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Abstract 

Caching frequently accessed data items on the mobile client is an effective technique to improve the system 
performance in mobile environment. Proper choice of cache replacement technique to find a suitable subset of items for 
eviction from cache is very important because of limited cache size. Available policies do not take into account the 
movement patterns of the client. In this paper, we propose a new cache replacement policy for location dependent data 
in mobile environment. The proposed policy uses a predicted region based cost function to select an item for eviction 
from cache. The policy selects the predicted region based on client’s movement and uses it to calculate the data 
distance of an item. This makes the policy adaptive to client’s movement pattern unlike earlier policies that consider the 
directional / non-directional data distance only. We call our policy the Prioritized Predicted Region based Cache 
Replacement Policy (PPRRP). Simulation results show that the proposed policy significantly improves the system 
performance in comparison to previous schemes in terms of cache hit ratio. 

Keywords: Mobile Computing, Cache Replacement, Location Dependent Data, Valid Scope, Location Dependent 
Information Services. 

 
 
1. Introduction 

Recent advances in wireless technology have ushered 
the new paradigm of mobile computing. With the advent 
of new mobile infrastructures providing higher bandwidth 
and constant connection to the network from virtually 
everywhere and advances in the global positioning 
technologies , a new class of services referred to as 
Location Dependent Information Services (LDIS) has 
evolved and is gaining popularity among mobile users. 

LDIS provide users with the ability to access 
information related to their current location. By including 
location as a part of user’s context information, service 
carriers can provide better services to many value-added 
applications such as travel and tourist information system, 
assistance and emergency system, nearest object 
searching system and local information access system, 
which specifically target the mobile users. Hence, the 
need for LDIS arises frequently. For example, imagine 
you are on a business trip in a foreign city and you do not 
know the city very well, you have no idea where to go. In 
this situation, with the help of your portable device you 
can query your personal interest like nearest restaurant, 

nearest gas station, nearest ATM, nearest theater etc. and 
can get the response on your device. 

There are many challenges in providing LDIS services 
to users. These challenges include limited bandwidth, 
limited client power and intermittent connectivity 
[1][2][4][6]. Caching helps to address some of these 
challenges. Caching of frequently accessed data item on 
client side is an effective technique to improve data 
accessibility and to reduce access cost. However, due to 
limitations of cache size on mobile devices, it is 
impossible to hold all accessed data items in the cache. 
Thus, there is a need of efficient cache replacement 
algorithms to find out suitable subset of data items for 
eviction from the cache. Good cache performance heavily 
depends on these replacement algorithms. Also, for wide 
area mobile environments due to its distributed nature, the 
design of an efficient cache replacement policy becomes 
very crucial and challenging to ensure good cache 
performance.  

Most of the existing cache replacement policies use 
cost functions to incorporate different factors including 
access frequency, update rate, size of objects etc. 
Temporal-based traditional cache replacement strategies, 
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such as Least Recently Used (LRU), Least Frequently 
Used (LFU) and LRU-k [13] have been studied widely in 
the past. These polices are based on the assumption that 
client’s access patterns exhibit temporal locality (i.e. the 
objects that were queried frequently in the past will 
continue to be queried frequently in the future). These 
algorithms replace data items based on recency or 
frequency of access. LRU is the most commonly used 
recency based algorithm. LFU, which maintains a 
reference count for each cached objects, is the most 
commonly used frequency based algorithm. Frequency-
based algorithms are well suited for skewed access 
patterns in which a large fraction of accesses go to a 
disproportionately small set of hot objects. Frequency and 
recency based algorithms form the two ends of a 
spectrum of caching algorithms. LRU-k cache 
replacement algorithm tries to balance both recency and 
frequency. However, in mobile networks where clients 
utilize location dependent information services, clients 
access pattern do not only exhibit temporal locality, but 
also exhibit dependence on location of data, location of 
the client and direction of the client’s movement [4][5]. 
As a result, the aforementioned policies are unsuitable for 
supporting location dependent services because they do 
not take into account the location of data objects and the 
movement of mobile clients. Hence, relying solely on 
temporal locality when making cache replacement 
decisions will result in poor cache hit ratio in LDIS. To 
overcome this problem, several location-aware cache 
replacement policies [5][7][9][10] have been proposed for 
location dependent information services.  

Manhattan Distance-based cache replacement policy 
[10] supports location dependent queries in urban 
environments. Cache replacement decisions are made on 
the basis of distance between a client’s current location 
and the location of each cached data object. Objects with 
the highest Manhattan distance from the client’s current 
location are evicted at cache replacement. While the 
Manhattan based policy accounts for the distance between 
clients and data objects, the major limitation of this 
approach is that it ignores the temporal access locality of 
mobile clients and the direction of client movement while 
making cache replacement decisions.  

Furthest Away Replacement (FAR) [9] policy uses the 
current location and movement direction of mobile clients 
to make cache replacement decisions. Cached objects are 
grouped into two sets, viz., in-direction set and the out-
direction set. Data objects in the out-direction set are 
always evicted first before those in the in-direction set. 
Objects in each set are evicted in the order based on their 
distance from the client. Similar to the Manhattan 
approach, FAR also neglects the temporal properties of 
clients’ access pattern. It also becomes ineffective when 
mobile clients change direction frequently due to frequent 
change in the membership of objects between the in-
direction and out-direction sets. 

In Probability Area Inverse Distance (PAID) [5] policy, 
the cost function of data item i takes into account the 
access probabilities (Pi) of data objects, area of its valid 
scopes A(vsi) and  the distance D(vsi) between the client’s 
current position and the valid scope of the object 
concerned (known as data distance). The cost function of 
PAID is given by ( ) ( )P A vs D vsi i i . It neither takes into 
account the size of the data object nor does it give priority 
to the data objects in cache that are near to the mobile 
client. Mobility Aware Replacement Scheme (MARS) [7] 
policy is also a cost based policy, which comprises of 
temporal score, spatial score and cost of retrieving an 
object. Unlike PAID, it takes into account the updates of 
data objects. But as far as location dependent data (LDD) 
is concerned, their update rate (if exist) is negligible as 
compared to temporal data. Thus, for LDD, only spatial 
score dominates which consists of area of valid scope, 
data distance from current client location and data 
distance from future client location. The impact of 
client’s anticipated location or region in deciding cache 
replacement still remains unexplored. 

None of these cache replacement policies are suitable 
if client changes its direction of movement quite often. 
Existing cache replacement policies only consider the 
data distance (directional/undirectional) but not the 
distance based on the predicted region or area where the 
client can be in near future. Very few of these policies 
[5][7] account for the location and movement of mobile 
clients. 

In this paper, we predict an area in the vicinity of 
client’s current position, and give priority to the cached 
data items that belong to this area irrespective of the 
client’s movement direction. PPRRP calculates the data 
item cost on the basis of access probability, valid scope 
area, data size in cache and data distance based on the 
predicted region, which has not been considered in any of 
the existing policies. 

The rest of the paper is organized as follows. Section 2 
briefly describes mobile system model used in our work. 
Section 3 details the proposed new cost based 
replacement policy PPRRP. Section 4 and section 5 deal 
with simulation model, and performance evaluation and 
comparison simultaneously.  Section 6 concludes the 
paper. 

2. Mobile System Model 

We assume a cellular mobile network that is similar to 
the model discussed by D. Barbara [1] as mobile 
computing infrastructure. A mobile system [1][4][5][6] is 
usually made up of a server, moving clients, and a wireless 
connection between them (see Figure 1). The 
geographical area is divided into small regions, called 
cells. Each cell has a Base Station (BS) or Mobile 
Support Station (MSS) augmented with wireless interfaces 
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and a number of Mobile Clients (MCs). Inter-cell and 
intra-cell communications are managed by the MSSs. The 
MCs communicate with the MSS by wireless links within 
its radio coverage area. An MC can move freely from one 
location to another within a cell or between cells while 
retaining its network connection. An MC can either 
connect to a MSS through a wireless communication 
channel or disconnect from the MSS by operating in the 
doze (power save) mode. The MC queries the database 
servers that are connected to a wired network. The 
wireless channel is logically separated into two sub 
channels: uplink channel and downlink channel. The 
uplink channel is used by MCs to submit queries to the 
server via an MSS, while the downlink channel is used by 
MSSs to disseminate information or to forward the 
answers from the server to the target client.  

The mobile computing platform can be effectively 
described under the client/server paradigm [19]. A data 
item is the basic unit for update and query. MCs only 
issue simple requests to read the most recent copy of a 
data item. There may be one or more processes running 
on an MC. These processes are referred to as clients (we 
use the terms MC and client/users interchangeably). In 
order to serve a request from a client, the MSS needs to 
communicate with the database server to retrieve the data 
items. Since the communication between the MSS and the 
database server is through wired links and is transparent 
to the clients (i.e., from the client’s point of view, the 
MSS is the same as the database server), we also use the 
terms MSS and server interchangeably. 

Fixed/wireline Network
(Internet,LAN: Mbps to Gbps)

Cellular Data
(CDPD,DataTae: 19.2 kbps)

Wireless LAN
(Aironet,Wavelan: 2.12 Mbps)

Mobile GSM
(9.6 kbps)

Base Node
Base Node

Base Node

 
Figure 1. Mobile computing system model 

The information system provides location dependent 
services to mobile clients. The geographical area covered 
by the information system is referred as the service area. 
In this paper, we assume a geometric location model, i.e., 
a location is specified as a two-dimensional coordinate. 
However, it can be easily extended to 3-dimension space 
by including the third dimension. Mobile clients can 
identify their locations using systems such as the Global 
Positioning System (GPS) [3]. The data item value is 
different from data item, i.e., data item value for a data 

item is an instance of the item valid for a certain 
geographical region. Moreover, the data item value is 
different from data item. Data item value for a data item 
is an instance of the item valid for a certain geographical 
region. So, a data item can show different values when 
clients at different locations query it. For example, 
“restaurant” is a data item, and the data values for this 
data item vary depending on the location of query i.e. 
point at which the query “ Tell me the nearest restaurant” 
was issued by a mobile client. The valid scope of a data 
item value is defined as the region within which the data 
item value is valid. In a two-dimensional space, a valid 
scope (vs) can be represented by a geometric polygon p 
(e1, …,en ), where e i 's are endpoints of the polygon. A 
mobile client can cache data on its local disk or in any 
storage system that survives power-off. In this paper, data 
values are assumed to be of fixed size and read–only so 
that we can omit the influence of data sizes and updates 
on cache performance and concentrate on the impact 
caused by the unique properties of location-dependent 
data.  
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(b) Discrete model 

Figure 2. Client’s movement path 

We also assume an unconstrained network, where 
mobile clients move freely inside the geographical region 
covered by the mobile network (without any 
restrictions).In the abstract model, the path of a moving 
client is represented by a curve in 2-dimension (x-y 
plane), as shown in Figure 2(a). Though abstract model is 
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simple, from computer implementation point of view, 
discrete model is preferred [8]. In discrete model, the path 
traveled is modeled as a sequence of line segments, each 
associated with fixed velocity and direction, as shown in 
Figure 2 (b). Length of the line segment depends on the 
rate of change of direction and velocity. For random 
movement this duration between change in direction and 
velocity is small and for regular movement and highway 
users this duration is large. This duration is known as 
Moving Interval (MI) [5][7][17]. Figure 2(b) shows the 
discrete movement of a mobile user with MI of t seconds. 
The distance between any two locations or points is the 
length of a straight line connecting the two points (i.e. 
Euclidean distance). 

3. Prioritized Predicted Region Based Cache 
Replacement Policy (PPRRP) 

3.1. Motivation  
LDIS, being spatial in nature needs that the distance of 

data item from client’s current position and its valid scope 
area should also be taken into account for cache 
replacement. Greater the distance of valid scope of data 
from the user’s current position lower is the chance that 
client will enter in the valid scope area of the data in near 
future. Thus, it is better to eject the farthest data value 
when replacement takes place. Moreover, because the 
client is mobile, its position at the time of next query will 
be different from its current position. Therefore the 
client’s movement should also be taken into account. 
Locations in the opposite direction of client’s movement 
have very low chance of being revisited, though they may 
be very close to it. Based on this reasoning, existing 
cache replacement schemes like FAR and PAID 
(directional) assign higher priorities to data items in the 
client’s direction of movement giving very low priority to 
the items in the opposite direction of user’s movement. 
However, with random movement patterns of clients, it is 
not always necessary that client will continue moving in 
the same direction. Therefore, evicting data values which 
are in the opposite direction of client’s movement but are 
very close to client’s current position may degrade the 
overall performance. 

3.2. Basic Idea 
When client movement pattern is random, retaining the 

data items in the direction of user movement and 
discarding the data items that are in the opposite direction 
of user movement may not improve the performance. 
Therefore, our cache replacement policy considers the 
predicted region of user presence in near future (rather 
than considering the direction of user movement only) 
while selecting an item for replacement. The predicted 
region is based on the client’s current movement pattern. 
We show that it is useful to calculate the data distance 
with respect to this region so that the data items in the 

vicinity of client’s current position are not purged from 
cache. Valid scope area of the data item and the amount 
of space required to store the data item in cache are also 
used to select an item for replacement. This is because the 
client has higher chance of being in large region rather 
than small regions and keeping smaller size data items in 
cache helps to accommodate a large number of data items 
in the cache. Hence, our cache replacement policy selects 
a victim with low access probability, small valid scope 
area falling outside the predicted region and large data 
size. 

3.3. Approach 
We make use of discrete model for client’s movement 

path as described in Section 3.2 and used in [5][7][14]. 
Assuming a predefined path of mobile user or a 
predefined destination is generally not possible unless we 
are dealing with a case where the user is moving in a train 
or a ship and the entire path of the user is known well in 
advance. For discrete model, the direction and velocity of 
the user are known for current MI. At the end of each MI, 
direction is selected randomly between 0° to 360°  
degrees and the velocity between minimum (vmin) and 
maximum speed (vmax) of the client. This motivates us in 
predicting a region instead of predicting the path. 

 

MIcL

( , )s sx y ( , )e ex y
 

Figure 3. Current moving interval 
 
 

MIcL
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Figure 4. Predicted region 

Let vc be the velocity in current moving interval MIc, 
LMIc be the length of MIc along direction θc and (xs, ys) 
and (xe, ye) be the starting and end point of MIc 
respectively (see Figure 3). Assuming that the velocity vc 
remains same (generally the mobile user does not changes 
its velocity significantly over a long period) in the next 
MI also, we can predict the region of user presence in 
near future by the circle with radius LMIc and centre (xe, ye) 
as shown in Figure 4. Our cache replacement policy uses 
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this region to calculate the distance of data items in cache 
as follows: 

• The distance of data items outside the predicted 
region is calculated from the centre of the circle  

• The distance of data items inside the predicted region 
is calculated as the minimum of {LMIc, distance of the 
valid scope from the current position of the user}. 

Calculating the distance of data items in this way 
ensures that  

• Items outside the predicted region always have the 
lower priority than the items inside the predicted 
region.  

• Items inside the predicted region, close to the user 
have higher priority. 

One of the advantages of using predicted region is that 
it dynamically changes with speed of client and MI and 
also takes into account the random movement of client.  

Now, we define cost function for our cache 
replacement policy PPRRP that considers access 
probability, predicted region based data distance, valid 
scope area and size of the data in cache. Associated with 
each cached data object is the replacement cost. When a 
new data object needs to be cached and there is 
insufficient cache space, the object(s) with lowest 
replacement cost is (are) removed until there is enough 
space to cache new object. The cost of replacing a data 
value j of data item i in client’s cache is calculated as: 
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1
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  (1) 

 
where Pi is the access probability of data item i , A(vs’

i,j) 
is the area of the valid scope vs’

i,j for data value j, Si,j is 
the  size of data value j and valid scope vs’

i,j , D(vs’
i,j) is 

the distance of the valid scope vs’
i,j  from the current user 

position , D’(vs’
i,j) is the distance of the valid scope vs’

i,j  
from the centre of the predicted region and Pred_Reg  is 
the predicted region. 

4. Simulation Model 

This section describes the simulation model used to 
evaluate the performance of the proposed location-
dependent cache invalidation methods. Our Simulator is 
implemented in C++ and setup is similar and in 
accordance with those used in earlier studies [5][14].  

4.1. System  

Since seamless hand-off from one cell to another is 
assumed, the network can be considered a single, large 
service area within which the clients can move freely and 
obtain location-dependent information services. In our 
simulation, the service area is represented by a rectangle 
with a fixed size of Size. We assume a “wrapped-around” 
[5][14][107] model for the service area. In other words, 
when a client leaves one border of the service area, it 
enters the service area from the opposite border at the 
same velocity.  

  The database contains ItemNum items. Every item 
may display ScopeNum different values for different 
client locations within the service area. The size of data 
value varies from Smin to Smax and has following three 
types of distributions [6]:  

• IncreasingSize: The size Si of data item i grows 
linearly as i increases, and is given by: 

 
max min

min
( 1)*( )

, 1,..., ;
1i

i S S
S S i ItemNum

ItemNum
− −

= +   =
−

 

                                                                                                 (2) 
• DecreasingSize: The size Si of data item i decreases 

linearly as i increases, and is given by: 
 

max min
max

( 1)*( )
, 1,..., ;

1i
i S S

S S i ItemNum
ItemNum

− −
= −   =

−
 

                                                                                        (3) 
 

• RandomSize: The size Si of data item i falls 
randomly between Smin and Smax, given by: 

 
min max min()*( ) , 1,..., ;iS S prob S S i ItemNum= + −   =⎢ ⎥⎣ ⎦  

                                                                                    (4) 

where, ()prob  is a random function with uniformly 
distributed value between 0 and 1. The choice of the size 
distributions are based on previously published trace 
analysis [6]. Though, some researchers have shown that 
small data items are accessed more frequently than large 
data items, but recent web trace analysis shows that the 
correlation between data item size and access frequency is 
weak and can be ignored [16]. Combined with the skewed 
access pattern, IncreasingSize and DecreasingSize 
represent client’s preference for frequently querying 
smaller items and larger items respectively. In other 
words, with IncreasingSize setting, the clients access the 
smallest item most frequently and with DecreasingSize 
setting, the clients access the largest item most frequently. 
RandomSize, models the case where no correlation 
between the access pattern and data size exists. 

In the simulation, the scope distributions of the data 
items are generated based on voronoi diagrams (VDs) 
[12][20] because valid scopes of  nearest neighbor queries 
is defined by VD. Formally, given sets of point 
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O={o1,o2,…..,on), V(oi), the Voronoi Cell (VC) for oi, is 
defined as the set of points q in the space such that 
dist(q,oi) < dist(q,oj), ∀  j ≠ i. That is, V(oi) consists of set 
of points for which oi is nearest neighbor. In our 
simulation, first data set Scope Distribution 1 (Figure 5 
(a)) contains 110 points randomly distributed in a square 
Euclidean space. The second data set, Scope Distribution 
2 (Figure 5 (b)), contains the locations of 215 hospitals in 
California area, which is extracted from the point data set 
available at [18]. 

This model assumes that two floating-point numbers 
are used to represent a two-dimensional coordinate and 
one floating-point number to represent the radius of circle. 
The size of a floating-point number is FloatSize. The 
wireless network is modeled by an uplink channel and a 
downlink channel. The uplink channel is used by clients 
to submit queries, and the downlink channel is used by 
the server to return query responses to target clients. The 
communication between the server and a client makes use 
of a point-to-point connection. It is assumed that the 
available bandwidth is UplinkBand for the uplink channel 
and DownlinkBand for the downlink channel. 

 

 
(a) Scope distribution 1   (ScopeNum=110) 

 

   
 (b) Scope distribution 2 (ScopeNum=215) 

Figure 5.  Scope distributions for performance evaluation 

4.2. Client  
The mobile client is modeled with two independent 

processes: query process and move process. The query 
process continuously generates location-dependent read-
only queries for different data items. After the current 
query is completed, the client waits for an exponentially 
distributed time period with a mean of QueryInterval 

before the next query is issued. The client access pattern 
over different items follows a Zipf distribution with 
skewness parameter θ, which is shown to be a realistic 
approximation of skewed data access and are frequently 
used to model non-uniform distribution [5][6][16]. In the 
Zipf distribution, the access probability of the ith (1≤i ≤N) 
data item is represented as follows  

 

                                  
1

1
1

i
N
j j

pi
θ

θ=

=
∑

                            (5) 

where N is the number of items in the database and 0≤ θ 
≤1. 

When θ = 0, the access pattern is uniform. As θ value 
is increased the skewness increases. When θ = 1, it is the 
strict Zipf distribution. Large θ results in more “skewed” 
access distribution. To answer a query, the client first 
checks its local cache. If the data value for the requested 
item with respect to the current location is available, the 
query is satisfied locally. Otherwise, the client submits 
the query and its current location to the server and 
retrieves the data through the downlink channel. The 
move process controls the movement pattern of the client 
using the parameter MovingInterval. After the client 
keeps moving at a constant velocity for a time period of 
MovingInterval, it changes velocity for next MI. The next 
speed is selected randomly between MinSpeed and 
MaxSpeed. Similarly, the next moving direction 
(represented by the angle relative to the x-axis, counter 
clock wise taken as positive) is selected randomly 
between 0° to 360°. If the difference between MinSpeed 
and MaxSpeed is low the mobile users move with almost 
same velocity. The client is assumed to have a cache of 
fixed size, which is a CacheSizeRatio ratio of the 
database size.  

4.3. Server  
The server is modeled by a single process that services 

the requests from clients. The requests are buffered at the 
server if necessary, and an infinite queue buffer is 
assumed. The FCFS service principle is assumed in the 
model. To answer a location-dependent query, the server 
locates the correct data value with respect to the specified 
location. Since the main concern of this paper is the cost 
of the wireless link( i.e. transmission time, receiving time 
and disconnections), which is more expensive than the 
wired-link and disk I/O costs(i.e. disk access time), the 
overheads of request processing and service scheduling at 
the server are assumed to be negligible in the model. 

5. Performance Evaluation 

This section describes the performance parameters and 
measures used for simulation and analyze the results of 
the simulation. 
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5.1. Performance Parameters 
The default values of different parameters used in the 

simulation experiments are given in Table 1. They are 
chosen to be the same as used in earlier studies [5][7][14].  

Experiments are performed using different workloads 
and system settings. In order to get the true performance 
for each algorithm, we collect the result data only after 
the system becomes stable, which is defined as the time 
when the client caches are full [5][6]. Each simulation 
runs for 20,000 client issued queries and each result 
obtained in the experiment is taken as the average of 10 
simulation runs with Confidence Interval of 96 percent. 

 For simulation purpose, we assume that all data items 
follow the same scope distribution in a single set of 
experiments. Two scope distributions with 110 and 215 
valid scopes are used (see Figure 5). Since the average 
valid scope areas differ for these two scope distributions, 
different moving speeds are assumed, i.e., the pair of 
(MinSpeed,MaxSpeed) is set to (1,2) and (5,10) for Scope 
Distribution 1 and Scope Distribution 2, respectively. The 
Caching-Efficiency-Based (CEB) [5] cache invalidation 
policy is employed for cache management. For 
calculating data distance between valid scope (either a 
polygon or a circle) and current location we select a 
reference point for each valid scope and take the distance 
(Euclidean distance) between the current location and the 
reference point. For polygonal valid scope, the reference 
point is defined as the endpoint that is closest to the 
current location and for circular valid scope, it is defined 
as the point where the circumference and the line 
connecting the current location and the center of the circle 
meet. Access probability for each data item is estimated 
by using exponential ageing method [5][6]. Two 
parameters are maintained for each data item i: a running 
probability Pi and the time of the last access to item tl

i. Pi 
is initialized to 0. When a new query is issued for data 
item i, Pi is updated using the following formula: 

 
                  ( ) (1 )l

i c i iP t t Pα α= − + −           (6) 

where, tc is the current system time and α is a constant 
factor to weigh the importance of most recent access in 
the probability estimate. Note that the access probability 
is maintained for each data item rather than for each data 
value. If the database size is small, the client can maintain 
these parameters (i.e., Pi and tl

i for each item i) for all 
items in its local cache. However, if the database size is 
large, these parameters will occupy a significant amount 
of cache space. To alleviate this problem, we set an upper 
bound to the amount of cache used for storing these 
parameters (5 percent of the total cache size in our 
simulation) and use the Least Frequently Used (LFU) 
policy to manage the limited space reserved for it. 

5.2. Performance Metric 

Our primary performance metric is cache hit ratio. 
Other performance metrics can be derived from the cache 
hit ratio. Cache hit ratio can be defined as the ratio of the 
number of queries answered by the client’s cache to the 
total number of queries generated by the client. 
Specifically, higher the cache hit ratio, higher is the local 
data availability, less is the uplink and downlink costs and 
the battery consumption [5][6][14]. 

5.3. Comparison of Location-Dependent Cache 
Replacement Schemes 
This subsection examines the performance of different 

location-dependent cache replacement policies, namely, 
PPRRP with PAID, FAR and Manhattan. Figures 6 to 15 
show the cache hit ratio for both scope distributions (see 
Figure 5) under various query intervals, moving intervals, 
cache sizes, client’s speed and Zipf’s distribution. 

5.3.1. Effect of Query Interval 

Query interval is the time interval between two 
consecutive client queries. In this set of experiments, we 
vary the mean query interval from 20 seconds to 200 
seconds. Figures 6 and 7, show cache performance for 
both scope distributions and for the data distributions: 
IncreasingSize, RandomSize and DecreasingSize.  

Results show that, when the query interval is increased, 
almost every scheme shows a worse performance. This is 
because, for a longer query interval when a new query is 
issued the client has a lower probability of residing in one 
of the valid scopes of the previously queried data items. 
When different cache replacement policies are compared, 
the proposed policy substantially outperforms the existing 
policies. Figure 6, compares the performance of cache 
replacement policies versus query interval for Scope 
Distribution 1. PPRRP, which prefers object within the 
predicted region over the objects outside the predicted 
region and gives priority to the data objects that are 
nearer to the client’s current position within the predicted 
region, obtains better performance than PAID. Average 
improvement of PPRRP over PAID is 28%, 21% and 
19% for IncreasingSize, RandomSize and DecreasingSize 
respectively for Scope Distribution 1. Figure 7, shows the 
effect of change in query interval on the performance of 
cache replacement policies for Scope Distribution 2. It 
can be observed that the PPRRP show similar gains in 
performance for Scope Distribution 2 also as they were 
for Scope Distribution1. The average improvement of 
PPRRP over PAID for Scope Distribution 2 is 8%, 12.2%, 
and 11% for IncreasingSize, RandomSize and 
DecreasingSize respectively . 

5.3.2. Effect of Moving Interval 

This subsection examines the performance of the 
replacement policies when the client’s moving interval is 
varied. Longer the moving interval, less frequent is the 
changes in velocity of the client and hence, there is lesser 
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randomness in the client's movement. The performance 
results for IncreasingSize, RandomSize and 
DecreasingSize of data distribution are shown in Fig-
ures 8 and 9. 

We can see that when the moving interval is varied 
from 50 seconds to 400 seconds, the cache hit ratio 
decreases drastically. The reason for this is as follows. 
For a relatively longer moving interval, there is a high 
probability of the client leaving one valid region and 
entering another. Consequently, the cached data are less 
likely to be re-used for subsequent queries. This leads to a 
decreased performance with increase in MI.  

Figure 8, compares the performance of cache 
replacement policies over changing moving interval for 
Scope Distribution 1. Though for small MI, the 
randomness in client movement is more as compared to 
larger MI but PPRRP perform better than all existing 
policies for both small and large MI. The predicted region 
in PPRRP helps to keep the data items within the 
influence of client’s movement, thereby reducing the 
effect of randomness in client’s movement. Average 
improvement of PPRRP over PAID is 27%, 21% and 
12% for IncreasingSize, RandomSize and DecreasingSize 
respectively. Figure 9, compares the performance of 
cache replacement policies over change in moving 
interval for Scope Distribution 2.  For Scope Distribution 
2 also, we get similar improvement in performance of 
PPRRP as they were for Scope Distribution 1. The 
average improvement of PPRRP over PAID for Scope 
Distribution 2 is 7%, 6.3%, and 11% for IncreasingSize, 
RandomSize and DecreasingSize respectively. 

5.3.3. Effect of Cache Size 

In this set of experiments, we intend to investigate the 
robustness of the proposed replacement schemes under 
various cache sizes. Figures 10 and 11, show the results 
when CacheSizeRatio is varied from 5% to 20%. As 
expected, the performance of all replacement schemes 
improves with increasing cache size. This is because the 
cache can hold large number of data items which 
increases the probability of getting a cache hit. Moreover, 
replacement occurs less frequent in comparison to the 
case when cache size is low. Figure 10, shows the 
performance for Scope Distribution 1.  PPRRP 
consistently outperforms the existing policies from small 
size cache to large size cache. Average improvement of 
PPRRP over PAID is 25%, 24% and 18% for 
IncreasingSize, RandomSize and DecreasingSize 
respectively.   Figure 11, compares the performance of 
cache replacement policies under varied CacheSizeRatio 
for Scope Distribution 2. Results show similar 
performance gains for all proposed policies for Scope 
Distribution 2 also. The average improvement of PPRRP 
over PAID for Scope Distribution 2 is 6.7%, 9.4%, and 
10% for IncreasingSize, RandomSize and DecreasingSize 
respectively. 

5.3.4. Effect of Client’s Speed 

This subsection examines the effect of change in 
client’s speed on the performance of the proposed cache 
replacement policies. Client’s cache hit ratio is shown 
against client speed from Figures 12 to 13. Four speed 
ranges [15], 1~5m/s, 6~10m/s, 16~20m/s, 25~35m/s, 
corresponding to the speed of a walking human, a running 
human, a vehicle with moderate speed and a vehicle with 
high speed, respectively are used. It can be seen that very 
high cache hit ratio can be achieved for walking human. 
For higher speed range, the cache hit ratio drops as client 
spends less time at each geographic location and the valid 
scope of each data item stored in cache becomes less 
effective. In PPRRP, higher the speed of client, greater is 
the predicted region and hence more data items stored in 
the cache are held in that region. Average improvement 
of PPRRP over PAID for different speed ranges for 
Scope Distribution 1 and Scope Distribution 2 are given 
in Table 2 and Table 3 respectively. 

5.3.5. Effect of Client’s Access pattern 

This subsection examines the performance of the 
replacement policies under various clients’ access pattern. 
Client’s access pattern is modeled by Zipf’s Distribution 
[16]. The Zipf parameter θ determines the “skewness” of 
the access pattern over data items. When θ=0, the access 
pattern is uniformly distributed. When θ increases, more 
access is focused on few items (skewed). Figures 14 and 
15, show the impact of access pattern on performance of 
replacement policies for both scope distributions. As 
desired, performance of PPRRP along with other 
replacement policies, increases with increase in θ for both 
Scope distributions over all the three data size 
distributions. Moreover, proposed policy shows an edge 
over other policies. 

6. Conclusion 

In this paper, we presented a cache replacement policy, 
PPRRP, for location-dependent data that uses predicted 
region based cost function for selecting data items to be 
replaced from the cache. In order to decide which data 
items to replace from cache, an attempt must be made to 
predict what items will be accessed in the future.  

We emphasized on predicting a region around mobile 
client’s current position apart from considering only 
user’s direction or distance. Predicted region plays an 
important role in improving the system performance. 
Using the predicted region of user influence, the data 
items in the vicinity of client’s current position are not 
purged from cache, which increases the cache hit.  
Proposed policy takes into account factors like access 
probability, data distance from predicted region, valid 
scope and data size in cache. In PPRRP, data distance is 
calculated such that the data items within the predicted 
region are given higher priority than the data items 
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outside the predicted region. In addition to giving highest 
priority to the data items within the predicted region, data 
items nearer to the client’s current position are also 
favored over other data items in the same predicted region. 
A number of simulation experiments have been 
conducted to evaluate the performance of the PPRRP. 
The results show that PPRRP, with different system 
settings, give better performance (improves cache hit ratio) 
than PAID. PPRRP achieves an average improvement of 
more than 25% for Increasing Size, more than 20 % for 
Random Size and more than 15 % for DecreasingSize as 
compared to existing replacement policy PAID. 

We compared all policies under various system 
parameters and for two scope distributions. But in real-
world, there can be lots of scope distributions varying 
from regions to countries. Moreover, we used Euclidean 
distance to calculate the distance between two points. 
However, in the real-world, this distance cannot represent 
the real distance that a user has to cover in order to reach 
to an object. For example, in City model the distance 
between two points is calculated using Manhattan 
distance. Hence, there is a need to explore proposed 
policies under different real-world conditions. Also, LDIS 
have been referred to as some of the most promising 
technological inventions that may impact consumer 
behavior over the next decade. User’s expectations from 
mobile networks are becoming more demanding and this 
trend is expected to intensify in the future. Hence, the 
user need/profile is essential to develop better cache 
replacement policies. Also, existing location dependent 
cache management schemes consider only location-
dependent data. Investigation of location dependent cache 
management schemes, which includes temporal 
dependent update frequencies, is also required. Future 
schemes for cache management should consider the 
above facts to over come the challenges posed by LDIS. 
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Table 2. Improvement of PPRRP over PAID on different speed ranges 
(Scope distribution 1) 

 Speed Ranges 
(m/s)  

IncreasingSize 
(%) 

RandomSize 
(%) 

DecreasingSize 
(%)  

1~5 43 29 21 
6~10 41 31 25 

16~20 40 30 24 
25~35 37 29 35 

 
Table 1. Configuration parameters and default parameter settings for simulation model 

 Parameter  Description Setting  

Size size of the rectangle service area 4000m*4000m, 
44000m*27000m 

ItemNum number of data items in the 
database 

500 

ScopeNum number of different values at 
various locations for each item 

110, 215 

Smin minimum size of a data value 64 bytes 
Smax maximum size of a data value 1024 bytes 
UplinkBand bandwidth of the uplink channel 19.2 kbps 
DownlinkBand bandwidth of the downlink 

channel 
144 kbps 

F loatSize size of a floating-point number 4 bytes 
QueryInterval average time interval between two 

consecutive queries 
50.0 s 

MovingInterval time duration that the client keeps 
moving at a constant velocity 

100.0s 

MinSpeed minimum moving speed of the 
client 

1m s-1,5 m s-1 

MaxSpeed maximum moving speed of the 
client 

2m s-1, 10 m s-1 

CacheSizeRatio ratio of the cache size to the 
database size 

10 % 

θ skewness parameter for the Zipf 
access distribution 
 

0.5 

 
 

Table3. Improvement of PPRRP over PAID on different speed ranges 
(Scope distribution 2) 

Speed Ranges 
(m/s) 

IncreasingSize 
(%) 

RandomSize 
(%) 

DecreasingSize 
(%) 

1~5 2.2 15.3 16.2 
6~10 5.8 8.5 13.5 

16~20 4.7 10.9 6.3 
25~35 1.2 7.4 11.3 
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Figure 6. Cache hit ratio vs query interval for scope 
distribution 1 
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Figure 7. Cache hit ratio vs query interval for scope 
distribution 2 
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Figure 8. Cache hit ratio vs moving interval for scope 
distribution 1 
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Figure 9. Cache hit ratio vs moving interval for scope 
distribution 2 
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Figure 10. Cache hit ratio vs cache size for scope 
distribution 1 
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Figure 11. Cache hit ratio vs cache size for scope 
distribution 2 
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Figure 12. Cache hit ratio vs client speed for scope 
distribution 1 
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Figure 13. Cache hit ratio vs client speed for scope 
distribution 2 
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Figure 14. Cache hit ratio vs zipf parameter for scope 
distribution 1 
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Figure 15. Cache hit ratio vs zipf parameter for scope 
distribution 2 


