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A Predictive Approach to the Random Effect Model 

by Seymour Geisser 

1. Introduction 

Suppose one has 

University of Minnesota 

K. observations on the 
J 

.th 
J treatment, batch or 

-group, j=l, ••• ,J and one wishes to estimate the treatment means,- then 

there are basically two "Bayesian" ways of handling the problem. 

The first is to use x •. , the sample treatment mean as the estimator of 
J 

9. the population mean as in the classical case j=l, ••• ,J, or secondly 
J 

to utilize a weighted combination of the j
th 

treatment mean and a 

grand mean a la Stein. From a Bayesian point of view and slightly different 

prior distributions both of these estimators are given a justification 

by Box and Tiao (1968) for K.=K • 
J 

The first is designated the fixed effect 

model and is based on a linear normal model with "uninformative" priors 

for the 9 's and the common variance. The second, termed the random 
j 

effect model, is derived from a linear normal hierarchical model with the 

location parameters a. 
J 

having independent prior normal distributions with 

common mean and variance. The latter mean and the logarithm of a linear 

function of the two variances along with the logarithm of the basic obser

vational variance are all assigned uniform priors. We note that the priors 

having to do with the variances are found objectionable by Lindley (1971) for 

several reasons chief among them is that both variances should be assigned 

proper priors, independent of the sample size K. We shall here examine 

· this problem from the point of view of predicting new observations one from 

each of the J groups. If one were to utilize the results presented by 

Box-Tiao and use the mean of the predictive distribution of the set of J 

I 
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future observations then one would be using the posterior means of 

as predictors under each model. This is essentially true whenever 

e. 
J 

E <~ . I e . ) = e . 
KJ J J 

as this implies that posterior expectation of e. 
J 

is 

equivalent to the predictive expectation of a new observation when both 

latter expectations exist. In the first case this is x •. and in the 
J 

second (1-~)x •. + µ,x.. where for O ~ µ. ~ 1 
J 

B(J+l . J(K-l}-2 
I ( 

J+l 
2 2 y 2 

µ, = 
J-1 J(K-1) J-1 

B( I ( 
2 

, 
2 y 2 

J(K-l}-2 
) , 

2 J(K-l)m
1 

J(K-1) (J-l)m
2 ) , 

2 

(J-l)m
2 

y = 
(J-l)m

2 
+ J(k-l)m

1 
B(p,q) and I (p,q) are, 

y 

respectively, the complete and the incomplete beta functions and 

, x • . 
J 

. x •• 

K 
~-

k=l~j 

J' 

= J-1 L ~.· . 
j=l J 

We shall focus on the.problem of prediction from a heuristic ·data 

analytic point of view and incidentally suggest that the methods of 

prediction can also be used to generate estimates of the a. 
J 

if this 

is desirable. Before doing this we shall digress to present the "correct" 

solution. 

Suppose one wished to infer which prior distribution was more 

appropriate for predicting from a given set of data and a given likelihood. 

Under each model rr. we would compute 
1 
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where p. represents the prior probability the Model IT. is correct where 
i i 

X represents the data set and 

where 

f(xlIT.) = Jf<xla.)dG.(a.), 
1 1 . 1 1 

G.(a.) 
1 1 

represents the prior distribution of Q' 

i 

Stric.tly speaking this method will only be useful when 

under model 

p. is assumed. 
i 

rr 

known and Gi(ai) is a completely proper prior that depends only on 

known constants! When the priors are not proper it would be necessary 

to utilize this procedure on a new data set Y where one would insert 

in (1. 3), 

model. 

f(Ylx,IT.) , the predictive density of Y given X and the 
i . 

i 

We shall assume here that pi is not known_ and we have only the ori

ginal data set. Further in the Box and Tiao development the prior models 

are completely or partially improper. Hence none of the aforementioned 

possibilities exist. 

We propose here two data analytic methods that may be of some value 

in this case of discriminating between the models. They are also capable 

of producing "best" estimates with regard to a least squares type criteria. 

2. Method I. 

The first modified predictive method for evaluating alternative 

procedures giving rise to estimators of the form (1-µ,)x •. + µ,x .. 
J 

respect to µ, involves omitting s·ay the k
th 

observation in the 

with 

.th 
J 

group and computing the estimato~ (1-µ,)ckj + µ,ckj 

maining observations where N= Li K., K. ~ 2 and 

from the N-1 re-

j=l J J 
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= (K.x •. - x. .)/(K. - 1) 
J J lCJ J 

x •. 
J 

ckj = (Nx •• - ~j)/(N-1); 

-This produces a predictor for ~j' namely (1-µ,)ckj + µckj' then 

repeating this for all k and j we evaluate the mean squared prediction 

error 

2 1 J ~ 2 
s = N- ~ [ (1-µ,)ck. + µckJ. - ~J.J 

µ, j=l k=l J 

It is to be noted that this need not be a sensible measure unless the 

variance for each observation is the same. We shall assume that this 

holds. Use of (2.1) above and the usual identities of the analysis of 

variance leads to 

2 lN 
J 

- 2 J r (1-µ,/K
2

. ~/N(K. -1) 
s = 2 ~ K. (x .. - x •• ) + r: i + µ 

(N-1) j=l J J I N(K.-1) 
(N-1/ j=l L.. J 

2µ,( 1-µ,) K. 

+ 
2 

s. 

N-1 J 

K. 

where 2 = (K.- 1)-1 rl - 2 s. J (~J· - xiJ.) 
J j=l 

Hence (2.3) could be appropriate for evaluating various values of µ, 

in particular if µ;=O then 

2 
2 -1 J K.s. 

s=N 6.....l...L 
0 . l K. -1 

J= J 

- 4 -

(2.1) 

(2.2) 

(2.3) 

(2.4) 



-
.. 

-

If it were desirable t_o find a "best" µ, from this technique then . 

2 
minimization of sµ with respect to µ, yields 

J 

(N-1) L 
j=l 

K. (N-K.) S: 
J J · J 

K. - 1 
J 

2 J - 2 J 
N Lt K.(i •. - x •• ) + L 

j=l J J j=l 

(N-K./ 
1 

K.-1 
J 

2 
s. 

J 

Due to the constraint the estimator is min(~
1
,l) which we designate 

as the Method I estimator. 

For the special case K.=K treated by Box and Tiao (1968) we obtain 
J 

the following simplifications 

2 
S

2 = K[JK-l-µ(J-1)]
2 

2 ml 
+ µ IK(J-1) 

(JK-1/ 

·m 
2 µ, (K-l)(JK-1) 

where and are as defined in (1.2) and 

~l = 
(JK-l)m

1 
(J-l)m

1 
+ (K-l)Jm

2 

so that the estimator is min[µ
1
,l]. As K(J) increases for J(K) held 

-1 constant, the estimator tends to min(m
1
m

2 
,1) In particular 

we note for µ = 0 

We refer to this as a modified method since if a model or a method for 

deriving µ is proposed and it depends on the data then µ will,strictly 

speaking,vary for each observation omitted. Computation of the mean squared 
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·ta:j 

error of prediction would serve as one means of evaluating the var_ious 

methods of estimating µ, for the data set. This can easily be accomplished 

by computer for alternative estimators. However, the Box-Tiao method is 

not inunediately adaptable to cases where the K.'s are different so one 
J 

could not produce estimates when a single K. = K-1 as this assessment 
J 

requires. Hence we utilize the µ computed from all the data in the 

comparison assuming that the variation in µ, for any particular method 

when an observation is omitted will in general minimally influence 

the comparison for reasonable sample sizes. The assumption that µ, 

may for all intensive purpose, be considered constant permits us also to 

use the least squares type procedure to generate a "best" estimate for µ,. 

2 
It is also quite likely that for any method of estimating µ,, sµ, will 

be smaller for a µ, computed from all the data than computing µ 

separately for each omitted data point. One then could also utilize 

(l-µ
1
)x .. + µ

1
x .• 

J . 
as the estimate of 

3. Method II 

For the second method we assume 

8 , working backwards. 
j 

K.=K from the start as the more 
J 

general case involves heavier algebra~ Here we simultaneously omit a 

single observation from each of the J groups and assume a predictor 

of the same form (1-µ)x •. + µx •• j=l, ••• ,J. From the reduced data 
J 

set we obtain the predictor (l-µ,)11\. + ~. by arbitrarily reordering 
J •. J 

where °itj and ~j are the 
.th 

and the grand mean, based J group mean 

respectively on K-1 and J(K-1) observations. We then compute the squared 

deviation of the predicted value from the actual value for every possible con

figuration of the KJ data set i.e. permuting the observational values within 

the groups where we are predicting simultaneously the entire omitted row. 

This· is then divided by the total number of such configurations. The algebra 
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again generally follows·the traditional break down of sum of squares in the 

analysis of variance, and we obtain with m
1 

and m
2 

as defined previously 

Hence the relative evaluation of particular µ.' s given a set of data 

is possible by computing t2. For example, if ~o , which is essentially 
µ, 

the estimator for the fixed effect model we have as before 

·rf we wish to derive from this data analytic procedure the nbest" 

estimator for µ,, we can minimize t! with respect to µ. This yields 

Kml 

so that the estimator is min(~z,l) . As k increases the estimator 

tends to 
-1 

The estimator for the full set ·of data for the min(m
1

m
2 

,1) . 
prediction of a new set of observations one from each of the J groups· 

is the {l-µ
2
)x. j + ~

2
x.. for j=l, ••• ,J • Similarly one can use .this 

to estimate e. as well. 
J 

We note that this case, omitting simultaneously a single obser-

vation from each groui,;_does permit use of Box-Tiao estimators since K has 

been reduced by 1, however the number of separate analyses involved is of 

the order of KJ. Hence again we have opted for the modified version 

which keeps ~ constant. 

4. Example 

Consider the problem of estimating 

Box and Tiao (1968) 

- 7 -

e. 
J 

for the example given by 

(3.1) 

(3.2) 

(3.3) 
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lam 

.. 

Dyestuff Data 

Batch 

1 2 3 4 -2.... 6 

145 140 195 45 195 120 

40 155 150 49 230 55 

40 90 205 195 115 50 

120 160 110 65 . 235 80 

180 ...& 160 145 225 45 

Average 105 128 164 98 200 70 

J = 6, K = 5 , m
1 

= 2,451.25 , m
2 

= 11,271.50, x •• = 127.5 

Predicted Value or Estimate of e. 

Method 1 2 3 4 5 6 
2 t2 µ. s s t 
µ, µ, µ, µ 

"fixed ef feet" 105 128 164 98 200 70 0 3064 55.4 3064 55.4 

"random effect" 110 128 156 105 183 83 .233 2932 54.2 2934 54.2 

"Predictive" I 111 128 155 105 182 84 • 251 2931 54.1 2932 54.1 

,rPredictive" II 111 128 155 106 181 85 .258 2931 54.1 2932 54.1 
-1 Asymptotic µ,=m

1
m

2 
110 128 156 104 184 82. .217 2934 54. 2 2936 54.2 

It is to be noted that the two predictive methods yield very 

close estimates. We cannot discriminate between them, whether we 

2 
use s or 

µ 
2 

t to compare them. 
µ . 

The random effect estimator while 

exhibiting an 8% difference from the predictive estimates for the weighting 

coefficient again exhibits 
2 

s and 
µ 

2 
t to be extraordinarily close to 

µ, 

h . . f b h Th . . d . h b h s 2 and t 2 f h · t e minima or ot. is in icates tat ot are, or tis 
µ µ 

set of data, fairly flat near their minima and variations in the weighting 

coefficient do not yield appreciable changes in the comparison functions. 
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This is further borne out by the asymptotic case where a change in µ of 

close to 20% from the "best" results in practically no change in the mean 

squared predictive error. In fact, even the fixed effect model increases the 

mean squared predictive error by only about 4%. 

Lindley (1971) has also put forth a Bayesian procedure for.the analysis 

of this type of data. We have hesitated to compute Lindley's estimators since 

it would require arbitrarily assigning some numbers to the priors and the 

modal iterations look prohibitive. It would be of great interest to see how 

it would fare under this type of assessment. 

5 ~ Mixed Mode 1 

Suppose we are in the mixed model case i.e. we have K vector observa

tions· each of J components. Let us assume that we are considering pre

dictors of the components of a future xk = (xk
1

, ••• ,~j) of the form 

(1-µ)x •. + µ,x •• j=l, ••• J. Here of course there is a natural order i.e. 
J 

the k
th 

vector xk= (~
1

, ••• ,~J) is the fundamental sampling unit. Again 

as in method II we omit the k
th 

row using (1-µ)ykj + µykj where 

yk .. = (Kx .. - x. .)/(K-1) 
J J KJ 

ykj = (KJx •• - ~j)/(JK-1) 

to predict the missing row ~. Repeating this for k=l, ••• ,K we compute 

the mean squared prediction error 

2 -1 -1 J K - 2 
v µ, = J K f=i p=l ( (l-1,1,)ykj + µ.ykj - ~j) 

Again by simple algebra, evaluation yields 

- 9 -
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where 

2 
2 

V 
µ 

(K-µ,) -1 2 µ,(2K.:.µ,) 
= K(K-1) ~1 + (JK) (J-l)µ. m2 + JK(K-1) m3 

m = 
3 

K 

J(K-1) -l 6 (~. 
k=l 

- 2 
- x •• ) ; ~-

J 

6 X. • 
j=l·kJ 

(We note thatmethod II is derived in this manner for an arbitrary reordering 

and then is averaged over all possible permutations within each column. 

It is clear that and are unaffected by such permutations and we 

need only average 

with regard to 

m
3 

over these permutations to obtain This average 

is easily shown to be 

2 
in v yields 

µ 

Again 

and minimization of 
2 

v w.r.t. 
µ. 

µ € [0,1] 

* K(m1J-m3) 

µ. = (J-l)(K-l)m
2 

+ Jm
1 

- m
3 

~o 

Hence substitution of 

yields * min(µ, ,1) where 

(5.3) 

(5.4) 

(5.5) 

6. Remarks 

In summary we have proposed for the random effect model, two boot-

strap predictive methods for evaluating different estimates possibly 

generated from different prior models for a set of data such that columns 

are independent. In addition the methods themselves are capable of 

yielding on their own terms a "best" predictor. This of course is only 

with respect to.mean squared prediction error but on the other hand they 

are fairly free of distributional assumptions. 
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It can also be considered as a possible means of estimating the parameter 

in question if this is of interest. Of course these mean squared pre

dictive errors are just one of a host of possibilities that one may use 

for guidance as to which model is more appropriate for a set of· data. It is 

also of some interest that the estimate of the coefficient ~ is consider

ably simpler in form than the Box-Tiao or Lindley estimate. 

Further we have also presented the same type of method for the case 

where the columns are not necessarily independent which is sometimes 

termed the "mixed model1' or "multivariate model." 
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