
A prediction and planning framework for road safety

analysis, obstacle avoidance and driver information

Adrian Broadhurst, Simon Baker, and Takeo Kanade

The Robotics Institute, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213, USA

Tel: +1 (412) 268-5746, Fax: +1 (412) 268-5571

Email: {adrianb, simonb, tk}@cs.cmu.edu

ABSTRACT
This paper presents a prediction and planning framework for analysing the safety and interaction
of moving objects in complex road scenes. Rather than detecting specific, known, dangerous
configurations, we simulate all the possible motion and interaction of objects. This simulation
is used to detect dangerous situations, and to select the best path. The best path can be chosen
according to a number of different criterion, such as: smoothest motion, largest avoiding dis-
tance, or quickest path. This framework can be applied, either as a driver warning system (open
loop), or as an action recommendation system (human in the loop), or as an intelligent cruise
control system (closed loop). This framework is evaluated using synthetic data, using simple
and complex road scenes.

INTRODUCTION
Many different types of sensors have been developed to detect cars, obstacles and pedestrians.
These use a variety of techniques, such as laser scanners, radar, ultrasound, vision, inter-vehicle
(IVC) communication, and road-vehicle communication (RVC). These approaches all attempt
to provide the car with a map of the road and other road users,at the current time. This sensor
data is used to provide safety warnings for the driver in known dangerous situations, such as:
blind spot detection for overtaking, side collision detection [9], curb detection [1], or rear-end
collision [12]. Other systems have used simultaneous localisation and mapping [11] to identify
obstacles. These approaches guarantee that a small number of known dangerous situations are
avoided.

In this paper we argue that simply knowing there is an object at locationx at timet does not
provide sufficient information to asses its safety. A framework is needed for understanding the
behaviour of all the vehicles, pedestrians, obstacles and other objects on the road. The safety of
the road must then be determined by considering the combined actions, and interactions, of all
these objects. Can we confidently calculate that the road is safe for the nextt seconds?

This is a challenging task because we must simulate both the behaviour of our own car, as
well as that of all other objects in the scene. We must consider the possibility of new objects
entering the scene, objects leaving the scene, and the possibility of sensor failure. In addition,
the simulation of objects is challenging because they are governed both by physical limits (such
as maximum speed) but predominantly by human behaviour. A well behaved driver will obey
road conventions, a conservative driver may try to avoid accidents, and a reckless driver may
take unexpected risks to avoid slowing down. These situations must all be considered.



It is important to note that whether a collision is occurringnowor whether a car is driving
towards usnow, isnot of direct use. Whatis important, is whether or not we will be involved in a
collision in the nearfuture. To make this decision we must know the future, and there are many
possibilities. This paper presents a framework for enumerating all possible future scenarios,
analysing them, and making recommendations for the driver based on their likelihood.

FRAMEWORK
The prediction and planning framework consists of three components. First, all possible future
scenarios are predicted. Second, a path planning algorithm uses the prediction results to deter-
mine the safest path through the scene. Finally the output is used, either to control the car, or to
display safety information to the driver.

ELEMENTS OF PREDICTION

Vehicle dynamics
Every car is governed by physical mechanics. Given the initial state of a car, a series of control
inputs (such as acceleration and steering), known properties of the road surface, tyres, and
weather; it is possible to calculate the trajectory of the car. In practice, drivers do not use the
full extent of their car’s control inputs, all of the time. As a result, predicting the path of a car is
determined both by the physical capabilities of the car, but predominantly by human behaviour.

Human behaviour
A detailed study of how humans choose their path in complex environments is presented in
Fajen & Warren [3]. There is no physical reason preventing oncoming traffic from colliding.
Both cars could very easily turn in towards each other and crash. The reason they do not
collide, is that both drivers obey the rules of the road, and stay in their own lane. This poses
a problem for systems which attempt to asses the safety of a road scene. Almost every scene
with oncoming traffic is theoretically dangerous. Road death statistics in any country show that
driving is dangerous. What we must consider, is the degree of safety that we are prepared to
accept, and our confidence in the ability of other drivers, to also drive safely.

Sensor uncertainty
In order to predict the future, we need to understand the error in our understanding of the present.
Sensors can be uncertain for a number of reasons: they can incorrectly classify objects, they can
contain imprecise measurements, or detection could fail, or they could group multiple objects
into a single detection result. In this paper we will assume a perfect sensor. The use of a sensor
model will be included in future work. This model must provide a probability distribution for
each class of object, over the surface of the road and surrounding area. It must also provide a
probability distribution for the likelihood of a missed detection, at each road location, given the
local context of that region of the road scene.

Objects entering the scene
Another important point to consider is the possibility that new objects may enter the scene. The
road in front the car is the most obvious point of entry for a new car. On a straight road, this
point is on the horizon. On a corner this entry-point will be the point where the road becomes
occluded. All intersections, and gateways are possible entry-points, as are blind spots caused by
buildings, trucks and cars. The detection of occlusion boundaries is a known graphics problem



[4]. Every occlusion boundary which borders the road, and is large enough to obscure an object,
must be considered as an entry-point.

Multiple hypothesis
The most simple prediction of the future, is that all objects will continue to move at their current
speed. This, however, is only one of many future outcomes. Each action the driver makes, leads
to a different future outcome. In addition, all other objects can also change their motion. The
main issue for implementing the prediction algorithm, is the choice of method for enumerating
all possible driver actions, as well as all the actions of all other objects in the scene, over the
nextt seconds.

ELEMENTS OF PLANNING

The planning process considers each of the many future predictions of the road scene and de-
termines which hypothesis will lead to a collision, and which are safe. Exactly which path is
the best outcome, is dependent on the priorities of our driver. Previously,start-goalpath plan-
ning problems [7] have been studied in the mobile robotics community. Many solutions exist
including potential function approaches [5, 10] and provably complete sensor methods [8]. Our
approach uses a map based approach [2]. Planning algorithms have previously been applied to
car-like robots [6], but not in the context of safety analysis, with future prediction, in complex
multi-object environments.

Finding the safest path through a scene.
Each hypothesis of the future defines a series of actions for our car, and for all other objects
in the scene. These actions define the paths for all objects. A hypothesis is determined to be
dangerous if the path of any two objects collide.

There are many different actions that we can make as driver, however, we cannot control the
whole scene. Other drivers can also influence the future. For each action we can make, there are
many hypothesis for the future. Some of these future outcomes are safe and some are dangerous.
The safety of a particular control action, we make, is determined by considering the likelihood
and safety of each of the resulting hypothesis. A conservative algorithm labels a control action
as unsafe if any future outcome, resulting from that action, is unsafe. A more realistic algorithm
assesses the driver’s tolerance for risk, the driver’s assumptions about other road users, and the
likelihood of each hypothesis, and combines these probabilities in a probabilistic manner, to
determine if a control action is safe, or not.

If the safety of all possible control actions is considered, then one control action can be
chosen as the safest. This choice of control action still results in many future outcomes, but
based on our hypothesis-safety function, we know this will lead to the most likely safe outcome.
In some cases, we may choose to select the most likely path resulting from this action, and
display this information to the driver.

Dynamic safety
A separate issue to path safety, is dynamic safety. How likely is the car to physically realise a
series of control inputs. This is dependent on the properties of the car, the road surface, and the
current weather conditions. A separate but related issue, is the ability of a driver to accurately
implement a series of control actions. This is dependent on the particular driver, and his current
mental state, such as alertness. Whether or not these terms are included in the hypothesis-safety
function, depends on the particular application being developed.



Driver preference
In some situations the safest path may require sudden movements, or may be very slow. In these
circumstances, the driver may choose to trade safety for comfort or speed. Thus the hypothesis-
safety function must consider many factors including: path safety, dynamic safety, the ability
and alertness of the driver, the speed, and the degree of comfort.

OUTPUT FOR THE DRIVER, AND APPLICATIONS

So far we have described the space of all actions which lead to a safe scenario, and the best path
for a specific object to navigate the scene. From this information we also know the space of
control actions (set of paths) that will lead to a collision. But how can this danger information
be displayed concisely to the driver? We consider three options:

Display best path: The driver is shown a recommended path that the system considers most
safe. This is calculated using the technique described in the previous section.

Road map: Each path traverses the road surface, so every point on the road will be touched by
zero or more paths. We can classify each point on the road surface with a degree of safety
based on the distribution of safe and unsafe paths that traverse that point. This projection
of the decision tree onto the road can be used as a warning display.

Object label: Similarly, in every path, there is a minimum distance between any two objects.
This distance can be used to classify each object as a possible threat to the driver, or not.
One classification heuristic might be minimum distance. A warning is then displayed
alongside each potentially dangerous object.

It is important to note that warning systems are not an exact science. Detailed user interface
studies would need to be conducted, to determine effective heuristics for displaying dangerous
road-regions and objects, to the driver. Some applications of this framework are:

Closed loop control: In this approach the car is controlled directly using the best predicted
action. The driver is not included in the control loop, except in an emergency. This can
be used to implement an intelligent cruise control system.

Human in the loop: In this approach the car displays the recommended path to the driver. This
can be displayed as a route map on a road, or as the instantaneous action to be applied.
(e.g. brake now!, turn right!, or turn left!).

Warning system: The car does not display the best path, but rather displays warnings on the
road and on objects to convey to the driver regions of action space which are dangerous.

Sensor analysis: It is important for the computer vision and physical-sensor communities
to know a target accuracy for car and object detectors. By applying this algorithm to a
large number of typical road scenes, it would be possible to determine whether automated
control is safe or not, given the level of accuracy of the sensors in question.

METHOD
This section describes the prediction and planning framework in detail, starting with some basic
definitions about road scenes. First, a single time instant is considered, then the effect of motion.
The interaction of objects is modeled using game theory, with all objects moving in turns, one



turn at a time. All the possible actions that an object might make are represented in a decision
tree. Each leaf node describes a possible path through the scene. These paths can be classified
as safe or unsafe by running a simulation, and checking that no two objects collide.

THE ROAD SCENE

A road scene consists of a drivable area, obstacles, cars, pedestrians, cyclists, and entry-points,
at a specific instant in time. Each object is assigned a speed and velocity, and this is referred
to as the objects state. An obstacle is an object with zero speed. A moving object has non-zero
velocity, and an interactive object has the ability to change its velocity dependent on the road
scene. An entry-point is a disc with an radius which increase at a fixed rate. This area represents
the maximum distance that an unseen object can cover in a given period of time. The drivable
area consist of a 2D surface with a Euclidean grid defined on its surface. All objects are assumed
to move on this surface and obey the laws of Newtonian mechanics. The surface is assumed
to be bounded, and the simulated car must remain strictly inside this road boundary. An object
collision occurs when two objects occupy the same position on the road surface. A scene is safe
if no two objects collide.

statei(t) = {positioni(t), velocityi(t)} = {xi(t), ẋi(t)} (1)

Figure 1: This scene consisting of a drivable area, non-drivable areas (sidewalk, grass), obstacles
(parked cars), and a moving object (pedestrian).

OBJECT MOTION AND INTERACTION

Interactive objects change their velocity (speed and direction), over time, based on the current
road scene and an internal strategy function for each object. An interactive object may change
its speed according to some strategy, which is dependent on the current state of the scene.

An action (2) is defined as the change in velocity of an object (3), which is determined by
its strategy function. Below,statei(tn) is the state of objecti at timetn (with i < m).

actioni(tn) = ẍ = strategyi(state1(tn), state2(tn), ..., statem(tn)) (2)

statei(tn+1) = {x, ẋ} = state(tn) • actioni(tn) (3)

The state update (•) is implemented, for turn duration∆t, as:

xi(tn+1) = xi(tn) + ẋi(tn) ∗∆t +
1

2
ẍ(tn) ∗∆t2 (4)

ẋi(tn+1) = ẋi(tn) + ẍi(tn) ∗∆t (5)

The path of an object (6) is defined as an initial state, followed by a list of actions, for the
following game-turns. A scenario (7) is defined as the paths of all objects in the scene.

pathi = {statei(t0), actioni(t0), . . . , actioni(tmax)} (6)

scenario = {path1(t0), path2(t0), ...pathm(t0)} (7)



DETERMINING THE SAFETY OF A SCENARIO

A scenario consists of a list of objects together with a path for each object. To determine whether
a scenario is safe, simulate all road scenes betweent0 and tmax and determine whether each
scene is safe. A road scene is dangerous if any two objects collide. An object is controllable at
tn if it does not collide with any other object during the periodtn ≤ t ≤ tmax.

THE ROAD SCENE DECISION TREE

A scenario is defined as the initial state and a path for every object being simulated. This
particular set of actions represents only one, of many, possible future outcomes. The space of
all possible scenarios is both large and complex. The action of each object is dependent on the
actions of all the other objects in the scene. To simplify this problem, we propose that the road
environment should be modeled as a board game, using Game theory. All objects are assumed
to move in game-turns, one after another. In each game-turn, one object considers the state of
the road, and then makes its best move based on its strategy function. After it has completed its
game-turn, the next object makes its move.

By making this approximation, all object decisions can be enumerated in a decision tree.
The primary (root) node in the decision tree represents the state of the road (all objects) at the
current time. Each branch represents a permissible action that the first car could make. Each
child-node describes the state of the road resulting from that action. For each new child-node,
we build a new set of branches for all moves that the second car could make. This process is
then repeated for all cars. All cars are then allowed to make second and third game-turns, until
the required simulation periodtmax is completed. Each walk from primary node to leaf defines
a possible scenario, because it defines one unique series of actions for each objects in the scene.
The safety of each scenario is then determined using Section .

CHOOSING THE OPTIMAL PATH, FOR THE CURRENT TIME

At this point we make an implementation decision. Our initial implementation does not consider
the action of other drivers. This simplification will be removed in future work. This simplifi-
cation means that the decision tree only contains actions of our own car, and is independent of
other drivers. It also means a path through the tree defines a path for our car.

The previous section described how the decision tree represents all possible future scenarios.
Each of these scenarios can also be classified as safe or unsafe. We now select one of the safe
paths as the “best path” based on an optimality criterion. This criterion can be the path of
least effort, or the quickest path, or the path which leaves the largest avoiding distance to other
objects, depending on the driving strategy being implemented. After the best path has been
chosen, only the action at timet0 is implemented. We now know this action will lead to a safe
outcome, over the periodt0 < t < tmax (as long as the current object completes the maneuver,
and that the other objects behave as predicted, and no new objects enter the scene).

EVALUATING THE STRATEGY FUNCTION

In this implementation, we have chosen to implement the smoothest path strategy, which is the
path with smallest sum-of-squares actions. This path is simple to implement, and should be
reasonably comfortable. It is more safe than the fastest path approach, which uses the sum-
of-absolute magnitudes. Certain areas of the road surface are more desirable for driving, than
other areas. For example, it is not desirable to drive on the wrong side of the road. A scalar field



is described on the surface of the road which represents the desirability of a car to be present
at eachx location. This is called thePositionPrior(x). In a similar manner, it is dangerous
to drive too fast, or too slowly, so aV elocityPrior(‖x‖) is used. The magnitude of the prior
terms is significantly lower than the cost of an action, but add up over the duration of the path.
If this prior term is not used then the car will not complete an overtaking manoeuvre. Likewise,
if the speed term is not used, then if the car ever stops to avoid a pedestrian, it will never start
moving again. Thus these prior terms are of critical importance.

cost(path) =
tmax∑
t=t0

cost(state(t)) +
tmax∑
t=t0

cost(action(t)) (8)

cost(state) = PositionPrior(x)2 + V elocityPrior(‖ẋ‖)2 (9)

cost(action) = ‖ẍ‖2 (10)

PositionPrior(x) =

{
wrong lane xlateral.klateral

otherwise 0
(11)

V elocityPrior(speed) =


speed > speedmax speed.kfast

speed < speedmin speed.kslow

otherwise 0

(12)

REPRESENTING DECISIONS AND ROAD STATE

Decision tree
So far we have described the algorithm using a decision tree with quantised actions and a con-
tinuous state space (discrete time). In practice, the size of the decision tree is very large, with
orderO(an) wherea is the number of actions andn is the number of game turns considered.
This is an action space representation. For each walk through the tree, we run a separate simu-
lation to determine if there are any collisions. The only storage requirements, are a current path
and best path. The main computing resource required is processing time.

Graph representation
To reduce the number of states and actions, the road can be simplified, using a graph represen-
tation. A multi-lane road can be represented as a series of nodes on the graph. The car is only
allowed to change lanes, or to merge with an onramp, at specific points on the graph. We have
not used this representation because it does not allow pedestrians and non-highway scenes to be
represented. Instead we consider a quantised euclidean surface.

State space representation
What the decision tree representation does not reflect, is that different walks through the deci-
sion tree may traverse the same partial path in state space. For example, you may go around
an obstacle in the middle lane, by overtaking on the left or on the right, but both of these paths
return to the middle lane and follow the same completing path. This lends itself to a dynamic
programming implementation which evaluates in state space rather than decision space. In par-
ticular, it reduces the computational order toO(sn) wheres is the magnitude of state-space.
This algorithm requires a very large number of states to be stored in memory. The key im-
plementation decision is whethersn < an which is determined by the number of turnsn, the
number of statess and the number of actionsa.



Dynamic programming
If we only consider the actions of our own car, then we may precompute a simulation of all
other objects in the scene. This computation results in a binary obstacle map for each time-step:

obstacle(x, t) =
m⋃

i=1

ObjectAt(x, t, statei(t)) ∈ {true, false} (13)

This obstacle map is sampled at a higher temporal resolution than the game time-step. This
reduces the size of the decision tree. A collision can be detected by checking for an obstacle at
every pointx(t) along the path (over time).

Safe(path) = Safe (state(t0), action(t0), . . . , action(tmax)) =
tmax⋃
t=tn

obstacle(t,x(t)) (14)

Dynamic programming is an efficient algorithm for determining the best path. We define a
quantised state space for the roadroad(t,x(t), ẋ(t)) = {action, cost}, where each cell contains
the best action at that time and state, and the total cost from that time until the end of the game.
The algorithm is presented below:

begin
Initialise the future-most road-state with the corresponding obstacle map.
for all x, ẋ do

road(tmax,x, ẋ) =

{
obstacle(tmax,x) = true {action = 0, cost = ∞}
else {action = 0, cost = 0}

od
Evaluate all entries in the road-state, working backwards through time
for t = (tmax −∆t) to t0 do

for all x, ẋ do
for all possible actions, find action with minimumcost(t, state(t)) do

future cost = Cost(road(t + ∆t, state(t) • action))
if obstacle(t,x(t))

then cost = ∞
elsecost = Cost(action) + Cost(state(t)) + future cost

fi
od
Assignroad(t,x(t), ẋ(t)) with the best action and cost

od
od
Select the best path through the road-state
begin

state(t0) = The car’s current state (speed and position)
for t = t0 to tmax do

action(t) = Action(road(t, state(t)))
state(t + ∆t) = state(t) • action(t)

od
end

end

DYNAMIC PATH PLANNING

Every turn, new sensor information is available, and the decision making process is repeated
using the new data. If the previous prediction was accurate, then the new sensor information
should agree with our previous prediction.



(a) Path planning result with no oncoming car (frame 0).

(b) It is safe to overtake with an oncoming car 75m ahead (frame 0).

(c-i) It is not safe to overtake with an oncoming car at 50m (frame 0).

(c-ii) The car must wait for the oncoming car to pass (frame 55).

(c-iii) After the car has passed it is safe to overtake (frame 95).

Figure 2:Experiment 1: This experiment analyses the safety of overtaking a stationary obsta-
cle, with (a) an empty road, (b) an oncoming car at 75m ahead, and (c) a car at 45m. It is safe to
drive around the obstacle in (a) and (b), but in experiment (c) the car must slow down, wait, and
then overtake (see c-i to iii). Note: no overtaking manoeuvre is defined, the path is the result of
simulation and the prior preference to drive on the right, and to keep moving.

EVALUATION AND DISCUSSION
Experiment 1:
In this experiment, we demonstrate the decision making capability of our system. The road
scene consists of a road with an obstacle, and the possibility of an oncoming car. The system
must decide whether to stop or drive around the obstacle, depending on whether there is oncom-
ing traffic or not. The results are shown in Figure 2. Experiment (a) shows the predicted best
path around the obstacle. Experiment (b) shows the path around the obstacle, with an oncoming
car at 75m. Notice how the car takes a steeper path than in (a). Experiment (c) shows how the
carcannotovertake an obstacle with a car at 45m. The car waits for the oncoming car to pass,
and then drives around the obstacle. This is shown in (c-i through iii).

Notice that the algorithm safely avoids the obstacle without hitting the oncoming car. The
algorithm correctly makes the decision to wait for the oncoming car, when the available overtak-
ing distance is too short. The shape of the car’s path is not defined, stopping distances and time
to impact are not modeled. The shape of the manoeuvre, and decision making functionality, is
calculated as a result of the prediction and planning process.

Experiment 2:
The second experiment demonstrates the use of entry-points. There is a car waiting at an inter-
section, and the system must consider the possibility that the car might start to move. The first



(a-i) Path planning at frame 0, without entry-point.

(a-ii) Collision at frame 60, without entry-point

(b/c-i) Path planning at frame 0, with entry-point

(b-ii) Path planning at frame 70, with entry-point, car is stationary.

(c-ii) Path planning at frame 70, with entry-point, car is moving.

Figure 3:Experiment 2: The use of entry-points. The car waiting at the intersection may start
to move. In (a) the possibility of a moving is ignored. In (b) entry-points are used to model
this possibility, but the car does not move. Entry-points are used in (c) and the car does move.
Notice that entry-points are required to safely navigate the scene.

(a) Simulation without entry-points. Car hits new pedestrian.

(b) With entry-points, frame 0. Car slows, and turns wide of danger point.

(c) With entry-points, frame 35. New sensor data. Car can pass danger point.

(d) Path planning, frame 70. New pedestrian!! adjust path.

Figure 4:Experiment 3: This scene contains a narrow road, two parked cars, and many pedes-
trians. At frame 70 a new pedestrian enters the scene from behind the top car. In (a) new
pedestrians are not modeled, and the car hits the pedestrian. (b-f) shows the same simulation,
using entry-points. Notice how the car slows down, avoids the dangerous situation, misses the
pedestrian, and completes the scene. Considering new objects in the future is essential!



experiment (a) ignores the possibility that the waiting car might move. The car initially plans
to drive straight past (a-i), and is then unable to avoid the waiting car (a-ii), when it starts to
move. The second experiment (b) uses an entry-point to model the possibility that the waiting
car might move. Notice that the car initially plans to take a very wide path (b-i), but when
it reaches the intersection, new sensor data shows that the car is not moving, so it can take
a normal path through the intersection. In experiment (c) the waiting car is modeled with an
entry-point. When the waiting car starts to move, the simulated car is able to drive past safely
(unlike (a)).

By assigning each entry-point a maximum speed we can model the unsafe region around
each danger point. This guarantees a conservative solution is chosen at each time-step. As new
sensor data becomes available, the danger area will always get smaller until a real object is
detected. This allows the car to take a sensible but conservative path, but still be able to avoid a
collision if necessary. It is hence essential to model the possibility of new objects entering the
scene, and the possibility of objects changing their motion. This is not possible in traditional
sensor based systems, which do not consider the future. This justifies the use of the prediction
and planning framework.

Experiment 3:
The third experiment shows how entry-points can be used to model unexpected objects entering
the scene. This scene is inspired by a scene from a J.A.F. ”Stop the accident” booklet. In this
experiment, the car is driving down a narrow one way street with many pedestrians on the road,
and two parked cars. At frame 70 an unseen pedestrian appears from behind the first parked
car. This scene is modeled with and without entry-points, and with and without the unexpected
pedestrian. Figure 4(a) shows the car hitting the unseen pedestrian. Figure (b) shows the car’s
initial plan to stop away from the pedestrian. As the car approaches, new sensor data shows that
a pedestrian has not stepped out yet, and the car plans a path through the obstacles (c). At frame
70 the new pedestrian appears (d) and the car adjusts its path accordingly.

This example shows how the prediction and planning framework can navigate a complex
scene with many pedestrians moving in different directions. In complex scenes there are many
points where new objects could unexpectedly enter the scene. These events must considered if
the system to accurately predict a safe path through the scene.

FUTURE WORK
This framework has been shown to effectively predict and plan safe paths through complex road
environments, however, there are still several areas where future research is needed. Interaction
with other cars has been described, but has not yet been demonstrated. The main issue that
needs to be addressed is the modeling of driver behaviour. If the models are too well behaved
then the problem is solvable but not useful, and if the human models are too general, then
oncoming traffic will pose a significant problem. In this paper, all sensors and car controls
are perfect. All examples were theoretically safe, which is an ultra-conservative condition. In
the new implementation the obstacle map will be probabilistic. The decision about whether
a situation is dangerous will depend on the drivers tolerance for risk, which may vary. In
addition, the car (or driver) may not accurately implement control actions. This extension is
of particular interest, because real world sensors are not perfect, and most real road scenes
cannot be driven without a small tolerance for risk. The decision space of all opponent actions
is very large. Instead of using actions in a decision tree, the opponents actions could be modeled
as a probability distribution over position, speed and time.



CONCLUSION
This paper has presented a prediction and planning framework, for analysing the safety of com-
plex road scenes, consisting of moving and stationary objects. A decision tree has been used
to enumerate all the possible future paths of the simulated car. A method for determining the
safety of each path has been described. A strategy function is used to select the best safe path
through the scene. Techniques are described for using this action to directly control the car, or
to displaying warnings or recommending actions to the driver. The framework has been tested
using synthetic data, on two simple and two complex road scenes.

ACKNOWLEDGMENTS
The authors would like to thank Iain Mathews and Takahiro Ishikawa for their help in developing
the ideas in this paper, and DENSO CORPORATION for funding the research.

REFERENCES
[1] R. Aufrere, C. Mertz, and C. Thorpe. Multiple sensor fusion for detecting location of

curbs, walls, and barriers. InProc. of the IEEE Intelligent Vehicles Symp., June 2003.

[2] J.F. Canny.The complexity of robot motion planning. MIT Press, Cambridge, MA, 1988.

[3] B. Fajen and W. Warren. Behavioral dynamics of steering, obstacle avoidance, and route
selection.Journal of Experimental Psychology, 29(2):343–262, 2003.

[4] J. Foley, A van Dam, S. Feiner, and J. Hughes.Computer Graphics, Principles and Prac-
tice. Addison-Wesley, 2nd C edition, 1996.

[5] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.International
Journal Robotics Research, 5:90–98, 1986.

[6] A. Lambert, S. Bouaziz, and R. Reynaud. Shortest safe path planning. InProceedings of
the IEEE Intelligent Vehicles Symposium (IV2003), pages 282–287, June 2003.

[7] J.C. Latombe.Robot motion planning. Kluwer Academic, Boston, MA, 1991.

[8] S. Lumelsky and A. Stepanov. Path planning strategies for point mobile automation mov-
ing amidst unknown obstacles of arbitrary shape.Algorithmica, pages 403–430, 1987.

[9] C. Mertz. A 2d collision warning framework based on a monte carlo approach. InPro-
ceedings of ITS America’s 14th Annual Meeting and Exposition, April 2004.

[10] D.E. Rimon, E.and Koditschek. Exact robot navigation using artificial potential functions.
IEEE Trans. Robotics Automation, 8(5):501–518, 1992.

[11] C.C. Wang, C. Thorpe, and S. Thrun. Online simultaneous localization and mapping with
detection and tracking of moving objects: Theory and results from a ground vehicle in
crowded urban areas. InIEEE Int. Conf. on Robotics and Automation, May 2003.

[12] L. Yang, Yang J.H., E. Feron, and V. Kulkarni. Development of a performance-based
approach for a rear-end collision warning and avoidance system for automobiles. InProc.
of the IEEE Intelligent Vehicles Symposium (IV2003), pages 316–321, June 2003.


