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A Prediction Approach for Multichannel EEG
Signals Modeling Using Local Wavelet SVM
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Abstract—Accurate modeling of the multichannel electroen-
cephalogram (EEG) signal is an important issue in clinical
practice. In this paper, we propose a new local spatiotemporal
prediction method based on support vector machines (SVMs).
Combining with the local prediction method, the sequential min-
imal optimization (SMO) training algorithm, and the wavelet
kernel function, a local SMO-wavelet SVM (WSVM) prediction
model is developed to enhance the efficiency, effectiveness, and
universal approximation capability of the prediction model. Both
the spatiotemporal modeling from the measured time series and
the details of the nonlinear modeling procedures are discussed.
Simulations and experimental results with real EEG signals show
that the proposed method is suitable for real signal processing
and is effective in modeling the local spatiotemporal dynamics.
This method greatly increases the computational speed and more
effectively captures the local information of the signal.

Index Terms—Electroencephalogram (EEG) signal, local pre-
diction method, support vector machine (SVM), wavelet kernel.

I. INTRODUCTION

MANY biomedical signals contain useful information that
is directly related to clinical applications. As an impor-

tant category of medical signals, electroencephalogram (EEG)
signals can be measured by placing many electrodes at various
points on the subject’s scalp. The epileptiform EEG signal
includes abnormal brain electrical activity that is produced
from the epileptic seizure and imposed onto the normal EEG
background. To identify the region of the brain that generates
the seizure activity, it is required to monitor the seizure onset
and investigate the seizure pattern. EEG plays a more and more
important role in the study of brain mechanism and clinical
manifestations of brain diseases, with the development of signal
processing technology. It is a challenge to effectively extract
the useful information from multichannel EEG signals to better
understand the brain functional states for various clinical appli-
cations. Many methods have been proposed to process the EEG
signals for different purposes of practical applications.

More and more studies have shown that the brain is a com-
plex nonlinear system [1]. Chaos became a promising method
of EEG signal modeling and prediction [2], [3]. Chaos is based
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on the theory of a deterministic nonlinear system that generates
paths of evolution with very complex ways and appearances [4].
The seemingly random appearance of the EEG signal is, in fact,
caused by the nonlinear interaction of a deterministic dynamical
system. The significance of regarding EEG as chaotic is that
we can use a deterministic nonlinear dynamic system to accu-
rately model the EEG signals. Several dynamical reconstruction
techniques have been developed for modeling the EEG and
other biomedical signals [5], [6]. In practical applications, the
model trained by observed signals can be applied to identify
abnormal states of the system by detecting abrupt changes in the
prediction error of the ongoing signal. In general, the prediction
is one-step-ahead prediction. The importance of prediction
using measured data is that it thereby provides a model for
the data. On the other hand, the violation of the model can be
detected, while violations often happen when the system is in
abnormal states, for example, when there is epileptic seizure in
the brain. Therefore, the epileptic seizures can be detected by
chaotic-model-based prediction using measured EEG signals.

Chaos theory provides a way to model and predict the EEG
and other signals in practice. However, it cannot make full
use of all available information contained in the multichannel
EEG signal as chaos is basically expressed as a temporal
phenomenon. In other words, the spatial structural information
of the multichannel EEG signals is ignored. As a matter of
fact, the spatial structure of multichannel EEG signals is quite
complex and spatially correlated in various areas of the scalp
[7], [8]. To improve the performance of the multichannel EEG
signal analysis, both the temporal and spatial aspects must be
considered. Using the technique of reconstructing a chaotic
system from the measured time series, the spatiotemporal
chaotic predictor is expected to extract the information of the
spatiotemporal chaotic structure.

The basis of dynamical system modeling is to reconstruct
a vector space that is equivalent to the original state space of
a system from a scalar time series. It is stated in the Takens
embedding theorem that the reconstruction can be made by
time delay embedding from a sequence of observations of the
dynamical system if either the dynamics or the measurement
function is generic in the sense that it couples all degrees of
freedom of the system. It must be stated that: 1) this result is
only an asymptotic result in the sense that it is true only when
we get all the information about the dynamics of the system,
i.e., when the number of samples in the observed signal goes to
infinity, so that, in practice, when only finite number of samples
are available, the reconstruction is only an approximation;
and 2) the reconstructed space is not the original space but
equivalent to the original space in the sense that the attractor
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in these two spaces are equivalent, implying that we may have
many different reconstructed spaces that are equivalent but not
identical. Predictions about the system or the observations (in
our case, the multichannel EEG signals) can be then made
in the reconstructed state space by various signal processing
methods, for example, a learning machine. According to the
statistical learning theory, Vapnik proposed the support vector
machine (SVM), which has widely been used in practical signal
modeling and prediction in recent years [9], [10]. However, a
global application of SVM to the whole system may have very
high computational complexity since, in this case, the general
direct solution of SVM needs to optimize a large quadratic
problem [11], and it may not be globally optimal due to the
nonstationarity of the system. Instead, a local prediction method
is computationally more efficient and may provide better results
for extracting the local dynamic characteristics of the EEG
signals, as demonstrated in our preliminary study [12]. To eval-
uate the applicability of the proposed approach, the universal
approximation capability (UAC) of the local reconstruction
model will also be studied in this paper.

The purpose of this paper is to develop a novel spatiotempo-
ral dynamical method for multichannel EEG signal prediction
based on our preliminary study [12]. We propose a new spa-
tiotemporal predictor, called the local wavelet SVM based on
the sequential minimal optimization training algorithm (local
SMO-WSVM), which combines the local prediction approach,
the sequential minimal optimization (SMO) training algorithm,
and the wavelet kernel to directly model the spatiotemporal
chaotic signals, with applications in predicting the multichannel
EEG signals.

The remainder of this paper is organized as follows. In
Section II, the reconstruction of spatiotemporal dynamic sig-
nals from the measured time series is presented. Section III
discusses the details of the nonlinear modeling procedures. In
Section IV, simulations are carried out to evaluate the perfor-
mance of the proposed local model. The experimental results
with real EEG signals are illustrated in Section V. Finally, the
concluding remarks are given in Section VI.

II. RECONSTRUCTION OF SPATIOTEMPORAL DYNAMICS

Let {si(al)} be a spatiotemporal signal, where al (l =
1, . . . , L) represents spatial location, which is an k-dimensional
vector, and si(al) is the 1-D state variable at spatial location al

and time i = 1, . . . , n. For example, when al is a 1-D location,
the entire state of the spatiotemporal signal process can then be
represented by an n× L matrix [8]

S = [s1, . . . , sn]T =

⎛⎜⎝
s1(1), s1(2), . . . , s1(L)
s2(1), s2(2), . . . , s2(L)

· · ·
sn(1), sn(2), . . . , sn(L)

⎞⎟⎠ (1)

where si(l) denotes the state value of the spatiotemporal system
at time i and spatial site l. Let the observed spatiotemporal
signal be

xi(al) = si(al) + ni(al) (2)

where ni(al) is the measurement noise.

Fig. 1. Structure of spatiotemporal chaotic signal modeling.

If the spatiotemporal signal is an observation of states of a
deterministic nonlinear system, for example, the multichannel
EEG signal, it is needed to reconstruct (approximately) the
equivalent phase space of the system from the observed spa-
tiotemporal signal by time delay embedding according to the
Takens embedding theorem. Using phase space reconstruction,
we can find out the evolution rule of the chaotic attractor of the
nonlinear deterministic system so that the observed signal can
be modeled and described. As a result, the Takens embedding
theorem provides a new vision and idea for studying the time
series.

Using the multichannel EEG signal as an example, suppose
the state evolution of the underlying brain dynamical system is
described by a d-dimensional mapping of the form

si+1 = ϕ(si) (3)

where si ∈ �d is the state at time i, and ϕ : �d → �d is
a diffeomorphism that has a dissipative chaotic attractor of
dimension Dc. The collected EEG time series can be expressed
by the measurement equation xi = h(si), where h : �d → � is
a smooth function. The time-delay coordinate is defined by

Ψ(ϕ,h)(s) =
(
h(s), h (ϕ(s)) , . . . , h

(
ϕm−1(s)

))
= (x0, x1, . . . , xm−1). (4)

According to the Takens embedding theorem [13], if m ≥
2Dc + 1, then we can reconstruct the chaotic dynamical system
from the observed time series. More exactly, the evolution
of the points Ψ(si)→ Ψ(si+1) in the reconstruction space
follows that of the underlying dynamics ϕ. In other words,
the collected EEG signals can be modeled by a nonlinear pre-
diction function x̂i = f(xi−1), where xi−1 denotes the vector
(xi−τ , xi−2τ , . . . , xi−mτ ), τ is the time delay, and x̂i is the
predicted value of x at time i.

Fig. 1 shows the procedure of modeling the spatiotemporal
chaotic signal, which is described as follow.

1) Phase space reconstruction: Reconstruct the system from
the collected time series {xi, i = 1, 2, . . .} as {xi, i =
(m− 1)τ, (m− 1)τ + 1, . . .}.

2) Training: Let the set of reconstructed vectors
T = {xi|i = (m− 1)τ, (m− 1)τ + 1, . . . , n− 1}
and its output D = {xi|i = (m− 1)τ + 1, (m− 1)τ +
2, . . . , n} be the training set of the nonlinear prediction
model.

3) One-step-ahead prediction: Input the target vector xn =
(xn, xn−τ , . . . , xn−(m−1)τ ) to the trained nonlinear pre-
diction model and get the predicted value x̂n+1.
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III. NONLINEAR MODELING

In this section, the main objective is to establish a highly effi-
cient spatiotemporal chaotic predictor. Neural networks (NNs)
and SVMs are two commonly used methods in signal modeling.
SVMs, which are motivated by statistical learning theory, are
regarded as one of the best machine learning methods. SVMs
are based on the structural risk minimization principle so that
they can minimize the data fitting error and reduce the upper
bound of the generalization error at the same time, thus in-
creasing the generalization ability of the model. First, the SVM
solves the overlearning problem of NN, which employs the
empirical risk minimization principle. Second, training an SVM
is equivalent to solving a linearly constrained convex quadratic
programming (QP) problem when the employed kernel func-
tions satisfy the Mercer condition, thereby it does not suffer the
local minima problem of NN that performs the minimization of
a nonlinear error function that may be nonconvex. Finally, with
the help of kernel functions, the SVM can implicitly represent
a nonlinear mapping (on an infinite-dimensional space) without
actually doing the mapping, which avoids the dimensionality
disaster and the problem of computational complexity caused
by the increase of the number of hidden layers and the structure
selection of NN. Consequently, SVM is chosen as the nonlinear
mapping function in this paper.

A. SVM for Prediction

Assume that the finite measured data samples (x1, y1),
. . . , (xn, yn) ∈ (x×R) were obtained from a sample set
P (x, y)(x ∈ Rm, y ∈ R), which follows a certain distribution.
The regression of SVM is to find the fitting function

f(x) = 〈w, φ(x)〉+ b (5)

where 〈x, y〉 denotes the inner product, and φ(•) is defined
as the nonlinear mapping for the input space to the feature
space. The main objective of SVM regression is to find the
function f(x) to fit the samples and guarantee that it has
very good generalization ability. An ε-insensitive loss function
|yi − f(xi,x)|ε = max{0, |yi − f(xi,x)| − ε} is proposed by
Vapnik to enhance the robustness of the regression function.
Here, ε > 0 is a scaling constant, which means that a regression
error less than ε is ignored. Then, the ε-insensitive SVM
regression can be expressed as

min
w,ξi,ξ∗

i
,b

1
2
〈w,w〉+ C

1
n

n∑
i=1

(ξi + ξ∗i )

s.t. (〈w, φ(xi)〉+ b)− yi ≤ ε + ξi

yi − (〈w, φ(xi)〉+ b) ≤ ε + ξ∗i

ξi, ξ
∗
i ≥ 0 (6)

where C is a scaling constant for the tradeoff between the
regression error and the model complexity. The larger C is, the
smaller the number of support vectors (SVs) and the narrower
the margin. There is no systematic way for choosing C, and it

is usually empirically selected. The Lagrange function of (6) is
given as follows:

L =
1
2
〈w,w〉+ C

n∑
i=1

(ξi + ξ∗i )

−
n∑

i=1

αi (〈w, φ(xi)〉+ b− yi − ε− ξi)

−
n∑

i=1

α∗i (yi − 〈w, φ(xi)〉 − b− ε− ξ∗i )

−
n∑

i=1

(viζi + v∗i ζ
∗
i ) . (7)

Making the partial derivatives of the Lagrange function equal
to zero, (6) can yield the dual optimization problem

min
α,a∗

n∑
i=1

[α∗i (ε− yi) + αi(yi + ε)]

+
1
2

n∑
i,j=1

(α∗i − αi)
(
α∗j − αj

)
K(xi,xj)

s.t.
n∑

i=1

(α∗i − αi) = 0 0 ≤ αi, α
∗
i ≤ C/n,

i = 1, . . . , n. (8)

The linear kernel, polynomial kernel, and Gaussian ker-
nel K(x,y) = exp(−‖x− y‖2/σ2) are commonly used. The
dynamic system model can be obtained by solving the
dual optimization problem, and the optimum solution α =
[α∗1, α1, α

∗
2, α2, . . . , α

∗
n, αn]T is obtained. For the input vector

x, the prediction can be deduced from

f(x) = 〈w, φ(xi)〉+ b =
∑
SV

(α∗i − αi) K(xi,x) + b (9)

where the bias b is given by

b̄ =
1

lSV

lSV∑
j=1

(
yj −

lSV∑
i=1

(ᾱ∗i − ᾱi) K(xi,xj)

)
+ ε (10)

where lSV denotes the number of SVs.

B. Local SMO-WSVM Model

The solution process of the SVM dual problem is equivalent
to a QP problem with linear constraints that requires storage of
a kernel function matrix with size proportional to the square
of the number of training samples. Therefore, with the number
of samples increased, more storage memory is needed. Even
if there are only a few thousands of data points, it still re-
quires hundreds of megabytes of memory. For short data, it
may not be a problem if the algorithm is run on a modern
personal computer equipped with 2 or 3 GB of main memory,
but it may cause problems for long data, or the algorithm is
implemented on low-end devices such as microcontrollers or
field-programmable gate arrays. In addition, a large number of
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matrix operations need to be carried out to solve the quadratic
optimization problem associated with the SVM. In most cases,
the optimization algorithm for SVM training consumes most
of the computing time. When the number of samples becomes
large, the time required to solve the QP problem for training
SVM may become a bottleneck of practical applications of
SVM. Therefore, we need to find a prediction algorithm to
reduce the computational complexity of the model.

The local prediction method of chaotic series, which does
not fit all the state points reconstructed from all sample data,
is different from the global prediction method [14]. The local
prediction method only selects a small number of state points
(p points) to fit the function f at xn, where f may be either
nonlinear (polynomial, rational fraction, etc.) or linear around
xn. Therefore, the overall f is piecewise linear or nonlinear
and can thus express the overall nonlinear characteristics of the
chaotic signal.

The procedure of the local prediction method is described as
follows.

1) According to the Takens embedding theorem, select the
appropriate embedding dimension m and time delay τ
and then reconstruct from a spatiotemporal chaotic series
{xi|i = 1, 2, . . .} to an equivalent phase space as {xi, i =
(m− 1)τ, (m− 1)τ + 1, . . .}. Let xn denote the target
vector to be predicted and calculate the distances between
the target vector xn and the preformed N state vectors as

d(i) = ‖xi − xn‖ , i = (m− 1)τ, (m− 1)τ + 1, . . . .
(11)

2) Select p reconstructed states that are close to the target
vector xn, denoted as the training input vectors TLocal,
and then find out the corresponding p training output
vectors, denoted as DLocal

TLocal = [xn1 ,xn2 , . . . ,xnp
] (12)

DLocal = [xn1+1, xn2+1, . . . , xnp+1] (13)

where n1, n2, . . . , np denote the locations that are close
to xn.

3) Use TLocal as the training input vectors and DLocal as the
training output vectors to train the SVM model.

4) Take xn as the input to the trained SVM model, and then,
the prediction value x̂n+1 can be obtained.

5) Let n← n + 1 and iterate steps 1–4 until all prediction
values are obtained.

Using the local prediction method, the p training samples
close to the target vector are used for training the SVM model at
each iteration. The QP problem is obviously simplified since the
size of the problem is significantly reduced in the local models,
which means that the computational complexity of the SVM
model is also significantly reduced. On the other hand, since
only local training samples are used to train the SVM models,
for nonstationary signals that have local dynamics, modeling
with the local prediction method obtains better performance
than the global prediction method.

Although the local prediction method has greatly reduced
the computational complexity of the SVM model, the direct

solution of the QP problem in SVM training is still the main
reason for limiting the efficiency of the model when the number
of close points p greatly increases. Therefore, it is desired to
find a fast training algorithm. Many efficient training algorithms
have recently been proposed, such as the SVM light decom-
position algorithm [15], the SMO algorithm proposed by Platt
[16], the neighbor algorithm proposed by Kerrthi [17], and the
least square SVM (LS-SVM) algorithm proposed by Suykens
and Vandewalle [18], where the first three algorithms are based
on inequality constraints and the last one is based on equality
constraints. The SMO training algorithms iteratively select two
data points and optimize the objective function with respect to
them, resulting in an analytic solution where the problem of
solving the QP is avoided. Although the number of iterations in
the SMO training algorithm is larger, each iteration is very fast
so that the total computation time is greatly reduced. Another
advantage of the SMO training algorithm is that there is no
need to store the kernel matrix. On the other hand, the LS-SVM
algorithm translates the standard SVM optimization problem
with inequality constraints into an optimization problem with
equality constrains, making the original QP problem into a
matrix calculation, thereby greatly enhancing the speed of
model training. However, comparing with the algorithm based
on inequality constrains, the LS algorithm based on equality
constrains cannot greatly reduce the complexity of the model.
A side effect of the LS-SVM algorithm is that it also reduces
the accuracy of the SVM model. Therefore, the SMO training
algorithm is used in this paper to improve the speed of the local
SVM model by considering both the complexity and accuracy
of the model.

Combining the local SVM prediction method and the SMO
training algorithm, an efficient local dynamic model is estab-
lished. We need to further study the UAC of this model. The
capability of the nonlinear approximation is achieved by the
kernel mapping, which maps the data in input space into a high-
dimensional feature space. Accordingly, the problem of making
the model have the UAC is equal to the problem of selecting the
kernel function.

Dot product, polynomial, and Gaussian kernels are the nor-
mal kernels that are generally used in many applications, and
among which, the Gaussian kernel is the most popular one.
Current research works show that SVMs with standard kernels,
including Gaussian, polynomial, and several dot product ker-
nels, can approximate any measurable or continuous function
up to any desired accuracy [19]. In other words, these SVMs
have the UAC in the continuous space.

Theoretically, wavelet decomposition emerges as a powerful
tool for approximation [20]. A set of basis that can approximate
arbitrary functions can be obtained through three ways: 1) tran-
slate the scaling function with a particular scale parameter;
2) translate the wavelet functions with some scale parameters;
and 3) vary the scale parameter of wavelet functions and
translate the scaling function with a larger scale parameter. In
consequence, these SVMs with scaling/wavelet kernels proba-
bly have the UAC so that it has the theoretical advantages to in-
vestigate the SVMs with scaling/wavelet kernels (simplified as
wavelet kernels). Based on the considerations aforementioned,
the wavelet SVM (WSVM) model has been a hot research topic.
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Fig. 2. Structure of local spatiotemporal chaotic signal prediction model based on the SMO-WSVM method.

The kernel that satisfies the Mercer condition is called an
admissible SV kernel, which ensures the global optimality
of the solutions. Similarly, translation-invariant kernels, i.e.,
K(x,x′) = K(x− x′), are admissible SV kernels if they sat-
isfy the Mercer condition. However, it is difficult to decompose
the translation-invariant kernels into the product of two func-
tions and then prove them as SV kernels. A necessary and suffi-
cient condition for translation-invariant kernels is described as
follows.

Theorem 1 [20]: A translation-invariant kernel K(x,x′) =
K(x− x′) is an admissible SV kernel if and only if the Fourier
transform

F [K(w)] = 2π−N/2

∫
RN

exp (−j〈w,x〉) K(x)dx ≥ 0 (14)

is founded.
Theorem 2 [21]: Let ϕ(x) be the wavelet function; then, the

wavelet kernel function of the SVM is

K(x,x′)=
m∏

i=1

ϕ

(
xi − ci

σ

)
ϕ

(
x′i − c′i

σ

)
x,x′ ∈ Rm. (15)

For the translation-invariant kernel, (15) can be rewritten as

K(x,x′) =
m∏

i=1

ϕ

(
xi − x′i

σ

)
. (16)

Theorem 3 [22]: The Mexican Hat wavelet kernel function
that satisfies the translation-invariant characteristic

K(x,x′)=
m∏

i=1

(
1− ‖xi − x′i‖2

a2

)
exp

(
−‖xi − x′i‖2

2a2

)
(17)

is an admissible SV kernel.
Considering the construction of the SV kernel functions of

SVMs, we have theoretically proven that the wavelet kernels are
the feasible SV kernels and superior to other kernels. Hereto, a
nonlinear model with the UAC has been built.

For the reasons provided earlier, according to the ideas of
a local prediction method [13], [14], a local SMO-WSVM
model has been proposed in this paper. More precisely, first,
the local prediction method has the characteristics of small-
sample training, a simplified model, and high accuracy. Second,
the SMO algorithm has not only significant advantage in speed
of training but also high accuracy. Finally, wavelet kernels have
the theoretical advantages that have the UAC. Combining all
of these advantages, an effective chaotic predictor that has the

Fig. 3. Lorenz chaotic time series.

local dynamic characteristics is constructed. Fig. 2 shows the
structure of the local spatiotemporal chaotic signal prediction
model based on the SMO-WSVM method.

IV. SIMULATIONS

To verify the prediction performance of the local SMO-
WSVM model to spatiotemporal chaotic signals, a series of data
was generated from the Lorenz equation⎧⎨⎩ dx/dt = a(y − x)

dy/dt = cx− xz − y
dz/dt = xy − bz.

(18)

If the parameters are appropriately set, the Lorenz system can
be chaotic. Here, we set the following parameters: a = 10,
b = 8/3, and c = 28. The time t is sampled from 0 to 60 with
a time step of 0.05, and the initial value is set to (1,1,1). After
removing the first 201 transition points, we can get a chaotic
time series with 1000 points {x(t)}, {y(t)}, {z(t)}. Then, these
three chaotic series are normalized with the following equation
(using {x(t)} as an example) to make their values lie between
0 and 1:

x(t) =
x(t)−min (x(t))

max (x(t))−min (x(t))
. (19)

The three chaotic time series are shown in Fig. 3.
The first 800 points are chosen as the training samples, and

the following 200 points are chosen as the prediction samples.
Let the embedding dimension m = 3 and time delay τ = 1;
then, the phase space is reconstructed according to the Takens
embedding theorem. The backpropagation (BP) NN and the
SVM are used as the nonlinear predictor, and their performance
is compared. The number of hidden centers of the BP is set
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TABLE I
PREDICTION ERRORS OF {y(t)} WITH SEVEN LEARNING MACHINES

to ten, and the training precision is 0.005. We compare several
different SVM approaches with a combination of global and
local prediction methods, the direct solution of the large-scale
convex QP problem and the SMO training algorithm (“SMO”
for short), Gaussian kernel (“GSVM” for short), and Mexican
hat wavelet kernel (“WSVM” for short). In the training algo-
rithms, the parameters are set as C = 1000 and ε = 0.001, with
the scale parameter being

√
3. In the local SVM training, the

number of closest data points is set as p = 20. We use the
chaotic time series {y(t)}, which has a strong local dynamic
characteristic, to test the methods.

Table I shows the prediction mean square errors (MSEs)
of {y(t)} for seven learning machines. The program was run
under the Matlab platform on a DELL computer that has a
Pentium(R)-4 CPU of 2.4 GHz and 512-MB random access
memory. From Table I, we can see that the SVM methods,
in general (except the global QuadProg-GSVM), have smaller
prediction errors than the BP method. However, when we adjust
the parameters to make the training error smaller, the prediction
of NN would become worse. The reason is that due to the
empirical risk minimization principle the NN has the overlearn-
ing problem. The performance of NN is also dependent on
the size of the training set. When the training set reduces, the
performance of the model will rapidly drop.

From the simulation results of various SVM approaches, the
following can be observed: 1) Under the same conditions, the
local methods have a faster prediction speed than the global
methods. Taking the method of the direct solution of the large-
scale convex QP problem, for instance, the local QuadProg-
GSVM is 180 times faster than the global QuadProg-GSVM.
When using the SMO training method, the prediction rate of
the local methods also improves by one to five times. 2) Under
the same conditions, the local methods have better performance
than global methods. From Table I, we can see that, whether
using the QP training method or SMO, the prediction perfor-
mance of the local method is better than that of global methods
for both GSVM and WSVM. 3) The performance of WSVM
is better than that of the GSVM. For global methods with
SMO training, the computation complexity of the global SMO-
WSVM is more than twice that of the global SMO-GSVM. The
reason is that the Mexican hat wavelet kernel is more complex
than the Gaussian kernel. For local methods, the computation
complexity is almost the same for both models.

From the aforementioned analysis, the computation com-
plexity of the model is significantly reduced because the local

Fig. 4. One-step prediction error of chaotic time series.

method only use p samples close to the target vector for
training. Moreover, the local method builds up a local dynamic
model, which effectively captures the local information of the
system, so it has better prediction performance than the global
method to those signals that have local dynamic characteristics.
Furthermore, the SMO optimal training algorithm improves the
efficiency of training, making it better than the QP training
algorithm in both prediction speed and prediction performance.
Finally, the experiment shows that the prediction performance
of SVMs with wavelet kernels is much better than the perfor-
mance with Gaussian kernels.

The proposed local prediction method significantly reduces
the computation complexity of the SVM model and improves
the prediction performance of the dynamic signal with local
characteristics. We combine the SMO training method to fur-
ther improve the computation speed of the model. The pre-
diction errors of both the local SMO-WSVM model and the
global SMO-WSVM model are shown in Fig. 4. It can be seen
from Fig. 4 that the local SMO-WSVM has the advantages of
modeling signals with local dynamic characteristics.

V. APPLICATIONS TO REAL EEG SIGNAL

A. Real EEG Prediction

The brain is regarded as a spatiotemporal chaotic system,
and different mental states correspond to different potential
dynamical systems. In this section, the EEG data with both
normal EEG and epileptic seizure signals are from the Set
A and Set E of EEG recordings, respectively, provided by
Andrzejak et al. [23].

The proposed method is used to model and predict the EEG
signals. First, the EEG signal is normalized according to (19).
Then, the first 800 points were used for training the SVM, and
the following 200 points were used for testing. The embedding
dimension was selected as m = 5, and the delay time was
τ = 1 in the reconstruction of the phase space according to the
Takens embedding theorem. Note that selecting the delay τ and
selecting the embedding dimension m are key and nontrivial
steps in applying the Takens embedding theorem to recovering
nonlinear dynamics. In this study, the embedding dimension
is selected according to the false nearest neighbor anc Cao
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Fig. 5. Prediction result of a real EEG signal.

Fig. 6. Epilepsy detection framework based on the proposed model.

method, and the time delay is selected according to mutual
information analysis. For more details, the readers are referred
to reference [7] and the references therein. The local SMO-
WSVM approach was used to predict the EEG signal, where
the training parameters were set as C = 1000 and ε = 0.001.
The number of close points is set as p = 30. Fig. 5 shows
the prediction result. The MSE of the prediction is 9.0365×
10−4. It can be seen that the proposed model successfully
and effectively recovered the EEG signal and modeled the
spatiotemporal chaotic signal.

B. Epilepsy Detection Based on Local SMO-WSVM

Due to the difference in the dynamical characteristics be-
tween normal EEG signals and epilepsy seizure signals, a new
method of detecting epileptic seizure based on the local SMO-
WSVM model is proposed. The detection framework is shown
in Fig. 6, which is described as follows.

1) Both normal EEG signals and epileptiform EEG sig-
nals are recorded and represented as c(t) and s(t),
respectively.

2) Train the local SMO-WSVM model with normal EEG
signals c(t) and then take the trained model as a predictor.

3) The testing EEG signal is represented by x(t). Take the
signal x(t) as the local SMO-WSVM model’s input.

4) Predict the testing signals with the local SMO-WSVM
model. Compare the prediction error with a threshold η. If
the error is less than the specified threshold, set the input
signal as H0, namely, x(t) = c(t). Otherwise, the input
signal is set as H1, namely, x(t) = s(t).

To evaluate the detection performance based on the local
SMO-SVM model, we choose 1200-point EEG data for this
purpose. Here, the first 1000 points are normal EEG signals,
and the last 200 points are the epilepsy seizure signals. The first
800 points are used to train the model, and the last 400 points

Fig. 7. (color) Prediction errors in normal and epileptic seizure EEG, the first
200 points are the prediction error of normal EEG, and the last 200 points are
the prediction error of epileptic seizure EEG.

are used for detection experiment. The detecting error results
based on the local SMO-WSVM model and the global SMO-
WSVM model are shown in Fig. 7. It can be seen from the
result that the prediction errors are obviously larger at the last
200 points than the first 200 points predicted by both models.
There are mainly two reasons for this: 1) these two models,
which are both trained based on normal EEG signals, can
exactly describe the characteristics and evolvement of chaotic
dynamical of EEG, so the detection error will be small in the
nonepilepsy region; and 2) the chaotic dynamic characteris-
tics have an obvious difference between epilepsy and normal
EEG signals. Therefore, the prediction error will be larger at
the epilepsy region, and the proposed model is effective for
epilepsy detection. Furthermore, as shown in Fig. 7, the predic-
tion errors with the local SMO-WSVM model in the epilepsy
region is larger than that of global SMO-WSVM model, which
means that the proposed model holds a good performance in
epileptic seizure detection.

VI. CONCLUSION

In this paper, we have proposed a novel spatiotemporal
prediction model. A spatiotemporal chaotic predictor called
the local SMO-WSVM has been developed to model the real
multichannel EEG time series. The proposed model can signifi-
cantly reduce the complexity of the model and capture the local
information of the signals more effectively in the engineering
applications. Furthermore, theoretical analysis shows that the
proposed method has the UAC. Both simulations and experi-
ments using real EEG signals suggest that the presented method
is much more effective in predicting spatiotemporal chaotic
time series, and the local SMO-WSVM model is suitable to
model the spatiotemporal dynamic system and more efficient
in EEG signal processing.
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