
Motivation PREM Evaluation Conclusions

A Predictable Execution Model for

COTS-based Embedded Systems

Rodolfo Pellizzoni† Emiliano Betti‡ Stanley Bak‡

Gang Yao♯ John Criswell‡ Marco Caccamo‡

Russel Kegley⋆

†University of Waterloo, Canada

‡University of Illinois at Urbana-Champaign, USA

♯Scuola Superiore Sant’Anna, Italy

⋆Lookheed Martin Corp., USA



Motivation PREM Evaluation Conclusions

Outline

1 Motivation

2 PRedictable Execution Model (PREM)

3 Evaluation

4 Conclusions



Motivation PREM Evaluation Conclusions

Modern safety-critical embedded systems

Traditionally safety-critical embedded systems run on federated

architectures

Nowadays, such systems use integrated architectures and

demand for more CPU cycles and I/O bandwidth



Motivation PREM Evaluation Conclusions

Commercial Off-The-Shelf (COTS) components

In term of cost and avg.

throughput, COTS-based

systems usually provide

better performance than

specialized HW

Example (Bus)

Boeing777 SAFEbus: 60 Mbit/s

PCI Express: 16 Gbyte/s

COTS components are mainly optimized for the average case

scenario and not for the worst-case:

CPU RT scheduling is no longer sufficient to provide

end-to-end temporal guarantee

Any shared physical resource can become a source of

temporal unpredictability



Motivation PREM Evaluation Conclusions

Problem #1: Memory Contention

Cache-peripheral conflict:

Arbitration policy of Front

Side Bus (FSB) is

unknown and non-RT

CPU activity can be stalled

due to interference on FSB

Contention for access to

main memory can greatly

increase a task worst-case

computation time!



Motivation PREM Evaluation Conclusions

Problem #1: Memory Contention

Cache-peripheral conflict:

Arbitration policy of Front

Side Bus (FSB) is

unknown and non-RT

CPU activity can be stalled

due to interference on FSB

Contention for access to

main memory can greatly

increase a task worst-case

computation time!

Integrating COTS hardware

within a hard real-time system

is a serious challenge!



Motivation PREM Evaluation Conclusions

Experiment: Task and Peripherals

Experiment on Intel

platform

PCI-X 133MHz, 64 bit fully

loaded by traffic generator

peripheral

Task suffers continuous

cache misses

Up to 44% wcet increase



Motivation PREM Evaluation Conclusions

problem #2: I/O bus contention

Two DMA peripherals

transmitting at full speed on

PCI-X bus

Round-robin arbitration

does not allow timing

guarantees



Motivation PREM Evaluation Conclusions

problem #2: I/O bus contention

Two DMA peripherals

transmitting at full speed on

PCI-X bus

Round-robin arbitration

does not allow timing

guarantees



Motivation PREM Evaluation Conclusions

problem #2: I/O bus contention

Two DMA peripherals

transmitting at full speed on

PCI-X bus

Round-robin arbitration

does not allow timing

guarantees



Motivation PREM Evaluation Conclusions

problem #2: I/O bus contention

Two DMA peripherals

transmitting at full speed on

PCI-X bus

Round-robin arbitration

does not allow timing

guarantees



Motivation PREM Evaluation Conclusions

Integrating COTS within a real-time system

We propose a PRedictable Execution Model (PREM)

Key aspects of PREM:

real-time embedded applications should be compiled

according to a new set of rules to achieve predictability

high-level coscheduling should be enforced among all

active components of a COTS system

Contention for accessing shared resources is implicitly resolved

by the high-level co-scheduler without relaying on low-level,

non-real-time arbiters



Motivation PREM Evaluation Conclusions

PREM challenges

Several challenges had to be overcome to realize PREM:

I/O peripherals contend for bus and memory in an
unpredictable manner

⇒ Real-time bridge [Bak et al., RTSS 2009]

Memory access patterns of tasks exhibit high variance:

predict a precise pattern of cache fetches is very difficult

conservative assumptions lead to pessimistic schedulability

analysis

⇒ new PRedictable Execution Model

COTS arbiters usually achieve fairness instead of real-time
performance

⇒ high-level coscheduling among active components



Motivation PREM Evaluation Conclusions

PREM overview (1/2)

PREM is a novel execution model with following main features:

jobs are divided into a sequence of non-preemptive

scheduling intervals

scheduling intervals are divided in two classes:

compatible interval: compiled and executed normally

(backward compatible). Cache misses can happen at any

time and code can use OS system calls

predictable interval: specially compiled and executed

predictably by prefetching all required data at the beginning

of the interval itself



Motivation PREM Evaluation Conclusions

PREM overview (2/2)

PREM is a novel execution model with following main features:

execution time of predictable intervals is kept constant

(monitoring a CPU time counter at run-time)

⇒ to provide rt guarantee for I/O flows

peripherals access bus and main memory only during
predictable intervals

coscheduling: CPU sends scheduling messages to a

peripheral scheduler to enable system-level coscheduling

real-time bridge: rt bridges (one per peripheral) buffer

incoming traffic from each peripheral and deliver it

predictably to main memory according to a global

coschedule.

rt bridges raise interrupts only during compatible intervals

⇒ rt bridge allows for synchronous delivery of interrupts



Motivation PREM Evaluation Conclusions

PREM predictable interval

Constant WCET is enforced to provide rt guarantee for I/O flows



Motivation PREM Evaluation Conclusions

PREM system architecture

peripheral scheduler receives scheduling messages from CPU

and enforces I/O and CPU coscheduling

real-time bridge can independently acknowledge interrupts

raised by peripheral, store incoming data in its local buffer and

deliver them predictably according to PREM rules



Motivation PREM Evaluation Conclusions

PREM coscheduling



Motivation PREM Evaluation Conclusions

Peripheral Scheduler

Peripheral scheduler receives data_rdyi information from

Real-time Bridges and output blocki signals

Servers provide isolation by enforcing a timing reservation

Fixed priority, cyclic executive, etc. can be implemented in HW

with very little area



Motivation PREM Evaluation Conclusions

Peripheral Scheduler

Implicit schedule of I/O

flows (arbitration resolved

at high-level)

I/O flows are scheduled

according to rt priorities by

the peripheral scheduler

No need to know low-level

parameters!



Motivation PREM Evaluation Conclusions

Real-time Bridge

FPGA System-on-Chip design with CPU, external memory, and

custom DMA Engine

The controlled peripheral reads/writes to/from Local RAM

instead of Main Memory (completely transparent to the

peripheral)

DMA Engine transfers data from/to Main Memory to/from Local

RAM.



Motivation PREM Evaluation Conclusions

Implemented prototype

Xilinx TEMAC 1Gb/s ethernet card (integrated on FPGA)

Optimized virtual driver implementation with no software packet

copy (PowerPC running Linux)

Full VHDL HW code and SW implementation available



Motivation PREM Evaluation Conclusions

PREM programming model

PREM can be used with a high level programming language,

like C by:

setting some programming guidelines

using a modified compiler



Motivation PREM Evaluation Conclusions

PREM programming model

PREM can be used with a high level programming language,

like C by:

setting some programming guidelines

using a modified compiler

PREM with C language:

1 The programmer provides annotations
2 The modified compiler generates code that:

performs cache prefetching at beginning of each

predictable interval

enforces constant execution time for each predictable

interval

sends coscheduling messages to peripheral scheduler



Motivation PREM Evaluation Conclusions

Programmer vs Compiler

What the programmer does

profile the code to identify where the program spends most

of its execution time (to make it predictable)

estimate WCET of each interval (static analysis)

identify global memory regions (future work for compiler)

put annotations at the begin and end of each interval

What the compiler does

prefetch code and stack

prefetch global memory

insert code to instruct the peripheral scheduler

enforce constant execution time for predictable intervals



Motivation PREM Evaluation Conclusions

PREM constraints

Programming constraints for predictable intervals:

no link-based data structures (like a binary tree)

programmer indicates the accessed memory regions

no system calls

no stack allocation within loops

no recursive function calls

no indirect function calls that are not decidable at compile

time

all prefetched memory regions (global, code, and stack)

must fit in cache

These constraints are not significantly more restrictive than

those imposed by state-of-the-art static analysis



Motivation PREM Evaluation Conclusions

Porting Legacy Applications

Adding annotations to correctly split the code into predictable

blocks requires some low-level knowledge of cache

parameters. However:

data-intensive real-time applications are already optimized

based on hardware architecture

compiler could help the programmer to:

create predictable blocks

verify if some restrictions are violated (using static analysis)

identify used global memory regions

verify that all prefetched memory regions fit in cache

if some code/function cannot be made predictable, it can

always run as compatible interval



Motivation PREM Evaluation Conclusions

PREM implementation

We realized a prototype system for PREM. In particular, we

developed:

a peripheral scheduler that is connected to the PCIe bus

a peripheral scheduler driver that allows the CPU to

send scheduling messages for I/O and CPU

co-scheduling

a real-time bridge that can buffer I/O data and interrupts

a compiler pass (using LLVM Compiler Infrastructure) that

implements the described compiler techniques



Motivation PREM Evaluation Conclusions

Peripheral Scheduling: example of unscheduled I/O

flows

3 x Real-Time Bridges,

1 x Traffic Generator

with synthetic traffic

Unscheduled I/O flows suffer

deadline miss!



Motivation PREM Evaluation Conclusions

Peripheral Scheduling: example of rt scheduled I/O

flows

3 x Real-Time Bridges,

1 x Traffic Generator

with synthetic traffic

Rate Monotonic with

Sporadic Servers



Motivation PREM Evaluation Conclusions

PREM: evaluation testbed

Testbed: Intel Q6700 CPU (4 cores, two 4MB L2 caches) with Linux

2.6.31. To emulate a uni-processor system we used following setting:

2 cores (sharing the same L2 cache) handle all the system

activities, non critical drivers, and non-real-time tasks

1 core (dedicated cache) runs the rt tasks (and related drivers)

1 core is turned off

CPU frequency is set to 1GHz

memory bandwidth is 1.8Gbytes/sec

speculative CPU hardware prefetcher disabled

real-time tasks use 4MB page size (multiple of cache way)

⇒ same cache line index for virtual and physical addresses no

matter what is the page allocation policy



Motivation PREM Evaluation Conclusions

Compiler evaluation

To test correctness and applicability of proposed PREM

compiler, we tested it on several benchmarks:

a DES cypher benchmark

a JPEG Image Encoding benchmark

the automotive program group of MiBench (6 benchmarks)



Motivation PREM Evaluation Conclusions

DES Benchmark

Input bytes 4K 8K 32K 128K 512K 1M

Non-PREM miss 151 277 1046 4144 16371 32698

PREM prefetch 255 353 1119 4185 16451 32834

PREM exec-miss 1 1 1 1 1 104

Table: DES benchmark cache misses

Key result is predictability: during the execution phase of a

real-time task, I/O flows do not affect its timing behavior



Motivation PREM Evaluation Conclusions

JPEG Image Encoding benchmark

PREM Non-PREM

prefetch exec-miss time(µs) miss time(µs)

JPEG(1 Mpix) 810 13 778 588 797

JPEG(8 Mpix) 1736 19 3039 1612 3110

Table: JPEG results without peripheral traffic

80% of the execution time was spent in function

compress_data()

compress_data() was recompiled as predictable

interval

few residual cache misses are due to random cache

replacement policy



Motivation PREM Evaluation Conclusions

Automotive program group of MiBench

PREM Non-PREM

prefetch exec-miss time(µs) miss time(µs)

qsort 3136 3 2712 3135 2768

susan_smooth 313 2 7159 298 7170

susan_edge 680 4 3089 666 3086

susan_corner 3286 3 341 598 232

All six benchmarks were recompiled as predictable interval

two were not data intensive, so PREM was not necessary

three benchmarks were well-suited for PREM

susan_corner had variable size input, hence prefetching

was too pessimistic



Motivation PREM Evaluation Conclusions

WCET experiments

To evaluate how PREM affects task execution time, we

developed two synthetic applications, random_access and

linear_access:

each scheduling interval operates on 256Kb

computation varies between memory references to control

total cache stall time

random_access accesses data randomly

linear_access accesses data sequentially

Following scenarios were compared:

Predictable

Compatible with and without I/O traffic



Motivation PREM Evaluation Conclusions

Random Memory Access Test

20 30 40 50 60 70
200

400

600

800

1000

1200

1400

1600

Cache Stall Time %

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

 

 

compatible/traffic

compatible

predictable

“Predictable” is up to 28% faster

than “Compatible” without I/O

and up to 60% faster than

Compatible with I/O

constant # of cache misses

exec. time decreases as

cache stall time increases

DRAM behavior: adjacent

addresses are served

faster than random ones

“Predictable" is insensitive

to I/O traffic!



Motivation PREM Evaluation Conclusions

Sequential Memory Access Test

20 30 40 50 60 70 80 90
200

400

600

800

1000

1200

1400

Cache Stall Time %

 

 

compatible/traffic

compatible

predictable

Out of order execution

assuming sequential accesses,

“Compatible” exploits better

CPU out-of-order execution

DRAM mem. and burst mode

sequential accesses are served

in burst mode reducing cache/IO

interference suffered by a rt task

In practice we expect the

impact of PREM on task

execution time to be between

these two cases



Motivation PREM Evaluation Conclusions

Conclusions and Future Work

We designed and tested PREM, a predictable task execution model.

Main lessons are:

real-time embedded applications should be compiled according

to a new set of rules to achieve predictability

high-level coscheduling should be enforced among all active

components of a COTS system



Motivation PREM Evaluation Conclusions

Conclusions and Future Work

We designed and tested PREM, a predictable task execution model.

Main lessons are:

real-time embedded applications should be compiled according

to a new set of rules to achieve predictability

high-level coscheduling should be enforced among all active

components of a COTS system

As future work, we plan to:

reduce the programmer’s effort by extending compiler

capabilities

extend PREM to multicore platforms.


	Motivation
	Safety-critical systems and COTS components

	PRedictable Execution Model (PREM)
	PREM description

	Evaluation
	Evaluation

	Conclusions
	Conclusions


