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Abstract— In this paper, we present a new method for the
estimation of the prediction-error covariances of a Kalman
filter (KF), which is suitable for step-varying processes. The
method uses a series of past innovations (i.e., the difference
between the upcoming measurement set and the KF predicted
state) to estimate the prediction-error covariance matrix by
means of a constrained convex optimization problem. The latter is
designed to ensure the symmetry and the positive semidefiniteness
of the estimated covariance matrix, so that the KF numerical
stability is guaranteed. Our proposed method is straightforward
to implement and requires the setting of one parameter only,
i.e., the number of past innovations to be considered. It relies on
the knowledge of a linear and stationary measurement model.
The ability of the method to track state step-variations is
validated in ideal conditions for a random-walk process model
and for the case of power-system state estimation. The proposed
approach is also compared with other methods that estimate
the KF stochastic parameters and with the well-known linear
weighted least squares. The comparison is given in terms of both
accuracy and computational time.

Index Terms— Adaptive Kalman filter (AKF), covariance
estimation, phasor measurement unit (PMU), power systems,
state estimation, step processes.

I. INTRODUCTION

A
WELL-KNOWN challenge in the application of the
Kalman filter (KF) to real systems is the identification

of the parameters of the stochastic error distributions. Indeed,
the correctness of the KF is subject to their proper assessment.

Let us consider a system described by a process model
consisting in the following linear time-variant discrete-time
equation (k is the discrete-time index):

xk = xk−1 + wk (1)
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in which xk ∈ R
n is the system state and wk ∈ R

n is
the process noise that is assumed to be a white Gaussian
sequence with covariance matrix Qk . This autoregressive inte-
grated moving average (ARIMA) (0,1,0) model, adopted for
instance in [1], is particularly suitable in case high-resolution
measurements are available as the state does not change
substantially from one time-step to the other. It also assumes
there are no controllable inputs. The process noise should be
able to account for occasional steps. To this end, we enable
the covariance matrix Qk to be time-varying and unknown.
In contrast, the measurement model is assumed to be linear,
known, and time-invariant. Hence, it can be defined as

zk = Hxk + vk (2)

in which zk ∈ R
m is the measurement set, H ∈ R

m×n is
the measurement matrix, and vk ∈ R

m is the measurement
noise that is assumed to be a white Gaussian sequence with
covariance matrix R. We also assume that the system is
observable, i.e., H is of full rank.

Given the process and measurement model (1) and (2), the
well-known linear KF equations are as follows:

1) Prediction:

x̂k|k−1 = x̂k−1|k−1 (3)

Pk|k−1 = Pk−1|k−1 + Qk . (4)

2) Measurement Update:

Lk = Pk|k−1HT (HPk|k−1HT + R)−1 (5)

x̂k|k = x̂k|k−1 + Lk(zk − Hx̂k|k−1) (6)

Pk|k = (I − LkH)Pk|k−1 (7)

in which x̂k|k−1 is the predicted state given the knowledge of
the process prior to time-step k, Lk is the Kalman gain, x̂k|k

is the estimated state given zk , and I is the identity matrix.
Pk|k−1 and Pk|k are the covariance matrices of the prediction
and estimation errors εk|k−1 and εk|k , respectively

εk|k−1 = xk − x̂k|k−1 (8)

Pk|k−1 = E[εk|k−1ε
T
k|k−1] (9)

εk|k = xk − x̂k|k (10)

Pk|k = E[εk|kε
T
k|k ] (11)
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where E is the expected value operator. After the prediction
step, we can also define the innovation yk and its covariance
matrix Sk as

yk = zk − Hx̂k|k−1 (12)

Sk = HPk|k−1HT + R. (13)

As it is known, the KF estimate is optimal if we use
the optimal Kalman gain L that depends on matrices Pk|k−1,
H, and R. The matrix Pk|k−1 contains the uncertainty of the
process noise Q. Assuming the knowledge of H, the litera-
ture dealing with KF-parameters estimation proposes several
methods to infer the correct R and Q (a detailed literature
review on the subject is presented in Section II). Most of
these methods are suitable for time-invariant or slow-varying
systems. Indeed, the KF was conceived to filter the measure-
ment noise of linear systems by modeling their time behavior.
However, some systems are characterized by fast state varia-
tions, such as unpredictable and sudden state steps. In these
cases, given a certain process model, the Kalman gain has to
be updated. To this end, Myers and Tapley [2] use a direct
estimation of both R and Q from their sample covariances
at every sampling step. Recently, Zanni et al. [3] presented a
heuristic method that, given the knowledge of R, assesses Q

from the state estimates. The tests are carried out using a
power system in quasi-steady-state conditions and show the
better performance of the filter compared with the linear
weighted least-squares (LWLS) algorithm. This technique is
further tested and validated in [4]. However, this method is
not proved to be optimal as it is heuristic, and state step-
variations are not considered. The aforementioned methods
are unable to track a state step-variation as soon as it occurs,
because they update the KF parameters based on the state
estimates.

In this paper, we present an adaptive KF (AKF) that filters
effectively the measurement noise during quasi-steady-state
conditions and is also able to track occasional state step-
variations. We consider a process that can be modeled as (1)
with constant or slow-varying Q and that exhibits state step-
variations that violate the process model. Assuming H and R

are known and time-invariant, the goal is to keep tracking the
state in spite of these violations. We exploit the knowledge of
the sample covariance matrix of the past and current innova-
tions (12) in order to estimate the prediction-error covariance
matrix Pk|k−1 . Hence, we automatically update the Kalman
gain before the measurement update. Our proposed method
for inferring Pk|k−1 is called prediction-error covariance

estimation (PECE), and it consists in a constrained convex
optimization problem based on maximum-likelihood (ML)
estimation that ensures the positive semidefiniteness of Pk|k−1.
The accuracy of the PECE method is demonstrated, consider-
ing power-system state estimation (SE) as application example.
State step-variations are common in power systems as they are
associated, for instance, with the connection/disconnection of
different components (mainly loads, generators, and transmis-
sion lines). It is important to note that our proposed method
can be used for any other application, as long as the Assump-
tions 1–3 introduced in Section III hold. We also provide

a comparison with the methods presented in [2] and [3],
and with the LWLS widely used in power-system SE.

This paper is structured as follows. Section II consists of a
literature review on the KF-covariance-estimation methods that
have been proposed since the end of the 1960s. In Section III,
we focus on the description of the proposed PECE method and
provide the accuracy assessment for ideal cases. In Section IV,
we apply the PECE-based AKF to a power-system SE exam-
ple. In Section V, we present a computational-time assessment.
In Sections III–V, we compare the PECE method with other
two methods presented in [2] and [3]. The conclusions are
given in Section VI.

II. LITERATURE REVIEW

In the early 1970s, Mehra [5] classified into four cate-
gories the methods for the estimation of the KF covariances:
Bayesian [6], [7], ML [8]–[10], correlation [11]–[20], and
covariance matching [2], [3].

The Bayesian and ML estimation methods are characterized
by a high level of complexity and are usually employed for the
case of time-invariant systems. As observed in [10], a relevant
advantage of these approaches is that they can be applied also
when measurements are available at irregular intervals, which
is quite common in real applications.

Correlation techniques estimate the measurement and
process-noise covariance matrices by exploiting the sample
autocorrelation functions of the innovations at different lags.
Only time-invariant systems are considered in [11], [12],
and [14]–[19], whereas [13] extends the problem formulation
to time-variant systems. However, as remarked in [5] and
shown in [13], the correlation methods provide sound results
mainly for time-invariant systems. Odelson et al. [15] propose
a least-squares optimization problem based on the correlations
between the innovations; it is able to ensure the positive
semidefiniteness of both R and Q. Then, a follow-up of this
paper is presented by Rajamani and Rawlings [18], where they
present new conditions for the uniqueness of the covariance
estimates as well as an optimal weighting to be used in the
least-squares objective to ensure minimum variance in the
estimates. The work presented in [20] deals with adaptive
estimation of both R and Q for time-variant models. The
method is based on the correlation-innovations approach and
includes an approach to ensure the positive definiteness of the
covariance matrices.

Covariance-matching methods consist in adaptive algo-
rithms that, at every sampling step, assess the KF parameters
directly from the past state estimates. They are particularly
effective in case either R or Q is known, as stated in [5]. The
covariance-matching methods presented in [2] and [3] have
already been discussed in Section I.

Correlation and covariance-matching techniques need
ad hoc procedures in order to ensure the positive semidefi-
niteness of the estimated covariance matrices, which is not
guaranteed by the method itself. Myers and Tapley [2] use an
approximated countermeasure to ensure positive diagonal ele-
ments of the covariance matrices, which consists in replacing
the estimated diagonal elements with their absolute values.
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Similarly, in [20], the positive definiteness of the estimated
R and Q is ensured with further processing of the two
matrices after their estimation; therefore, also this method
is approximated. An effective way to ensure the positive
semidefiniteness of the estimated covariance matrices is to
solve a constrained optimization problem, as in [15].

In the context of power systems, very few papers deal with
the KF-parameter evaluation, usually limited to the estimation
of Q. Indeed, the elements of R are associated with the
measurement device characteristics that are known. However,
in the literature dealing with power-systems SE using KF,
the value of Q is often arbitrarily selected and is assumed to
be constant [21]–[23]. This approach leads to a nonadaptive
filter that could have very poor estimation performance, with
respect to a filter whose stochastic parameters are frequently
updated. Zhang et al. [24] formulate an optimization problem
that is only able to inflate the process-noise variances when
a step-variation in the power-system state occurs. Then, the
authors just mention that the inflated Q could be decreased
by employing an exponential decay with time constant to be
defined by the user. As already mentioned in Section I, a Q

assessment method for a KF applied to power-system SE is
also proposed in [3], although it is heuristic and suboptimal.
Finally, Chowdhury et al. [25] propose the use of KF to detect
the presence of a fault in power networks. Their goal is to
detect a fault by analyzing the measurement residuals. The
method exploits the fact that when a step in the state variables
occurs, the process model does not match the real process, thus
resulting in a sudden increase of the estimation residuals. This
is flagged as the occurrence of a fault. Whereas, in this paper,
we track the state even when there is a state step-variation.
To do so, we adapt the process model uncertainty when the
step occurs.

The methods presented in the aforementioned papers are
conceived to estimate the stochastic parameters of time-
invariant or slow-varying processes. Still needed is a KF able
to filter the measurement noise and to track sudden state step-
variations with minimum delay. In this paper, we propose an
AKF that addresses this problem and uses power-system SE
as an application example. Nevertheless, our proposed AKF
is not specific for power-system SE only, actually it can be
applied to every process where Assumptions 1–3 introduced
in Section III hold.

III. NEW METHOD FOR THE PREDICTION-ERROR

COVARIANCE ESTIMATION

The PECE method we propose in this paper applies to cases
where the following assumptions hold.

Assumption 1: The process model is the linear and time-
variant ARIMA (0,1,0) model described by (1). In particular,
we consider the general case in which the process-noise
covariance matrix Qk is unknown and changes as a function
of time. Furthermore, we are interested in the case where the
system state is characterized by occasional step-variations that
violate the process model.

Assumption 2: The measurement model is linear, known,
and time-invariant. We assume to have the perfect knowledge

of both the measurement matrix H and the measurement-noise
covariance matrix R.

Assumption 3: The system is assumed to be fully observable
by using a number of measurements equal to or higher than
the number of states: m ≥ n and matrix H has full rank.

If Qk were known, the prediction-error covariance matrix
Pk|k−1 would be computed iteratively from (4) and all the other
quantities of interest would derive from (5)–(7). However, this
is not possible because of Assumption 1. The objective of
PECE is to provide an estimate of Pk|k−1 from the measure-
ments, without direct estimation of Qk .

A. PECE Method

Given Assumption 1, the KF-prediction equation is the
ARIMA (0,1,0) model of (3), recalled here as follows:

x̂k|k−1 = x̂k−1|k−1. (14)

In order to quickly react to step-variations of the system state,
the PECE method takes advantage of the innovation y that
contains the new information brought by the measurements at
each time-step. In what follows, the PECE method’s algorithm
is presented in four steps.

1) Step 1: At time-step k, after the computation of the
predicted state x̂k|k−1 by means of (14) and when the
new measurement set zk is available, the innovation yk

is calculated by using (12).
2) Step 2: In steady-state conditions, the innovations repre-

sent a white Gaussian sequence with covariance matrix
S∞, defined as

S∞ = HP∞HT + R (15)

where P∞ is the value of Pk|k−1 as k → ∞. An approx-
imation of S∞ is the sample innovation-covariance
matrix Ĉk , which is calculated at time-step k by con-
sidering a moving-window composed of N time-steps
as

Ĉk = cov(yk, yk−1, . . . , yk−N+1). (16)

As it is known, for stationary processes, the sample
covariance tends to the true one as N increases. In non-
stationary conditions, the true innovation-covariance
matrix varies at each time-step and we denote it as Sk .
Thus, given the knowledge of the matrices H and R

(Assumption 2), we can rewrite (15) as (13), recalled
here as follows:

Sk = HPk|k−1HT + R. (17)

Given the KF-prediction equation (14), when the state
has a sudden change, Sk changes as well. The sample
matrix Ĉk follows the variations of the true matrix Sk ,
because the innovations incorporate the information of
the measurements. The PECE method exploits this fea-
ture in order to quickly react to the state changes, as
explained in the following steps.

3) Step 3: Estimate Pk|k−1 from the innovation samples,
using ML estimation, as described in Theorem 2. This
provides the estimate P̂k|k−1 , which is symmetric and
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positive semidefinite; using (5), this estimate is used to
calculate the Kalman gain L that is updated at every
time-step. In quasi-steady-state conditions, L remains
fairly constant. When a state step-variation occurs, the
KF-prediction equation (14) is inaccurate, causing an
increase of P̂k|k−1 and consequently of L. Therefore,
the KF trusts the measurements more than the predicted
state, which is the right action to take in order to quickly
react to the state variation.

Estimation of Pk|k−1: A natural method for estimating Pk|k−1
would consist in replacing in (17) the matrix Sk by the
sample innovation-covariance Ĉk computed in Step 2 and
solving for Pk|k−1 (note that matrices H and R are known,
by Assumption 2). However, this process, in general, will
not produce a semidefinite matrix. A more adequate and
more generally applied method is an ML estimation that can
guarantee the positive semidefiniteness of Pk|k−1.

The estimation procedure uses the following optimization
problem:

min
�

{
− log[det(�)] + trace(�E)

}

s.t. � real symmetric and � ≻ 0

In − � � 0. (18)

In this optimization problem: 1) the optimization variable is
the n×n, real matrix �, assumed to be symmetric; 2) In is the
identity matrix of size n; 3) E is a known and fixed matrix;
and 4) the notation � ≻ 0 means that � is positive definite
and the notation In − � � 0 means that In − � is positive
semidefinite.

Theorem 1: The optimization problem (18) is a convex
problem; it has one unique optimal solution �̂.
The proof is given in the Appendix. Note that problem (18) is
a MAXDET problem for which there exists efficient software.
In this paper, problem (18) is modeled and solved with
YALMIP employing the sdpt3 solver [26], [27].

We can now describe the estimation procedure. First,
perform a QR-decomposition of the matrix R− 1

2 H and
obtain

R− 1
2 H = V

(
U

0m−n,n

)
(19)

where U is an upper triangular, real n × n matrix, 0m−n,n is
the null rectangular matrix of dimensions (m − n) × n, and V

is an orthogonal matrix of dimensions m × m. Note that U is
invertible, because H and R are full rank.

Second, let Êk be the square matrix of dimensions n × n

made of the first n rows and columns of VT R− 1
2 ĈkR− 1

2 V

Êk = (VT R− 1
2 ĈkR− 1

2 V)(1 :n, 1 :n). (20)

Theorem 2: The ML estimate of Pk|k−1 based on the obser-
vation of the innovations is equal to

P̂k|k−1 = U−1(�̂−1 − In)U−T (21)

where �̂ is the optimal solution of problem (18) with E

replaced by Êk . The matrix P̂k|k−1 is symmetric and positive
semidefinite.

The proof is in the Appendix.

B. Numerical Simulations

In this section, we evaluate the accuracy of the PECE
method by considering ideal processes where the time evo-
lution of the system state is controlled, so that the true value
of every parameter of the process is known. The purpose is
to verify whether the ability of the PECE method to track
step-variations of the system state is not at the expense of its
accuracy when there are no steps.1 For this purpose, we first
consider a process without step-variations in the system state,
and then study a process where we add a step to the state
variables. For all the cases treated in this section, we assume R

to be diagonal and constant

R = rIm (22)

where r is a scalar and Im ∈ R
m×m is the identity matrix.

The two case studies are described in detail here as follows.

1) Base Case: The process consists in a random walk as
(1) with Q that is diagonal and constant

Q = qIn (23)

where q is a scalar and In ∈ R
n×n is the identity matrix.

We have tested the two possible conditions that can
occur, i.e., q/r < 1 and q/r > 1.

2) Base Case Plus Steps: It consists in the same random-
walk processes of the base case plus occasional state
step-variations of intentionally large amplitudes that
violate the process model.

It is worth observing that this section proves the effec-
tiveness of the PECE method for generic physical processes,
as it can be applied to every process, as long as Assump-
tions 1–3 hold.

The PECE method is compared with two other covariance-
estimation methods (their formulation is recalled in the
Appendix).

1) The method of Myers and Tapley [2], henceforth in this
paper, will be called Myers. In [2], the assessment of
both Q and R is discussed. Whereas, we assume R is
known, so that only Q has to be estimated.

2) The method of Zanni et al. [3], henceforth in this paper,
will be called Zanni.

Three KFs that use the three considered methods (PECE,
Myers, and Zanni) are run in parallel. We assume that the
KFs have the knowledge of R, but they do not know Q.

The PECE and Myers methods use a moving window
composed of N = 5000 time-steps, as it has been found to
be an effective tradeoff between filtering performance and fast
tracking of state step-variations (the influence of N on the SE
accuracy is given in Section III-B3). The Zanni method uses
N = 30, because it does not need a large moving-window
length to estimate Q (see the Appendix for further details).

1Indeed, a simple way to track state step-variations would be to always
overestimate the value of Q, as the method proposed in [3] does (see Fig. 1).
Obviously, the filtering effectiveness is compromised when no steps are
present. Another way would be to inflate Q only when the step occurs, as it
is proposed in [24]. The problem is what value of Q should be set before and
after the step.
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Fig. 1. Base case, q = 10−10. Time evolution of the third diagonal element
of Pk|k−1 (the other diagonal elements exhibit an analogous behavior): true
and estimated values.

1) Base Case: Let us consider a multidimensional
state x ∈ R

n , with n = 6. The process and measurement
equations are

xk = xk−1 + wk−1

zk = xk + vk

w ∼ N(0, Q)

v ∼ N(0, R)

in which R and Q are defined as in (22) and (23), respectively.
First, we consider the case where q/r < 1, with r = 10−7

and q = 10−10. As a consequence, the true value of the
KF-prediction-error covariance matrix is P∞ = 3.21 · 10−9In .
Note that the important parameter is the ratio q/r . Indeed,
different values of r and q resulting in the same ratio lead to
similar results.

The estimated state x̂ and the matrix Q, which are used in
the three KFs, are initialized by using the initial conditions
listed here as follows.

1) The state vector is initialized to x0 = 1 (where 1 is a
vector of ones), which is different from the true state.

2) For the first 15 000 time-steps, we use Q = q0In . To help
the convergence of the initial state x0 toward the true
one, we set a high value of q0 = 10−5.

Fig. 1 shows the time evolution of the third diagonal element
of Pk|k−1 estimated by the three methods and its true value
(the other diagonal elements exhibit an analogous behavior).
The time evolution of the norm of the estimation errors is
shown in Fig. 2 for these three KFs plus a KF that uses the
exact value of Q denoted as “KFQexact”. At time-step k, the
estimation error vector ek is defined as the difference between
the estimated and the true state

ek = x̂est
k − xtrue

k . (24)

Note that the norm of ek accounts for the errors of all the
six state variables. Until the 15 000th time-step, the three KFs
use a large value of Q equal to 10−5In , so that the estimation
errors are the same for every KF and remain large. Afterward,
the process covariances start to be assessed and the errors
of the three KFs decrease, thus reflecting the behavior of
the Pk|k−1 estimates. As visible in Fig. 1, Pk|k−1 inferred
by the PECE method converges to the true value of Pk|k−1
in about 10 000 time-steps, which corresponds to twice the
moving-window length N = 5000. Afterward, the Pk|k−1
estimates oscillate around the true value of Pk|k−1 (see the

Fig. 2. Base case, q = 10−10 . Time evolution of the norm of the estimation
errors.

Fig. 3. Base case, q = 10−6. Time evolution of the third diagonal element
of Pk|k−1 (the other diagonal elements exhibit an analogous behavior): true
and estimated values.

enlarged part of Fig. 2) and the estimation errors become
similar to those of the KF that uses the exact value of Q.
The convergence of the Myers method is much slower and the
Pk|k−1 estimates take a longer time to converge to the true
values, i.e., hundreds of thousands of time-steps. However,
the estimates are characterized by smaller variations compared
with the PECE method (see Fig. 1). The Zanni method’s
convergence phase lasts few time-steps, because it uses a
small moving-window length N = 30. Then, it tends always
to overestimate the value of Pk|k−1. As a consequence, the
measurement noise is not filtered effectively, which leads to
significant estimation errors.

Let us now consider the case in which q/r > 1, with
r = 10−7 and q = 10−6. The corresponding true value of
P∞ is 1.09 · 10−6In . Fig. 3 shows the time evolution of
the third diagonal element of Pk|k−1 for this case (the other
diagonal elements exhibit an analogous behavior). The Myers

and PECE methods estimate its precise true value, whereas
the Zanni method provides again larger variances. It can be



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 4. Base case plus steps, q = 10−10 . Time evolution of the third
diagonal element of Pk|k−1 (the other diagonal elements exhibit an analogous
behavior). A time-window of 110 time-steps, including the step-variation, is
shown.

Fig. 5. Base case plus steps, q = 10−10 . Zoomed-in view of Fig. 4 close
to the step-variation that occurs at the 1000th time-step. It can be seen that
only the PECE and PECEdiag methods are able to react exactly by the time
the step occurs.

noted that the PECE method estimates immediately the correct
value of Pk|k−1, whereas the Myers method takes 5000 time-
steps to approach it. However, the estimation errors of these
three KFs are almost equal to those of the KF that uses the
exact value of Q. We do not show the norm of the errors
for this case, because they are indistinguishable and oscillate
between 0.2 · 10−3 and 1.6 · 10−3. These results are caused
by the predominance of the process noise, making simple its
estimation from the samples. This case is not of high interest,
because the process model has a limited influence on the KF
solution. Indeed, the simple processing of the measurements
leads to state estimates very close to the optimal ones.

2) Base Case Plus Steps: Let us consider the same process
of the base case, with r = 10−7, q = 10−10, and x0 = 1.
For this case, we wait until the convergence phase is finished
(time instant 0), and 1000 time-steps later, we simulate a state
step-variation of amplitude 10−2, which is significantly larger
than the process-noise standard deviation. By the time the
state change occurs, we expect Pk|k−1 to increase, because
the assumed ARIMA (0,1,0) in (14) is no longer accurate.
Note that, as the step is applied to every state variable, they
become correlated. In order to show the effect of the esti-
mated off-diagonal elements of Pk|k−1 on the state estimates,
we add a further KF, called PECEdiag. The latter uses the
PECE method in which the variable � of the optimization
problem (18) is diagonal.

Fig. 4 shows the time evolution of the third diagonal element
of Pk|k−1 estimated by the four KFs when the step occurs,
and Fig. 5 shows a zoomed-in view of Fig. 4 (the other
diagonal elements exhibit an analogous behavior). The trend
of the off-diagonal elements of Pk|k−1 is highly dependent on
the specific simulation parameters. Their effect is evident by

Fig. 6. Base case plus steps, q = 10−10 . Time evolution of the norm of
the estimation errors. A time-window of 50 time-steps, including the step-
variation, is shown.

Fig. 7. Base case plus steps, q = 10−6. Time evolution of the third
diagonal element of Pk|k−1 (the other diagonal elements exhibit an analogous
behavior). A time-window of 15 time-steps, including the step-variation, is
shown.

comparing the behavior of the KF estimates given by the PECE
and PECEdiag methods. The KF that uses the Myers method
has a remarkable delay in inflating Pk|k−1 and consequently
in tracking the system state during and after the step, as is
visible from the norm of the estimation errors in Fig. 6. This
behavior is typical of the covariance-estimation methods that
infer Q by exploiting only the knowledge of the past state
estimates. It is known that Q influences the state estimates, and
vice versa, as a closed loop; therefore, both take several time-
steps to increase. At the time of the step, the Zanni method
had smaller errors, because it overestimates the value of Q,
as we have seen for the base case. Shortly, after the step,
the Zanni method inflates Q rapidly, so that the estimation
errors decrease in only a few time-steps. Unlike the other two
methods, the PECE method uses the past innovations and the
innovation at the current time-step that already contains the
information brought by the upcoming set of measurements.
Then, it updates the value of Pk|k−1 before the measurement
update. Indeed, the PECE method is the only one able to
increase Pk|k−1 exactly by the time the step occurs (i.e., with
no delay), as shown in Fig. 5. This characteristic enables the
PECE method to immediately react to state step-variations.
Fig. 6 shows that the estimation errors of the KF that uses
the PECE method are the smallest, both exactly when the step
occurs and shortly afterward. In Fig. 6, it is also evident that
the KF that uses the PECE method reacts faster than the KF
that uses the PECEdiag method. Therefore, the estimated off-
diagonal terms of P̂k|k−1 improve the state-tracking capability.

Finally, we consider a case in which q/r > 1 (r = 10−7

and q = 10−6), and a state step-variation is present. The step-
variation is of amplitude 1 and occurs at the 1000th time-
step. Note that the step amplitude is larger than the case
where q/r < 1, because a step amplitude of 10−2 would
be comparable to the process noise. Fig. 7 shows the time
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Fig. 8. Base case plus steps, q = 10−6. Time evolution of the norm of
the estimation errors. A time-window of 20 time-steps, including the step-
variation, is shown.

evolution of the third diagonal element of Pk|k−1 estimated
by the Zanni, Myers, PECE, and PECEdiag methods (the other
diagonal elements exhibit an analogous behavior). As in the
case where q = 10−10, the PECE and PECEdiag methods
increase Pk|k−1 as soon as the step occurs, whereas the Zanni

and Myers methods react with a delay of one time-step. Indeed,
only the PECE and PECEdiag methods are characterized by
limited errors during the step, as shown in Fig. 8. Note that,
again, the accuracy of the PECE method is better than that
of PECEdiag, due to the effect of the estimated off-diagonal
elements of Pk|k−1 .

3) Influence of Parameter N on the SE Accuracy: The
only parameter that has to be set in the PECE method
is N , specifically the number of previous innovations used
to calculate the sample innovation-covariance matrix in (16).
In this section, we present the influence of N on the SE
accuracy considering both the base case and the base case

plus steps in which q/r < 1. As explained in Section III-B1,
q/r < 1 is the case of interest where the noise filtering can
be effective. The investigation involves the PECE and Myers

methods. Unlike in Sections III-B1 and III-B2, where the norm
of the estimation errors was calculated at each time-step, here
the norm is computed by considering of all the errors of the M

considered time-steps. Besides, we show the median value of
the norms obtained in ten different simulations. It is worth
mentioning that we wait until the convergence phase is finished
before performing this assessment.

Fig. 9(a) shows the norm of the estimation errors as a
function of N for the base case. For each value of N , the norm
is computed by considering M = 2000 time-steps. The PECE
method degrades the estimation accuracy as we consider a
smaller number of innovations. The innovations are affected
by the measurement noise that is not effectively filtered if a
small number of innovations are used. The norm of the errors
of the Myers method remains quite stable and smaller than
that of the PECE method for N > 500. Note that the use of
a smaller value of N also leads to a faster convergence of
the Myers method to the true value of Pk|k−1 compared with
Fig. 1. However, the accuracy of the Myers method drops for
small values of N (i.e., N = 20 and N = 100) due to the
fact that the positive semidefiniteness of Pk|k−1 is not guaran-
teed. As a consequence, the KF numerical stability might be
compromised and the KF solution sometimes diverges from
the true state. This phenomenon is visible in Fig. 10 where
N = 100: the state estimated by the KF that uses the Myers

Fig. 9. Influence of N on the estimation errors of the KFs that use the PECE
and Myers methods. In the base case, the norm of the errors is computed
considering 2000 time-steps. In the base case plus steps, the norm of the
errors is computed considering the 30 time-steps after the state step-variation.
(a) Base case (q = 10−10, r = 10−7). (b) Base case plus steps (q = 10−10,
r = 10−7).

Fig. 10. Base case, q = 10−10, r = 10−7 , and N = 100. Time evolution of
the second diagonal element of Pk|k−1 and of the associated second element
of the state vector: true state and state estimated by the KF that uses the
Myers method. This figure shows the numerical stability problems of the
Myers method.

method loses track of the true state in many occasions, e.g.,
when negative diagonal elements of Pk|k−1 are estimated at
time-step 5.7·104. For the ideal case considered in this section,
significant estimation errors related to this problem occur only
for N < 300.

Fig. 9(b) shows the norm of the estimation errors as a
function of N for the base case plus steps. For each value
of N , the norm is computed by considering the M = 30
time-steps after the state step-variation. As expected, the
PECE method outperforms the Myers method in the period
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Fig. 11. Network tolology of the IEEE 39-bus test system [28], together
with the adopted PMU placement. We assume that bus #31 is the connection
point of the system to an external network that is represented by a voltage
source called SB in series with the short-circuit impedance Zsc.

following the step. In contrast with the base case, the smaller
the N value is, the smaller the errors are, because the last
innovations have a higher weight in the computation of the
sample covariance (16).

IV. APPLICATION TO POWER-SYSTEM STATE ESTIMATION

The effectiveness of the PECE method is here proved in the
context of power-system SE. We simulate the behavior of a
power network via the procedure described here as follows.

1) We consider the IEEE 39-bus test system, a widely used
transmission network benchmark [28]. A schematic of
the network is shown in Fig. 11.

2) The network boundary conditions are represented by the
nodal power injections/absorptions of generators/loads.

3) In order to show the behavior of the PECE method when
a state step-variation occurs, we simulate a sudden drop
of the reactive power absorbed by the load at bus #4.2

4) The network true state and the true values of the mea-
surements are computed via a power flow procedure that
uses as inputs the network characteristics and operating
conditions described in steps #1–3 (a detailed descrip-
tion of the power flow procedure is contained in [29]).

2This can be caused by the disconnection of a shunt reactor, which is a
common operation in transmission networks. Note that a step-variation of
the active power or of both active and reactive powers simultaneously might
produce step-variations of different state variables. However, the covariance
assessment methods are independent of the particular state variables that
experience the step-variation.

TABLE I

VOLTAGE LEVELS CHOSEN FOR THE IEEE 39-BUS TEST SYSTEM

5) The measurements used in SE are composed of nodal
voltage and nodal injected/absorbed current phasors
at the network buses marked as phasor measurement
unit “(PMU)” in Fig. 11. They are generated by adding
noise to the true quantities computed in step #4.

6) In order to evaluate the accuracy of each state estimator,
the estimated state returned by each state estimator is
compared with the true state provided by the power flow

procedure.

Further technical details and explanations are given in the
following. The voltage levels at every bus of the 39-bus
network of Fig. 11 are given in Table I. The zero-injection
buses shown in Fig. 11 are buses where no load or generator
is connected. We assume that bus #31 is the connection point
of the system to an external network. The latter is characterized
by a short-circuit power of 50 GVA and a rated voltage
of 380 kV that result in a short-circuit impedance Zsc =

i 2.89 � (i denotes the imaginary unit of complex numbers).
The external network equivalent circuit is represented by a
fixed voltage source called slack bus (SB) in series with Zsc.
The SB is the reference bus used in the power flow procedure,
where we impose the phase angle of the voltage phasor to be
zero.

The state of a power network composed of ℓ buses is usually
represented by the voltage phasors at every network bus, which
can be expressed in rectangular coordinates as

x = [V1re, . . . , V jre, . . . , Vℓre, V1im , . . . , V jim , . . . , Vℓim ]

V j = V jre + i V jim (25)

in which V j is the voltage phasor at the network bus # j . In our
case, ℓ = 39 and the state dimension n = 78.

The power flow procedure computes the system state impos-
ing: 1) voltage magnitude and phase angle at the SB; 2) active
power and voltage magnitude at the generator buses; and
3) active and reactive powers at the load buses. The active
powers and the voltage magnitudes at the generator buses
are the ones specified in [28]. In order to use realistic time
series, the active and reactive powers absorbed by the loads
come from real power measurements provided at 50 frames/s
by PMUs3 installed in the 125-kV subtransmission network
of Lausanne, Switzerland. These power measurements are
adapted to the values specified in [28].4

3According to the definition in [30], a PMU is a device that produces
synchronized phasor, frequency, and rate-of-change of frequency estimates
from voltage and/or current signals and a time-synchronizing signal.

4As we do not use transformer tap changers, the powers at buses #7, #8,
and #12 have been changed in order to get the voltage magnitude at every
bus within the range ±5% of the rated voltage, which is a required operating
condition in transmission networks. In particular, the absorbed active Pa and
reactive Pr powers at the aforementioned buses are: (P7a ,P7r ) = (23.38,8.4)
MVA, (P8a ,P8r ) = (52.2,17.6) MVA, and (P12a ,P12r ) = (7.5,30) MVA.
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Fig. 12. Time profiles of the active and reactive power at bus #4. A drop of
about 90 MVAR of reactive power occurs at 600 s.

Fig. 13. Time profile of the reactive power at bus #4: zoomed-in view close
to the 90-MVAR step-variation.

At 600 s, we simulate a sudden drop of 90 MVAR of the
reactive power at bus #4, which is shown in Fig. 12. This
produces step-wise perturbations in the state variables; these
perturbations are similar to those of Section III-B2. Fig. 13
highlights the fact that the drop affects two time-steps as
a result of the response to transients of the PMU phasor
estimation algorithm [31].

The PMU locations are chosen in order to have the system
fully observable, i.e., matrix H is of full rank (Assumption 3
holds). The measured phasors are expressed in rectagular coor-
dinates and are obtained by perturbing the true quantities with
randomly generated Gaussian white noise characterized by a
variance related to the PMU accuracy. The latter is assumed to
be known and the measurement uncertainties are independent;
these are common assumptions in power systems. Thus, R is
known and diagonal. In particular, we assume the use of PMUs
characterized by a total vector error (TVE) of 0.14%, which is
equally distributed between real and imaginary parts, i.e., an
error of 0.1% each (see [30] for the definition of TVE). The
standard deviations of the measurement noises are assumed
to be one third of it, specifically 0.33%. They are written in
percentages of the full scales of the sensors [32, p. 159]. The
voltage sensors’ full scales are assumed to be equal to the
rated voltage, and the current sensors’ full scales are assumed
to be equal to twice the largest value of the injected-current
magnitude at the respective bus.

Expressing both states and measurements in rectangular
coordinates leads to a linear measurement model character-
ized by an exact measurement matrix H. The latter is not
approximated and its elements are known and constant along
the time, as explained in detail in [4]. The part of H related
to the voltage measurements is composed of zeros and ones.
The part of H related to the injected-current measurements
is derived from the admittance matrix of the network [4].

The latter is constructed from the network topology and
the electrical parameters of the transmission lines that are
commonly assumed to be known and constant in time (see [29]
for the details on the construction of the admittance matrix).

The above-mentioned hypotheses on H and R lead
to a linear, known, and stationary measurement model
(Assumption 2 holds).

Moreover, we use the process model given in (14), because
Assumption 1 holds for the following reasons: 1) the true
state of a power system is always time-variant and hidden;
2) the power-system inputs are usually not controllable from
the SE perspective; and 3) we assume the use of high-
resolution measurements at 50 frames/s.

A. Accuracy Performance Analysis

In this section, we analyze the accuracy performance of
five state estimators, i.e., four KFs that use the Myers, Zanni,
PECE and PECEdiag methods, and the LWLS. The LWLS
formulation is described in detail in [4] and briefly recalled
in the Appendix. As in Section III-B, the Zanni method uses
N = 30, whereas the PECE, Myers, and PECEdiag methods use
N = 5000. The influence of parameter N on the SE accuracy
for the specific application of power-system SE is presented
in Section IV-B.

The first part of the simulation consists in an initial
phase of 300 s (corresponding to 15 000 time-steps as in
Section III-B1) in which we keep a constant value of Q for
the considered KFs and their estimated states converge from a
flat-start initialization5 toward the true state. For brevity, the
initial phase is not shown in this section.

The time evolution of the norm of the estimation errors
of the five considered state estimators is given in Fig. 14; it
is composed of three subfigures: Fig. 14(a) shows the entire
simulation; Fig. 14(b) shows a portion of the simulation where
the network is in quasi-steady-state conditions, and Fig. 14(c)
shows the portion of the simulation close to the state step-
variation. The norm of the esitmation errors of the Myers

method exhibits high sporadic spikes that are clearly visible in
Fig. 14(a). This numerical stability issue of the Myers method
has already been described in Section III-B3 (in particular,
see Fig. 10), and it is due to the fact that the Myers method
does not ensure the positive semidefiniteness of Pk|k−1. Note
that the smaller the N value, the worse the numerical stability
issue.

Fig. 14(b) shows the norm of the estimation errors when
the network is in quasi-steady-state consitions, i.e., the load
powers are varying smoothly with no steps of significant
amplitude. The errors of the four KFs are comparable except
for the occasional spikes of the Myers method, whereas the
LWLS errors are about three times larger on average. We can
observe that, unlike in Section III-B1, the accuracy of the
Zanni method is just slightly worse than that of the other KFs.

5In the context of power systems, the flat-start initialization refers to a state
vector with the real parts of the voltage phasors equal to 1 per unit of the
rated voltage and the imaginary parts equal to 0. This is a common practice
in power systems as, in normal operating conditions, the voltage magnitudes
are close to the rated values and the voltage phase angles are small.
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Fig. 14. Time evolution of the norm of the estimation errors. (a) Entire simu-
lation. (b) Zoomed-in view of Fig. 14(a) during quasi-steady-state conditions.
(c) Zoomed-in view of Fig. 14(b) close to the state step-variation.

Fig. 14(c) shows the norm of the estimation errors during
and after the step-variation. The LWLS keeps the same esti-
mation accuracy; because at every time-step, it relies only on

Fig. 15. Time evolution of the real part of the voltage phasor (in per unit of
the rated voltage) at bus #4: true and estimated values. Bus #4 is the one where
the reactive power step-variation occurs; therefore, the voltage at this bus is
the most affected by the perturbation. Only the LWLS and PECE methods
are capable of tracking the true state during the step-variation.

the measurements taken at that time-step. The KF, instead,
also uses the past information to compute the system state.
As soon as the step occurs, Pk|k−1 should be adapted in
order to attribute a lower weight to the predicted state with
respect to the measurements. In other words, the KF behavior
should approach that of the LWLS. The Myers and Zanni

methods detect the occurrence of the step with a time-step
delay, because they use only the state estimates. Therefore,
they are characterized by large estimation errors when the step
occurs. After the step, the Zanni method recovers the correct
state tracking faster than the Myers method. The PECE method
is the only one that has a peak of the errors comparable
to the one of LWLS. Indeed, it estimates the new Pk|k−1
by using the innovations before the measurement update,
so that the information brought by the measurements at
the time of the step is already considered in the Kalman
gain. The accuracy of the PECEdiag method is significantly
worse than that of the PECE method, proving the importance
of using a full matrix in the optimization problem (18).
These results confirm those obtained for the ideal case of
Section III-B2.

The reactive power step-variation affects mainly the real
part of the voltage phasors at bus #4 and at the neighbor buses.
Fig. 15 shows the time evolution of the real part of the voltage
phasor (in per unit of the rated voltage) at bus #4: the true value
and the value estimated by the considered state estimators.
It reflects the estimation errors shown in Fig. 14(c). It is worth
mentioning that some of the state variables estimated by the
Myers, Zanni, and PECEdiag methods go even on the opposite
direction of the true state variation. For instance, this undesired
behavior occurs with the Myers and Zanni methods for the real
part of the voltage phasor at bus #31, as shown in Fig. 16.
This is due to the incorrect value of Pk|k−1 estimated by these
methods when the step occurs. These wrong estimates are
other possible equilibrium points of the power system far from
the true ones.
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Fig. 16. Time evolution of the real part of the voltage phasor (in per unit
of the rated voltage) at bus #31: true and estimated values. The quantities
estimated by the Myers, Zanni, and PECEdiag methods exhibit a peculiar and
undesired behavior. Only the LWLS and PECE methods track the true state
correctly.

B. Influence of Parameter N on the SE Accuracy

This section shows the influence of parameter N on the
SE accuracy. This study is carried out separately for the
network in quasi-steady-state conditions and during the step-
variation. In the first case, we consider the 100 s prior to
the step. In the second case, we consider the 2 s following
the step-variation. For both cases, we compute the norm of
all the estimation errors contained in the considered time-
window and we show the median value of the norms obtained
in ten different simulations. The norm values as a function
of N are shown in Fig. 17(a) and (b) for the system in quasi-
steady-state conditions and during the step-variation, respec-
tively. The accuracy of both the PECE and Myers methods is
examined.

Concerning the system in quasi-steady-state conditions, the
estimation accuracy of both the PECE and Myers meth-
ods degrades as N diminishes. However, it can be seen
that the accuracy of the PECE method is much better
than that of the Myers method for all the considered val-
ues of N . This is mainly due to the numerical stability
problem of the Myers method that we have discussed in
Section IV-A.

As expected, also the study on the step-variation reveals
that the PECE method outperforms the Myers method for all
the considered values of N . The accuracies of both methods
decrease as N decreases, which indicates an opposite trend
with respect to the results of Section III-B3. Regarding the
Myers method, the reason lies in more significant numeri-
cal stability problems. Instead, the worsening of the PECE
method’s accuracy as N decreases is due to the increasing
effect of the measurement noise on the sample covariance
matrix (16). Indeed, we have observed that the small peak of
the errors of the PECE method close to the step-variation has
the same amplitude irrespectively of the value of N , whereas
the errors after the step are highly affected by the measurement

Fig. 17. (a) Quasi-steady-state conditions. (b) State step-variation. Influence
of parameter N on the SE accuracy for both the PECE and Myers methods.
For case (a) where the network is in quasi-steady-state conditions, the norm
of the errors is computed considering the 100 s prior to the step. For case
(b) where the network state has a step-variation, the norm of the errors is
computed considering the 2 s following the step.

noise. The latter is not effectively filtered if a small value of N

is set.
In conclusion, the PECE method guarantees a better accu-

racy than the Myers method for all the considered values of N

in both quasi-steady-state conditions and during the state step-
variation.

C. Computational-Time Performance Assessment

The remarkable estimation accuracy of the PECE method
comes at the expense of the computational time. The latter
is almost entirely devoted to solving the convex optimization
problem of (18) that depends only on the state dimension n.
We can instead neglect the time used to compute the sample
covariance matrix (16), so that the computational time is not
function of N . Fig. 18(a) shows the computational time of the
PECE method as a function of n. Each value is an average
over 100 simulations. These results are obtained by solving
the optimization problem (18) with YALMIP employing the
sdpt3 solver implemented in the MATLAB 2014b [26], [27].
The laptop is an Apple MacBook Pro with a 2.5-GHz CPU,
16-GB RAM. The increase of the computational time shown
in Fig. 18(a) is exponential as the y-axis is in logarithmic
scale.

On the contrary, the computational time of the Myers and
Zanni methods is significantly affected by the parameter N .
Fig. 18(b) and (c) shows the computational time of these
methods, as a function of the state dimension n; the three
curves refer to three values of N , i.e., 100, 1000, and 10 000.
Both methods are considerably faster than the PECE method.
In particular, the Myers method is characterized by a compu-
tational time that increases exponentially as a function of n,
and it remains below 100 ms for the considered values of n.
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Fig. 18. Computational time as a function of n. For the Myers and Zanni

methods, multiple curves refer to different values of N. (a) PECE method.
(b) Myers method. (c) Zanni method.

The Zanni method is the fastest one with a computation time
always below 10 ms.

V. CONCLUSION

In this paper, we have proposed a new method, called
PECE, for the optimal assessment of the KF-prediction-
error covariance matrix Pk|k−1 that is suitable for SE of
step-varying processes where the process-noise covariances
are time-varying and unknown. To the best of our knowledge,
for the first time in the literature, it is proposed a method
that: 1) correctly estimates the value of Pk|k−1 for a process
characterized by constant noise covariances and 2) rapidly
tracks the system state subject to large step-variations. We have
tested the PECE method for an ideal case and for a realistic

application as power-system SE. On one hand, in tracking
state step-variations, the PECE method is faster than the two
covariance-estimation methods that, in this paper, are called
Myers and Zanni. On the other hand, the proposed method
is computationally expensive for high-dimensional systems,
whereas Myers and Zanni methods are more suitable for a
real-time implementation. The PECE method relies on the
knowledge of a linear and stationary measurement model,
and it has been validated for a random-walk process model.
It makes use of a constrained convex optimization problem
that computes Pk|k−1 from the innovations and ensures the
symmetry and positive semidefiniteness of Pk|k−1. It requires
the setting of a single parameter N (the number of past
innovations used to compute Pk|k−1), so that the parameter
tuning for specific applications is simplified. A study regarding
the influence of parameter N on the PECE accuracy has shown
its robustness compared with the Myers method. It is also
important to highlight that the PECE method estimates the full
matrix Pk|k−1, and we have shown that the correct assessment
of the off-diagonal entries of Pk|k−1 plays an important role
in the proper tracking of state step-variations. Future research
will focus on a more general process model, which is a not
trivial contribution that requires a thorough validation.

APPENDIX

Here, we give the proofs of Theorems 1 and 2. We also
briefly recall the covariance-estimation methods proposed by
Myers and Tapley [2] and Zanni et al. [3], as well as the
LWLS formulation.

A. Proof of Theorem 1

The objective function is convex and the set of feasible � is
convex [33, Ch. 7.1.1, pp. 355–357]. Furthermore, the infimum
of the objective function cannot occur when λmin(�) → 0
(where λmin denotes the smallest eigenvalue) because the
objective function becomes infinite when λmin(�) → 0. As the
feasible set is bounded (because of the condition In −� ≥ 0),
it follows that the optimization problem has a finite minimum,
which is attained for one or several values of �. Furthermore,
log[det(�)] is strictly concave [34, Lemma 6.2.2, p. 101] and
trace(�E) is linear in �; therefore, the objective function is
strictly convex. It follows that the minimum is reached at one
unique value of �. (QED)

B. Proof of Theorem 2

First, note that the innovations form a Gaussian random
vector with zero mean and covariance matrix given by (17).
By [33, Ch. 7.1.1, pp. 355–357], it follows that the ML estima-
tion of the covariance matrix of the innovation is obtained as
the optimal value of S in the following optimization problem6

(recall that H and R are fixed and known):

min
S,P

{log[det(S)] + trace(S−1Ck)}

s.t. S = HPHT + R

P real symmetric and P � 0. (26)

6Note that (26) is a convex problem as (18).
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Second, we show that the feasible sets of the optimization
problems (18) and (26) are equivalent. More precisely, there is
a one-to-one mapping between any feasible � of problem (18)
and a feasible (S, P) pair of problem (26). In one direction,
given �, S and P are obtained by

P = U−1(�−1 − In)U−T (27)

S = HPHT + R. (28)

We need to prove that if � satisfies the conditions of prob-
lem (18), then P � 0. To show this, observe that � ≻ 0 and
In − � � 0; therefore, �−1 − In � 0 [35, Appendix C]. This
in turn implies that P = U−1

(
�−1 − In

)
U−T � 0.

In the reverse direction, given S and P, � is obtained by

� = (UPUT + In)−1. (29)

Similarly, we need to show that if P satisfies the condition
of problem (26), then � is well defined, � ≻ 0, and
In − � � 0. First, observe that P � 0; therefore, UPUT � 0

and UPUT +In � In . Thus, UPUT +In ≻ 0 and is invertible. It
follows that � is well defined and � ≻ 0. Furthermore, �−1 =

UPUT + In � In and thus �−1 	 In [35, Appendix C].
Third, we show that the values of the objective functions

differ by a constant when � and (S, P) are mapped by the
above correspondance. Indeed, by (28)

R− 1
2 SR− 1

2 = R− 1
2 HPHT R− 1

2 + Im

= V

(
U

0m−n,n

)
P

(
UT 0m−n,n

)
VT + Im

= V

(
UPUT 0n,m−n

0m−n,n 0m−n,m−n

)
VT + Im

= V

(
UPUT + In 0n,m−n

0m−n,n Im−n

)
VT . (30)

Therefore, noticing that det(V) det(VT ) = 1 and using rules
for block-diagonal matrices

det(R)−1 det(S) = det(UPUT + In) = det(�)−1. (31)

Taking the inverse of (30) gives

R
1
2 S−1R

1
2 = V

(
UPUT + In 0n,m−n

0m−n,n Im−n

)−1

VT

= V

(
� 0n,m−n

0m−n,n Im−n

)
VT (32)

and thus

S−1Ck = R− 1
2 V

(
� 0n,m−n

0m−n,n Im−n

)
VT R− 1

2 Ck . (33)

Using the property that trace(AB) = trace(BA), it comes

trace(S−1Ck = trace

((
� 0n,m−n

0m−n,n Im−n

)
VT R− 1

2 CkR− 1
2 V

)

= trace

((
� 0n,m−n

0m−n,n Im−n

) (
Ek E′′

k

E′
k E′′′

k

))

= trace(�Ek) + trace(E′′′
k) (34)

where E′
k, E′′

k , and E′′′
k are subblocks of appropriate sizes

and Ek is defined in (20).

Putting together (31) and (34) gives the following relation
between the objective functions:

log det(S)+trace(S−1Ck)=− log det(�) + trace(�Ek) + α

(35)

where α = log det(R) + trace(E′′′
k) is a constant.

It follows from all the above that � is optimal for prob-
lem (18) if and only if (S, P) is optimal for problem (26),
when � and (S, P) are mapped by (27)–(29). (QED)

C. Covariance-Estimation Method of Myers and Tapley [2]

Myers and Tapley [2] have proposed a simple covariance-
matching method to assess both Q and R. In this paper, we
assume R is known, so that only Q has to be estimated. At
time-step k and denoting the state estimate with x̂, the value
of Qk is inferred by using the following procedure.

1) Compute N residual vectors ( j = 1, . . . , N)

r j = x̂k− j |k− j − Ak− j−1x̂k− j−1|k− j−1. (36)

2) Then, compute the sample covariance matrix

M̂k = cov(r1, . . . , rN ). (37)

3) Compute the estimated process-noise covariance matrix

Q̂k = M̂k −
1

N

N+1∑

j=2

(
Ak− j Pk− j |k− j A

T
k− j

− Pk− j+1|k− j+1
)
. (38)

In stationary conditions, Q̂ approaches the true value as the
parameter N increases. In case of variations of the process
stochastic parameters, the smaller the N value, the faster the
KF reaction.

D. Covariance-Estimation Method of Zanni et al. [3]

The analytical formulation of the heuristic method for the
assessment of the process-noise covariance matrix Q proposed
by Zanni et al. [3] is recalled here as follows. At time-step
k and denoting the state estimate with x̂, the procedure to
estimate Qk is the following.

1) Defining a vector g ∈ R
n , the j th element of g is

computed as the sample variance of a vector composed
of the j th elements of the last N estimated states

g( j) = var[̂xk−1|k−1( j), . . . , x̂k−N |k−N ( j)]. (39)

2) Then, the elements of g constitute the diagonal of the
estimated Qk

Q̂k = diag(g). (40)

Note that Q̂ is diagonal but its elements are different from
each other. The elements of g increase when the state changes
monotonically (increasing or decreasing). Hence, the method
is able to rapidly increase Q̂ in case of state variations. Note
that the larger the N value, the larger the Q̂ value. A small
value of N can be set if a slowly-varying process has to be
estimated. However, it is suggested to use few tens of state
estimates in order to adapt Q̂ in case of quick state variations.
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E. Linear Weighted Least-Squares State Estimator

The LWLS is a static state estimator as it uses only the
information contained in the current measurement set z. The
procedure is the following.

1) First, compute the so-called Gain matrix

G = HT R−1H. (41)

2) Then, the estimated state is computed as

x̂ = G−1HT R−1z. (42)
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