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Abstract— In cellular networks, an important practical issue
is how to limit the handoff dropping probability efficiently. One
possible approach is to perform dynamic bandwidth reservation
based on mobility predictions. With the rapid advances in
mobile positioning technology, and the widespread availability of
digital road maps previously designed for navigational devices,
we propose a predictive bandwidth reservation scheme built
upon these timely opportunities. In contrast to the common
practice of utilizing only incoming handoff predictions at each
cell to compute the reservations, our scheme is moreefficient
as it innovatively utilizes both incoming and outgoing handoff
predictions; it can meet the same target handoff dropping
probability by blocking fewer new calls. The individual base
stations are responsible for the computations, which are shown
to be simple enough to be performed in real-time. We evaluate
the scheme via simulation, along with five other schemes for
comparison. Simulation results show that those schemes that
rely on positioning information are significantly more efficient
than those that do not. Our scheme’s additional use of the
road topology information further improves upon this advantage,
bringing the efficiency closer to the bound set by a benchmark
scheme that assumes perfect knowledge about future handoffs.

Index Terms— handoff prioritization, call admission control,
mobile positioning, mobility prediction.

I. I NTRODUCTION

I N recent years, there has been a rapid increase in wireless
network deployment and mobile device market penetration.

With vigorous research that promises higher data rates, future
wireless networks will likely become an integral part of the
global communication infrastructure. However, there are some
unique problems in cellular networks that challenge their
service reliability. In addition to the problems introduced by
fading, user mobility places stringent requirements on network
resources; a call may be dropped during a handoff attempt
when the new cell does not have sufficient bandwidth. From
a user’s point of view, the dropping of an ongoing call is
generally more frustrating than the blocking of a new call.
Therefore, handoff-requests are usually prioritized over new
call requests by reserving some bandwidth at each base station
(BS) that could only be utilized by incoming handoffs. Since
any such reservation inevitably increases the call blocking
probability of new calls (PCB), and decreases the system’s
utilization, it is extremely important that the reservations are
made as sparingly as possible, while meeting the handoff drop-
ping probability (PHD) target that is deemed to be acceptably
low by most customers. In other words, the key objective is to
meet the customers’ expectation at the lowest possible cost.

In early work on the handoff prioritization problem, a static
approach is proposed [1], in which a fixed portion of the

radio capacity is permanently reserved for incoming hand-
offs. However, such a static approach cannot handle variable
load and mobility [2]. In a non-stationary environment, the
reservation required to achieve the samePHD target actually
fluctuates with load and mobility. A fixed reservation cannot
meet thePHD target all the time unless it is large enough to
accommodate the worst-case scenario; this leads to higherPCB

than necessary. In contrast, a dynamic approach that adjusts the
reservation according to anticipated handoffs may potentially
result in a lowerPCB for the samePHD target.

The best tradeoff betweenPCB and PHD can only be
achieved if the dynamics of every mobile terminal (MT), such
as its path and its arrival/departure times in each cell, are
known in advance. However, such an ideal scenario is unlikely.
The next best option is to predict their mobility, and perform
reservations using these predictions. Many predictive schemes
have been proposed in the literature. For example, Liuet al. [3]
uses pattern matching techniques and a self-adaptive extended
Kalman filter for next-cell prediction based on cell sequence
observations, signal strength measurements, and cell geometry
assumptions. In [4], Levineet al. propose the concept of a
shadow cluster – a set of BSs to which a MT is likely to attach
in the near future. The scheme estimates each MT’s probability
of being in any cell within the cluster for future time intervals,
based on its dynamics and call holding patterns in the form
of probability density functions (pdfs). Other examples of
predictive reservation schemes can be found in [2], [5]–[9]. In
the process of meeting the samePHD target, a more efficient
scheme can accomplish the task with a lowerPCB than a less
efficient one. Since the efficiency of a predictive reservation
scheme has a direct impact on the operators’ revenues, there
are strong incentives to develop more efficient schemes.

In the US, the FCC mandates that cellular-service providers
must be able to pinpoint a wireless emergency call’s location
to within 125 m. This spurs research in mobile-tracking tech-
niques. One promising approach is the integration of a global
positioning system (GPS) receiver in each MT. According
to [10], assisted GPS positioning methods could yield an
accuracy of 20 m during 67% of the time. During 2003-2009,
a new batch of GPS satellites will be launched to include two
additional civilian carrier frequencies that could potentially
yield an accuracy of 1 m [11]. The European Space Agency
also plans to launch their own system (GALILEO), which
targets an accuracy of 1 m (95% of the time within 10 m) [12].
As more breakthroughs in positioning techniques take place,
fueled by the strong interest in location-based services from
the industry, future MTs are likely equipped with reasonably
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accurate location-tracking capability. The time is thus ripe for
active research into how such inherent capability may be har-
nessed for QoS provisioning in cellular networks. Specifically,
we are interested in designing a predictive bandwidth reser-
vation scheme that utilizes real-time positioning information.
This could give rise to better prediction accuracy and greater
adaptability to time-varying conditions than previous methods,
which is crucial for more timely and efficient reservations.

While there are previous attempts to perform positioning-
based predictive reservation [3], [6], [8], none of them has ad-
dressed the fact that the cell boundary is fuzzy and irregularly
shaped due to terrain characteristics and obstacles that interfere
with radio propagation. Instead, either hexagonal or circular
boundaries are assumed. Also, no previous work has utilized
road topology information for predictive reservation until we
first proposed the idea in [13], [14]. Since MTs that are carried
in vehicles are the ones with high mobility, the use of road
topology information would likely improve the performance of
predictive reservation schemes. Another important observation
from existing work is that onlyincominghandoff predictions at
each BS are used to adjust its reservation. We argue that more
efficient tradeoffs betweenPCB and PHD may be achieved if
both incomingandoutgoinghandoff predictions are used. For
example, when a possible incoming handoff is predicted, but
there are also outgoing handoffs that are predicted to release
sufficient bandwidth in time, no additional reservation would
be attempted for the incoming handoff. In contrast, reservation
schemes that only utilize incoming handoff predictions would
still attempt to reserve additional bandwidth in such a scenario,
which could result in unnecessary blocking of new calls.

In [9], we propose a reservation scheme that utilizes mo-
bility predictions based on mobile positioning information. It
is the first scheme that considers irregular cell boundaries.
The scheme uses linear extrapolation from a MT’s recent
positions to predict its handoff cell and time, whereby the
cell boundary is approximated as a series of points around the
BS, computed using previously recorded handoff locations. In
this paper, we propose a novel predictive reservation scheme
that utilizes road topology knowledge, in addition to the MT’s
positioning information. It could potentially achieve more
accurate predictions at the cost of increased complexity, but
the resulting improvement in reservation efficiency may justify
this cost. The proposed scheme consists of two components.
The first component, themobility predictionmodule, defines
the prediction tasks to be performed by the individual BSs.
The second component, thedynamic bandwidth reservation
module, defines the way both incoming and outgoing handoff
predictions are used to adjust the reservation at each BS.

An important point to emphasize here is that we do not use
the MT’s positioning information to decide whether a handoff
should be initiated, because it usually depends on the received
signal strength measurements, error rates, interference, as well
as handoff protocols used [15]. Instead, we only use the
positioning information for predicting the MT’s future handoff
time and target cell, so as to adjust the reservations.

The remainder of this paper is organized as follows. In
Section II, we present our mobility prediction module that
utilizes both mobile positioning and road topology informa-

tion. In Section III, we describe our dynamic bandwidth
reservation module, which innovatively uses both incoming
and outgoing handoff predictions at each BS to boost the
reservation efficiency. Section IV describes the simulations
that compare the proposed scheme’s performance with several
other schemes. Finally, we give our conclusions in Section V.

II. M OBILITY PREDICTION MODULE

The mobility prediction module requires each MT in an
active call to report its position to the serving BS every∆T
(say, 1 sec). This consumes a small amount of wireless band-
width (several bytes per update), which might be negligible for
future broadband services. The overhead can also be reduced
by suspending the updates when the MT is within a threshold
distance from the BS, where a handoff is unlikely to occur
anytime soon. For packet services, the header overheads due
to such updates may be reduced by piggybacking the position
information with other data packets whenever possible.

We now give an overview of the mobility prediction module.
The predictions are performed periodically by the BSs, which
are expected to have sufficient computational and storage
resources. Each BS maintains a database that stores the
required information. During a prediction, the BS identifies a
set of possible paths from every active MT’s current position
that may lead to a handoff within a threshold timeTthreshold,
and generates a 4-tuple for each such path, in the form of
[target cell, prediction weight, lower prediction limit, upper
prediction limit]. The target cell is the predicted new cell
along that path. Theprediction weightis a real number within
[0, 1] that indicates how likely the prediction is correct. The
lower prediction limit (LPL) is a lower statistical bound for
the remaining time from handoff (tremain), with given prob-
ability ζL , i.e., P [tremain≥LPL] = ζL . The upper prediction
limit (UPL) is an upper statistical bound fortremain with given
probabilityζU, i.e.,P [tremain≤UPL] = ζU. Note thatζL andζU

are input parameters that dictate the values of LPL and UPL.
We first describe below the prediction database that is kept

at each BS, and its corresponding maintenance procedure. The
prediction algorithm is then described in Section II-B.

A. Prediction Database

Each BS maintains a unique database that stores the essen-
tial information required for making predictions, including the
road topology within its radio coverage area. We refer to the
road between two neighboring junctions as aroad segment,
and identify each segment using a junction pair(j1, j2),
where a junction is an intersection of roads (e.g., T-junction).
The approximate coordinates of each junction are stored.
Since a road segment may contain bends, it can be broken
down further into piecewise-linear line segments, whose end
coordinates are also recorded. All these coordinates could be
extracted from existing digital road maps previously designed
for GPS-based navigational devices. We do not expect frequent
updates to these maps because new roads are not constructed
very often, while existing road layouts are seldom modified.

The database also stores some important information about
each road segment. Since two-way roads would likely have
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Fig. 1. Utilizing road topology information for mobility prediction.

different characteristics for each direction, the database stores
information corresponding to opposite directions separately.
The following summarizes what the database stores:
• Identity of neighboring segments at each junction.
• Transition probabilities between neighboring segments

(computed from the paths taken by previous MTs).
• Statistical data of time taken to transit each segment.
• Statistical data regarding possible handoffs along each

segment, such as probability of handoff, time in segment
before handoff, and handoff positions.

With the exception of the first item listed above, the other
database entries need to be updated regularly to adapt to the
current traffic conditions. As for its memory requirement at
a typical BS, it is expected to range only between several
hundred kilobytes to several megabytes, because the roads are
represented efficiently as piecewise-linear line segments.

In reality, the transition probabilities between neighboring
road segments would likely vary with time and traffic. For
stochastic processes with statistics that vary slowly with time,
it is often appropriate to treat the problem as a succession
of stationary problems. We model the transition between
neighboring road segments as a second-order Markov process,
and assume stationarity between the database updates to sim-
plify the computations. Based on this model, the conditional
distribution of a MT choosing a neighboring segment, given all
its past segments, is dependent only on the current segment and
the immediate prior segment. Using Fig. 1 as an illustration,
consider two MTs (MT1 and MT2) that are currently traveling
from junction B towards junction E. MT1 came from seg-
ment CB, while MT2 came from segment AB. The conditional
probability of MT1 going to segment EF will be different
from that of MT2, i.e.,P [sk+1=EF|sk=BE, sk−1=CB] and
P [sk+1=EF|sk=BE, sk−1=AB], respectively, wheresk is the
current segment that the MT transits. Note that our stationarity
assumption implies that the above conditional probabilities are
independent of the value ofk.

When a call just begins, the MT’s prior segment is unknown
because it was not tracked previously. Thus, we also need
the first-order conditional distribution at each segment, derived
from a subset of the data used for deriving the second-order
conditional distribution. For example, if the prior segments of
MT1 and MT2 in Fig. 1 are unknown, their conditional proba-
bilities of going to segment EF are bothP [sk+1=EF|sk=BE].

A road segment is regarded as a “handoff-probable seg-
ment” (HPS) if there is a non-zero probability that a MT
transiting the segment would make a handoff-request. From
the handoff-requests that are previously observed, the target
handoff cell is recorded, along with the statistical information
regarding the time spent in the HPS prior to making the
requests, and the positions where the requests are made.

Using the model described above, we could determine via
the chain rule the conditional probabilities of reaching and
handing off at each of the HPSs from segments that are several
hops away. We could also predict the remaining time before
handoff for each possible path, using the statistical information
associated with each segment along the path.

A database update occurs everyTDB. After each update,
the BS starts collecting the data required for the next update.
Note that it is also reasonable to use historical data from the
same time-of-the-day and day-of-the-week for the update, in
addition to the data collected recently over the lastTDB. This
could compensate for the lack of data samples occasionally.

In the following, we explain how the database is maintained.
Table I shows the notations used, while Fig. 2 shows the update
procedure. We first empty bothSHPS andSRSV (Lines 1 and 2),
as we are regenerating them using the new data. From Lines 3
to 13, we sequentially examine every road segment within the
BS’s coverage area, one at a time. Lines 4 and 5 evaluate
the first and second order transition probabilities from the
segment to its neighboring segments, based on the paths of
MTs previously served by the BS. The transition probabilities
for U-turns are excluded as they are rare, but can be included if
desired. Line 6 estimates the pdf of the time spent by previous
MTs in the segment, based on histograms with appropriate
bin size. Line 7 computes the probability that a MT would
request a handoff while transiting the segment. If handoffs
have occurred along this segment previously, the segment is
identified as a HPS, and entered into bothSHPS and SRSV

(Lines 9 and 10). Its membership inSRSV signifies that MTs
transiting this segment are potential candidates for bandwidth
reservation. Lines 11 to 13 simply evaluate the database entries
that describe the handoff behavior of MTs in this segment.

From Lines 14 to 24, we make a second pass through each
road segment, again sequentially. For each segmentsab, we
resetRX,HPS(sab) so that it will be regenerated using newly
computed database entries (Line 15). For each hop-limited
route (≤ X hops) that originates from segmentsab, we test
whether its last segment is a HPS (Lines 16 and 17). Note that
a “route” must include the origin segmentsab, and at least one
other segment. A hop limit is specified to reduce unnecessary
computations, since a MT that is still many segments away
from a HPS is unlikely to request a handoff anytime soon.
Also, note thatRX(sab) is pretty much static, and is modified
only when there are changes to the road topology within
the BS’s coverage; it does not need to be recomputed every
database update. If the examined route’s last segment is a HPS,
we estimate the pdfmHO,ab|ϕ(t) of the time taken to transitϕ′

and part of the last segmentslast(ϕ) before handoff (Line 18).
It is obtained from the convolution of the pdfsftransit(t) of
segments in the partial routeϕ′, and also the pdfgHO(t) of the
last segmentslast(ϕ) of routeϕ. For example, if the segment
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TABLE I

NOTATIONS USED FOR EXPLAINING DATABASE MAINTENANCE.

Notation Meaning

Tthreshold Threshold time dictating whether a 4-tuple needs to
be generated for a route.

Tthresmax Maximum Tthresholdallowed.
S Set of road segments within BS’s coverage area.
sab Directional segment from junctionja to jb.
N (ja) Set of neighboring junctions of junctionja.
Ncells Set of neighboring cells next to the cell of interest.
SHPS Set of handoff-probable segments (HPSs) inS.
SRSV Set of segments in which only MTs here are

examined for the need to make reservations.
P [sk+1|sk] 1st order conditional transition probability, i.e.,

P [transit tosk+1|currentlysk].
P [sk+1|sk,sk−1] 2nd order conditional transition probability, i.e.,

P [transit tosk+1|currentlysk, previouslysk−1].
CHO(sab) Most probable target handoff cell if handoff

occurs alongsab, whereCHO(sab) ∈ Ncells.
PHO[sab] P [handoff alongsab|MT is currently onsab].
ftransit,ab(t) pdf of time taken to transitsab.
gHO,ab(t) pdf of time spent insab before handoff insab.
hHO,ab(d) pdf of distance fromjb where handoff occurs,

when MT is onsab.
X Hop limit of routes that are considered.
RX(sab) Set of all possible routes withinX hops originating

from sab. A routeϕ ∈ RX(sab) is a sequence of
segments, starting withsab: {sabsbc . . . syz}.

sinitial(ϕ) Initial segment of routeϕ.
slast(ϕ) Last segment of routeϕ.
ϕ′ Routeϕ without its initial and last segments,

i.e., {ϕ} = {sinitial(ϕ)} ∪ {ϕ′} ∪ {slast(ϕ)}.
mHO,ab|ϕ(t) pdf of time taken to transitϕ′ and part of last

segmentslast(ϕ) before handoff inslast(ϕ).
M−1

HO,ab|ϕ(q) qth quantile of time taken to transitϕ′ and part

of last segmentslast(ϕ) before handoff inslast(ϕ).
RX,HPS(sab) A subset of routes fromRX(sab), each of which

terminates with a HPS, and, excluding the
remaining time in current segmentsab, has a
median time to handoff that is withinTthresmax.

PHO[ϕ|sk] 1st order conditional probability that a MT insk

follows ϕ ∈ RX,HPS(sk) and hands off atslast(ϕ).
PHO[ϕ|sk,sk−1] 2nd order conditional probability that a MT insk

follows ϕ ∈ RX,HPS(sk) and hands off atslast(ϕ).

we are currently processing issab, and we consider one of
its routes,ϕ = {sab, sbc, scd, sde}. This route has three hops,
with partial routeϕ′ = {sbc, scd}. Its last segmentslast(ϕ) is
sde, which is assumed to be a HPS here. Then,

mHO,ab|ϕ(t) = ftransit,bc(t)⊗ ftransit,cd(t)⊗ gHO,de(t). (1)

Note that mHO,ab|ϕ(t) does not include the time taken to
complete the current segmentsab, which will be estimated
using a MT’s actual speed during a prediction. Once the pdf
mHO,ab|ϕ(t) is obtained, the median timeM−1

HO,ab|ϕ(0.5) can be
easily calculated. If it is within the limitTthresmax, we add the
routeϕ to the setRX,HPS(sab), and include the segmentsab in
SRSV (Lines 20 and 21). We then compute via the chain rule
the conditional probabilities that MTs currently in segment
sab would follow this route and hand off at its last segment
(Lines 22 and 23). Finally, the quantilesM−1

HO,ab|ϕ(1−ζL) and

1 SHPS← ∅
2 SRSV ← ∅
3 for eachsab ∈ S
4 evaluateP [sk+1=sbx|sk=sab]

∀jx ∈ N (jb)− {ja}
5 evaluateP [sk+1=sbx|sk=sab, sk−1=sya]

∀jx ∈ N (jb)− {ja},∀jy ∈ N (ja)− {jb}
6 evaluateftransit,ab(t)

7 evaluatePHO[sab]

8 if PHO[sab] > 0

9 then SHPS← SHPS∪ {sab}
10 SRSV ← SRSV∪ {sab}
11 evaluateCHO(sab)

12 evaluategHO,ab(t)

13 evaluatehHO,ab(d)

14 for eachsab ∈ S
15 RX,HPS(sab) ← ∅
16 for eachϕ ∈ RX(sab)

17 if slast(ϕ) ∈ SHPS
18 then evaluatemHO,ab|ϕ(t) andM−1

HO,ab|ϕ(0.5)

19 if M−1

HO,ab|ϕ(0.5) ≤ Tthresmax

20 then RX,HPS(sab) ←RX,HPS(sab) ∪ {ϕ}
21 SRSV ← SRSV∪ {sab}
22 evaluatePHO[ϕ|sk=sab]

23 evaluatePHO[ϕ|sk=sab, sk−1=sya]

∀jy ∈ N (ja)− {jb}
24 evaluateM−1

HO,ab|ϕ(1−ζL), M−1

HO,ab|ϕ(ζU)

Fig. 2. Prediction database update procedure.

M−1
HO,ab|ϕ(ζU) are computed for this route (Line 24), which are

needed for computing the prediction limits LPL and UPL.
In the following, we give examples of how the database en-

triesPHO[ϕ|sk, sk−1] andPHO[ϕ|sk] can be computed. Reusing
the topology in Fig. 1, suppose we are computing the above
entries for segmentsk=BE, and we are interested in the route
ϕ = {BE, EF, FH}. These entries represent the conditional
probabilities that a MT currently traveling along segment BE
would go through segment EF and enter segment FH, and
finally make a handoff-request while in segment FH. Although
segment EF is also a HPS, the routeϕ = {BE, EF, FH}
assumes that the MT does not hand off in segment EF.
A route that assumes handoff in EF will be regarded as a
different route, that is,{BE, EF}. Therefore, the conditional
probabilities forϕ must account for the probability that the MT
does not make a handoff-request while traveling along segment
EF. For the first-order conditional probability, which does not
assume knowledge about the prior segment, it is obtained as

PHO[ϕ={BE,EF,FH}|sk=BE]
= P [sk+1=FH|sk=EF, sk−1=BE] (2)

· P [sk+1=EF|sk=BE]·(1−PHO[EF])·PHO[FH].

Since segment BE has two prior segments (CB and AB) where
MTs may come from, there are two second-order conditional
probabilities. For example, the one with prior segment CB is

PHO[ϕ={BE,EF,FH}|sk=BE, sk−1=CB]
= P [sk+1=FH|sk=EF, sk−1=BE] (3)

·P [sk+1=EF|sk=BE, sk−1=CB]·(1−PHO[EF])·PHO[FH].
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An important point to emphasize here is that the database
update procedure is not computationally intensive. Each BS
maintains its own database, and the update only occurs once
every TDB (say, 1 hr). The computational requirement scales
linearly with the number of road segments under the BS’s cov-
erage area (|S|), but scales exponentially with the hop limitX.
For instance, suppose most junctions are cross-junctions, the
number of routes to be considered scales approximately with
the factor3X |S|. One way to reduce this complexity is to
impose an additional distance threshold,Dthresmax, on the set
of routes that can be included inRX(sab), so as to exclude
unreasonably long routes. The thresholdDthresmax may then be
chosen as the farthest distance that any MT could accomplish
within Tthresmax. Note, however, that it is generally sufficient
to have a smallX (say, 2 or 3). In our simulations based on
a 3 GHz Intel Pentium IV CPU, the typical database update
time for X = 2 is in the order of several seconds, which is
very small compared to the database update intervalTDB.

B. Mobility Prediction Algorithm

Having seen the prediction database update procedure, we
now describe the prediction algorithm. In order to perform
the predictions, the BS needs to map each MT’s current po-
sition onto the correct road segment within the road topology
database (a process known as map-matching [16], [17]). Here,
we do not describe how the map-matching is performed, as it
depends on the accuracy of the positioning techniques used.
Instead, we assume for simplicity that the MT’s current road
segment and estimated speed are already computed based on
its recent positions. Interested readers can refer to the rele-
vant literature from Intelligent Transportation Systems (ITS)
research for additional information, such as [16], [17].

Recall that during the database update, a small number of
road segments are placed into the setSRSV. The prediction
algorithm only examines those MTs that are currently traveling
in these segments, because they have the greatest potential of
making handoff-requests withinTthreshold. In the following, we
present the prediction algorithm performed for asingleMT i
that is traveling in segmentsi

ab ∈SRSV. The key idea is to
identify a set of possible paths from MTi’s current position
that may result in a handoff withinTthreshold, and generate a 4-
tuple for each such path. Note that only those paths that belong
to the pre-computed setRX,HPS(si

ab) need to be examined.
Table II shows the additional notations used, while Fig. 3

presents the prediction algorithm for MTi. In Line 1, we
empty the prediction output setZi, as new predictions will be
made. Line 2 checks that the MT is not stationary, otherwise
we exit the algorithm. Next, in Line 3, we estimate the MT’s
remaining distance from the end of its current segment. The
time for the MT to reach this end is then estimated (Line 4).
From Lines 5 to 12, we examine those pre-computed candidate
routes that might lead to handoffs. For each route, we estimate
its LPL(UPL) as the sum of two components, namely, the
estimated time taken to finish the current segment, and the
LPL(UPL) of the time taken to transit the remaining route
and hand off at the very last segment. Note that the quantiles
M−1

HO,ab|ϕ(1− ζL) and M−1
HO,ab|ϕ(ζU) have already been pre-

TABLE II

ADDITIONAL NOTATIONS USED TO PRESENT PREDICTION ALGORITHM.

Notation Meaning

vi Estimated speed of MTi.
si
ab Current road segment in which MTi is traveling.

si
prev Previous segment of MTi (may or may not be known).

di
EOS(s

i
ab) MT i’s estimated distance from end-of-segment,jb.

tiEOS(s
i
ab) MT i’s estimated time from end-of-segment,jb.

Tthres(Cj) Tthresholdof neighboring cellCj (dynamically adjusted).
ĉi
target(ϕ) MT i’s most probable target handoff cell if it follows

routeϕ and hands off atslast(ϕ),
i.e., ĉi

target(ϕ) = CHO(slast(ϕ)).

wi(ϕ) Prediction weight specifying the probability that
MT i may follow routeϕ and hands off atslast(ϕ).

t̂iL(ϕ, ζL) LPL of MT i’s remaining time from handoff (tiremain)

if it follows route ϕ and hands off atslast(ϕ),
such thatP [tiremain≥ t̂iL(ϕ, ζL)] = ζL .

t̂iU(ϕ, ζU) UPL of MT i’s remaining time from handoff (tiremain)

if it follows route ϕ and hands off atslast(ϕ),
such thatP [tiremain≤ t̂iU(ϕ, ζU)] = ζU.

t̂iL(si
ab, ζL) LPL of tiremain if MT i hands off insi

ab.

t̂iU(si
ab, ζU) UPL of tiremain if MT i hands off insi

ab.

Zi Set of 4-tuple predictions for MTi.
Each 4-tuple has the following form:

[target cell, prediction weight, LPL, UPL].
For a prediction that MTi may follow routeϕ and
hands off atslast(ϕ), the corresponding 4-tuple is:

[ĉi
target(ϕ), wi(ϕ), t̂iL(ϕ, ζL), t̂iU(ϕ, ζU)].

If si
ab is a HPS, then the 4-tuple for a prediction

that a handoff may occur alongsi
ab itself is:

[CHO(si
ab), PHO[si

ab], t̂
i
L(si

ab, ζL), t̂iU(si
ab, ζU)].

computed during the database update. If the LPL,t̂iL(ϕ, ζL),
falls within the threshold time of the most probable target
handoff cell associated with this route, a 4-tuple prediction is
generated. The prediction weight is either the first or second
order conditional probability of routeϕ, depending on whether
we know the previous segment of MTi (Lines 8 to 11). Then,
in Line 12, we insert the 4-tuple prediction into the setZi.

If the MT is currently within a HPS, Lines 13 to 17
determine whether a 4-tuple prediction needs to be generated.
Here, we introduce two additional quantiles for MTi, needed
for calculating the LPL and UPL of the predicted time from
handoff. As they are dependent on the MT’s position within
the segment, they must be recomputed during each prediction.
Let Dab be a random variable representing the MT’s distance
from junction jb where a handoff occurs. Note that its pdf,
hHO,ab(d), has been pre-computed during the database update.
Suppose the MT is currently at a distanceDt from junction
jb, and has not made a handoff-request. Knowing this, we can
derive a conditional pdf,hHO,ab(d|Dab <Dt), for d < Dt:

hHO,ab(d|Dab <Dt) =
hHO,ab(d)

P [Dab <Dt]
, (4)

whereP [Dab <Dt] can be obtained by integratinghHO,ab(d)
from 0 to Dt. Note thathHO,ab(d|Dab <Dt) = 0 for d ≥ Dt.
From the above conditional pdf shown in (4), its conditional
cumulative distribution function (cdf) can be obtained as:

HHO,ab(d|Dab <Dt) =
∫ d

0

hHO,ab(u|Dab <Dt) du. (5)
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1 Zi ← ∅
2 if MT i is not stationary
3 then computedi

EOS(s
i
ab)

4 tiEOS(s
i
ab) ← di

EOS(s
i
ab)/vi

5 for eachϕ ∈ RX,HPS(s
i
ab)

6 t̂iL(ϕ, ζL) ← tiEOS(s
i
ab) + M−1

HO,ab|ϕ(1− ζL)

7 t̂iU(ϕ, ζU) ← tiEOS(s
i
ab) + M−1

HO,ab|ϕ(ζU)

8 if t̂iL(ϕ, ζL) ≤ Tthres(ĉ
i
target(ϕ))

9 then if si
prev is known

10 then wi(ϕ)←PHO[ϕ|sk=si
ab, sk−1=si

prev]

11 else wi(ϕ)←PHO[ϕ|sk=si
ab]

12 Zi ← Zi ∪ {[ĉi
target(ϕ), wi(ϕ),

t̂iL(ϕ, ζL), t̂iU(ϕ, ζU)]}
13 if si

ab ∈ SHPS
14 then t̂iL(si

ab, ζL)

← [di
EOS(s

i
ab)−H−1

HO,ab
(ζL |D<di

EOS(s
i
ab))]/vi

15 t̂iU(si
ab, ζU)

← [di
EOS(s

i
ab)−H−1

HO,ab
(1−ζU|D<di

EOS(s
i
ab))]/vi

16 if t̂iL(si
ab, ζL) ≤ Tthres(CHO(si

ab))

17 then Zi ← Zi ∪ {[CHO(si
ab), PHO[si

ab],

t̂iL(si
ab, ζL), t̂iU(si

ab, ζU)]}

Fig. 3. Prediction algorithm for MTi traveling in segmentsi
ab.

With the above conditional cdf, it is straightforward to ap-
proximate anyqth conditional quantileH−1

HO,ab(q|Dab <Dt).
By estimating the time that the MT would take to reach
two specific quantile points, namelyH−1

HO,ab(ζL |Dab <Dt) and
H−1

HO,ab(1−ζU|Dab < Dt), we are able to specify the LPL and
UPL for a possible handoff that might occur alongsab.

In Lines 14 and 15, we obtain the LPL and UPL as
the estimated time taken to reach the two quantile points,
H−1

HO,ab(ζL |D < di
EOS(s

i
ab)) andH−1

HO,ab(1−ζU|D < di
EOS(s

i
ab)).

If the LPL, t̂iL(si
ab, ζL), falls within the threshold time of the

cell CHO(si
ab), we insert the corresponding 4-tuple into the

prediction setZi (Lines 16 and 17).
As mentioned earlier, the above algorithm only performs

predictions for a single MTi. We need to repeat the algorithm
for all active MTs that are currently traveling in segments
that belong to the setSRSV. Although a typical BS may
handle several hundred active calls at anytime, only several
tens of MTs are likely to be traveling in these segments
that require predictions. Also, as can be seen from the al-
gorithm, most of the calculations are simple, and they utilize
mainly pre-computed information stored in the database. The
slightly more time-consuming operations are the computations
of the quantilesH−1

HO,ab(ζL |D < di
EOS(s

i
ab)) and H−1

HO,ab(1 −
ζU|D < di

EOS(s
i
ab)). However, by estimating all pdfs using

histograms with appropriate bin sizes, and by paying special
attention to the computational efficiency, each of the above
quantiles typically only requires the computational intensity of
several hundred additions. In our simulations, each BS com-
pletes all its predictions within several tens of milliseconds.

III. D YNAMIC BANDWIDTH RESERVATION MODULE

In this section, we describe our dynamic bandwidth reser-
vation module, and explain how the 4-tuple predictions are
used. Unlike most existing schemes that only utilize incoming

handoff predictions to adjust their reservations, we utilize both
incoming and outgoing handoff predictions to achieve more
efficient tradeoffs betweenPHD andPCB. In the following, we
first describe the system model assumed. We then explain the
logic behind our approach, before presenting the algorithms.

A. System Model

Although it is suggested in [5] and [18] that some adaptive
applications might accept a lower bandwidth at the expense of
lower call quality during congestion, we do not consider them
here, as they may make it harder to visualize the advantages of
using positioning and road topology information for mobility
predictions. Similar to [2], we also preclude delay-insensitive
applications that can tolerate long handoff delays, as well as,
soft handoffs in CDMA systems, in which a MT can simulta-
neously connect with two or more BSs. All these preclusions
may be added as future extensions. In our model, we only
consider applications that require fixed bandwidth guarantees.
We assume that the minimum bandwidth granularity that may
be allocated to any call is 1bandwidth unit(BU) [2], [4]. For
example, a voice call may require 1 BU, while a constant-bit-
rate video call may require several BUs [2], [4].

We follow the common assumption of existing reservation
schemes that each BSj has a fixed capacity ofC(j) BUs [2].
Note that additional research may be performed to extend
our scheme to systems with time-varying capacity (including
CDMA systems in which the capacity depends on the target
interference [19]). Given the bandwidth demand of individual
calls, the BS performs admission control to ensure that the
total demand of all active calls does not exceedC(j).

In order to prioritize handoffs over new calls, each cell must
reserve some bandwidth that can only be used by incoming
handoffs. Specifically, each BSj has a “reservation target”
Rtarget(j) that is being updated regularly based on mobility
predictions. A new call request is accepted if the remaining
bandwidth after its acceptance is at leastRtarget(j), i.e.,

C(j)− bused(j)− bnew≥ Rtarget(j), (6)

where bnew is the bandwidth required by the new call, and
bused(j) is the bandwidth allocated to existing calls in cellj.
Note thatRtarget(j) is merely a target, not the actual bandwidth
available to the incoming handoffs. The BS can only attempt
to meet this target by rejecting new call requests, while waiting
for existing calls to release their bandwidth when they end, or
hand off to other cells. For a handoff request, the admission
control is more lenient; it is admitted so long as there is
sufficient remaining capacity, regardless ofRtarget(j):

C(j)− bused(j) ≥ bhandoff, (7)

wherebhandoff is the bandwidth needed by the handoff call.
We assume that all rejected new call requests are cleared,

and subsequent requests are independent of the previous re-
quests. When a BS cannot accommodate an incoming handoff,
we assume that it is dropped. We do not consider handoff
queuing here, although it would likely improve our scheme’s
performance (and that of other schemes simulated for compar-
ison), so as to focus on the advantages of using positioning
and road topology information for mobility predictions.
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Fig. 4. If we have perfect knowledge about handoffs up to timeTthreshold.

B. Logic Behind Our Approach

In order to better understand the logic leading to the pro-
posed scheme, we first ask ourselves the following question:

Suppose we have perfect knowledge about all the
incoming/outgoing handoffs that will occur within a
limited time into the future, how much bandwidth
should be reserved to prevent any of these incoming
handoffs from being dropped?

Fig. 4 shows an example that helps answer this question. Here,
we assume perfect knowledge about future handoffs up to
time Tthreshold. The top figure shows the changes in bandwidth
demand due to handoffs, and the time they occur. An incoming
handoff leads to a positive change, while an outgoing handoff
leads to a negative change. The bottom figure shows the
sum of bandwidth changes over time due to these handoffs.
SupposeTthreshold= TA , meaning that the BS is only interested
in preventing handoff dropping up to timeTA . By summing up
all the bandwidth changes over[0, TA ], we realize that the peak
additional bandwidth requirement within[0, TA ] is 1 BU. This
implies thatif we succeedin reserving 1 BU, we can ensure
that all incoming handoffs within[0, TA ] will not be dropped.
Thus, an appropriateRtarget(j) at time t = 0 is 1 BU. In
contrast, for a reservation scheme that does not utilize outgoing
handoff information (e.g., [2]), only the positive bandwidth
changes are considered. However, if we were to setRtarget(j)
to 3 BUs, we are actually over-reserving bandwidth, such that
new calls may be blocked unnecessarily within[0, TA ].

As mentioned earlier,Rtarget(j) is merely a target. If there
are insufficient existing calls that release bandwidth,Rtarget(j)
cannot be met. This causes some incoming handoffs to be
dropped, despite having prior knowledge about them. How-
ever, this becomes less likely if the BS has more time to meet
the target. The timeTthresholdcan be viewed as the time given
to the BS to set aside the required bandwidth to avoid dropping
a handoff. Referring to Fig. 4 again, notice that the handoffs
beyond timeTA are shown as dotted lines. This information is
currently not considered by the BS, hence it will setRtarget(j)
to 1 BU. Suppose the BS has 2 BUs of spare capacity at time
t = 0. If a new call from MTx needs 1 BU, the BS will accept

Time
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0
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Predicted
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Bandwidth
change due 
to handoffs
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Fig. 5. Effects of prediction errors in handoff timings.

the call because it still satisfiesRtarget(j) after accepting the
call. However, if no existing call ends before timet6, then the
spare bandwidth at timet6 remains at 1 BU, thus causing the
incoming handoff to be dropped. In contrast, if we have set
Tthreshold to TB, then Rtarget(j) would have been 2 BUs. The
BS would then have rejected the new call request from MTx
so as to maintain its spare capacity at 2 BUs. Consequently,
the incoming handoff at timet6 will not be dropped. This
shows that it is possible to reducePHD by giving the BS earlier
notice, which could be done by increasingTthreshold. Thus, we
could varyTthresholdto adjustPHD. Note thatRtarget(j) increases
monotonically withTthreshold.

The scenario above is for the ideal case of having perfect
knowledge about handoffs, which is unlikely in real-life. We
now examine a more realistic scenario, whereby we only
have handoff predictions. Fig. 5 illustrates the possible effects
of prediction errors in handoff timings. Here, handoffs are
predicted att1, t2, t3, t4 and t5, but the actual handoffs occur
at t1a, t2a, t3a, t4a and t5a. Based on the predictions, the peak
sum is 1 BU. However, the actual peak is 2 BUs. This increases
the likelihood that the incoming handoff at timet4a may be
dropped. A closer look reveals that the error in predicted peak
arises because the predicted sequence of a pair of incoming
and outgoing handoffs is wrong. The outgoing handoff is
predicted to occur (att3) before the incoming handoff (att4),
but the incoming handoff actually occurs (att4a) before the
outgoing handoff (att3a). This reversal of the predicted and
actual sequences causes the actual peak to become larger than
the predicted peak for the example shown1. An interesting
point to note is that, if, on the other hand, an incoming handoff
is predicted to occur before an outgoing handoff, but the actual
sequence is reversed, then the actual peak might be lower than
the predicted peak. However, this type of prediction error is
benign because it does not increase the chance of handoff
dropping; it may only result in over-reservation of bandwidth.

1A reversal in the predicted and actual sequences does not always result
in a difference between the predicted and actual peaks. This is because the
peak observed within the time interval[0, Tthreshold] may have been caused
by some other incoming handoff.
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Fig. 6. Effects of varying the values ofζL andζU.

From the above, we observe that it is undesirable when an
incoming handoff occurs earlier than its predicted time, and
also when an outgoing handoff occurs later than its predicted
time. Thus, we would like to reduce the likelihood of these
scenarios. Recall that each 4-tuple prediction consists of a
LPL and a UPL. Suppose we always use the LPLs and UPLs
as the predicted times for incoming and outgoing handoffs,
respectively. By specifyingζL andζU to be larger than 0.5, we
can introduce some biases into the predicted times, and reduce
the likelihood of the above scenarios. Let us consider a simple
example as follows. Suppose BSi predicts that MTsx andy
would hand off to other cells with UPLŝtxU(ζU) and t̂yU(ζU),
respectively. Also, its neighboring BSj predicts that MTsa
andb would hand off into BSi with LPLs t̂aL(ζL) and t̂bL(ζL),
respectively. We assume that there are no other predicted
handoffs that are leaving or entering BSi within [0, Tthreshold].
When BSi receives the predictions from BSj, it determines
the bandwidth that it needs to reserve. Figure 6(a) shows the
timing diagram and peak computation forζL = ζU = 0.5.
Here, each MT’s actual handoff time is equally likely to be
either earlier or later than its predicted handoff time. Nothing
has been done to alleviate the likelihood of the aforementioned
undesirable scenarios. A closer look at Figure 6(a) reveals
that MT y’s predicted departure is very close to the predicted
arrival of MT b. This pair of predictions carries a relatively
high risk that MTb may actually arrive before MTy departs,
which increases the chance of MTb being dropped. Suppose
we wish to bias the predicted times by specifying a larger value

TABLE III

NOTATIONS USED IN ALGORITHM FOR ADJUSTINGTTHRESHOLD.

Notation Meaning

Tthresmax The maximumTthresholdvalue allowed.
Tthresmin The minimumTthresholdvalue allowed.
Tthresinit The initial Tthresholdvalue.
nHO The number of handoffs counted.
nHD The number of handoff droppings counted.
PHD,target The desiredPHD target.
wobs Observation window size.
µ Scaling factor (an experimentally determined parameter).

for ζL andζU. Figure 6(b) shows a possible outcome ifζL and
ζU were set to 0.7. With the biases, MTb is now predicted
to arrive before MTy departs. A predicted peak of 1 BU is
obtained, and we have now reduced the risk of underestimating
the peak requirement. Although the biases also moved the
predicted times of MTsx and a closer to each other, their
predicted sequence remains the same. Therefore, if the injected
biases are small, the predicted arrival and departure sequence
for those handoffs that are sufficiently far apart would probably
remain the same, as though no biases have been injected.
However, these biases would have the benefit of capturing and
correcting those predictions that are close enough to result in
under-reservation at the slightest prediction error.

Note thatζL and ζU are design parameters whose optimal
values are best determined through experimentation in real
cellular networks. A general rule of thumb is to set a value
that is within the range of0.5∼0.7. Any value that is under
0.5 will actually increase the likelihood of under-reservation,
while a value that is too high may render the predictions too
conservative and result in excessive over-reservation.

Having seen these key concepts, we describe below how
each BS dynamically adjusts itsTthreshold to meet the desired
PHD. Section III-D then explains how a BS adjusts itsRtarget.

C. AdjustingTthreshold at each BS

In Section III-B, we have seen that thePHD experienced by
incoming handoffs may be indirectly controlled by adjusting
Tthreshold. However, the value ofTthreshold for the same desired
PHD would probably be different in each cell, as it likely
depends on the cell’s coverage area, subscriber density, and so
on. It might even fluctuate with user mobility and traffic load.
Since there is no obvious way to computeTthreshold, we utilize
an adaptive algorithm to adjust its value for any givenPHD.
Table III shows the notations we have used in our algorithm,
while the actual algorithm is shown in Fig. 7.

The adaptive algorithm attempts to maintain approximately
one handoff dropping out of everywobs incoming requests. If
there is no handoff dropping withinwobs handoffs,Tthreshold

will be decreased by 1 sec if it is larger than the minimum
value. A fresh observation window will be restarted when the
current window is exhausted. If more than one handoff drop-
ping is observed within the window,Tthreshold is immediately
increased by 1 sec if it has not yet reached the maximum value.
When this happens, the observation window is also restarted.

For a desiredPHD target, the value ofwobs is chosen to be
dµ/PHD,targete, whereµ is a scaling factor close to 1. Ideally, if
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1 wobs = dµ/PHD,targete;
2 Tthreshold← Tthresinit ; nHO ← 0; nHD ← 0;
3 while (system running)
4 if (incoming handoff-request occurs)
5 then nHO ← nHO + 1;
6 if (handoff accepted)
7 then if (nHO ≥ wobs)
8 then if ((nHD = 0) & (Tthreshold> Tthresmin))
9 then Tthreshold← Tthreshold− 1;
10 nHO ← 0; nHD ← 0;
11 elsenHD ← nHD + 1;
12 if (nHD > 1)
13 then if (Tthreshold< Tthresmax)
14 then Tthreshold← Tthreshold+ 1;
15 nHO ← 0; nHD ← 0;

Fig. 7. Algorithm used by each BS to adjust itsTthreshold.

the algorithm were to succeed in achieving exactly one handoff
dropping everywobs handoffs, thenwobs should be simply
1/PHD,target. However, through our simulations, we discover
that the PHD obtained this way slightly deviates from the
desired targetPHD,target by an approximately constant factor
(about1.2∼1.25). A possible explanation for this observation
is that handoffs are bursty and the best that our adaptive
algorithm could achieve is to allow the value ofTthreshold to
fluctuate around its optimal value. This causes the average
number of handoff droppings perwobs observations to deviate
slightly from 1. To compensate for the above difference, the
scaling factorµ is introduced for the calculation ofwobs. Note
thatµ shall be determined experimentally in an actual system.

D. AdjustingRtarget at each BS

The predictions used to computeRtarget are made peri-
odically every Tpredict, which is a design parameter. If the
predictions are very frequent, they are more accurate but the
computational requirement at each BS also increases. On the
other hand, they become less accurate when they are far apart,
and the tradeoff betweenPHD andPCB becomes less efficient.

Fig. 8 shows the procedure that is repeated everyTpredict. For
clarity, we only show two cells; cell A is our reference cell
for which we demonstrate the computation of itsRtarget, while
cell B is one of A’s neighboring cells. Note that steps 1–3 are
performed simultaneously for every neighbor of cell A. Also,
cell A concurrently serves as a neighboring cell for cell B; the
procedure also applies when they interchange their roles.

An assumption made here is that inter-BS signaling is
possible via the radio access network connecting the BSs.
Also, such signaling messages are given high priority so that
they can be delivered with the smallest possible delay. The
following describes each step of the procedure:

Step 1: Reference cell A transmits itsTthreshold to neigh-
boring cell B, which uses this to decide what prediction
information needs to be sent to A.

Step 2: Neighboring cell B generates 4-tuple predictions
for its outgoing handoffs. Note that cell A itself will also be
performing predictions at the same time for its role as some
other cells’ neighbor (not shown).

1 Reference cell A
sends Tthres(A) to
neighboring cell B

2 Neighboring cell B
performs predictions

3 Neighboring cell B 
returns 3-tuples,
[MT_ID, weighted
bandwidth requirement,
lower prediction limit],
for MTs likely to
hand off to reference
cell A within Tthres(A)

4 Reference cell A
computes Rtarget(A)

Reference cell (A)

Neighboring cell (B)

1

2

3

4

Note:
Tthres(A) = Tthreshold of cell A
Rtarget(A) = Rtarget of cell A

Fig. 8. Procedure performed everyTpredict for computingRtarget.

Step 3: For every 4-tuple prediction that picks cell A as
the target cell, and whose LPL is within cell A’sTthreshold, the
neighboring cell B transmits part of the prediction to cell A
as a 3-tuple, with the format [MTID, weighted bandwidth
requirement, predicted time]. TheMT ID is a unique identifier
for each MT, theweighted bandwidth requirementis the
product of the prediction weight and the MT’s bandwidth
requirement, while thepredicted timeis the LPL.

Step 4:As cell A receives the 3-tuples from cell B, they are
inserted into a sorted list according to their predicted times in
ascending order. These are the incoming handoff predictions.
Cell A then examines its own 4-tuple predictions for outgoing
handoffs. For those with UPLs within cell A’sTthreshold, they
are also inserted into the list, but in the form of 3-tuples
with format [MT ID, −weighted bandwidth release, predicted
time]. The weighted bandwidth releaseis the product of the
prediction weight and the bandwidth released when the MT
leaves. Thepredicted timeis its UPL. Upon completing the
sorted list, the bandwidth change from every entry is summed
in order. The overall peak discovered is then assigned toRtarget.

Although the predictions are performed everyTpredict, a BS
may adjust itsRtarget between successive predictions when it
acquires updated information. Specifically,Rtarget is adjusted
when any of the following events occurs:

1) A previously predicted incoming handoff within the list
has taken place.

2) A previously predicted outgoing handoff within the list
has either handed off or ended its call.

3) A previously predicted incoming handoff within the list
has either ended its call without handoff, or has handed
off to a different cell. The BS needs to be informed by
the neighboring BS that has previously sent the 3-tuple.

Note that only event 3 requires inter-BS signaling; events 1
and 2 occur locally, thus the BS already has the information.
When any updated information is acquired, the BS removes
the affected entry from its sorted list, and recomputesRtarget.

It may be noticed that the adjusting ofRtarget has not con-
sidered thelikelihood that some predicted incoming handoffs



10 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. ?, NO. ?, OCTOBER 2006

may end their calls before arriving. Although we do recompute
Rtarget after encountering any such event (see event 3 above),
the algorithm’s efficiency could potentially improve if we were
to incorporate the above likelihood intoRtarget even before
they occur. Suppose the distributions of the call durations are
known, and letPdur,i(t> τ0 + τ1|t> τ0) be the probability
that MT i would last at least anotherτ1 sec, knowing that
it has already lastedτ0 sec. The above likelihood can then be
incorporated, by multiplying the weighted bandwidth require-
ments of the predicted incoming handoffs by their respective
probabilitiesPdur,i, when calculatingRtarget. Note, however,
that the above procedure may be quite tedious to implement,
unless the call durations are exponentially distributed.

IV. SIMULATIONS AND RESULTS

A. Simulation Model

To facilitate the evaluation, a novel simulation model was
designed. In contrast to commonly adopted models in which
the MTs are assumed to travel in straight lines for random
distances before undergoing random direction changes, our
model incorporates road layouts that place constraints on MTs’
paths. The simulation network consists of 19 wireless cells. In
order to eliminate the boundary effects that make it difficult
to comprehend the results, the cells at the boundary are made
to wrap around [2], [8], as shown in Fig. 9(a). Whenever a
MT travels out of the network boundary, it is re-injected into
the network via the appropriate wrap-around cell, as though
a handoff has occurred from outside the network. The road
topology in each cell is randomly generated using heuristic
rules; real maps are not used because the roads also need to
wrap around at the network boundary. The road layouts are
designed to resemble those found in city areas. Fig. 9(b) shows
an example of the road topology that was randomly generated.

Unlike many existing simulation models in which the hand-
offs occur at either the circular or hexagonal cell boundaries,
our handoff positions are randomly distributed. SupposeR is
the designedcell radius (assumed to be 1000 m), typically
defined as the distance from the BS to the vertex of the
hexagonal cell. When a MT is between1.1R and1.2R from
the BS, we assume that a handoff will occur during its transit
through this region. The time at which the handoff occurs is
a random variable that is uniformly distributed over the total
time spent in the region. The target BS is assumed to be the
nearest neighboring BS at the time when the handoff occurs
(although this may not be the case in real life). We do not claim
that the model resembles the handoff position distribution in a
real cellular network; its main purpose is to create anirregular
handoff region with someuncertainty, so as to evaluate the
performance of different dynamic reservation schemes.

To make the problem more interesting, we introduce traffic
lights at the road junctions. The lights are assumed to change
every 30 sec. Each road segment is assigned a speed limit,
chosen from the set{40, 50, 60} km/h with equal probability.
The MT’s speed is Gaussian-distributed, with its mean being
the speed limit of that particular road segment. The standard
deviation is assumed to be 5 km/h, and the speed is truncated
to a limit of three standard deviations from its mean. Once
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Fig. 9. (a) Simulation network with wrap-around at the network boundary,
(b) a sample road layout generated using heuristic rules.

again, the above is merely a simulation assumption that does
not necessarily resemble a real MT’s speed distribution.

We do not assume any particular positioning technology,
as new breakthroughs will continue to emerge. For this
reason, we chose to ignore the effects of positioning errors
in all but one set of simulations, because their distribution
and correlation are dependent on the positioning technology.
The actual map-matching techniques for mapping the raw
positioning data onto the digital road maps are also beyond
the scope of this paper, as they are usually designed based
on the distribution and correlation of the positioning errors.
Note, however, that more efficient map-matching techniques
can be utilized when more accurate positioning technologies
become available. For instance, when the positioning errors
are much smaller than the separation between neighboring
road segments, a MT’s current road segment can be easily
obtained as the nearest segment from its reported position.

Each cell is assumed to have a fixed capacityC of 100 BUs.
For simplicity, all MTs’ bandwidth requirements are assumed
to be symmetric, although the scheme may be modified to
handle asymmetric requirements. Our traffic model is similar
to the one used in [2]. New calls are generated according to
Poisson distribution with rateλ (calls/sec/cell) in each cell.
The initial position of a new call and its destination can be
on any road segment with equal probability. The MT then
follows the shortest path between its origin and destination.
Similar to [2], a call request is either of type “voice” (requires
1 BU) or of type “video” (requires 4 BUs), with probabilities
Rvo and1−Rvo, respectively. In the simulations,Rvo is set to
0.5. All MTs are assumed to have the samePHD requirement,
regardless of their call types. The holding times for both types
of calls are assumed to be exponentially distributed, with mean
180 sec. We define thenormalized offered loadper cell as

Lnorm =
[1 ·Rvo + 4 · (1−Rvo)] · λ · 180

C
. (8)

In this paper, we mainly present the results forLnorm=1.
The interval between predictions,Tpredict, is 5 sec. We also
assumed that all MTs have positioning capability, although a
real network would probably include some MTs that do not
(which might degrade performance). Finally, the probabilities
ζL and ζU that affect the prediction limits are both 0.65, as
they are found to perform best for the simulation model used.
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B. Other Schemes Simulated For Comparison

In the remaining paper, we refer to our scheme as theroad
topology basedscheme (RTB). We have also simulated five
other bandwidth reservation schemes for comparison purposes:

1) Benchmark scheme:This idealized scheme assumes
perfect knowledge about every MT’snext cell and handoff
time. It uses the same algorithms in Sections III-C and III-D
for adjustingTthreshold andRtarget. However, it uses the actual
handoff times to computeRtarget, instead of prediction limits.

2) Reactive scheme:This scheme is purely reactive, and
gives a bound for the worst efficiency of predictive schemes.
The basic idea is to adapt the BS’sRtarget according to the
number of handoffs dropped overwobs handoff-requests. We
utilize the same adaptive algorithm presented in Fig. 7 that was
originally designed for adjustingTthreshold. Instead of adjusting
Tthreshold(which does not exist here), the algorithm is used for
adjustingRtarget directly. If no handoff is dropped amongwobs

handoff-requests,Rtarget is decremented by 1 BU. If more than
one handoff is dropped,Rtarget is incremented by 1 BU.

3) Choi’s AC1 scheme:This is one of the three schemes
(AC1, AC2, and AC3) proposed in [2]. In their simulations
using 1-D cell layout, AC3 performed best. However, when
simulated using our model with 2-D cell layout, AC1 has the
best performance, while AC2 and AC3 are over-conservative
with much worse efficiency than the Reactive scheme (lower
bound). Hence, we only present the results for AC1 here.
The scheme works by estimating the probability that a MT
would hand off into a neighboring cell within an estimation
time windowTest, based upon its previous cell, and its extant
sojourn time. The neighboring cell’sRtarget is then increased by
the MT’s bandwidth requirement, weighted by the estimated
probability. TheTest of each cell is dynamically adjusted based
on the measured handoff dropping ratio among a number of
handoffs recently observed, so as to meet the desiredPHD.

4) Linear extrapolation (LE) scheme:This scheme is simi-
lar to the one we proposed in [9]. Although it also uses mobile
positioning information for predictive bandwidth reservation,
it does not utilize any road topology information. Instead, it
uses linear extrapolation over recently observed positions to
predict a MT’s next cell and handoff time.

5) RTB with path knowledge (RTBPK) scheme:In the RTB
scheme, there is uncertainty about a MT’s next road segment,
so a prediction needs to consider all possibilities. In practice,
it might be possible to predict a MT’s path using an adaptive
algorithm [20] that could learn a user’s mobility profile. The
MTs could also be using the routes computed by an ITS
navigation system, from which the path may be extracted.
Here, the RTBPK scheme assumes the extreme case whereby
a MT’s path isalwaysknown. Note, however, that even when
the MT’s path is known, we do not know beforehand the
exact time and position that the handoff might occur. This
distinguishes the scheme from the Benchmark scheme.

C. Simulation Results

We now present the simulation results. All the results shown
are the averages over the 19 cells in the simulation network.
Sufficient simulations have been performed such that the 95%
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Fig. 10. PCB versusPHD for different schemes atLnorm = 1.0.
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Fig. 11. Approximate normalized efficiencies atPHD = 0.01.

confidence interval for anyPHD is within ±0.00015 from its
sample mean, and for the case ofPCB, it is within ±0.001.

Without handoff prioritization, bothPCB andPHD are 0.075.
This is unacceptably high forPHD. Fig. 10 shows the plots
of PCB versusPHD for the six schemes simulated. For each
scheme, the targetPHD is varied so as to illustrate its tradeoff
with PCB. A curve that is closer to the origin implies that the
scheme offers a more efficient tradeoff betweenPCB andPHD.
This is because the scheme is able to achieve the samePHD

target by blocking fewer new calls (smallerPCB).
Among the six schemes, the Benchmark scheme is most

efficient. It naturally acts as a bound, because it has complete
knowledge of when and where the next handoff will occur for
every MT. The Reactive scheme, on the other hand, has the
worst efficiency. It has no prediction capability, and merely
adaptsRtarget according to the number of handoffs being
dropped over an observation window of past handoff-requests.

In order to better visualize the relative efficiencies among
the schemes, we use the following normalization technique.
For any chosenPHD value, we obtain the absolute difference
in PCB between each scheme and the Reactive scheme, and
then normalize it with respect to the absolute difference inPCB

between the Benchmark scheme and the Reactive scheme. The
normalized value is then represented as a percentage, referred
to as thenormalized efficiency(NE) of that scheme. Note that
the Reactive scheme has an NE of 0%, while the Benchmark
scheme has an NE of 100%. For aPHD target of 0.01, the
approximate NEs of the various schemes are shown in Fig. 11.

We now examine the performance of the remaining four
schemes. As can be seen in Fig. 11, Choi’s AC1 scheme
performs only slightly better than the Reactive scheme. This is
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probably because it is inadequate to make handoff predictions
based only on each MT’s previous cell and the time already
spent in the cell. On the other hand, the LE, RTB, and RTBPK
schemes are much more efficient than Choi’s AC1 scheme.
This can be attributed to their use of positioning information
for mobility predictions, which are more accurate, and also
their use of both incoming and outgoing handoff predictions
for reservation. It is observed that the LE scheme is able to
outperform Choi’s AC1 scheme significantly, even though it
merely uses a simple linear extrapolation approach for making
predictions. For the RTB scheme, the additional road topology
knowledge allows it to perform better than the LE scheme.
The RTBPK scheme, which eliminates the uncertainty in
predicting the MTs’ future paths, further improves upon the
RTB scheme, although the improvement is not very dramatic.

We would like to point out that the RTBPK scheme is not
implementable in real-life, because it is unlikely thatall MTs’
paths will be known beforehand. The purpose of simulating
this scheme is to examine themaximumperformance gain over
the RTB scheme if it were possible to obtain prior knowledge
of MTs’ paths. In an actual cellular network, we could have
a mixture of MTs with and without known paths. Hence, a
hybrid scheme, whose performance is expected to be between
that of the RTB and RTBPK schemes, may be implemented
if desired. Since the simulation results of the RTBPK scheme
have shown limited gain over the RTB scheme, there may be
little incentive to implement the hybrid scheme.

In the above simulations, the time interval between predic-
tions,Tpredict, was 5 sec. Since the performance of the predic-
tive schemes would likely deteriorate whenTpredict becomes
larger, we repeated the simulations withTpredict = 10 sec to
examine its effects. For the same targetPHD, the PCB’s of
the RTBPK, RTB, and LE schemes increased only modestly;
they increased by no more than 0.003 (or 2% of their original
PCB’s), and still outperform Choi’s AC1 scheme significantly.

An important characteristic of any dynamic bandwidth
reservation scheme is its ability to meet the desiredPHD target
even when the load varies. This differentiates the dynamic

schemes from the static approach, which uses fixed reservation
regardless of the load. We now illustrate the above using
additional simulations. Fig. 12 shows thePHD values obtained
by statically reserving a number of BUs whenLnorm is varied,
as well as those obtained by the RTB, LE, and Benchmark
schemes for a targetPHD of 0.01. As can be seen, a static
reservation that meets the targetPHD at a particularLnorm can
violate this target significantly at higherLnorm, while suffering
from over-reservation at lowerLnorm (where more new calls are
being rejected than necessary). The dynamic schemes, on the
other hand, perform extremely well under varying load. The
Benchmark scheme is able to meet thePHD target throughout.
For the LE and RTB schemes, even atLnorm = 1.5, thePHD’s
are approximately 0.0125 and 0.011, respectively. These small
violations might be tolerable in most practical applications [2].

Some additional observations can also be made from Fig. 12
as follows. Recall that the Benchmark scheme uses the same
algorithms presented in Sections III-C and III-D to adapt its
Rtarget andTthreshold, except that it has perfect knowledge about
each MT’s next handoff, whereas the LE and RTB schemes
need to rely on mobility predictions. Since the Benchmark
scheme can meet thePHD target even at high load regions, we
can conclude that our proposed algorithms used for adapting
Rtarget and Tthreshold work extremely well. This also implies
that the small deviations from the targetPHD for both LE and
RTB schemes probably arise due to the errors in their mobility
predictions, which are inevitable in all predictive schemes.
The fact that the RTB scheme’sPHD is better than the LE
scheme’sPHD also reinforces the above argument, because
the RTB scheme is more accurate than the LE scheme.

In Section III-B, we have explained the importance of
utilizing both incoming and outgoing handoff predictions for
adjusting the reservation in each cell. Here, we demonstrate via
simulations that the reservation efficiencies of such schemes
are indeed better than those schemes that only utilize incoming
handoff predictions. We consider three additional schemes,
which are variants of the Benchmark, LE, and RTB schemes.
In these variants, the predictions about outgoing handoffs
from each cell are purposely withheld when computingRtarget.
Fig. 13 shows thePCB versusPHD plots for these variants
and their original schemes. We also reproduce the plot for
Choi’s AC1 scheme, which does not utilize outgoing handoff
predictions as well. From the plots, we observe that the
variants are much less efficient than their original counter-
parts. This justifies the use of outgoing handoff predictions
for reservations. Another important observation is that even
without using the outgoing handoff predictions, the variants
of both the LE and RTB schemes still outperform Choi’s
AC1 scheme. This again demonstrates the advantages of using
positioning information for predictions, in contrast to the latter
which performs predictions based on each MT’s previous cell
and the time it has already spent in the current cell.

In the simulations, we have used the value 0.65 for the
parametersζL andζU of the RTB scheme. We now demonstrate
the effects of varying these two important parameters, and
explain why we have chosen the above value. Although it is
possible to select different values for these two parameters, we
have found through our simulations that they perform very
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well when their values are identical. For simplicity, we let
ζL = ζU, and simply refer to them asζ. Fig. 14 shows a
number ofPCB versusPHD plots for the RTB scheme, where
each plot corresponds to a different value ofζ, ranging from
0.5 to 0.95 with a step size of 0.05. For each value ofζ, we
obtained two data points by setting the targetPHD values to
0.01 and 0.0125. As can be seen, the efficiency improves as
ζ increases from 0.5 to 0.65, and then degrades consistently
asζ increases beyond 0.65. Therefore, we choseζ = 0.65.

As all the simulations described thus far have not considered
positioning errors, we conclude this section by demonstrat-
ing their possible effects using a simple error model. An
exponentially correlated Gaussian random variable with zero
mean, standard deviationσ, and correlation coefficiente−1/τ

is added to the MT’s actual position along the road segment
every time when it reports its position. Note that it is common
for a MT’s consecutive position readings to have correlated
errors, when using an actual positioning technology such as
the GPS. Here, the degree of correlation is determined byτ ,
wherebyτ ≈ 0 sec gives uncorrelated errors. The degree of
correlation is important for the RTB scheme, because we esti-
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mate the MT’s speed using several of its most recently reported
positions. The results for several different combinations ofσ
andτ are shown in Fig. 15. When the errors are uncorrelated,
the RTB scheme’s performance deteriorates considerably asσ
increases. For the case whereσ = 30 m with uncorrelated
errors, the RTB scheme could no longer meet the targetPHD

of 0.01, but stops at around 0.012. On the other hand, when
the errors are correlated, the RTB scheme’s performance does
not deteriorate as much – the stronger the correlation (larger
τ ), the smaller the deterioration. This important observation
shows that the RTB scheme is more sensitive towards errors
in speed estimation, rather than the actual positioning errors.

V. CONCLUSION

We have proposed a novel predictive bandwidth reservation
scheme that utilizes mobile positioning and road topology
information. It is built upon the assumption that future MTs are
likely equipped with reasonably accurate positioning capabil-
ity, and is inspired by the widespread availability of digital
road maps that were previously designed for navigational
devices. In contrast to previous predictive methods that use
positioning information, our scheme is more practical as it
does not assume that the cell boundaries are hexagonal or
circular. Also, the use of the road topology information is
expected to yield more accurate predictions than before.

Our scheme consists of two modules. The mobility predic-
tion module defines the prediction tasks to be undertaken by
the BSs. Each BS periodically generates a number of 4-tuple
predictions associated with MTs that are likely to hand off
within a threshold time. They are then used by the dynamic
bandwidth reservation module for adjusting the reservations.
Our scheme is unique as it innovatively uses both incoming
and outgoing handoff predictions to achieve more efficient
reservations, unlike other schemes that merely uses incoming
handoff predictions. It can also be implemented in real-time.

We evaluated our scheme via simulation, and compared
it with five other schemes. Our simulation model incorpo-
rates road layouts that place constraints on the MTs’ paths,
which is more realistic than existing models. The relative
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performance of the various schemes, with their normalized
efficiencies shown in brackets, can be summarized as: Reac-
tive (0%) < Choi’s AC1 (10%)< LE (40%) < RTB (60%)
< RTB PK (70%) < Benchmark (100%). The huge jump
in efficiency from Choi’s AC1 scheme to the LE scheme
highlights the advantages of using positioning information for
predictions. With the added advantage from using road topol-
ogy information, the RTB scheme outperforms the LE scheme.
The RTBPK scheme, which assumes prior knowledge of all
MTs’ paths, shows limited improvement over the RTB scheme.
Hence, there is little incentive to implement an RTB-RTBPK
hybrid scheme even if the paths of some MTs may be known.

We have also shown that our scheme only degrades mod-
estly when the prediction time interval increases from 5 sec
to 10 sec. In addition, thePHD only deviates slightly from
its target when the normalized load is 1.5. In order to justify
our claim thatboth incoming and outgoing handoff predic-
tions should be used to achieve better reservation efficiency,
we also simulated the variants of the Benchmark, LE, and
RTB schemes that do not consider outgoing handoffs. These
variants exhibit significant degradation when compared to their
original schemes. Nevertheless, both the LE and RTB variants
still outperform Choi’s AC1 scheme, thus demonstrating the
advantages of using positioning information for predictions.

The possible effects of positioning errors have been studied
using a simple error model. Although the RTB scheme’s
efficiency deteriorates with the errors’ standard deviation, it is
found that a stronger correlation between consecutive position-
ing errors would lead to a smaller performance degradation.
This implies that the RTB scheme is more sensitive to errors
in speed estimation, rather than the actual positioning errors.
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