worst-case refresh overhead estimated in Section V-A for our
proposed approach. We also include the time to deliver data
from the DRAM (denoted as tCAS + tBURST) for both
approaches. The graphs in Fig. 10 describe the results of worst-
case latency bound analysis for two types of DRAMs above.

The results in Fig. 10 clearly show that we can achieve sim-
ilar bounds as in [15]. The proposed priority-based approach
gives a little less or a little greater wort-case bounds compared
to the TDM-based approach for each DRAM. The proposed
approach’s latency bounds range from 96% to 110% of the
TDM-based approach for DDR2, depending on the number of
critical MAGs. For LPDDR2, the proposed approach’s latency
bounds range from 88% to 120% of the TDM-based approach.
These priority-based / TDM-based ratios are shown on top
of the bars in Fig. 10. Note that the TDM-based approach
achieves those latency bounds by assigning only one TDM
slot for all non-critical tasks. With our proposed memory
controller, we need not impose such severe restriction to
achieve worst case latency bounds. Therefore, the proposed
memory controller can perform much better than the TDM-
based approach for non-critical tasks, at a cost of moderately
higher worst-case latency for critical MAGs. This is illustrated
through experiments in the section below.

323

D"#
Cache#

I"#
Cache#

CPU#

DRAM#
Trace#

LPDDR2&DRAM&Behavioral&Model&

DRAM#Controller#

PHY#

Memory&Ini7aliza7on&
<0,#W,#Addr,#Data>#

!!!#
<0,#W,#Addr,#Data>#
"""""""""""""""""""""""""""""""""#
Memory&Trace&
<Cycle,#R,#Addr,#Expected#Data>#
<Cycle,#W,#Addr,#Data>#
<Cycle,#R,#Addr,#Expected#Data>#

!!!#

Trace#0# Trace#1# Trace#n#

Trace&Replayer&

Request#
Queue#

Request#
Response#

(1)#Trace#GeneraIon#with#The#gem5#Architectural#Simulator#

(2)#HDL#SimulaIon#with#Synopsys#VCS##

Check#Timing#&#Memory#Stall#Cycles#

Arbiter#

Fig. 11. The flow of experiments for the proposed DRAM memory controller

VI. EXPERIMENTS AND RESULTS

In this section, we measure the performance of non-critical
tasks with the proposed DRAM controller. The performance
results are compared against the TDM-based technique [15]
introduced in Section V-C. In the architecture used for our
experiments, each requester consists of one processor and two
caches, each for instructions and data, as depicted in the top left
of Fig. 11. We connect the requesters to the DRAM controller
through an arbiter that detects and prioritizes critical requests.

A. Experimental setup

The flow of experiments shown in Fig. 11 is roughly
composed of two parts. The first is trace generation and the
second is Verilog HDL simulation of the DRAM controller. In
trace generation, we capture memory requests from benchmark
programs using the gem5 architectural simulator [25]. For
separation of computation and memory access time, we use
an architecture with a simple CPU, two caches and a simple
memory which immediately responds for memory accesses.

The simple CPU uses an ARM ISA, and takes one cycle
for each instruction. It has one I-cache and one D-cache, the
size of each cache is 4KB, and the cache block size is 64
bytes. This is the same as the access granularity (AG) of the
LPDDR2 DRAM used for our experiments, as in Fig. 10 of
Section V-C. When a memory read or write request occurs
during simulation, the request and the time when the request
is made are recorded in the trace, without stalling the CPU.
The trace also includes the write requests for initialization of
the memory as shown in the top right of Fig. 11.

We use two different benchmarks for our experiments,
the Mälardalen WCET benchmark [26] for safety critical and
mission critical tasks, and MiBench [27] for non-critical tasks.
We exclude bsort100 from the Mälardalen benchmark because
it expects inputs to be at special addresses that are not legal in
the gem5 simulator. Several MiBench programs are excluded

TABLE I. LIST OF BENCHMARKS USED AS CRITICAL TASKS

Criticality
level

MAG
ID

WCET
benchmark
programs

writes reads
total

instructions
executed

memory
intensity

(%)

Safety
critical

0 bs 86 319 4,828 8.39
1 lcdnum 85 331 5,050 8.24
2 janne complex 84 318 5,113 7.86
3 fibcall 83 317 5,291 7.56

Mission
critical

4 fac 83 316 5,318 7.50
statemate 85 418 7,215 6.97

5 nsichneu 95 1,117 18,676 6.49
qurt 84 346 6,896 6.24

6
duff 93 339 7,013 6.16
cover 92 381 7,909 5.98
insertsort 83 328 7,091 5.80

7

qsort-exam 82 342 8,502 4.99
select 79 330 8,653 4.73
fft1 84 348 9,911 4.36
minver 88 378 10,725 4.34

TABLE II. LIST OF BENCHMARKS USED AS NON-CRITICAL TASKS

Criticality
level

MiBench
programs writes reads

total
instructions

executed

memory
intensity

(%)

Non-criticial

cjpeg large 6,183 74,966 1,000,000 8.11
rijndael large 2,558 68,458 1,000,000 7.10
typeset small 12,843 55,963 1,000,000 6.88
dijkstra large 4,942 59,198 1,000,000 6.41
patricia large 4,255 49,198 1,000,000 5.35

for our experiments because they are not executable in gem5
(qsort) or not compilable with the ARM cross compiler (lame,
ghostscript, tiff, etc.), due to reasons including specific library
requirements. Programs with the top memory intensity are
selected from each benchmark for our experiments, the top 15
from the WCET benchmark and the top 5 from MiBench. We
define the memory intensity as the number of memory accesses
divided by the total number of instructions. To calculate the
memory intensity of each program, we run each program on
the gem5 simulator up to one million instructions. When there
are two options for the data size (small and large) in MiBench,
we choose the one with the higher memory intensity. The
programs used as critical tasks and non-critical tasks are listed
in Table I and Table II, respectively.

In the second part of experiments, we perform HDL simula-
tion on the proposed memory controller. The generated traces
above are used as inputs for a trace replayer in the middle
of Fig. 11. Then, the memory requests are stored in separate
request queues dedicated for each task. In this way we replay
all memory traces in parallel, regardless of tasks’ criticality.
Since execution times of critical tasks are much shorter than
those of non-critical tasks, we repeat critical tasks’ traces
periodically. Safety critical tasks are repeated every 250,000
cycles, and mission critical tasks every 500,000 cycles.

Before replaying requests, the trace replayer initializes
DRAM by replaying write requests for initialization in each
trace. The trace replayer also manages memory mapping for
each task. Memory mapping used in our experiments is similar
to the example in Fig. 4 of Section IV-A. We map one safety
critical task per critical MAG, and more than one mission
critical task per critical MAG, while we map all non-critical
tasks into one non-critical MAG. Table I shows how we map
critical tasks in more detail. Each MAG ID corresponds to a
unique critical MAG and a bank number. Note that multiple

324

10
2$ 20
1$ 29
9$ 40
0$

51
1$ 63

9$

63
9$ 77

5$

77
5$ 91

3$

91
3$

91
3$

92
3$

92
3$

92
3$

92
3$

10
2$

10
7$

11
3$

11
8$

12
5$

12
9$

13
3$

14
8$

15
3$

15
9$

16
5$

17
1$

17
7$

18
3$

19
1$

20
0$

69
$

72
$

74
$

77
$

79
$

81
$

83
$

88
$

89
$

91
$

92
$

95
$

99
$

99
$

10
3$

10
5$

0$
200$
400$
600$
800$

1000$
Memory'access'+me'of'5'MiBench'non2cri+cal'tasks' ReservedTDM FlexibleTDM Priority>based$

Average'memory'
access'+me'per'
read'request'

(cycles)'

Average'memory'
access'+me'per'
read'request'

(cycles)'

~~'

0" 1" 2" 3" 4" 5" 5" 6" 6" 7" 7" 7" 8" 8" 8" 8"
0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15"

(0,"0)" (1,"0)" (2,"0)" (3,"0)" (4,"0)" (4,"1)" (4,"2)" (4,"3)" (4,"4)" (4,"5)" (4,"6)" (4,"7)" (4,"8)" (4,"9)" (4,"10)" (4,"11)"
0.67" 0.36" 0.25" 0.19" 0.16" 0.13" 0.13" 0.11" 0.12" 0.10" 0.10" 0.10" 0.11" 0.11" 0.11" 0.11"
0.67" 0.67" 0.66" 0.65" 0.63" 0.63" 0.62" 0.59" 0.58" 0.57" 0.56" 0.56" 0.56" 0.54" 0.54" 0.52"

Number"of"cri:cal"MAGs"
Number"of"cri:cal"tasks"
(safety"cri:cal,"mission"cri:cal)"
PriorityFbased"/"Reserved"TDM"
PriorityFbased"/"Flexible"TDM"

Fig. 12. Average memory access times of read requests from non-critical tasks and their ratios between different approaches

mission critical tasks are mapped to the same critical MAG.

After finishing the memory initialization, the trace replayer
replays the memory requests from queues. The requests also
go through the arbiter explained in Fig. 6 before going to the
DRAM controller. After sending a read request, the replayer
delays the next request and all the following requests in the
queue, until the response arrives from the memory controller.
By doing this, we can simulate memory stall cycles caused
by memory access time. Meanwhile, the next request does not
wait after sending a write request.

We implement the DRAM controller and the second part of
experiments with following languages. The proposed DRAM
controller is written in the Chisel 2.1 hardware description
language [28]. From this, Verilog HDL code can be generated.
The trace replayer is implemented in Verilog HDL with
a DirectC interface [29]. The PHY and LPDDR2 DRAM
(800MHz, 4Gb) are Verilog HDL behavioral models. The
PHY is provided by ST Microelectronics, and the LPDDR2
DRAM is provided by Micron. Synopsys VCS is used for
HDL simulation of the second part of our experiments.

We emulate the TDM-based approach [15] using Verilog
HDL with a DirectC interface [29], as it is modeled in Section
V-C. All other conditions are considered to be same in the
experiments, including the traces, the trace replayer, and the
DRAM. We assume the refresh of the TDM-based approach
is performed in the same way as described in Section IV-C.
The memory access latency of our proposed memory controller
includes one cycle delay for each of the arbiter, the bank buffer
and the command generator. The latency also includes a round-
trip delay from the controller to the DRAM across the PHY,
which is 8 cycles. Therefore, assuming the same PHY, DRAM,
arbiter, bank buffer and command generator, we add latency
of 11 cycles for each read request (not to the TDM slots).

B. Performance results of non-critical tasks

For measuring performance, we use memory access time
to measure the impact of memory accesses on each program’s
execution time. We define memory access time as the delay
from the time point when the CPU is stalled due to the memory
access until when the CPU receives a memory response and
resumes the execution. The performance of non-critical tasks
is measured in terms of average memory access time of read
requests from all non-critical tasks.

Three different approaches are compared in our exper-
iments: Reserved TDM, Flexible TDM, and Priority-based.
Reserved TDM is based on the previous TDM-based approach

[15] with reserved TDM slots for each critical MAG and one
TDM slot for the non-critical MAG as presented in Fig. 9.
In Reserved TDM, each MAG can only access the memory
during its own reserved slot. This approach certainly causes
non-critical tasks to suffer a very high memory access time
because the slots for critical MAGs are wasted even when they
are not used. Therefore, we extend the TDM-based approach,
where we allow non-critical tasks to use a slot for a critical
MAG when there is no request from the critical MAG. We call
this approach Flexible TDM. Finally, Priority-based refers to
the approach used in our proposed DRAM controller.

We perform experiments for one million cycles on the top
5 memory-intensive MiBench programs in Table II as non-
critical workloads. To measure the impact of critical tasks, we
also run different numbers of safety critical and mission critical
tasks. We add critical tasks one by one, starting from the one
with the highest memory intensity as shown in Table I. We
compute the average memory access time for each case by
dividing the total stall cycles of all non-critical tasks by the
total number of memory read requests from all non-critical
tasks. The results of our experiments are shown in Fig. 12.

The results show non-critical tasks’ average memory access
times in the Priority-based approach range from 10% to 67%
of those in Reserved TDM, as shown in the second from
the bottom row of Fig. 12. This is because the TDM slots
for critical MAGs are wasted even when critical tasks are
not accessing the DRAM, and the requests from non-critical
tasks are concentrated on only one slot. Consequently, the read
requests from non-critical tasks have to wait a much longer
time. In contrast, our memory controller serves non-critical
requests immediately when there is no critical request.

Even when compared to Flexible TDM, the average mem-
ory access times of the Priority-based approach range from
52% to 67% of Flexible TDM for non-critical tasks as we
varied the number of critical tasks, as shown in the bottom
row of Fig. 12. Although we eliminate waste of TDM slots
for critical MAGs in Flexible TDM, the Priority-based ap-
proach still has much less memory access time than Flexible
TDM. Interestingly, even without any critical task, the average
memory access time of the Priority-based approach is 67% of
Flexible TDM. This suggests that the non-critical performance,
affected by the close-page policy of the TDM-based approach
for temporal isolation, can be greatly improved through the
proposed priority-based approach with bank-aware memory
mapping. Moreover, with our proposed approach, we can
also apply state-of-the-art memory scheduling technique to
better serve non-critical requests, without hurting the worst-

325

case latency of critical requests.

In addition to the performance results of non-critical tasks,
from the experimental results, we also confirm that the mea-
sured worst-case latency of each critical MAG never exceeds
the bounds computed in Section V-C.

VII. CONCLUSION

We propose a predictable and command-level priority-
based DRAM controller that can serve both critical and
non-critical requests in mixed-criticality systems. Instead of
using TDM-based temporal isolation, our DRAM controller
uses priority-based DRAM command scheduling with bank-
aware memory mapping to achieve tightly bounded worst-case
latency for memory requests from critical MAGs. Compared to
the TDM-based approach, our technique gives 88% to 120%
of worst-case latency bounds for the LPDDR2-800 DRAM.
However, experimental results show that our proposed DRAM
controller can achieve dramatically better performance for non-
critical task workloads. Average memory access times of the
proposed approach range from 10% to 67% of the TDM-
based approach for the workload with 5 MiBench non-critical
tasks, as we varied the number of critical tasks. Our DRAM
controller still performs considerably better even when we
extend the TDM-based approach to eliminate waste of slots for
critical MAGs. Average memory access times of the proposed
approach range from 52% to 67% of the extended TDM-based
approach in our experimental results.

ACKNOWLEDGMENT

This work started as a course project at UC Berkeley,
instructed by Jonathan Bachrach and John Lazzaro. The pro-
posed DRAM controller extends an existing implementation
of a general-purpose DRAM controller, also carried out as a
course project by Behzad Boroujerdian, Ben Keller and Yunsup
Lee. We gratefully acknowledge these contributions.

This work was supported in part by the Center for Hybrid
and Embedded Software Systems (CHESS) at UC Berke-
ley, specifically by NSF award #0931843 (ActionWebs) and
#0720882 (CSR-EHS: PRET), and the Swedish Research
Council #623-2013-8591.

REFERENCES

[1] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Real-Time Syst. Symp.,
2007. RTSS 2007. 28th IEEE Int’l., Dec. 2007, pp. 239–243.

[2] A. Burns and R. Davis, “Mixed criticality systems: A review,” Dept. of
Computer Science, University of York, Tech. Rep, Forth Edition, 2014.

[3] R. Wilhelm et al., “The Worst-Case Execution-Time Problem -
Overview of Methods and Survey of Tools,” ACM Trans. on Embed.
Comput. Syst., vol. 7, pp. 36:1–36:53, May 2008.

[4] C. Ferdinand and R. Wilhelm, “Efficient and precise cache behavior
prediction for real-time systems,” Real-Time Systems, vol. 17, no. 2,
pp. 131–181, 1999.

[5] S. A. Edwards and E. A. Lee, “The case for the precision timed (PRET)
machine,” in Proc. of the 44th annual Conf. on Design automation, June
2007, pp. 264 – 265.

[6] M. Schoeberl, “A Java processor architecture for embedded real-time
systems,” Journal of Syst. Archit., vol. 54, no. 1-2, pp. 265 – 286, 2008.

[7] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. Lee, “A PRET mi-
croarchitecture implementation with repeatable timing and competitive
performance,” in Int’l. Conf. on Computer Design (ICCD), Sep. 2012,
pp. 87–93.

[8] M. Zimmer, D. Broman, C. Shaver, and E. A. Lee, “FlexPRET: a
processor platform for mixed-criticality systems,” in Proc. of Real-
Time and Embedded Technology and Application Symp. (RTAS), Berlin,
Germany, Apr. 2014.

[9] Y. Kim, D. Broman, J. Cai, and A. Shrivastaval, “WCET-Aware
Dynamic Code Management on Scratchpads for Software-Managed
Multicores,” in Proc. of the 20th IEEE Real-Time and Embedded
Technology and Application Symp. (RTAS). IEEE, 2014.

[10] M. Schoeberl, “A time predictable instruction cache for a java proces-
sor,” in On the Move to Meaningful Internet Systems 2004: OTM 2004
Workshops. Springer, 2004, pp. 371–382.

[11] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee, “PRET DRAM
controller: Bank privatization for predictability and temporal isolation,”
in Proc. of Int’l. Conf. on Hardware/Software Codesign and Syst.
Synthesis, ser. CODES+ISSS ’11. New York: ACM, 2011, pp. 99–108.

[12] B. Akesson and K. Goossens, “Architectures and modeling of pre-
dictable memory controllers for improved system integration,” in Proc.
of the Design, Automation & Test in Europe Conf. & Exhibition (DATE),
2011. IEEE, 2011, pp. 1–6.

[13] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens, “Real-time
scheduling using credit-controlled static-priority arbitration,” in Proc.
of th 14th Int’l Conf. on Embedded and Real-Time Comput. Syst. and
Applications (RTCSA). IEEE, 2008, pp. 3–14.

[14] M. Paolieri, E. Quinones, and F. J. Cazorla, “Timing effects of DDR
memory systems in hard real-time multicore architectures: Issues and
solutions,” ACM Trans. Embed. Comput. Syst., vol. 12, pp. 64:1–64:26,
Mar. 2013.

[15] S. Goossens, J. Kuijsten, B. Akesson, and K. Goossens, “A reconfig-
urable real-time SDRAM controller for mixed time-criticality systems,”
in Int’l. Conf. on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), Sep. 2013, pp. 1–10.

[16] Micron Technology, “Micron mobile LPDDR2 SDRAM s4,” Micron
Technology, Datasheet, Mar. 2012.

[17] H. Kim, D. d. Niz, B. Andersson, M. Klein, O. Mutlu, and R. R.
Rajkumar, “Bounding memory interference delay in COTS-based multi-
core systems,” in Proc. of Real-Time and Embedded Technology and
Application Symp. (RTAS), Berlin, Germany, Apr. 2014.

[18] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni, “PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore
platforms,” in Proc. of Real-Time and Embedded Technology and
Application Symp. (RTAS), Berlin, Germany, Apr. 2014.

[19] B. Jacob, S. Ng, and D. Wang, Memory systems: cache, DRAM, disk.
Morgan Kaufmann, 2010.

[20] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory access scheduling,” in Proc. of Int’l. Symp. on Computer
Architecture, ser. ISCA ’00. New York: ACM, 2000, pp. 128–138.

[21] “Various methods of DRAM refresh.” Micron Technology, Inc., Tech-
nical Note TN-04- 30., 1999.

[22] B. Bhat and F. Mueller, “Making DRAM refresh predictable,” in 22nd
Euromicro Conf. on Real-Time Syst. (ECRTS), Jul. 2010, pp. 145–154.

[23] M. Ghosh and H.-H. S. Lee, “Smart refresh: An enhanced memory
controller design for reducing energy in conventional and 3D die-
stacked DRAMs,” in Proc. of the 40th Annual IEEE/ACM Int’l Symp.
on Microarchitecture, Washington D.C., USA, 2007, pp. 134–145.

[24] B. Akesson, “Predictable and composable system-on-chip memory
controllers,” Ph.D. dissertation, Eindhoven Univ. of Technology, 2010.

[25] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[26] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mälardalen
WCET benchmarks: Past, present and future.” in 10th Int’l. Workshop
on Worst-Case Execution Time Analysis (WCET), 2010, pp. 136–146.

[27] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “MiBench: a free, commercially representative embedded
benchmark suite,” in Workshop on Workload Characterization, 2001.
WWC-4, Dec. 2001, pp. 3–14.

[28] J. Bachrach et al., “Chisel: Constructing hardware in a scala embedded
language,” in Design Automation Conf., ser. DAC ’12, New York, 2012,
pp. 1216–1225.

[29] Synopsys, “VCS/VCSi user guide,” Mar. 2008.

326

