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Abstract. An empirical Bayesian approach is applied to a prediction of an
individual growth in height at an early stage of life. The sample has 548 normal
growth of Japanese girls whose measurements are available on request. The
prior distribution of estimator of the growth parameter vector in a lifetime
growth model is obtained conventionally from the least squares estimates of
the growth parameters. The choice of prior distributions is discussed from a
practical point of view. It is possible to obtain a relevant prediction of growth
based upon only measurements during the first six years of life. The lifetime
prediction of individual growth at the age of 6 is enough approximation of
real measurements obtained. This report deals with the comparison between
the least squares estimates and an empirical Bayes estimates of the growth
parameters and the characteristic points of the growth curve. We discuss the
mean-constant growth curves of the groups classified by the height intervals at
the age of 6.

Key words and phrases: Empirical Bayes prediction, fundamental growth
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1. Introduction

Many statistical growth studies have focused on growth model building and
growth model comparison. Many physical growth models of human height have
been proposed since Jenss and Bayley (1937) dealt with a well fitted nonlinear
growth model of height for children up to six years. Count (1943) attempts at de-
scribing a lifetime growth model of height. Preece and Baines (1978) deal with four
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asymptotic lifetime growth models of height. Based upon a fundamental growth
model, Shohoji and Sasaki (1987) discuss the Count-Gompertz type growth curve
as an asymptotic individual lifetime growth from infancy to adulthood. Jolicoeur
et al. (1988) propose a new type of seven-parameter growth models of height from
the day of fertilization to adulthood.

Rao (1975) has proposed an empirical Bayesian approach for a linear growth
model. Bock and Thissen (1980) discuss a Bayes estimation of individual growth
when data are incomplete. For the least squares estimation of growth parameters,
Berkey (1982) applies an empirical Bayesian approach to the estimation of growth
parameters in growth model during childhood. Shohoji et al. (1987) apply an
empirical Bayesian approach to an individual and an average lifetime growth curve
based upon the Count-Gompertz type growth model.

When we predict an individual lifetime growth in height at an early age of life,
we may not have enough information to predict a lifetime growth in height. Thus,
we cannot use a regular type of least squares method or of maximum likelihood
method to estimate and to characterize an individual lifetime growth. We may
apply an empirical Bayesian approach to a prediction of an asymptotic individual
lifetime growth at an early age of life. The mean and the variance-covariance ma-
trix of the prior distribution of growth parameters may be conventionally regarded
as the sample mean and the sample variance-covariance matrix of the estimates
of growth parameters, respectively. Thus, we can make an asymptotic lifetime
growth predicted by effectively using the information on growth parameters of the
proper population that she belongs to.

2. Materials

The sample is a part of the Hiroshima Growth Study sample that has 548
Japanese girls growing up normally. Almost all were born between 1965 and 1968.
Most of the girls aged between 6 and 18, were measured once a year. The age
intervals between any successive measurements are at most five years for each girl
who has her measurement at birth. The measurements until about the age of
18 have been retrospectively collected. These reliable data are collected from an
official pocket book for the mother and baby in Japan, the records of school health
cares and so on. These records may be available on request to the editorial office
of this Journal.

Table 1 shows the fundamental statistics of the height at the time of examina-
tion and the menarcheal age. One year is 365 days through out this report. Some
girls have been measured more than once during a yearly age interval. Eleven out
of 548 Japanese girls have no information on their menarcheal ages. The method
of iteration for estimating the growth parameters does not converge for two girls
(593152 and $96150). We obtain the least squares estimates of the growth pa-
rameters for 546 girls. The number of samples, that the difference between the
estimate of the growth parameter U in the growth model and the maximum height
obtained is larger than 3 cm, is 86 out of 546 girls. Conventionally, an empirical
Bayesian approach does not deal with these unsuitably fitted 86 girls. Finally, we
use only 460 girls for this growth analysis.
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Table 1. The fundamental statistics of height by age intervals and menarcheal age.

Age at Standard
measurelment Size Mean deviation Minimum Maximum
(Years)

Height (cm)

At birth 548 49.72 2.16 39.5 57.0
0 968 63.81 6.29 48.0 80.4
1 299 76.40 4.45 67.0 934
2 148 87.43 4.67 75.0 100.0
3 420 94.75 4.28 84.5 109.8
4 217 102.31 4.79 90.9 114.6
5 244 107.90 4.82 93.5 120.2
6 585 113.70 4.65 101.9 126.0
7 527 119.86 5.05 106.6 134.5
8 529 125.70 5.50 108.5 145.0
9 529 131.72 6.26 114.6 154.2

10 530 138.41 7.07 117.7 160.3
11 534 144.90 7.09 122.4 163.1
12 523 149.87 6.15 130.8 165.0
13 527 153.41 5.31 138.7 167.7
14 527 155.27 5.03 140.2 169.4
15 540 156.08 5.00 141.0 172.1
16 525 156.67 4.86 142.0 172.1
17 530 156.89 4.92 142.0 172.1
18 272 157.04 4.96 140.8 1721

Age at menarche (in months)

537 148.7 14.1 74.3 197.3

Note: Some girls are measured more than once during a yearly age interval and some others
are not measured.

For getting an empirical Bayes estimate of asymptotic lifetime growth based
upon the individual measurements obtained, at least six measurements are neces-
sary until the age at prediction. Eleven out of 460 girls have no information on
their menarcheal ages. Two girls do not have enough number of measurements
until their menarcheal ages to obtain the empirical Bayes estimates at menarche.

The empirical Bayes estimates of lifetime growth for 191 out of 460 girls are
obtained from the data until the age of 6 (72 months old). The 269 girls do not
have enough numbers of measurements to get their empirical Bayes estimates at
the age of 6. Thus, 191 girls are the essential sample for discussing an empirical
Bayesian approach of growth prediction at the age of 6.
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3. Growth model

It is strongly desirable that any mathematical growth models can describe
some biological phenomenon of growth from a biological point of view. The model
selection in growth study should not be considered only from a view point of good-
ness of fit because every growth model is asymptotic after all. For example, the
growth parameters and some properties of the growth model universally interpret
biological and physical meanings as much as possible. It is desirable that the es-
timates of growth parameters and characteristic points of growth curve should be
stable from a viewpoint of numerical calculation.

Let Y; be the height (cm) at age ¢ (month). A growth model of height from
birth to adult is

Yt =H (t; 0 ) + e

where @ is a growth parameter vector, e, is a random error and H (t; 8) is a distance
curve. Many authors (Preece and Baines (1978), Berkey (1982)) have made such
an assumption that the errors are uncorrelated for an observation scheme being
well spread out in time.

Shohoji and Sasaki (1985) introduce a fundamental lifetime growth model as

H(t;60) = g(t;0) + J(t;0)[U — H(t;6)]

for the growth of weight in savannah baboon. Here, we apply the fundamental
growth model to the growth in human height. Now, we consider that the parameter
U is the young adult height, g(¢;8) is a growth curve of height during infancy
and childhood, and J(¢;8) is a relative amount of measure of maturity at age
t from a viewpoint of growth in height. Many functional forms are available
for g(t;8) and J(t;0). Shohoji and Sasaki (1987) deal with the Count model
g(t;0) = C+ Dt+ Elogt as a growth curve of height during infancy and childhood.
We cannot use the measurement at birth for this model. But the measurements
at birth play important role for characterizing an individual growth. Sasaki et
al. (1987) introduce a modified Count model g(t;0) = C + Dt + Elog(t + 1) so
that the measurement at birth can be used for estimating the growth parameters.
On the other hand, a relative amount of measure of maturity during adolescence
J(t;8), is considered as an S-shaped Gompertz function. This function is almost
all zero before the adolescent growth spurt. The following model is induced from
the fundamental growth model.

The distance curve H(t) and its velocity curve h(t) at age t are, respectively,
defined as

H(t) = [C + Dt + Elog(1+8)](1 — =" ") + U= and
_A—BY E
h(t) = (1—e )<D+1_+_t>

+ BeA=Bt=<""'[ _C _ Dt — Elog(1 +t)]

where A, B, C, D, E and U are the elements of six-dimensional individual growth
parameter vector §. This velocity curve has empirically single local maximum
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Fig. 1. The least squares estimates of an individual growth curve and its two empirical
Bayes estimates. The solid curves are the least squares estimates of the growth curve.
One dotted curves are predicted from the measurements obtained until the age of 6.
The other dotted curves are predicted from the measurements until the age of 9.

and two local minimums such that one local minimum is positive and the other is
negative.

The solid curves in Fig. 1 present a graphical representation of the proposed
growth model fitted to a set of measurements (S16205 in the Hiroshima Growth
Study sample). The scales of distance curve H(t) and its velocity curve h(t)
are, respectively, plotted on the left and the right hand side vertical axes. Many
characteristic points of the growth curve can be mathematically defined. The
points M, S, P and @ on the age axis are the ages at characteristic points of
the growth curve. The point M is the age at menarche. The age at onset of
adolescence (age at take-off point, say, onset age) S is the younger age attaining
the local minimums of the velocity curve. The age at maximum growth P is the
age attaining the local maximum during adolescence. The age at completion @
is conventionally defined as the age attaining the five percent value of the local
maximum of the velocity curve during adolescence. From a feature of the growth
model, the final adult height slightly decreases after attaining the maximum height.
Thus, Table 2 shows that there exists a little difference between the mean of
estimates of U and the mean of heights estimated at the age at completion.

The value e~ Z is an index of individual growth power during adolescence.
The values of C and D + E are the height and the growth velocity at birth,
respectively. D may be recognized as an underlying growth velocity during infancy
and childhood.

Kanefuji and Shohoji {1990) deal with the growth model comparison among
the Preece-Baines model (1978), the Jolicoeur et al. model (1988) and the proposed
model, and with the comparison of the goodness of fit among these models for 365
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Japanese girls. The goodness of fit of the last two models is almost same and the
proposed model is a little better than the Jolicoeur et al. model from an AIC point
of view.

4. Empirical Bayesian approach

If we predict an individual lifetime growth at an earliest possible age, we must
have enough number of measurements to predict an individual lifetime growth.
There is such a big problem that these data do not contain any measurements
after the age at prediction. But an empirical Bayesian approach overcomes the
issues by making an efficient use of the sample mean and the sample variance-
covariance matrix of growth parameters obtained from the suitable population.
The prior distribution of growth parameters may be obtained from a set of the least
squares estimates of individual growth parameters. A growth model is established
to fit sufficiently and there exists sufficient number of data to estimate them. An
empirical Bayesian approach can predict an asymptotic individual lifetime growth.

We apply the method of scoring to the least squares estimation of individual
growth parameters. The initial trial values for the iteration is automatically set
up from the measurements obtained such that

(1) the initial trial values of U and C are the final height and the height at
birth, respectively,

(2) to get the initial trial values of the growth parameters D and E, the
linear regression is applied only to the measurements until the rough onset age of
her adolescence, and

(3) to obtain the initial trial values of A and B, the transformation w; =
log{—log{[Y: — g(¢;0)]/[U — ¢(t;0)]}} is used and the linear regression of A and
B is applied to the new variable w;.

The criterion of convergence for this iteration is that the relative amount of correc-
tion for every unknown parameter is simultaneously less than 0.001. The method
of scoring does not converge when the number of iteration is greater than 200.

In predicting a growth, the measurements obtained until the age of prediction
are utilized for estimating and predicting an asymptotic lifetime growth curve.
For getting an empirical Bayes estimates of growth parameter vector 6 (Berkey
(1982)), we minimize the value

A= [eww {360~ w0 -} - oYt - o)

without any restrictions on the growth parameters where n is the number of avail-
able measurements, y is an n-dimensional measurement vector and £ (y) is the ex-
pectation of y. The sample estimates of p and X for the prior distribution N(p, )
are obtained from the least squares estimates of individual growth parameters.
When the Newton-Raphson method is applied to the minimization of A with
respect to 6, the equations become complicated. Here, we apply Zangwill (1967)
to simplification of a computer program for the empirical Bayesian approach. The
sample mean of the growth parameter vector # is used as an initial trial value
of # for minimizing A. The criterion of convergence for this iteration is that the
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Table 2. The means and standard deviations of the least squares estimates and the empirical
Bayes estimates of growth parameters and characteristic points.

Methods of estimation

Least squares estimation Empirical Bayesian estimation

(460 females) At menarche At age of 6
(447 girls) (191 girls)
Mean S.D. Mean S.D. Mean S.D.

Individual growth parameters

A 8.726 4.150 8.863 2.291 8.933 0.508
B 0.061 0.026 0.062 0.014 0.063 0.004
C 48.88 2.22 48.93 1.88 48.95 1.67
D 0.376 0.060 0.384 0.051 0.405 0.047
E 8.00 1.27 7.89 1.08 7.69 0.99
U 155.84 4.97 156.12 3.86 156.26 3.64
Residuals 0.84 0.69 3.41 4.03 11.13 13.90

Characteristic points

At onset of adolescence

Age (mo.) 101.33 20.38 104.3 17.53 106.02 4.24
Height (cm) 123.91 10.08 125.49 8.78 127.79 5.00
Velocity (cm/mo.) 0.462 0.054 0.464 0.050 0.478 0.044
At maximum growth
per month
Age (mo.) 129.13 15.98 131.09 13.93 131.47 4.77
Height (cm) 139.41 7.13 140.53 6.01 142.14 4.31
Velocity (cm/mo.) 0.693 0.126 0.697 0.099 0.690 0.027
At completion of growth
Age (mo.) 179.88 13.38 178.38 12.41 174.35 8.58
Height (cm) 156.29 4.98 156.44 3.87 156.6 3.71
At birth
Height C (cm) 48.88 2.22 48.93 1.88 48.95 1.67
Growth velocity
D+ E (cm/mo.) 8.38 1.23 8.27 1.05 8.10 0.97
Power of
growth e~ B 0.941 0.024 0.940 0.013 0.939 0.004

amounts of corrections of all growth parameters are less than 10713, simultane-
ously.

The girl (S16205) in Fig. 1 is not a special case from a viewpoint of normal
growth. The solid curves in Fig. 1 are estimated by the least squares method based
upon the whole available measurements. The dotted curves are the empirical Bayes
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estimates based upon the measurements obtained until about the age of 6 or 9. It
should be mentioned that no measurements on and after the age of 6 are available
for predicting a lifetime growth in height at the age of 6. Figure 1 presents the
comparison among three estimates of the growth curve when we use the prior
distribution obtained from the least squares estimates of growth parameters.

Only measurements until the menarche are used for obtaining the empirical
Bayes estimates at menarche. Other empirical Bayes estimates are obtained from
the available measurements in the first six years of life. For convenience, the mean
and the variance-covariance matrix of prior distribution are obtained from the ordi-
nary least squares estimates for all individuals. Table 2 presents the sample means
and standard deviations of the least squares estimates and two empirical Bayes
estimates for an individual growth. The empirical Bayes estimates at menarche
are closer to their ordinary least squares estimates based upon whole available
measurements than their empirical Bayes estimates at the age of 6.

To get better empirical Bayes estimates, we have to choose more suitable prior
distribution of growth parameters for a target individual, because there are many
types of growth patterns according to the living environments and the genetic
factors.

5. Selection of prior distribution

An empirical Bayesian approach is effectively used for predicting an individual
growth in height at an early age of life (Shohoji et al. (1987)). It is necessary to
obtain the most suitable prior distribution of the growth parameters in a growth
model. To search a better information on the prior distribution, we conventionally
divide the sample into four groups by the predicted height at the age of 6. These
four groups are (G1), (G2), (G3) and (G4) in Table 3. For example, the predicted
heights at the age of 6 in (G1) are shorter than 107 cm. Figure 2 presents the mean-
constant growth curves and their velocity curves. The numbers in the parentheses
of Fig. 2 are the sample sizes of the corresponding groups, the total of which is 460.
There are highly significant differences among the means of the growth parameter
vectors for four groups. The taller the height at the age of 6 is, the taller the final
height is from a viewpoint of the mean-constant growth curve.

The essential sample (191 girls) is divided into four groups (g) by the height
intervals at the age of 6. To evaluate the reliability of an empirical Bayesian
approach, we conventionally divide each group (gx) into two subgroups (g+a) and
(g+b) that are, respectively, the first half and the last half in the group (g#) in
sequence of the identification numbers. For example, the groups (gla) and (glb)
have, respectively, the first 22 and the last 23 girls in the group (gl1).

The estimates of the means and the variance-covariance matrices of the prior
distributions (px), (pxa) and (pxb) are, respectively, obtained from the least
squares estimates of growth parameters in the groups (g*), (g*a) and (gxb). For
example, we obtain the prior distribution (pl) from the least squares estimates
in the group (gl), the sample size of which is 45 in Table 3. The mean-constant
growth curves for four groups (g*) have almost similar tendency as Fig. 2. We
have the prior distribution ALL obtained from the least squares estimates for all
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Table 3. The mean of mean squares of residuals of empirical Bayes estimation.

Heights at age 6 (cm)

< 107 107-110 110-113 113+
Groups (G1) (G2) (G3) (G4)
Sizes 100 119 125 116

The samples who have not enough number of measurements
to predict the growth at the age of 6

Sizes 55 78 72 64

The samples who can predict the lifetime growth at age 6

Groups (g1) (82) (g3) (g4)
Sizes 45 41 53 52

Empirical Bayes estimates at age of 6

(p1): < 107 12.44(16.96)  10.00(10.95)  17.19(13.87)  50.63(58.68)
(p2): 107-110 21.40(20.30) 6.65(6.37) 15.02(11.06)  64.01(44.11)
(p3): 110-113 46.21(33.98) 15.30(10.45) 7.64(7.75) 22.24(26.55)
(p4): 113+ 32.14(31.62) 19.87(18.44)  15.01(17.22) 8.86(6.68)
ALL 13.94(19.44) 10.59(13.80)  11.37(13.17) 8.55(6.96)

Least squares estimates (191 girls)

0.85(0.47) 0.95(0.55) 1.00(0.84) 1.05(0.66)

Note: The numerical values in the parentheses () are standard deviation.

191 girls. From Fig. 2, there are at least four types of growth patterns in height
of Japanese girls. Thus, the most proper prior distribution should be chosen at
predicting an asymptotic lifetime growth of a target individual.

Table 3 summarizes the means and the standard deviations of mean square of
residuals for the least squares estimates and the empirical Bayes estimates based
upon various prior distributions of growth parameters. The row of the prior dis-
tribution (px*) in Table 3 presents the results that the prior (px) is applied to all
four groups (g*) for predicting their lifetime growth at the age of 6. For example,
we apply the prior distribution (pl) to 45 girls of the group (gl). The mean of
their mean squares of residuals is 12.44 and their standard deviation is 16.96. The
55 girls in the group (G1) have not enough number of measurements to predict
their growth at the age of 6. At applying the prior distribution (p2) to the group
(g1), the mean of mean square of residuals is 21.40. The last row in Table 3 gives
the mean of mean square of residuals for the ordinary least squares estimates of
191 girls, for whom we obtain the empirical Bayes estimates at the age of 6.

The best prior distribution is individually different because the growth has
a great influence from the living environments and the genetic factors. It is im-
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Table 4. Comparison of mean of mean squares of residuals of two empirical Bayes estimation
for two different prior distributions.

Prior distributions

Groups Sizes (p*a) (p*b)
Empirical Bayes estimates at age 6

< 107 (gl) 45

gla 22 14.29(18.45) 15.68(22.25)

glb 23 10.03( 7.76) 10.12(10.19)
107-110 (g2) 41

g2a 20 7.95(9.62) 9.10(7.34)

g2b 21 7.17(5.39) 4.83(2.90)
110-113 (g3) 53

g3a 26 8.61(8.01) 8.14(7.48)

g3b 27 7.44(7.86) 6.77(7.92)
113+ (g4) 52

gda 26 7.96(5.77) 8.02(5.94)

gdb 26 11.78(9.00) 8.85(6.82)

Note: The numerical values in the parentheses () are standard deviation. gxa and g*b are,
respectivery, the first half and the last half of the group g+ in the sequance of identification
numbers. The prior distributions, p+a and p#b, are obtained from the groups, gxa and g#b,

respectivery.
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portant to choose a better prior distribution at applying an empirical Bayesian
approach to an actual individual. The mean of mean square of residuals, being
bold faced in Table 3, is the smallest value among the four empirical Bayes esti-
mates (within the column) for each group. The best prior distribution for each
group is the prior distribution obtained from the corresponding group. For exam-
ple, the best prior distribution for the group (gl) is the prior distribution (pl).
When a lifetime growth is predicted at the age of 6, we had better use the prior
distribution of the group to which a target individual at the age of 6 belongs. But
the best prior distribution of an empirical Bayes estimation for the groups (g4) is
the prior obtained from the whole effective sample.

Table 4 presents sixteen means of mean square of residuals for eight subgroups
to each of which we apply two corresponding prior distributions. In predicting a
lifetime growth at the age of 6, we get two corresponding means of mean squares
of residuals. These means are almost all the same, whether a target individual
belongs to a subgroup used for obtaining the prior distribution or not. This verifi-
cation gives an evaluation of the reliability of the empirical Bayes estimation, that
is proposed for predicting an individual growth curve.

6. Discussion

An individual growth curve is more useful and more practical than an average
or a median growth curve of population from a clinical point of view. The clinical
interest is obvious to obtain a proper prediction of an individual future growth. It
should be emphasized at practical and statistical analysis based upon individual
growth, that only one measurement is available at each time of observation for
any individual. That is, we cannot get any repeated measurements at each time
of examination for any individual. Even if an observation scheme is well designed
from a statistical point of view, the age interval between successive measurements
is not always equal from a viewpoint of practical data collection for a human
growth study. But, it is well known that the estimators of individual growth
parameters are consistent and asymptotically normally distributed under certain
regularity conditions.

The estimation of individual growth parameters may be equivalent to summa-
rize target longitudinal measurements obtained and to characterize an individual
growth statistically. This approach can reduce skillfully the dimensionality of in-
complete measurements collected for each individual. Even if the size of individual
measurements is large, only few growth parameters are enough to characterize an
asymptotic lifetime growth. The collected original measurements have high dimen-
sionality, different ages at examination for individuals and inconsistent numbers
of measurements for individuals. Thus, the growth parameter space is more use-
ful and easier to handle than the original sample space of heights and ages at
examination.

The empirical Bayesian approach may be practically useful to predict and to
detect abnormal growth at an early age of life. The empirical Bayes estimates
of growth parameters are strongly dependent upon the prior distribution used.
It is necessary to get a relevant prior distribution for obtaining a better predic-



618 TAKAO SHOHOJI ET AL.

tion. Each individual is better to be classified into proper homogenous groups for
obtaining suitable prediction.

It is desirable that the growth parameters and these functions have better
physical meanings of growth. The parameters A and B may govern strongly
an adolescent growth in height. These parameters are highly correlated whose
correlation coefficient is 0.97. We can obtain a linear relation between A and B by
the linear regression. Thus, we can induce a five parameters model (say, 5-model)
by eliminating the parameters A based upon this linear relation. The least squares
method can estimate the growth parameters in the induced 5-model for the same
sample. The mean square of residuals for the induced 5-model is larger than for
the proposed model. We compare the 5-model with the proposed model from an
AIC point of view. This model is better than the 5-model for about 77 per cent
individuals. The degrees of individual differences between their AICs are relatively
large. On the other hand, the induced 5-model is better than the proposed model
for about 23 per cent individuals, but the individual differences between their AICs
are only slight. The estimates of the growth parameters C, D and E controlling
a preadolescent growth fluctuate very widely but are highly correlated.

Table 3 shows that the mean square of residuals for the least squares estimation
is smaller than for the empirical Bayes estimation. The sample variances of the
least squares estimates of growth parameters and characteristic points are larger
than the sample variances of their empirical Bayes estimates. The mean square
of residuals for the empirical Bayes estimates based upon the measurements untit
the age of 6 is larger than that until the menarcheal age (also, until the age of
9). We can apply successively the empirical Bayesian approach to a practical
prediction of an individual growth based upon the measurements during infancy
and childhood. Although we apply the empirical Bayesian approach to normal
growth here, Kanefuji and Shohoji (1990) deal with an abnormal growth that is
an insulin-dependent diabetes mellitus patient. There are many factors having an
influence on growth in height. In predicting actual abnormal growth in height,
we may prepare growth prediction procedures for each disorder by the use of
various information (e.g., races, genetic factors, born age and degree of maturity
at prediction, height and age).
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