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Abstract—This article addresses the prediction-based dis-
tributed filtering problem for a class of time-varying nonlinear
stochastic systems with communication delays and missing mea-
surements through the sensor networks. The phenomenon of
the missing measurements is depicted by a set of Bernoulli dis-
tributed random variables, where each sensor node possesses its
own missing probability. The communication delays are taken
into account, which commonly occur during the estimation
exchanges among the sensor nodes with communication links. A
new prediction-based suboptimal distributed filter is designed by
taking the missing probabilities and the prediction estimation into
account, which has the advantages on the active compensation
of the impacts caused by the missing measurements and com-
munication delays. That is, a new compensation filtering method
within the time-varying framework is presented based on the
predictive estimation and the innovation measurements. A locally
minimum upper bound matrix for the estimation error covari-
ance is obtained by properly designing the distributed filter gain
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at every sampling step. Furthermore, the performance analysis
problem of the prediction-based distributed filtering algorithm
is discussed by providing the desirable theoretical derivations.
Finally, some comparative simulations are used to show the
advantages of the presented prediction-based distributed filtering
strategy under delay compensation mechanism.

Index Terms—Communication delays, missing measure-
ments, monotonicity discussions, nonlinear stochastic systems,
prediction-based distributed filtering.

I. INTRODUCTION

S
ENSOR networks include a large number of spatially dis-
persed sensors with certain topological structure, which

have broad applications in reality, including the forest fire
detection, water quality monitoring, the natural disaster pre-
vention, and so on [11], [12], [43]. For the multisources data
collected by the sensors, the key problem is how to design
proper filtering schemes based on the local information shared
by the adjacent nodes [2], [35]. Over the past decade, a great
amount of filtering methods in the centralized or distributed
way have been proposed in [37] and [42]. Compared with
the centralized filtering strategy, the distributed data process-
ing approaches have provided efficient estimation schemes in
the parallel way to improve the filtering performance and the
fault tolerance capability [1], [26], [41]. Recently, some state
estimation algorithms have been proposed by taking certain
evaluation criteria into consideration [14], [15], [24], [39].
For example, the distributed optimal filtering approaches based
on the innovation analysis technique have been given in [3]
and [4] for networked multisensor systems and a variance-
constrained distributed filtering algorithm has been presented
in [7] based on the information affected by the deception attack
and uniform quantization. In [9], a novel distributed filtering
approach with guaranteed H∞ performance has been given to
attenuate the influences from uncertain observations, includ-
ing the quantized measurements and data packet dropouts.
Very recently, both the network security and the robustness
of algorithm have been considered in [6], and a new resilient
variance-constrained filtering method in a distributed manner
has been developed for power systems with cyber-attacks.
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Among the design of control and filtering algorithms
in the networked environments, a great deal of effort
has been made to examine the impacts from the missing
measurements or packet dropouts onto the whole system
performance [5], [17], [18], [34], [44]. Accordingly, some
efficient filtering methods under different criteria have been
reported [16], [32], [38], [46]. For example, the locally optimal
estimation method based on the orthogonal projection prin-
ciple has been presented in [47] for discrete-time linear
stochastic systems with missing measurements over wireless
sensor networks, and a fusion estimation method has been
proposed in terms of certain fusion rule of the matrix weights.
In order to enhance the fault-tolerant capability of the esti-
mation techniques, the optimal fusion filtering algorithms in
a distributed manner have been proposed in [27] and [28] for
linear discrete time-varying stochastic systems with missing
measurements, where a distributed fusion estimation scheme
has been presented in [28] by employing the matrix-weighted
fusion idea to provide the compensation mechanism. Besides,
considerable attention has been made to develop the nonlin-
ear distributed filtering methods with the hope to attenuate the
degradations induced by the missing measurements [8], [31].
In particular, the distributed filtering approaches under the H∞

performance constraints have been given in [32] and [40] for
time-invariant nonlinear stochastic systems subject to miss-
ing measurements through the network transmissions. In [8],
a robust distributed filtering algorithm with the average H∞

performance requirement has been designed for time-varying
nonlinear stochastic systems subject to randomly varying non-
linearities through the lossy sensor networks. However, it is
worthwhile to notice that few methods can be applicable for
handling the optimized distributed filtering issue under vari-
ance constraint of time-varying nonlinear multisensor systems
subject to degraded measurements.

On the other hand, it is well recognized that the
communication delays should be addressed carefully dur-
ing the design of a distributed filter or controller, oth-
erwise the estimation accuracy and efficiency would be
degraded [20], [25], [29], [30], [36]. Recently, some fusion
filtering schemes in the distributed way have been developed
for stochastic systems with communication delays as in [27]
under the minimum variance constraint and in [33] within
the receding horizon framework, where the matrix-weighted
fusion criterion has been utilized to fuse the local estima-
tions. In [10], an event-based distributed filtering method
with the weighting average H∞ performance requirement has
been proposed, where the coordination design problem of fil-
ter parameters and triggered thresholds has been carried out.
Nevertheless, it should be mentioned that most existing dis-
tributed filtering schemes dealing with the communications
delays have been proposed in terms of the out-of-date esti-
mation directly, which indeed degrades the filtering efficiency
and accuracy. In order to actively compensate the commu-
nication delays, some forward predictive mechanisms have
been presented in [19], [21], and [22] to handle the control
synthesis problems for systems with networked transmissions.
In contrast to the predictive control methods, however, few
results with the active compensation mechanism are available

for tackling the distributed filtering problems subject to com-
munication delays. Very recently, the predictive compensation
idea has been initially introduced to handle the estima-
tion/filtering problem with communication delays, where new
distributed algorithms have been developed for time-invariant
linear systems in [48] and time-varying linear systems in [13],
respectively. To the best of our knowledge, the prediction-
based distributed filtering problem for time-varying stochastic

nonlinear systems subject to degraded measurements has not
been fully studied, which needs additional research attentions
to provide a new method in order to actively compensate
the impacts caused by the communication delays and missing
measurements.

In this article, we aim to tackle the locally optimal dis-
tributed filtering problem for time-varying nonlinear stochastic
systems subject to communication delays and missing mea-
surements over sensor networks. First, the possible communi-
cation delays during the estimation exchanges between linked
senor nodes are considered and a prediction-based updating
rule is developed to actively provide the state estimate at
current time step based on the delayed estimation. That is,
the prediction-based estimations of adjacent sensor nodes at
the updating instant are obtained in terms of the delayed
transmissions. Second, the distributed filter of the recursive
feature is constructed for each sensor node by combining the
prediction compensation estimations with its own innovation
measurements. Subsequently, a locally optimal distributed fil-
tering scheme is presented, where the desirable time-varying
filter gain matrix is expressed based on the solutions to cer-
tain matrix difference equations and a minimal upper bound
matrix of the estimation error covariance is obtained at every
sampling step. Compared with the existing results, the fol-
lowing challenges should be handled: 1) How to examine
both the communication delays and the missing measurements
within a unified framework? 2) How to actively compensate
and reflect the available information of the mentioned phe-
nomena in the distributed estimation algorithm? 3) How to
depict the performance of the estimation algorithm from the
theoretical aspects. The main contributions and advantages of
this article could be outlined as: 1) the communication delays
among the node transmissions are taken into account; 2) a
prediction-based estimation updating rule is given to actively
compensate the impacts caused by the communication delays
during the state estimation exchanges among the nodes; 3) a
new distributed filtering strategy with easy-to-implement form
is provided via the active delay compensation of the state
estimation prediction and the occurrence probabilities of miss-
ing measurements; and 4) a rigorously theoretical proof is
presented to show the monotonicity between the estimation
error covariance and the missing measurements. Finally, some
simulations with comparative results are utilized to show the
advantages of the prediction-based distributed filtering method
proposed in this article.

The remainder of this article are outlined as follows. In
Section II, both the mathematical model of the target plant
and the related information of sensor networks are first
provided. Moreover, the prediction compensation idea is intro-
duced for the communication delays and a new distributed
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filter is constructed. The design of the prediction-based dis-
tributed filtering algorithm is provided in Section III and the
desired expression form of the distributed filter gain is also
presented. In Section IV, the mathematical analysis of the
algorithm performance is conducted. In Section V, the simula-
tion experiments are conducted to demonstrate the usefulness
and differences of the new distributed filtering scheme based
on the prediction compensation mechanism. Finally, some
conclusion discussions are provided in Section VI.

Notations: R nx depicts the nx-dimensional Euclidean space.
E{·} means the mathematical expectation of “·”. tr(A) rep-
resents the trace of the matrix A. AT and A−1 denote the
transpose of the matrix A and the inverse of the matrix A,
respectively. x̂j,k|k−τij stands for the state prediction at the time
step k based on the delayed estimation x̂j,k−τij . The graph
G = (V ,E ,H ) is used to represent the topological structure
with the node set V = {1, 2, . . . , N}, the edge set E ⊂ V ×V

and the weighted adjacency matrix H = [hij]N×N .

II. PROBLEM STATEMENTS

In this section, the prediction-based distributed filtering
problem is formulated for addressed discrete time-varying non-
linear stochastic systems subject to communication delays and
missing measurements, where the information is communi-
cated via the sensor networks with N sensor nodes. First, the
related information of the sensor networks and the target plant
is provided. Second, a new distributed filter is constructed in
terms of the prediction mechanism for each sensor node, which
involves the state estimations updated by predictive way and
the related measurement innovations. In addition, the aims of
the design problem of distributed filter based on the predictive
compensation scheme are outlined.

A. Sensor Networks and Target Plant

In this section, both the related information of sensor
networks and the addressed time-varying nonlinear target plant
are introduced.

The network topological structure is characterized by the
directed graph G = (V ,E ,H ), where V = {1, 2, . . . , N}

depicts the set of sensor nodes, E ⊂ V × V stands for the
edge set, and H = [hij]N×N represents the weighted adjacency
matrix with the element hij satisfying hij > 0 ⇔ (i, j) ∈ E . In
particular, assume that hii = 1. Moreover, the set of neighbors
of sensor node i is denoted by Ni with Ni � {j ∈ V |(i, j) ∈

E }\{i}.
In this article, the mathematical model of addressed time-

varying nonlinear multisensor systems is given as follows:

xk+1 = Fkxk + fk(ξk, xk) + Bk̟k

yi,k = ̺i,kHi,kxk + vi,k (1)

where xk ∈ R nx is the state vector, and yi,k ∈ R my represents
the measurement output collected by the ith (i = 1, 2, . . . , N)

sensor node. ξk is a zero-mean white noise with unity variance.
The process noise ̟k and measurement noise vi,k have zero
mean values, and their covariances are denoted by Wk > 0
and Vi,k > 0, respectively. Fk, Hi,k (i = 1, 2, . . . , N) and Bk

are known properly dimensional system matrices.

The stochastic nonlinearity fk(ξk, xk) with fk(ξk, 0) = 0
satisfies

E{fk(ξk, xk)|xk} = 0 (2)

and

E
{

fk(ξk, xk)f
T
m(ξm, xm)|xk

}

= 0, k �= m

E
{

fk(ξk, xk)f
T
k (ξk, xk)|xk

}

=

t
∑

i=1

Ŵi,kxT
k �i,kxk (3)

where t > 0 is a known integer, Ŵi,k and �i,k are properly
dimensional known matrices.

The random variables ̺i,k (i = 1, 2, . . . , N) characterize
the missing measurements and satisfy the following statistical
property:

Prob
{

̺i,k = 1
}

= E
{

̺i,k

}

:=¯̺ i,k

Prob
{

̺i,k = 0
}

= 1 − E
{

̺i,k

}

:=1 − ¯̺ i,k (4)

where ¯̺ i,k ∈ [0, 1] are known constant scalars. Throughout
this article, we suppose that ξk, ̟k, vi,k, ̺i,k, and x0 are
mutually uncorrelated in i and k.

B. Design of Prediction-Based Distributed Filter

Via the fixed topological structure, the following distributed
filter is commonly constructed for the sensor node i:

x̂i,k+1=Fkx̂i,k+G i,k

(

yi,k − ¯̺ i,kHi,kx̂i,k

)

+
∑

j∈Ni

hij

(

x̂i,k − x̂j,k

)

(5)

with G i,k being the distributed filter gain matrix to be designed.
Notice that both the state estimations of adjacent nodes at cur-
rent time step and the measurement innovations are needed.
However, it should be pointed out that the state estima-
tions exchanged by the connected sensor nodes might suffer
from the network-induced communication delays. That is, the
delayed estimation information can be available only after
the network transmissions. Thus, the estimation performance
would be deteriorated inevitably.

In what follows, the effects from the communication delays
onto the estimation accuracy will be well examined. To begin,
the communication delays are denoted by τij between the
sensor i and sensor j. When designing the filter as in (5),
the latest estimation x̂j,k−τij is available at current sampling
instant k because of the communication delays. In order to
improve the estimation accuracy and efficiency, the state esti-
mations of adjacent nodes at current time step are predicted
based on the delayed estimation information and the following
prediction-based update method is adopted:

x̂j,k−τij+1|k−τij = Fk−τij x̂j,k−τij|k−τij

x̂j,k−τij+2|k−τij = Fk−τij+1x̂j,k−τij+1|k−τij

...

x̂j,k−1|k−τij = Fk−2x̂j,k−2|k−τij

x̂j,k|k−τij = Fk−1x̂j,k−1|k−τij (6)

where x̂j,k−τij|k−τij � x̂j,k−τij . Next, in order to facilitate fur-
ther expression, we define F

τij

k =
∏τij

j=1 Fk−j. Then, it follows
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from the prediction idea in the equation (6) that x̂j,k|k−τij =

F
τij

k x̂j,k−τij .
Via the prediction estimation idea as in (6), the following

distributed filtering scheme of the active compensation format
is introduced:

x̂i,k+1 = Fkx̂i,k + G i,k

(

yi,k − ¯̺ i,kHi,kx̂i,k

)

+
∑

j∈Ni

hij

(

x̂i,k − x̂j,k|k−τij

)

(7)

with G i,k being the desired filter parameter to be constructed.
Next, let ei,k+1 = xk+1 − x̂i,k+1 be the filtering error. Then,

from (1) and (7), one has

ei,k+1 =
(

Fk − ¯̺ i,kG i,kHi,k

)

ei,k + fk(ξk, xk)

+ Bk̟k − ˜̺ i,kG i,kHi,kxk − G i,kνi,k

−
∑

j∈Ni

hij

(

x̂i,k − x̂j,k|k−τij

)

(8)

with ˜̺ i,k = ̺i,k − ¯̺ i,k. In order to characterize the estima-
tion accuracy, define the filtering error covariance as X i,k =

E{ei,keT
i,k}.

Remark 1: So far, a new distributed filtering scheme under
the active compensation method is given in (7), where both the
prediction estimations of adjacent sensor nodes and its mea-
surement innovation at the same sampling step are utilized
during the design of the distributed filter. In particular, the
communication delays τij are considered in this article and the
induced effects are compensated by utilizing the updating rule
in (6). Accordingly, based on the delayed estimation x̂j,k−τij ,
the prediction estimation x̂j,k|k−τij at the time step k can be
obtained and adopted in (7). In what follows, the validity of
the prediction-based estimation approach will be shown, where
the distributed filtering approach via the delay prediction com-
pensation could provide better estimation accuracy than the
one without the delay prediction compensation.

Now, we are ready to summarize the aims of this article,
which include two aspects.

1) A new prediction-based distributed filtering algorithm
with active compensation mechanism is developed, and
the explicit form of the distributed filter parameter G i,k

is provided to minimize the upper bound matrix of the
estimation error covariance.

2) The performance analysis problem of the developed dis-
tributed estimation algorithm is discussed, where the
relationship between the missing probabilities and fil-
tering algorithm accuracy is pointed out by providing
the theoretical proof.

III. DESIGN OF PREDICTION-BASED FILTERING SCHEME

In this section, the recursion expression of the estimation
error covariance is provided in terms of the correspond-
ing definition. Second, a minimized upper bound matrix
of the estimation error covariance is found and the desir-
able filter parameter matrix is constructed accordingly. Third,
the developed prediction-based suboptimal distributed fil-
tering (PBSODF) algorithm is outlined to facilitate the
implementations.

To begin, the following theorem presents the recursion
expression of the resultant filtering error covariance.

Theorem 1: Consider the time-varying nonlinear stochastic
system (1) and the distributed filter (7) based on the prediction
compensation. The recursion expression of the filtering error
covariance is described as

X i,k+1 =
(

Fk − ¯̺ i,kG i,kHi,k

)

X i,k

(

Fk − ¯̺ i,kG i,kHi,k

)T

−
(

Fk − ¯̺ i,kG i,kHi,k

)

E

⎧

⎨

⎩

∑

j∈Ni

hijei,k

×
(

x̂i,k − x̂j,k|k−τij

)T

⎫

⎬

⎭

− E

⎧

⎨

⎩

∑

j∈Ni

hij

(

x̂i,k − x̂j,k|k−τij

)

eT
i,k

(

Fk−¯̺ i,kG i,kHi,k

)T

⎫

⎬

⎭

+

t
∑

p=1

Ŵp,kE
{

xT
k �p,kxk

}

+ BkWkBT
k

+ ¯̺ i,k(1 − ¯̺ i,k)E
{

G i,kHi,kxkxT
k HT

i,kG
T
i,k

}

+
∑

j∈Ni

∑

s∈Ni

hijhis

(

x̂i,k − x̂j,k|k−τij

)

×
(

x̂i,k − x̂s,k|k−τis

)T
+ G i,kVi,kG

T
i,k. (9)

Proof: Based on the filtering error in (8) and the correspond-
ing definition of the filtering error covariance, the following
equation is obtained:

X i,k+1 =
(

Fk − ¯̺ i,kG i,kHi,k

)

X i,k

(

Fk − ¯̺ i,kG i,kHi,k

)T

−
(

Fk−¯̺ i,kG i,kHi,k

)

E

⎧

⎨

⎩

∑

j∈Ni

hijei,k

(

x̂i,k−x̂j,k|k−τij

)

⎫

⎬

⎭

− E

⎧

⎨

⎩

∑

j∈Ni

hij

(

x̂i,k−x̂j,k|k−τij

)

eT
i,k

(

Fk − ¯̺ i,kG i,kHi,k

)T

⎫

⎬

⎭

+

t
∑

p=1

Ŵp,kE
{

xT
k �p,kxk

}

+ BkWkBT
k

+ ¯̺ i,k

(

1 − ¯̺ i,k

)

E
{

G i,kHi,kxkxT
k HT

i,kG
T
i,k

}

+
∑

j∈Ni

∑

s∈Ni

hijhis

(

x̂i,k − x̂j,k|k−τij

)(

x̂i,k − x̂s,k|k−τis

)T

+ G i,kVi,kG
T
i,k +

14
∑

s=1

[

As
i,k + (As

i,k)
T]

(10)

where

A1
i,k = E

{(

Fk − ¯̺ i,kG i,kHi,k

)

ei,kf T
k (ξk, xk)

}

A2
i,k = E

{(

Fk − ¯̺ i,kG i,kHi,k

)

ei,k̟
T
k BT

k

}

A3
i,k = −E

{(

Fk − ¯̺ i,kG i,kHi,k

)

˜̺ i,kei,kxT
k CT

i,kG
T
i,k

}

A4
i,k = −E

{(

Fk − ¯̺ i,kG i,kHi,k

)

ei,kvT
i,kG

T
i,k

}

A5
i,k = E

{

fk(ξk, xk)̟
T
k BT

k

}

A6
i,k = −E

{

˜̺ i,kfk(ξk, xk)x
T
k CT

i,kG
T
i,k

}

A7
i,k = −E

{

fk(ξk, xk)v
T
i,kG

T
i,k

}
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A8
i,k = −E

⎧

⎨

⎩

∑

j∈Ni

hijfk(ξk, xk)(x̂i,k − x̂j,k|k−τij)
T

⎫

⎬

⎭

A9
i,k = −E

{

˜̺ i,kBk̟kxT
k CT

i,kG
T
i,k

}

A10
i,k = −E

{

Bk̟kvT
i,kG

T
i,k

}

A11
i,k = −E

⎧

⎨

⎩

∑

j∈Ni

hijBk̟k

(

x̂i,k − x̂j,k|k−τij

)T

⎫

⎬

⎭

A12
i,k = E

{

˜̺ i,kG i,kHi,kxkvT
i,kG

T
i,k

}

A13
i,k =

∑

j∈Ni

hijE

{

˜̺ i,kG i,kHi,kxk

(

x̂i,k − x̂j,k|k−τij

)T
}

A14
i,k =

∑

j∈Ni

hijE

{

G i,kvi,k

(

x̂i,k − x̂j,k|k−τij

)T
}

. (11)

Next, we can verify that the terms As
i,k (s = 1, 2, . . . , 14)

in (11) are zero terms since ξk, ̟k, vi,k, and ̺i,k are mutually
uncorrelated in i and k. Thus, (9) can be obtained readily.

Remark 2: It should be noticed that some unknown terms
are involved in (9), thus the exact value of the filtering
error covariance is unavailable. Therefore, additional effort
will be devoted to handle those unknown term in terms
of the matrix theory. Accordingly, a suboptimal estimation
method is adopted, i.e., a minimized upper bound matrix of
X i,k+1 is obtained by designing proper filter parameter via
the completing square technique and mathematical induction
approach.

Theorem 2: Consider the time-varying nonlinear stochastic
system (1) and the distributed filter (7) based on the prediction
compensation. Let σr,k (r = 1, 2) be known positive constants.
If the following matrix difference equation:


i,k+1 =
(

1 + σ1,k

)(

Fk − ¯̺ i,kG i,kHi,k

)

× 
i,k(Fk − ¯̺ i,kG i,kHi,k)
T +

t
∑

p=1

Ŵp,ktr
(

�p,k�p,k

)

+ BkWkBT
k + ¯̺ i,k

(

1 − ¯̺ i,k

)

G i,kHi,k�i,kHT
i,kG

T
i,k

+ G i,kVi,kG
T
i,k +

(

1 + σ−1
1,k

)

∑

j∈Ni

∑

s∈Ni

hijhis

×
(

x̂i,k − x̂j,k|k−τij

)(

x̂i,k − x̂s,k|k−τis

)T
(12)

under the initial condition X i,0 ≤ 
i,0 has a solution

i,k > 0, where

�i,k =
(

1 + σ2,k

)


i,k +
(

1 + σ−1
2,k

)

x̂i,kx̂T
i,k (13)

then we can testify that

X i,k+1 ≤ 
i,k+1. (14)

Furthermore, if we adopt the following filter gain matrix:

G i,k =
(

1 + σ1,k

)

¯̺ i,kFk
i,kHT
i,k

×
[

(

1 + σ1,k

)

¯̺ 2
i,kHi,k
i,kHT

i,k + ¯̺ i,k

(

1 − ¯̺ i,k

)

× Hi,k�i,kHT
i,k + Vi,k

]−1
(15)

it is observed that the minimized upper bound matrix 
i,k+1
can be described by


i,k+1 =
(

1 + σ1,k

)

Fk
i,kFT
k + BkWkBT

k +
(

1 + σ−1
1,k

)

×
∑

j∈Ni

∑

s∈Ni

hijhis

(

x̂i,k − x̂j,k|k−τij

)(

x̂i,k − x̂s,k|k−τis

)T

−
(

1 + σ1,k

)2
¯̺ 2

i,kFk
i,kHT
i,k

×
[

(

1 + σ1,k

)

¯̺ 2
i,kHi,k
i,kHT

i,k + ¯̺ i,k

(

1 − ¯̺ i,k

)

×Hi,k�i,kHT
i,k + Vi,k

]−1
Hi,k


T
i,kFT

k . (16)

Proof: By employing the completing square technique and
the mathematical induction method, the assertions in this the-
orem can be verified. First, suppose that X i,k ≤ 
i,k holds.
Second, there is a need to show that X i,k+1 ≤ 
i,k+1.

Now, the involved cross-terms in (9) are first tackled. It
follows from simple computations that the following inequality
can be obtained:

−
(

Fk − ¯̺ i,kG i,kHi,k

)

E

⎧

⎨

⎩

∑

j∈Ni

hijei,k

(

x̂i,k − x̂j,k|k−τij

)

⎫

⎬

⎭

− E

⎧

⎨

⎩

∑

j∈Ni

hij

(

x̂i,k − x̂j,k|k−τij

)

eT
i,k

(

Fk − ¯̺ i,kG i,kHi,k

)T

⎫

⎬

⎭

≤ σ1,k

(

Fk − ¯̺ i,kG i,kHi,k

)

X i,k

(

Fk − ¯̺ i,kG i,kHi,k

)T

+ σ−1
1,k

∑

j∈Ni

∑

s∈Ni

hijhis

(

x̂i,k − x̂j,k|k−τij

)(

x̂i,k − x̂s,k|k−τis

)T

(17)

with σ1,k > 0 being the constant scalars. Besides, the
following equations:

t
∑

p=1

Ŵp,kE
{

xT
k �p,kxk

}

=

t
∑

p=1

Ŵp,ktr
(

�p,kE
{

xkxT
k

})

(18)

are true. Moreover, it follows from xk = ei,k + x̂i,k that:

E
{

xkxT
k

}

≤
(

1 + σ2,k

)

X i,k +
(

1 + σ−1
2,k

)

x̂i,kx̂T
i,k

� �̄i,k (19)

with σ2,k being known positive constant scalars.
Substituting (19) into (18) leads to

t
∑

p=1

Ŵp,kE
{

xT
k �p,kxk

}

≤

t
∑

p=1

Ŵp,ktr
(

�p,k�̄p,k

)

. (20)

From (19), the sixth term in (9) obeys

¯̺ i,k

(

1 − ¯̺ i,k

)

E
{

G i,kHi,kxkxT
k HT

i,kG
T
i,k

}

≤ ¯̺ i,k

(

1 − ¯̺ i,k

)

G i,kHi,k�̄i,kHT
i,kG

T
i,k. (21)
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Thus, together with (9), (17), (20), and (21), it can be shown
that

X i,k+1 ≤
(

1+σ1,k

)(

Fk−¯̺ i,kG i,kHi,k

)

X i,k

(

Fk−¯̺ i,kG i,kHi,k

)T

+

t
∑

i=1

Ŵi,ktr
(

�i,k�̄i,k

)

+ BkWkBT
k

+ ¯̺ i,k

(

1 − ¯̺ i,k

)

G i,kHi,k�̄i,kHT
i,kG

T
i,k

+ G i,kVi,kG
T
i,k +

(

1 + σ−1
1,k

)

∑

j∈Ni

∑

s∈Ni

hijhis

×
(

x̂i,k − x̂j,k|k−τij

)(

x̂i,k − x̂s,k|k−τis

)T
. (22)

Consequently, according to the mathematical induction
approach, it is easy to show the following result:

X i,k+1 ≤ 
i,k+1. (23)

Finally, the minimum upper bound matrix 
i,k+1 is deter-
mined by properly constructing the distributed filter parameter
matrix G i,k. By employing the completing square technique,
the upper bound matrix 
i,k+1 can be rewritten as


i,k+1 =

[

G i,k −
(

1 + σ1,k

)

¯̺ i,kFk
i,kHT
i,k

×
(

(

1 + σ1,k

)

¯̺ 2
i,k Hi,k
i,kHT

i,k + ¯̺ i,k

(

1 − ¯̺ i,k

)

× Hi,k�i,kHT
i,k + Vi,k

)−1
]

×
(

(

1 + σ1,k

)

¯̺ 2
i,kHi,k
i,kHT

i,k

+ ¯̺ i,k

(

1 − ¯̺ i,k

)

Hi,k�i,kHT
i,k + Vi,k

)

×

[

G i,k −
(

1 + σ1,k

)

¯̺ i,kFk
i,kHT
i,k

×
(

(

1 + σ1,k

)

¯̺ 2
i,kHi,k
i,kHT

i,k

+ ¯̺ i,k

(

1 − ¯̺ i,k

)

Hi,k�i,kHT
i,k + Vi,k

)−1
]T

−
(

1 + σ1,k

)2
¯̺ 2

i,kFk
i,kHT
i,k

×
(

(

1 + σ1,k

)

¯̺ 2
i,kHi,k
i,kHT

i,k + ¯̺ i,k

(

1 − ¯̺ i,k

)

× Hi,k�i,kHT
i,k + Vi,k

)−1
Hi,k
i,kFT

k

+
(

1 + σ1,k

)

Fk
i,kFT
k + BkWkBT

k +
(

1 + σ−1
1,k

)

×
∑

j∈Ni

∑

s∈Ni

hijhis

(

x̂i,k − x̂j,k|k−τij

)(

x̂i,k − x̂s,k|k−τis

)T
.

(24)

Then, it can be shown that the obtained upper bound matrix

i,k+1 of the filtering error covariance can be minimized by
simply taking

G i,k =
(

1 + σ1,k

)

¯̺ i,kFk
i,kHT
i,k

×
[

(

1 + σ1,k

)

¯̺ 2
i,kHi,k
i,kHT

i,k + ¯̺ i,k

(

1 − ¯̺ i,k

)

× Hi,k�i,kHT
i,k + Vi,k

]−1
. (25)

Algorithm 1 Algorithm PBSODF
Step 1: Let k = 0 and initialize the related values.
Step 2: Obtain the state estimations x̂k|k−τij from (6).
Step 3: The filter parameter matrix G i,k is determined via (15)

for the i-th sensor node.
Step 4: Calculate the state estimation x̂i,k+1 in terms of (7).
Step 5: The upper bound matrix 
i,k+1 is calculated by (12).
Step 6: Set k = k + 1 and then go back to Step 2.

Besides, the minimized upper bound matrix 
i,k+1 is


i,k+1 =
(

1 + σ1,k

)

Fk
i,kFT
k + BkWkBT

k +
(

1 + σ−1
1,k

)

×
∑

j∈Ni

∑

s∈Ni

hijhis

(

x̂i,k − x̂j,k|k−τij

)(

x̂i,k − x̂s,k|k−τis

)T

−
(

1 + σ1,k

)2
¯̺ 2

i,kFk
i,kHT
i,k

×
[

(

1 + σ1,k

)

¯̺ 2
i,kHi,k
i,kHT

i,k + ¯̺ i,k

(

1 − ¯̺ i,k

)

× Hi,k�i,kHT
i,k + Vi,k

]−1
Hi,k
i,kFT

k . (26)

Therefore, the proof of this theorem is complete.
Based on the prediction-based distributed filter and the

recursion expressions in Theorem 2, the following PBSODF
algorithm can be given.

Remark 3: Up to now, the influences from the communica-
tion delays and the missing measurements onto the estimation
error covariance have been addressed and a prediction-based
distributed filtering method has been given. In particular,
the delay compensation estimation based on the predictive
updating rule and the occurrence probabilities of the missing
measurements have been explicitly reflected in Theorem 2.
The reason is that the communication delays τij have been
utilized in (6) at the prediction step and the occurrence proba-
bilities ¯̺ i,k have been adopted during the design of distributed
filter (7). Compared with the existing estimation methods, we
have made one of the first attempts to discuss the effects of
communication delays among the adjacent node’s communi-
cations. Besides, the time-varying characteristic of addressed
dynamical networks has been well discussed and an appeal-
ing prediction-based estimation algorithm suitable for online
computations has been developed accordingly. During the dis-
tributed filtering algorithm, the major step is to obtain the
prediction estimation in Step 2 based on the updating rule (6)
and have the filter parameter matrix G i,k recursively in Step 3
via (15).

IV. PERFORMANCE ANALYSIS OF

PBSODF ALGORITHM

In this section, the theoretical derivations are given to dis-
cuss the performance analysis problem of proposed PBSODF
algorithm, i.e., the monotonicity feature between tr(
i,k) and
¯̺ i,k is shown.

Theorem 3: For the proposed prediction-based distributed
filtering approach, it is shown that tr(
i,k) is nonincreasing if
the missing probability ¯̺ i,k increases.
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Proof: In terms of the minimized upper bound matrix
in (16), we have

dtr
(


i,k

)

d ¯̺ i,k

= tr
{

−2
(

1 + σ1,k

)2
¯̺ i,kFk
i,kHT

i,k

×
[

(

1 + σ1,k

)

¯̺ 2
i,kHi,k
i,kHT

i,k + ¯̺ i,k

(

1 − ¯̺ i,k

)

× Hi,k�i,kHT
i,k + Vi,k

]−1
Hi,k
i,kFT

k

+
(

1 + σ1,k

)2
¯̺ 2

i,kFk
i,kHT
i,k

×
[(

1 + σ1,k

)

¯̺ i,kHi,k
i,kHT
i,k + ¯̺ i,k

(

1 − ¯̺ i,k

)

× Hi,k�i,kHT
i,k + Vi,k

]−1

×
[

2
(

1 + σ1,k

)

¯̺ i,kHi,k
i,kHT
i,k + Hi,k�i,kHT

i,k

− 2 ¯̺ i,kHi,k�i,kHT
i,k

]

×
[(

1 + σ1,k

)

¯̺ i,kHi,k
i,kHT
i,k + ¯̺ i,k

(

1 − ¯̺ i,k

)

× Hi,k�i,kHT
i,k + Vi,k

]−1
Hi,k
i,kFT

k

}

.

Next, by introducing the positive semi-definite term 2 ¯̺ i,kVi,k

onto the right-hand side of the above equation, one has

dtr(
i,k)

d ¯̺ i,k

≤ tr
{

−2(1 + σ1,k)
2 ¯̺ i,kFk
i,kHT

i,k

×
[

(

1 + σ1,k

)

¯̺ 2
i,k × Hi,k
i,kHT

i,k + ¯̺ i,k

(

1 − ¯̺ i,k

)

× Hi,k�i,kHT
i,k + Vi,k

]−1

× Hi,k
i,kFT
k + (1 + σ1,k)

2Fk
i,kHT
i,k

×
[(

1 + σ1,k

)

¯̺ i,kHi,k
i,kHT
i,k + ¯̺ i,k

(

1 − ¯̺ i,k

)

×Hi,k�i,kHT
i,k + Vi,k

]−1

×
[

2 ¯̺ i,k

(

(

1 + σ1,k

)

¯̺ 2
i,kHi,k
i,kHT

i,k + ¯̺ i,k

(

1 − ¯̺ i,k

)

× Hi,k�i,kHT
i,k + Vi,k

)

− ¯̺ 2
i,kHi,k�i,kHT

i,k

]

×
[(

1 + σ1,k

)

¯̺ i,kHi,k
i,kHT
i,k + ¯̺ i,k

(

1 − ¯̺ i,k

)

× Hi,k�i,kHT
i,k + Vi,k

]−1
Hi,k
i,kFT

k

}

≤ 0. (27)

Then, it follows from (27) that the proof of this theorem is
complete.

Remark 4: In Theorem 3, the inherent relationship between
the upper bound matrix of the filtering error covariance and
the missing probabilities is pointed out by providing the theo-
retical analysis. To be more specific, it can be concluded from
Theorem 3 that, the smaller the occurrence probabilities ¯̺ i,k,
the bigger tr(
i,k), and then the worse the estimation accu-
racy of the developed PBSODF algorithm is obtained. The
essential reason is that less measurements can be available
in the filter side when ¯̺ i,k is small, then the estimation accu-
racy of the developed PBSODF algorithm is degraded directly,
which is consistent with the engineering insight and will also
be illustrated later via the comparative simulations.

Fig. 1. Topological structure of the concerned sensor network.

V. COMPARATIVE SIMULATIONS

In this section, some comparative experiments are provided
to further validate the advantages of the developed PBODF
algorithm.

Consider the discrete nonlinear time-varying system (1)
and the sensor network has four sensor nodes. The following
system parameters are adopted:

Fk =

⎡

⎣

F11
k 0.35 F13

k

0.47 0.40 0.11
0.37 F32

k F33
k

⎤

⎦

Bk =

⎡

⎣

0.14 + 0.03 cos(3k)

0.15 + 0.1 sin(2k)

0.18

⎤

⎦

H1,k =
[

1.4 0.77 + 0.1 cos(k) 1.01
]

H2,k =
[

1.6 0.76 0.9 + 0.12 cos(7k)
]

H3,k =
[

1.7 0.84 0.97
]

,

H4,k =
[

1.5 + 0.1 sin(2k) 0.78 0.86
]

F11
k = −0.8 + 0.3 sin(k), F13

k = 0.27 + 0.41 cos(2k)

F32
k = 0.52 + 0.01 sin(k), F33

k = 0.62 − 0.05 cos(3k).

The variance of zero-mean process noise wk is Wk = 2.5,
and the variances of zero-mean measurement noises νi,k are
V1,k = V2,k = 2, and V3,k = V4,k = 1.5, respectively.

Fig. 1 depicts the topological structure of concerned sensor
network and the corresponding weighted adjacency matrix is
described by

H = [hij]N×N =

⎡

⎢

⎢

⎣

1 0.07 0 0.17
0 1 0.13 0

0.07 0.094 1 0.076
0 0.15 0.05 1

⎤

⎥

⎥

⎦

.

The following stochastic nonlinear function f (ξk, xk) is
considered:

f (ξk, xk) =

⎡

⎣

0.4
0.5
0.1

⎤

⎦

[

0.5sign
(

x1
k

)

x1
kξ

1
k + 0.2sign

(

x2
k

)

× x2
kξ

2
k + 0.4sign

(

x3
k

)

x3
kξ

3
k

]
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Fig. 2. Trajectories of x1
k

and x̂1
i,k

.

Fig. 3. Trajectories of x2
k

and x̂2
i,k

.

where x
p

k is the pth element of the target plant state, and ξ
p

k

(p = 1, 2, 3) is zero-mean white noise with unity covariance.
Then, we can testify that

E{f (xk, ξk)|xk} = 0

E
{

f (xk, ξk)f
T(xk, ξk)|xk

}

=

⎡

⎣

0.4
0.5
0.1

⎤

⎦

⎡

⎣

0.4
0.5
0.1

⎤

⎦

T

× xT
k

⎡

⎣

0.25 0 0
0 0.04 0
0 0 0.16

⎤

⎦xk.

For the purpose of simulation, select the initial values as
x̄0 = [ 2 1 3 ]T, x̂1,0 = [ 3 1 3 ]T, x̂2,0 = [ 2 1 2 ]T,
x̂3,0 = [ 1.5 0.5 4 ]T, x̂4,0 = [ 3 3 2 ]T, and x̂i,k =

[ 0 0 0 ]T (i = 1, 2, 3, 4, k < 0). Moreover, assume that
the communication delays are τij = 5, the other parameters
are given by σ1,k = 0.1, σ2,k = 0.3, and ¯̺ i,k = 0.95. Then,
the developed PBODF algorithm can be implemented and the
corresponding simulations can be plotted in Figs. 2–8, where
the actual state, estimated state, mean-square error (MSE) and
the trace of upper bound matrix are depicted. For more details,
Figs. 2–4 plot the actual system states and estimations by uti-
lizing the PBODF method. Moreover, Figs. 5–8 provide the

Fig. 4. Trajectories of x3
k

and x̂3
i,k

.

Fig. 5. Log(MSE1) and the upper bound.

Fig. 6. Log(MSE2) and the upper bound.

log(MSE) based on the observations from four sensor nodes
and the related upper bounds, which show the feasibility of
the presented PBODF algorithm.

In order to further show the advantages of the newly
prediction-based estimation approach, the effects of the com-
munication delays between the node’s transmissions are dis-
cussed and some comparative simulations are provided. In
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Fig. 7. Log(MSE3) and the upper bound.

Fig. 8. Log(MSE4) and the upper bound.

Fig. 9. Comparisons of log(MSE1).

particular, Figs. 9–12 plot the log(MSEs) with and without
prediction compensation of the delayed estimation, where 500
simulation tests are made. It can be observed from Figs. 9–12
that the log(MSEs) are indeed below their upper bounds since
the delay effects are clearly discussed and the delay compen-
sations are utilized via the prediction updating rule proposed
in this article. Then, it follows from the trajectories under the

Fig. 10. Comparisons of log(MSE2).

Fig. 11. Comparisons of log(MSE3).

Fig. 12. Comparisons of log(MSE4).

comparative cases that the estimation accuracy of the proposed
PBSODF algorithm is better than the one without prediction.

Besides, we are in a position to examine the correspond-
ing changes of the filtering algorithm accuracy with respect
to different missing probabilities. In particular, the relation-
ships between the probabilities ( ¯̺ i,k = 0.75, 0.85, 0.95, 1)

and the upper bound matrices are illustrated in Figs. 13–16.
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Fig. 13. Log(tr(
1,k)) regarding different missing probabilities.

Fig. 14. Log(tr(
2,k)) regarding different missing probabilities.

Fig. 15. Log(tr(
3,k)) regarding different missing probabilities.

From the simulations, we can see that the bigger the occur-
rence probability ¯̺ i,k, the more real measurements yi,k and the
smaller tr(
i,k), and then the better estimation accuracy of the
developed PBSODF algorithm is ensured, which are indeed
consistent with the assertion in Theorem 3. Consequently,
according to the above comparative simulations, it is observed

Fig. 16. Log(tr(
4,k)) regarding different missing probabilities.

that the new PBSODF algorithm performs a satisfactory esti-
mation performance when the measurements/transmissions
undergo the communication delays and missing measurements.
The major reason lies in that the proposed PBSODF algorithm
can actively compensate the influences from the communica-
tion delays and the missing measurements onto the filtering
algorithm performance.

Remark 5: Up to now, the advantages of the newly
proposed PBSODF algorithm has been shown by using the
comparative simulations. Compared with the existing dis-
tributed filtering methods, the PBSODF algorithm has wider
application domain since the communication delays among
the node transmissions have been considered and compensated
actively.

VI. CONCLUSION

In this article, the prediction-based distributed filtering
problem has been investigated for a class of discrete time-
varying nonlinear stochastic systems with communication
delays and missing measurements through sensor networks. A
new distributed filtering strategy has been presented by fully
taking both the prediction estimations and its own measure-
ment innovation into consideration. Moreover, the algorithm
performance evaluation problem has been carried out and the
theoretical proof has been presented. It should be noted that
the major features of the proposed method lies in that a hybrid
distributed estimation algorithm has been proposed, which has
active compensation ability. Moreover, the rigorous mathe-
matical proof has been provided to show the monotonicity
with regards to the distributed filtering algorithm performance.
Further extensions include the design of a prediction-based
distributed filtering scheme for more general systems with
communication transmission protocols as in [23] and [45].
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“Networked distributed fusion estimation under uncertain outputs with
random transmission delays, packet losses and multi-packet processing,”
Signal Process., vol. 156, pp. 71–83, Mar. 2019.

[5] J. Chen, C. K. Ahn, H. R. Karim, J. Cao, and W. Qin, “An event-
based asynchronous approach to Markov jump systems with hidden
mode detections and missing measurements,” IEEE Trans. Syst., Man,

Cybern., Syst., vol. 49, no. 9, pp. 1749–1758, Sep. 2019.
[6] W. Chen, D. Ding, H. Dong, and G. Wei, “Distributed resilient filtering

for power systems subject to denial-of-service attacks,” IEEE Trans.

Syst., Man, Cybern., Syst., vol. 49, no. 8, pp. 1688–1697, Aug. 2019.
[7] D. Ding, Z. Wang, D. W. C. Ho, and G. Wei, “Distributed recursive

filtering for stochastic systems under uniform quantizations and decep-
tion attacks through sensor networks,” Automatica, vol. 78, pp. 231–240,
Apr. 2017.

[8] H. Dong, Z. Wang, and H. Gao, “Distributed filtering for a class of
time-varying systems over sensor networks with quantization errors and
successive packet dropouts,” IEEE Trans. Signal Process., vol. 60, no. 6,
pp. 3164–3173, Jun. 2012.

[9] H. Dong, Z. Wang, and H. Gao, “Distributed H∞ filtering for a class
of Markovian jump nonlinear time-delay systems over lossy sensor
networks,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4665–4672,
Oct. 2013.

[10] X. Ge and Q.-L. Han, “Distributed event-triggered H∞ filtering over
sensor networks with communication delays,” Inf. Sci., vol. 291,
pp. 128–142, Jan. 2015.

[11] X. Ge, Q.-L. Han, and Z. Wang, “A threshold-parameter-dependent
approach to designing distributed event-triggered H∞ consensus fil-
ters over sensor networks,” IEEE Trans. Cybern., vol. 49, no. 4,
pp. 1148–1159, Apr. 2019.

[12] X. Ge, Q.-L. Han, X.-M. Zhang, L. Ding, and F. Yang,
“Distributed event-triggered estimation over sensor networks: A sur-
vey,” IEEE Trans. Cybern., vol. 50, no. 3, pp. 1306–1320, 2020,
doi: 10.1109/TCYB.2019.2917179.

[13] J. Hu, G.-P. Liu, Z. Wang, and H. Zhang, “Prediction-based optimal
distributed filtering with communication delay over sensor networks,”
in Proc. 38th Chin. Control Conf., Guangzhou, China, Jul. 2019,
pp. 5315–5320.

[14] J. Hu, Z. Wang, and H. Gao, “Joint state and fault estimation for time-
varying nonlinear systems with randomly occurring faults and sensor
saturations,” Automatica, vol. 97, pp. 150–160, Nov. 2018.

[15] J. Hu, Z. Wang, G.-P. Liu, and H. Zhang, “Variance-constrained recur-
sive state estimation for time-varying complex networks with quantized
measurements and uncertain inner coupling,” IEEE Trans. Neural Netw.

Learn. Syst., to be published, doi: 10.1109/TNNLS.2019.2927554.
[16] J. Hu, Z. Wang, S. Liu, and H. Gao, “A variance-constrained approach

to recursive state estimation for time-varying complex networks with
missing measurements,” Automatica, vol. 64, pp. 155–162, 2016.

[17] J. Hu, H. Zhang, X. Yu, H. Liu, and D. Chen, “Design of sliding-mode-
based control for nonlinear systems with mixed-delays and packet losses
under uncertain missing probability,” IEEE Trans. Syst., Man, Cybern.,

Syst., to be published, doi: 10.1109/TSMC.2019.2919513.
[18] J. Hu, P. Zhang, Y. Kao, H. Liu, and D. Chen, “Sliding mode control for

Markovian jump repeated scalar nonlinear systems with packet dropouts:
The uncertain occurrence probabilities case,” Appl. Math. Comput.,
vol. 362, 2019, Art. no. 124574, doi: 10.1016/j.amc.2019.124574.

[19] Y. Li, G.-P. Liu, S. Sun, and C. Tan, “Prediction-based approach to
finite-time stabilization of networked control systems with time delays
and data packet dropouts,” Neurocomputing, vol. 329, pp. 320–328,
Feb. 2019.

[20] Y.-J. Li, Z.-W. Huang, and J.-Z. Li, “H∞ state estimation for stochas-
tic Markovian jumping neural network with time-varying delay and
Leakage delay,” Int. J. Autom. Comput., vol. 16, no. 3, pp. 329–340,
2019.

[21] G.-P. Liu, “Design and analysis of networked non-linear predictive con-
trol systems,” IET Control Theory Appl., vol. 9, no. 11, pp. 1740–1745,
2015.

[22] G.-P. Liu, “Consensus and stability analysis of networked multiagent
predictive control systems,” IEEE Trans. Cybern., vol. 47, no. 4,
pp. 1114–1119, Apr. 2017.

[23] K. Liu, E. Fridman, K. H. Johansson, and Y. Xia, “Quantized con-
trol under Round-Robin communication protocol,” IEEE Trans. Ind.

Electron., vol. 63, no. 7, pp. 4461–4471, Jul. 2016.

[24] K. Liu, H. Guo, Q. Zhang, and Y. Xia, “Distributed secure
filtering for discrete-time systems under Round-Robin protocol
and deception attacks,” IEEE Trans. Cybern., to be published,
doi: 10.1109/TCYB.2019.2897366.

[25] K. Liu, A. Selivanov, and E. Fridman, “Survey on time-delay approach
to networked control,” Annu. Rev. Control, vol. 48, pp. 57–79, 2019,
doi: 10.1016/j.arcontrol.2019.06.005.

[26] Q. Liu, Z. Wang, X. He, and D. Zhou, “Event-based distributed filter-
ing over Markovian switching topologies,” IEEE Trans. Autom. Control,
vol. 64, no. 4, pp. 1595–1602, Apr. 2018.

[27] J. Ma and S. Sun, “Distributed fusion filter for networked stochastic
uncertain systems with transmission delays and packet dropouts,” Signal

Process., vol. 130, pp. 268–278, Jan. 2017.
[28] J. Ma and S. Sun, “A general packet dropout compensation framework

for optimal prior filter of networked multi-sensor systems,” Inf. Fusion,
vol. 45, pp. 128–137, Jan. 2019.

[29] M. Park, S.-H. Lee, O.-M. Kwon, and A. Seuret, “Closeness-centrality-
based synchronization criteria for complex dynamical networks with
interval time-varying coupling delays,” IEEE Trans. Cybern., vol. 48,
no. 7, pp. 2192–2202, Jul. 2018.

[30] W. Qian, Y. Gao, and Y. Yang, “Global consensus of multiagent systems
with internal delays and communication delays,” IEEE Trans. Syst., Man,

Cybern., Syst., vol. 49, no. 10, pp. 1961–1970, Oct. 2019.
[31] G. G. Rigatos, “Derivative-free distributed filtering for MIMO robotic

systems under delays and packet drops,” Int. J. Adv. Robot. Syst., vol. 10,
2013, Art. no. 133.

[32] B. Shen, Z. Wang, and Y. S. Hung, “Distributed H∞-consensus fil-
tering in sensor networks with multiple missing measurements: The
finite-horizon case,” Automatica, vol. 46, no. 10, pp. 1682–1688,
2010.

[33] I. Y. Song and V. Shin, “Distributed mixed continuous-discrete reced-
ing horizon filter for multisensory uncertain active suspension systems
with measurement delays,” IET Control Theory Appl., vol. 7, no. 15,
pp. 1922–1931, 2013.

[34] O. Thapliyal, J. S. Nandiganahalli, and I. Hwang, “Kalman filtering with
state-dependent packet losses,” IET Control Theory Appl., vol. 13, no. 2,
pp. 306–312, 2019.

[35] P. K. Varshney, “Multisensor data fusion,” Electron. Commun. Eng. J.,
vol. 9, no. 6, pp. 245–253, 1997.

[36] X. Wang and G. Yang, “Event-triggered H∞ filtering for discrete-
time T–S fuzzy systems via network delay optimization technique,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 10, pp. 2026–2035,
Oct. 2019.

[37] C. Wen, Z. Wang, Q. Liu, and F. E. Alsaadi, “Recursive distributed
filtering for a class of state-saturated systems with fading measurements
and quantization effects,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 48,
no. 6, pp. 930–941, Jun. 2018.

[38] Y. Xu, T. Shen, X.-Y. Chen, L.-L. Bu, and N. Feng, “Predictive adap-
tive Kalman filter and its application to INS/UWB-integrated human
localization with missing UWB-based measurements,” Int. J. Autom.

Comput., vol. 16, no. 5, pp. 604–613, 2019.
[39] H. Yan, P. Li, H. Zhang, X. Zhan, and F. Yang, “Event-triggered dis-

tributed fusion estimation of networked multisensor systems with limited
information,” IEEE Trans. Syst., Man, Cybern., Syst., to be published,
doi: 10.1109/TSMC.2018.2874804.

[40] H. Yan, F. Qian, F. Yang, and H. Shi, “H∞ filtering for nonlinear net-
worked systems with randomly occurring distributed delays, missing
measurements and sensor saturation,” Inf. Sci., vol. 370, pp. 772–782,
Nov. 2016.

[41] H. Yan, Q. Yang, H. Zhang, F. Yang, and Z. Zhan, “Distributed H∞ state
estimation for a class of filtering networks with time-varying switching
topologies and packet losses,” IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 48, no. 12, pp. 2047–2057, Dec. 2018.

[42] X. Yin, Z. Li, L. Zhang, and M. Han, “Distributed state estimation of
sensor-network systems subject to Markovian channel switching with
application to a chemical process,” IEEE Trans. Syst., Man, Cybern.,

Syst., vol. 48, no. 6, pp. 864–874, Jun. 2018.
[43] D. Zhang, Q.-L. Han, and X.-M. Zhang, “Network-based modeling

and proportional-integral control for direct-drive-wheel systems in wire-
less network environments,” IEEE Trans. Cybern., to be published,
doi: 10.1109/TCYB.2019.2924450.

[44] D. Zhang, Z. Xu, H. R. Karimi, and Q.-G. Wang, “Distributed filtering
for switched linear systems with sensor networks in presence of packet
dropouts and quantization,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 64, no. 10, pp. 2783–2796, Oct. 2017.

http://dx.doi.org/10.1109/TCYB.2019.2917179
http://dx.doi.org/10.1109/TNNLS.2019.2927554
http://dx.doi.org/10.1109/TSMC.2019.2919513
http://dx.doi.org/10.1016/j.amc.2019.124574
http://dx.doi.org/10.1109/TCYB.2019.2897366
http://dx.doi.org/10.1016/j.arcontrol.2019.06.005
http://dx.doi.org/10.1109/TSMC.2018.2874804
http://dx.doi.org/10.1109/TCYB.2019.2924450


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

[45] H. Zhang, Z. Wang, H. Yan, F. Yang, and X. Zhou, “Adaptive event-
triggered transmission scheme and H∞ filtering co-design over a
filtering network with switching topology,” IEEE Trans. Cybern., vol. 49,
no. 12, pp. 4296–4307, Dec. 2019.

[46] L. Zhang, Z. Ning, and Z. Wang, “Distributed filtering for fuzzy time-
delay systems with packet dropouts and redundant channels,” IEEE

Trans. Syst., Man, Cybern., Syst., vol. 46, no. 4, pp. 559–572, Apr. 2016.
[47] W.-A. Zhang, G. Feng, and L. Yu, “Multi-rate distributed fusion estima-

tion for sensor networks with packet losses,” Automatica, vol. 48, no. 9,
pp. 2016–2028, 2012.

[48] Y. Zhang, F. Li, and Y. Chen, “Leader-following-based distributed
Kalman filtering in sensor networks with communication delay,” J.

Franklin Inst., vol. 354, no. 16, pp. 7504–7520, 2017.

Jun Hu (Member, IEEE) received the B.Sc. degree
in information and computation science and the
M.Sc. degree in applied mathematics from the
Harbin University of Science and Technology,
Harbin, China, in 2006 and 2009, respectively, and
the Ph.D. degree in control science and engineering
from the Harbin Institute of Technology, Harbin, in
2013.

From September 2010 to September 2012, he
was a visiting Ph.D. student with the Department
of Information Systems and Computing, Brunel

University London, Uxbridge, U.K. From May 2014 to April 2016, he
was an Alexander von Humboldt Research Fellow with the University
of Kaiserslautern, Kaiserslautern, Germany. He is with the Department of
Mathematics, Harbin University of Science and Technology and also with the
School of Engineering, University of South Wales, Pontypridd, U.K. He has
published more than 50 papers in refereed international journals. His research
interests include nonlinear control, filtering and fault estimation, time-varying
systems, and complex networks.

Dr. Hu serves as a Reviewer for Mathematical Reviews, as an Editor for
IEEE ACCESS, Neurocomputing, the Journal of Intelligent and Fuzzy Systems,
Neural Processing Letters, Systems Science and Control Engineering, and as a
Guest Editor for the International Journal of General Systems and Information

Fusion.

Zidong Wang (Fellow, IEEE) was born in Jiangsu,
China, in 1966. He received the B.Sc. degree
in mathematics from Suzhou University, Suzhou,
China, in 1986, and the M.Sc. degree in applied
mathematics and the Ph.D. degree in electrical engi-
neering from the Nanjing University of Science
and Technology, Nanjing, China, in 1990 and 1994,
respectively.

He is currently a Professor of Dynamical Systems
and Computing with the Department of Computer
Science, Brunel University London, Uxbridge, U.K.

From 1990 to 2002, he held teaching and research appointments in univer-
sities in China, Germany, and the U.K. He has published over 220 papers
in IEEE TRANSACTIONS and over 60 papers in Automatica. His research
interests include dynamical systems, signal processing, bioinformatics, con-
trol theory and applications.

Prof. Wang is a holder of the Alexander von Humboldt Research Fellowship
of Germany, the JSPS Research Fellowship of Japan, William Mong Visiting
Research Fellowship of Hong Kong. He serves (or has served) as the
Editor-in-Chief for Neurocomputing, the Deputy Editor-in-Chief for the
International Journal of Systems Science, and an Associate Editor for 12
international journals, including the IEEE TRANSACTIONS ON AUTOMATIC

CONTROL, IEEE TRANSACTIONS ON CONTROL SYSTEM TECHNOLOGY,
IEEE TRANSACTIONS ON NEURAL NETWORKS, IEEE TRANSACTIONS ON

SIGNAL PROCESSING, and IEEE TRANSACTIONS ON SYSTEMS, MAN, AND

CYBERNETICS: SYSTEMS. He is a fellow of the Royal Statistical Society and
a member of program committee for many international conferences.

Guo-Ping Liu (Fellow, IEEE) received the B.Eng.
and M.Eng. degrees in automation from the Central
South University, Changsha, China, in 1982 and
1985, respectively, and the Ph.D. degree in con-
trol engineering from the University of Manchester,
Manchester, U.K., in 1992.

He is a Professor with the University of South
Wales, Pontypridd, U.K. and is a Visiting Professor
with Wuhan University, Wuhan, China. He has
authored/coauthored over 200 journal papers and
10 books on control systems. His current research

interests include networked multiagent control systems, nonlinear system
identification and control, advanced control of industrial systems, and
multiobjective optimization and control.

Prof. Liu is an Editor-in-Chief of the International Journal of Automation

and Computing and an IET Fellow.

Hongxu Zhang received the B.Sc. degree in
information and computation science and the
M.Sc. degree in mathematics from the Harbin
University of Science and Technology, Harbin,
China, in 2014 and 2017, respectively, where he is
currently pursuing the Ph.D. degree in measuring
and testing technologies and instruments with the
School of Measurement and Communication.

His research interests include optimal state esti-
mation and sliding mode control for complex
dynamical systems.

Mr. Zhang is an active reviewer for many international journals.

Rukshan Navaratne received the Ph.D. degree in
aerospace engineering from Cranfield University,
Cranfield, U.K.

Before joining academia, he has spent 18 years
of his career working as a Design Engineer with
Toyota Motor Corporation, Ōhira, Japan, and a
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