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Abstract—It is becoming clear that 5G wireless systems will 

encompass frequencies from around 500 MHz all the way to 
around 100 GHz.  To adequately assess the performance of 5G 
systems in these different bands, path loss (PL) models will need 
to be developed across this wide frequency range.  The PL mod-
els can roughly be broken into two categories, ones that have 
some anchor in physics, and ones that curve-match only over the 
data set without any physical anchor.  In this paper we use both 
real-world measurements from 2 to 28 GHz and ray-tracing 
studies from 2 to 73.5 GHz, both in an urban-macro environ-
ment, to assess the prediction performance of the two PL model-
ing techniques.  In other words, we look at how the two different 
PL modeling techniques perform when the PL model is applied 
to a prediction set which is different in distance, frequency, or 
environment from a measurement set where the parameters of 
the respective models are determined.  We show that a PL model 
with a physical anchor point can be a better predictor of PL per-
formance in the prediction sets while also providing a parameter-
ization which is more stable over a substantial number of differ-
ent measurement sets. 

Keywords—urban macro, path loss, shadow fading, 5G. 

I. INTRODUCTION 

Recently there has been great interest in using the higher 
frequencies (e.g., beyond 6 GHz) for access communications 
[1]-[4].  The interest in these bands is growing because of the 
rapidly increasing use of wireless data by consumers coupled 
with the limited spectrum available at the lower frequencies 
(e.g., below 6 GHz).  However before these higher frequency 
bands can be utilized, accurate path loss (PL) models must be 
determined for these bands like was done at lower frequencies 
(e.g., [5]) and preliminary work is under way [6]-[9]. 

 
These PL models will need to be developed for multiple 

environments including urban-macro (UMa).  Note that even at 
the higher frequencies (e.g., >30 GHz), cell coverage (or at 
least partial coverage with adequate reflections) could still be 
possible especially for UMa scenarios similar to the 3GPP cri-
teria of a 500 m inter-site distance (i.e., only requiring a 250 m 
cell range) [10].  This coverage could be possible at the higher 
frequency bands through very large antenna arrays (e.g., 100 
elements or more) which are feasible at these higher bands 
through chip-scale arrays [11].  In fact, [12] shows 0% outage 
up to 200 m cell radius at 38 GHz for both a low (18 m) and 
high (36 m) transmitter (Tx) site.  It should be noted that while 
diffraction is less important at these higher bands relative to the 
frequencies below 6 GHz, reflections are still present (but may 

behave differently than the lower frequencies) and also diffuse 
scattering is enhanced. 

 
The new PL models for these higher frequencies should be 

consistent with the PL seen at the lower frequencies as well 
(e.g., from 3GPP [10]).  However, it is clear that given the need 
to develop these PL models quickly to meet the near-term 5G 
standardization needs (e.g., in 3GPP), there will not be a com-
plete set of measurements across a wide range of environ-
ments, distances, and frequencies.  Hence the models will, out 
of necessity at least in the short-term, need to be applied in 
scenarios (e.g., frequencies, distances, or environments) where 
the model was not developed.  Therefore it is important to un-
derstand how well different PL models predict the PL behavior 
outside of the scenarios where the measurements were taken. 

 
In this paper we investigate how two different PL modeling 

methods behave when predicting the PL behavior to data out-
side of the data set used to compute the parameters of the PL 
models.  In this paper the term “measurement set” will refer to 
the set of data used to compute the parameters of the PL model 
and the term “prediction set” will refer to a different set of data 
where the performance of the PL models will be compared.  
The two PL models considered in this paper are the close-in 
(CI) free space reference distance PL model [5][9] and the Al-
pha-Beta-Gamma (ABG) PL model [6][7].  The reason these 
two models are being compared is that they differ in their re-
spective PL modeling methodologies.  More specifically, one 
model, the CI PL model, is anchored to a physical reference 
distance, and the other model, the ABG PL model, has no an-
chor and is only a best fit curve match over the available data 
set.  Hence it is valuable to compare the behavior of these two 
models outside of the measurement set (i.e., on the prediction 
set) to see if one or the other modeling methodology provides a 
more robust PL modeling both in terms of RMS error (aka 
shadow fading (SF) standard deviation) and in the stability of 
the parameters which make up the models.  Note a more thor-
ough discussion of the CI and ABG models is given in [8]. 

II. OVERVIEW OF THE AALBORG MEASUREMENT DATA 

AND THE RAY TRACING STUDIES 

In this paper the two PL models will be compared using 
both real-world measurements and results from a ray-tracing 
simulation.  The measurement campaign was carried out at 
Aalborg, Denmark to investigate the propagation characteris-
tics of the UMa environment at the super high frequency band 
[13].  The environment represented a typical European medium 



city’s residential district, in which the building height and 
street width were relatively homogeneous and measured at 17 
and 20 meter, respectively.  There were 6 transmitter (TX) lo-
cations, and the TX heights were 20, 25 or 54 meters.  A nar-
rowband continuous wave (CW) signal was transmitted at the 
frequencies of interest, i.e. 10, 18 and 28 GHz, and another 
CW signal at 2 GHz was always transmitted in parallel and 
served as a reference.  The receiver (RX) was mounted on a 
van, driving at a speed of 20 km/h within the experimental 
area. The driving routes were chosen so that they were con-
fined within the 3 dB beamwidth of the TX antennas. The re-
ceived signal strength and GPS location were recorded at a rate 
of 20 samples/s using the R&S TSMW Universal Radio Net-
work Analyzer for the calculation of PL and TX-RX separa-
tion.  The data points were visually classified into LOS and 
NLOS condition based on Google Maps.  Interested readers 
can refer to [13] for further information on the setup and how 
the receiver antenna patterns were compensated for. 

 
The ray-tracing simulation was performed using the 

WinProp v.13 ray-tracing simulator [14] with the 3D Standard 
Ray Tracing model (Fresnel coefficients for reflection and the 
uniform theory of diffraction (UTD) model for diffraction 
based on electrical parameters of materials, plus diffuse scatter-
ing was enabled).  The simulation was carried out using two 
UMa environment models based on the Madrid-grid layout 
described in METIS project [15] which consisted of open 
squares and street canyons.  In the first model, the original 
heights of buildings were used with three different TX loca-
tions and antenna heights of 51 m, 54 m and 46.5 m, respec-
tively (i.e., these antennas were located on rooftops).  In the 
second model, the buildings height was reduced to about 57% 
of the height in comparison to the original layout. The same 
three TX locations were used as in the first model but antenna 
height was now 29 m, 31 m and 27 m, respectively.  The an-
tenna height of the RX points were 1.5 m and isotropic anten-
nas were used at both the TX and RX.  The frequencies used in 
the simulation were the following: 2 GHz, 5.6 GHz, 
10.25 GHz, 28.5 GHz, 39.3 GHz and 73.5 GHz. The walls and 
ground were modeled by electrical parameters for concrete for 
all frequencies according to ITU-R recommendation P.2040 
[16].  The maximum numbers of reflections used in the simula-
tions were 4 and maximum numbers of diffractions were 2 for 
frequencies below 10 GHz and 1 above 10 GHz.  Only outdoor 
simulations were performed, the transmission from outdoor to 
indoor was disabled and 20 rays were calculated per RX point. 

 
Only the non-line-of-sight (NLOS) data from both the 

measurements and ray tracing will be used in this study.  Note 
that the ray tracing data includes points that would not be de-
tectable in normal measurement campaigns due to the limited 
dynamic range of actual measurement equipment.  Thus we 
only use ray tracing data where the PL minus free-space path 
loss (FSPL) at 1 m is less than 100 dB.  Using this relative cri-
terion makes the assumption that the sensitivity of the meas-
urements improves with frequency (e.g., using more directional 
antennas at higher frequencies to improve gain) but has the 
benefit of having a relatively stable number of points for the 
different frequencies used in the ray-tracing study.  Using an 
absolute criterion such as keeping data with PL below say 170 

dB, besides making the assumption that the measurement 
equipment would be identical at all frequencies, results in less 
data being available at the higher frequencies.  The concern 
was that the difference in the amount of ray tracing data at dif-
ferent frequencies could bias the results, and hence the relative 
criterion was adopted. 

III. OVERVIEW OF THE CI AND ABG PATH LOSS MODELS 

The CI PL model is given as [8][9]: 
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where c is the speed of light. 
 
The ABG PL model is given as: 
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where α captures how the PL changes in distance, β is an op-
timized offset value in dB, γ captures how the PL changes in 
frequency, and ABGX σ  is the SF term. 

 
In the CI PL model, only a single parameter, the PLE, 

needs to be determined and it can be found by minimizing the 
SF standard deviation over the data set [8].  What distinguishes 
the CI PL model is that there is an anchor point, the FSPL at 
1 m, which captures the frequency-dependency of the PL and 
provides a physical basis for this model.  Note that the 1 m 
anchor point makes physical sense even in NLOS conditions as 
even in NLOS the first 1 m around a typical transmitter is still 
obstruction-free and hence all rays still experience free-space 
propagation around the transmitter [5].  In the ABG PL model 
there are three parameters which need to be determined and 
they are chosen to minimize the SF standard deviation over the 
data set like the CI PL model [8].  However, since there are 
three parameters in the ABG PL model compared to only one 
in the CI PL model, the ABG model should always have a 
lower SF standard deviation than the CI PL model over the 
data set.  However, as we will show in this paper, the lack of an 
anchor to physics will mean that when the ABG PL model is 
applied outside of the scenario (e.g., distance, frequency, or 
environment) where the data was taken, the SF standard devia-
tion will tend to be higher than the CI PL model and the pa-
rameters of the ABG model are much more unstable than the 
PLE of the CI model. 

 
The closed-form expressions given in the appendix of [8] 

which minimize the SF standard deviation are used to deter-
mine the PLE for the CI model and the three parameters of the 
ABG model.  Over the entire set of data the two models had 
very similar SF standard deviations (8.95 dB for the CI PL 



model and 8.93 dB for the ABG model) indicating the extra 
parameterization of the ABG model does not significantly help 
improve the modeling accuracy in this particular measurement 
set.  For reference, the PLE for the CI model was found to be 
n=2.67, and the ABG model parameters were: α=2.62, 
β=34.90, and γ=1.90.  So the two models, over the entire set of 
data, have very similar behavior across distance (similar n and 
α), but interestingly, the ABG model predicts that the PL (mi-
nus FSPL (f, 1 m)) would improve with frequency since γ<2. 

IV. PREDICTION IN DISTANCE 

For all experiments we separated the data into two sets.  
The first set was the measurement set which was used to com-
pute the parameters of the PL models and the second set was 
the prediction set where we computed the SF standard devia-
tion (dB).  For all experiments, we compute the SF standard 
deviation on the prediction set by computing the RMS error 
between the resulting models found using the parameters cal-
culated from the measurements set to the measured path loss 
values on the prediction set.  In this set of experiments we 
broke the total data set up into two portions based on distance.  
We kept the prediction set fixed in this investigation and varied 
the measurement set where the measurement set included dis-
tances which kept getting further away from the prediction set. 

 
The first investigation is for the case that the prediction set 

is closer to the TX (base) than the measurement set.  In this 
case the prediction set is all the data with distances less than or 
equal to dmax = 200 m, and the measurement set will vary as all 
distances greater than dmax+δd (δd≥0).  As the distance, δd, be-
tween the two sets increases, it would be expected that the SF 
standard deviation of the two PL models would also increase.  
However, as can be seen in Fig. 1, the CI PL model had a very 
constant SF standard deviation for the prediction set regardless 
of how far away the measurement set would get.  On the other 
hand, the ABG PL model’s SF standard deviation on the pre-
diction set increased substantially as the measurement set got 
farther away from the prediction set (i.e., as δd increased).  Al-
so, the stability of the PLE of the CI PL model is much higher 
than the parameters of the ABG model when varying the dis-
tance between the two sets as seen in Fig. 2.  In particular, the 
α of the ABG model can vary quite a bit (1.53 to 2.73) which 
could have significant effects in system-level simulations as 
the level of interference seen greatly depends on the value of α 
(i.e., the distance-related parameter). 

 
In the second investigation, the prediction set is for distanc-

es far from the TX (base) and the measurement set is close to 
the TX.  In this case the prediction set is with distances greater 
than or equal to dmin = 900 m, and the measurement set will be 
variable as all distances less than dmin-δd (δd≥0).  The results for 
this case are shown in Fig. 3 and Fig. 4 for the SF standard 
deviation on the prediction set and the parameters of the PL 
models respectively, both as a function of δd.  In this case both 
PL models had a SF standard deviation that varied very little as 
the distance between the measurement set and prediction set 
increased, although the CI PL model did have a slightly lower 
SF standard deviation.  Both models had parameters that were 
fairly stable with δd, although the PLE of the CI PL model was 
slightly more stable than the parameters of the ABG PL model. 

V. PREDICTION IN FREQUENCY 

In these experiments the prediction set will be the data for a 
given frequency and the measurement set all other frequencies.  
For example the prediction set could be all data at 2 GHz and 
the measurement set the data for all other frequencies.  Note 
that when two frequencies are close to each other as is the case 
for 10 and 10.25 GHz and also for 28 and 28.5 GHz, they are 
both included in the 10 GHz and 28 GHz results, respectively. 

 
Fig. 5 shows the SF standard deviation for the two PL 

models on the prediction and measurement sets for the fre-
quency shown on the x axis (where that frequency is for the 
data in the prediction set).  Both models seem to predict in fre-
quency well except when predicting down to 2 GHz from the 
other frequencies where the CI PL model does a significantly 
better job at predicting the PL performance.  Fig. 6 shows how 
the parameters of the PL models change when different fre-
quencies are used in the prediction set.  As can be seen, the CI 
PL model has a much more stable parameterization than the 
ABG model (e.g., n of the CI PL model varies only from 2.65 
to 2.68, whereas α of the ABG model varies from 2.43 to 
2.67).  Also the γ value of the ABG model can be as low as 
1.51 (i.e., when excluding 2 GHz data from the measurement 
set) indicating a strong decrease in the PL (minus FSPL(f, 
1 m)) as the frequency increases which was not supported by 
the data (in general it is very consistent across frequency indi-
cating a value of γ around 2.0). 

VI. PREDICTION ACROSS ENVIRONMENTS 

In these experiments we divided the total data set up into 
two portions based on the environment.  The first set is the 
measurement set which was used to compute parameters of the 
PL models based on the one type of environment (Aalborg or 
Madrid-grid) and the second set is the prediction set used to 
compute the SF standard deviation.  For example the meas-
urement set could be all data from the Aalborg measurements 
and prediction set the data from Madrid-grid simulation.  The 
calculation in the prediction set was performed for every fre-
quency used in the measurement or simulation and two sets of 
antenna heights: lowTX (20m/25m in Aalborg and 
29m/31m/27m in Madrid-grid) and highTX (54m in Aalborg 
and 51m/54m/46.5m in Madrid-grid). 

 
In the first investigation, the data from the Madrid-grid is 

used for the measurement set and the prediction set is for data 
from the Aalborg environment.  The SF standard deviation for 
the measurement set is 9.11 dB for the CI PL model and 
8.87 dB for the ABG PL model indicating that the ABG PL 
model has better accuracy (but only by 0.24 dB).  The SF 
standard deviation of the PL models for the prediction set is 
shown on Fig. 7.  In this case the SF standard deviation of the 
CI PL model is lower in more cases than the ABG PL model 
(i.e., the ABG PL model is clearly better only for Aal-
borg_2GHz_lowTX).  Note that the better prediction behavior 
of the CI PL model is especially visible in the case of cam-
paigns with high TX antennas.  
 

In the second investigation, the data from Aalborg is used 
for the measurement set and the prediction set is for data from 
Madrid-grid environment.  The SF standard deviation for the 



measurement set in this case is 8.72 dB for the CI PL model 
and 8.58 dB for the ABG PL model indicating again that the 
ABG PL model has a slightly better accuracy (but only by 0.14 
dB).  The SF standard deviation of the PL models for the pre-
diction set is shown on Fig. 8.  In this case the SF standard 
deviation is better for the CI PL model for all cases. An inter-
esting observation is that the CI PL model is much better in 
predicting PL values for the higher frequency bands which 
were not used in the measurement set (39.3 and 73.5 GHz).  In 
this case the CI PL model is better in terms of SF standard de-
viation relative to the ABG PL model from 0.84 dB to 1.94 dB.  
 

The presented results show that the CI PL model has a bet-
ter prediction ability in most of the cases in term of SF standard 
deviation on the different environment which was not used for 
determining the PL model parameter.  This better prediction 
ability was despite the ABG PL model having a slightly better 
SF standard deviation for the measurement set.  This advantage 
is especially useful for near-term 5G standardization needs 
where a complete set of measurements across environments 
could be limited. 

VII. CONCLUSION 

This paper presented a comparison of two path loss models 
in a UMa environment using measured data from 2 to 28 GHz 
and ray tracing data from 2 to 73.5 GHz.  One path loss model 
had a physically-significant anchor point (CI model) and the 
other was a “floating” model (ABG model) which just does a 
curve fitting to the available data.  It was shown that having the 
anchor point tied to physics improves both the stability of the 
model and the SF standard deviation seen when using the mod-
el to predict path loss at different distances, frequencies, and 
environments relative to the set of data where the parameters of 
the path loss models were originally determined.  Thus, for 
unexpected scenarios or for situations where a path loss model 
must be used outside of the range of measurements used to 
create the original model, this paper shows the CI model is 
more robust and reliable as compared to the ABG model. 
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Fig. 1. SF standard deviation of the PL models for prediction in distance 

when the prediction set is close to the TX. 

 
Fig. 2. Parameters of the PL models for prediction in distance when the 

prediction set is close to the TX.  Note that the scale for beta is to the 
right. 
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Fig. 3. SF standard deviation of the PL models for prediction in distance 

when the measurement set is close to the TX. 

 

 
Fig. 4. Parameters of the PL models for prediction in distance when the 

measurement set is close to the TX.  Note that the scale for beta is to 
the right. 

 

 
Fig. 5. SF standard deviation for the PL models for prediction in frequency 

at the frequency shown.  The measurement set was for all frequencies 
except the excluded one shown on the x axis which is the prediction 
set. 

 
Fig. 6. Parameters of the PL models for prediction in frequency at the fre-

quency shown.  Note that the scale for beta is to the right. 
 

 
Fig. 7.  SF standard deviation of the PL models when the prediction set is for 

data from the Aalborg environment and the measurement set is for 
data from the Madrid-grid. 

 

 
Fig. 8.  SF standard deviation of the PL models when the prediction set is for 

data from Madrid-grid environment and the measurement set are data 
from Aalborg. 
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