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A predictive continuum dynamic user-optimal model is extended to investigate the traffic
equilibrium problem for a polycentric urban city with multiple central business districts
(CBDs). The road network within the city is assumed to be dense and can be viewed as a
continuum in which travelers can choose their routes in a two-dimensional space. Travelers
are assumed to choose their route to minimize the actual total cost to the destination (i.e.,
the CBD). The model consists of two parts: the conservation law part and the Hamilton-
Jacobi part. The finite volume method is used to solve each part on unstructured meshes.
Because the two parts are closely interconnected and have different initial times, solving the
model can be treated as a fixed-point problem, which is solved using a self-adaptive method
of successive averages. Numerical experiments for an urban city with two CBDs are presented
to demonstrate the effectiveness of the model and the numerical algorithm.

Keywords: polycentric urban city; predictive user-optimal principle; elastic demand;
unstructured meshes

1. Introduction

The traffic equilibrium problem is an important topic that has been considered and
developed over recent decades. The literature devoted to the problem can be classified
into two general approaches: the discrete modeling approach and the continuum modeling
approach. The discrete modeling approach, in which the discrete road links constitute
the network and each road link is modeled separately, is a conventional methodology
used for the detailed analysis of a transportation system (Sheffi 1984). The continuum
modeling approach focuses on the macroscopic characteristics of traffic flow in networks.
It regards the road network as a continuum in which travelers can choose their routes
in a two-dimensional space. The differences between two adjacent areas are relatively
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Figure 1. A polycentric urban city with an arbitrary configuration.

small compared with the variations over the entire network. Hence, the characteristic
variables, such as the flow intensity, demand, density and travel cost, can be represented
by smooth mathematical functions (Vaughan 1987; Wong and Wong 2015, 2016).
Most of the continuum modeling approaches for the traffic equilibrium problem are

confined to the static case, in which the temporal variation of flow and cost are ig-
nored, and hence cannot be used to study dynamic characteristics such as the travelers’
departure/arrival time choices, evolution of the traffic congestion and dynamic traffic
management and control (Blumenfeld 1977; Buckley 1979; Taguchi and Iri 1982; Wong
1998; Wong, Lee and Tong 1998; Ho and Wong 2007; Ho, Wong and Sumalee 2013; Yin
et al. 2013; Du et al. 2016). To overcome these weaknesses, dynamic traffic assignment
has received much attention in recent years. The route choice problem, which models
travel behavior, is an important component of dynamic traffic assignment. Three ma-
jor problems are considered in the route choice problem: the dynamic system-optimal
problem, in which the total cost of the whole traffic system is minimized (Chow 2009;
Nie 2011; Tao et al. 2014); the reactive dynamic user-optimal problem, in which the
instantaneous total travel cost based on instantaneous information is minimized (Boyce,
Ran and Leblanc 1995; Kuwahara and Akamatsu 2001; Hughes 2002; Jiang et al. 2009;
Huang et al. 2009); and the predictive dynamic user-optimal (PDUO) problem, in which
the actual total travel cost based on the assumption that travelers have perfect further
information about the traffic conditions is minimized (Tong and Wong 2000; Lo and
Szeto 2002; Hoogendoorn and Bovy 2004; Szeto and Lo 2004).
However, relatively few studies have investigated the continuum dynamic traffic as-

signment problem. Tao et al. (2014) presented a model for the dynamic system-optimal
problem for a city in which the total cost of the system is minimized. Hughes (2002)
provided a systematic framework for dynamic modeling of the pedestrian flow problem.
Huang et al. (2009) showed that the route choice strategy in Hughes’ model satisfies the
reactive dynamic user-optimal principle and provided a numerical solution procedure.
Jiang et al. (2014) developed a model for the reactive continuum dynamic user-optimal
problem with elastic demand for a polycentric urban city. A numerical scheme based on
unstructured (triangular) meshes is given to solve the model. For the predictive continu-
um dynamic user-optimal (PDUO-C) problem, Hoogendoorn and Bovy (2004) presented
a model for pedestrians, in which the predictive dynamic user-optimal principle is sat-
isfied. Although the models are presented for the pedestrian problem, they can also be
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applied to model the traffic flow in an urban city in a similar manner. Jiang et al. (2011)
presented a model for the PDUO-C problem for an urban city with a single CBD, while
Du et al. (2013) pointed out the inconsistency in the route-choice strategy under certain
conditions, and constructed an improved route-choice strategy. In the work of Du et al.,
the urban city with one CBD is considered, and a numerical scheme based on rectangular
meshes is developed. This paper extends the model into a polycentric urban city and has
both theoretical and practical significance. Theoretically, we investigate multiclass traf-
fic flow (corresponding to different CBDs) and prove that the extended model satisfies
the predictive dynamic user equilibrium principle. In practical terms, cities with more
than one CBD are common, and the presented model can be applied to investigate the
traffic assignment problem in such a city. The other contribution of this paper is our
construction of a numerical scheme based on unstructured (triangular) meshes. Our use
of triangular meshes for spatial discretization facilitates handling of the regions com-
plicated boundaries. Thus, the scheme is flexible for tracking arbitrary configurations
and can also be used to simulate the numerical examples in Du et al. (2013), whereas
the scheme based on rectangular meshes cannot simulate the numerical examples in this
paper because of their complicated configurations.
The remainder of this paper is organized as follows. The description of the PDUO-C

problem for a polycentric urban city is given in Section 2. Section 3 gives the model
formulation, which includes the flow conservation law and the route-choice strategy. The
solution algorithm is described in Section 4, and numerical experiments for a polycentric
urban city with two CBDs based on unstructured meshes are presented in Section 5.
Conclusions are made in Section 6.

2. Problem description

As shown in Figure 1, the considered polycentric urban city has M(M ≥ 2) compact
CBDs. In the region Ω, the road network is dense enough that it can be viewed as a
continuum. The boundary of Ω is Γ = Γ0 ∪Γi ∪Γ1

CBD ∪Γm
CBD ∪ . . .∪ΓM

CBD, where Γ0 is
the outer boundary, Γi is the boundary of an obstruction such as a lake, park or some
other area where traffic is not allowed to enter or leave, and Γm

CBD(m = 1, . . . ,M) is the
boundary of the m-th CBD.
We assume that the travelers are classified into M classes by their destinations (i.e.,

CBDs) and are distributed continuously in the region. The m-th class of traffic flow
represents the travelers whose destination is the m-th CBD.
We denote the variables as follows. Under the condition of no confusion, the arbitrary

function f(x, y, t) can be written as f for short.

• ρm(x, y, t) (m = 1, . . . ,M , in veh/km2) is the density of the m-th class of traffic
flow at location (x, y) at time t.

• vm = (um(x, y, t), vm(x, y, t)) (m = 1, . . . ,M) is the velocity vector of the m-th
class of traffic flow at location (x, y) at time t. Um(x, y, t) = |vm| (in km/h) is the
speed of the m-th class of traffic flow. It is determined by the sum of the densities
at location (x, y) at time t, i.e.,

Um(x, y, t) = Um
f (x, y)e−βρ2(x,y,t), m = 1, . . . ,M, (1)

where Um
f (x, y) (in km/hr) is the free-flow speed of the m-th class of traffic flow at

location (x, y), ρ(x, y, t) =
∑M

m=1 ρ
m(x, y, t) and β is a positive parameter reflecting

the road condition.
• Fm = (fm

1 (x, y, t), fm
2 (x, y, t)) (m = 1, . . . ,M) is the flow vector of the m-th class
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of traffic flow. The intensity of flow |Fm| (in veh/km/hr) is defined as

|Fm(x, y, t)| = ρm(x, y, t)Um(x, y, t), m = 1, . . . ,M.

• ϕm(x, y, t) (m = 1, . . . ,M, in $) is the total actual travel cost of the m-th class of
traffic flow from location (x, y) to the m-th CBD.

• qm(x, y, t) (m = 1, . . . ,M, in veh/km2/hr) is the traffic elastic demand of the m-th
class of traffic flow, which is associated with the total travel cost incurred by the
m-th class of traffic flow and is represented by

qm(x, y, t) = qm(ϕm(x, y, t)).

Here, qm(x, y, t) is a monotonically decreasing function with ϕm(x, y, t).
• cm(x, y, t) (m = 1, . . . ,M, in $/km) is the cost distribution of the m-th class of

traffic flow, which is defined as

cm(x, y, t) = κ(
1

Um(x, y, t)
+ πm(ρ̃(x, y, t))), (2)

where ρ̃(x, y, t) = {ρ1(x, y, t), . . . , ρM (x, y, t)}, and κ (in $/hr) denotes the value
of time. Compared with one CBD problem, the influence among different classes
in polycentric problem should be considered. This connection is described by the
cost distribution. The term κ

Um(x,y,t) represents the cost associated with the travel

time, and κπm(ρ̃(x, y, t)) represents other related costs, such as the preference for
avoiding conflict with the other class of traffic flow (for the different travel directions
and destinations) and the high-density region.

3. Model formulation

In this section, we extend the PDUO-C model in (Du et al. 2013) into a polycentric
urban city with elastic traffic demand.

3.1. Route-choice strategy

Similar to the case in which the urban city has one CBD, the case of the city with
multiple CBDs also has the following similar theorem. We state that “||” means parallel
and ϕx (ϕy) means the partial differential of ϕ with respect to x (y).

Theorem 1. If (um, vm)||(−ϕm
x ,−ϕm

y ) (∀m = 1, . . . ,M), then the predictive dynamic

user-optimal principle is satisfied.

Proof. The proof is essentially the same as that in the case of one CBD: see Theorem 2
in (Du et al. 2013). We recall it as follows.
Note that ϕm(x, y, t) is the total travel cost of them-th class of traffic flow incurred by a

traveler who departs from location (x, y) at time t and travels to the city’s CBD using the
constructed route-choice strategy, namely, the route that satisfies (um, vm)||(−ϕm

x ,−ϕm
y ),

and we denote this route as the “used” route. We need to prove that for any other
“unused” route from location O(x0, y0, t0) that deviates from the “used” route, the total
travel cost is not less than ϕm(x0, y0, t0).
We first consider the “unused” route that deviates from the “used” route only at the

initial ∆t time. We assume that ∆t is small enough such that the high-order terms in
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the Taylor expansion of ϕm(x, y, t) can be neglected. As shown in Figure 2, the circle
with a radius ∆tUm represents the traveler’s locations after ∆t time from O(x0, y0, t0).
A(x, y) is the position at which the traveler arrives along the “used” route, where
(um, vm)||(−ϕm

x ,−ϕm
y ) is the speed of the m-th class of traffic flow. Ã(x̃, ỹ) is the position

at which the traveler arrives along the route with the vector ∆t(um, vm). We can obtain
the change in ϕm along the “used” route:

ϕm(x, y, t0+∆t)−ϕm(x0, y0, t0) = (ϕm
x , ϕm

y , ϕm
t ) · (um, vm, 1)∆t = ∆t(−|∇ϕm|Um+ϕm

t ).

The change in ϕm along the “unused” route is

ϕm(x̃, ỹ, t0+∆t)−ϕm(x0, y0, t0) = (ϕm
x , ϕm

y , ϕm
t ) · (ũm, ṽm, 1)∆t ≥ ∆t(−|∇ϕm|Um+ϕm

t ).

Hence, we have

ϕm(x̃, ỹ, t0 +∆t) ≥ ϕm(x, y, t0 +∆t).

Note that the travel costs from the location O(x0, y0, t0) to A and Ã are both
∆tUmcm(x0, y0, t0). Therefore, we have

ϕm(x0, y0, t0) = ∆tUmcm(x0, y0, t0) + ϕm(x, y, t0 +∆t),

and the total travel cost along the “unused” route is

ϕ̃m = ∆tUmcm(x0, y0, t0) + ϕm(x̃, ỹ, t0 +∆t).

So, the total cost along the “unused” route is no less than ϕm(x0, y0, t0).
If the traveler continues to move in a direction deviating from the “used” route after

the initial ∆t time, he/she will arrive at the m-th CBD with a total cost
˜̃
ϕm ≥ ϕ̃m ≥

ϕm(x0, y0, t0). Therefore, for any “unused” route, the total cost must be no less than
ϕm(x0, y0, t0).

The condition (um, vm)||(−ϕm
x ,−ϕm

y ) in Theorem 1 means that travelers choose to
move in the direction of the descending maximum cost. In other words, the travelers
move along the dynamic routes of the minimum predicted actual costs. If the condition
is satisfied, the traffic reaches the predictive dynamic user-optimal state. Next, we prove
that (um, vm)||(−ϕm

x ,−ϕm
y ) is a necessary and sufficient condition for the Hamilton-

Jacobi formulation 1
Umϕm

t − |∇ϕm| = −cm, where ∇ϕm = (ϕm
x , ϕm

y ). Then, based on
Theorem 1, if the Hamilton-Jacobi formulation is satisfied, the predictive dynamic
user-optimal principle is satisfied.
We define a route along a given speed vector of the m-th class of traffic flow as

(x(t), y(t)) with parameter t. Along this route, we have

dϕm

dt
= ϕm

x

dx(t)

dt
+ ϕm

y

dy(t)

dt
+ ϕm

t = ϕm
x um + ϕm

y vm + ϕm
t , m = 1, . . . ,M. (3)
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Figure 2. The “used” and “unused” routes.

By the definition, we also have

dϕm

dt
= lim

∆t→0

ϕm(x(t+∆t), y(t+∆t), t+∆t)− ϕm(x(t), y(t), t)

∆t

= −Um(x(t), y(t), t) lim
∆t→0

ϕm(x(t), y(t), t)− ϕm(x(t+∆t), y(t+∆t), t+∆t)

∆tUm(x(t), y(t), t)

= −Um(x, y, t)cm(x, y, t), m = 1, . . . ,M. (4)

If

(um, vm)||(−ϕm
x ,−ϕm

y ), m = 1, . . . ,M,

by considering Eqs.(3) and (4), we have the Hamilton-Jacobi formulation

1

Um
ϕm
t − |∇ϕm| = −cm,m = 1, . . . ,M. (5)

If the Hamilton-Jacobi equation (5) is satisfied, we also have

ϕm
x um + ϕm

y vm + ϕm
t = −|∇ϕm|Um + ϕm

t ,m = 1, . . . ,M.

This means that

(um, vm)||(−ϕm
x ,−ϕm

y ),m = 1, . . . ,M,

and therefore the predictive dynamic user-optimal principle is satisfied.

3.2. The complete model

We regard the classes of traffic flow as different compressible continuum fluids and each
class distribute continuously in the whole region. Similar to mass conservation in fluid
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mechanics, for each class of traffic flow, the density, flow, and demand satisfy the following
conservation law:

ρmt (x, y, t) +∇ · Fm(x, y, t) = qm(x, y, t), m = 1, . . . ,M. (6)

This means that, for a small area and for each class of traffic flow, the increase in the
number of vehicles (ρm) equals the sum of newly generated vehicles (qm) and vehicles
moving into the area, less those moving out (−∇·Fm). To satisfy the predictive dynamic
user-optimal principle, we choose the velocity vector vm = (um, vm)|| − (ϕm

x , ϕm
y ) (m =

1, . . . ,M). Hence, we have

Fm = ρmvm = −ρmUm ∇ϕm

|∇ϕm|
, m = 1, . . . ,M.

Now, we divide the complete model into two parts.
The conservation law part is



































ρmt +∇ · Fm = qm, ∀(x, y) ∈ Ω, t ∈ T,

Fm = −ρmUm ∇ϕm

|∇ϕm|
, ∀(x, y) ∈ Ω, t ∈ T,

Fm(x, y, t) · n = 0, ∀(x, y) ∈ Γ \ Γm
CBD, t ∈ T,

ρm(x, y, 0) = ρm0 (x, y), ∀(x, y) ∈ Ω,

∀m = 1, . . . ,M. (7)

Here, ρm0 (x, y) is the initial density of the m-th class of traffic flow. We assume that no
vehicle is allowed to enter the obstruction of the other CBD or leave the urban city. Thus
we have the boundary condition Fm(x, y, t) · n = 0, ∀(x, y) ∈ Γ \ Γm

CBD, t ∈ T .
The Hamilton-Jacobi part is



















1

Um
ϕm
t − |∇ϕm| = −cm, ∀(x, y) ∈ Ω, t ∈ T,

ϕm(x, y, t) = ϕm
CBD, ∀(x, y) ∈ Γm

CBD, t ∈ T,

ϕm(x, y, tend) = ϕm
0 (x, y), ∀(x, y) ∈ Ω,

∀m = 1, . . . ,M, (8)

where the initial condition of ϕm
0 (x, y) (m = 1, . . . ,M) is given by the Eikonal equation:

{

|∇ϕm
0 (x, y)| = cm(x, y, tend), ∀(x, y) ∈ Ω,

ϕm
0 (x, y) = ϕm

CBD, ∀(x, y) ∈ Γm
CBD.

(9)

The initial time is set at t = tend because the travel cost to a CBD only depends on the
situations in the future. The Eikonal equation can be solved by using the fast march-
ing method (see Huang et al. (2009) and Jiang et al. (2009) for details). The density
ρm(x, y, t) (m = 1, . . . ,M) is governed by the conservation law, and total travel cost
ϕm(x, y, t) (m = 1, . . . ,M) is governed by the Hamilton-Jacobi equation. When comput-
ing the density, we must know the total cost, and when computing the cost, we also need
to know the density. Noting the different initial times of the two parts, we consider the
solution procedure as a fixed-point problem and use a self-adaptive method of successive
averages (MSA) to solve it. The self-adaptive MSA is proposed in (Du et al. 2013) to
solve the fixed-point problem in the PDUO-C model, which can automatically determine
the optimal size, and thus improve the convergence rate.
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4. Solution algorithm

In Section 3, the complete model is divided into two parts: the conservation law part
and the Hamilton-Jacobi part. In this section, we present the solution algorithm on the
unstructured meshes. We use the finite volume method to solve both the conservation
equations and the Hamilton-Jacobi equations and a self-adaptive MSA to solve the fixed-
point problem.
The unstructured meshes are used to handle the complicated configuration of the

urban city. We divide the region Ω with triangular meshes. Let Xi (i = 1, . . . , NP ),
Ti (i = 1, . . . , NT ) be a node and a triangle, respectively, within the domain. NT , NP are
the number of triangles and nodes, respectively. As shown in Figure 3, Ai, Nik and lik
are the area, the k-th node and k-th side of Ti, respectively. nik is the unit outer vector
through the side lik. The k-th neighboring triangle of Ti is denoted by Tik.

4.1. Finite volume method used to solve the conservation equations and

the Hamilton-Jacobi equations

We first consider the finite volume method to compute ρm(x, y, t) (m = 1, . . . ,M) from
the conservation equation. Here, we assume that the total travel cost ϕm(x, y, t) (m =
1, . . . ,M) of each class of traffic flow is known. The triangular cell Ti (i = 1, . . . , NT )
represents a control volume, and the density is stored in the geometric center.
Integrating Eq. (6) and using the Gauss theorem, we have

∂ρm(xi, yi, t)

∂t
+

1

Ai

∮

∂Ti

Fm(x, y, t) · nids = qm(ϕm(xi, yi, t), t), m = 1, . . . ,M,

where (xi, yi), ∂Ti are the geometric center and boundary of cell Ti respectively, and ni

is the outward unit vector through ∂Ti. The integral average of q
m in Ti is approximated

as qm(xi, yi, t). The item
∮

∂Ti

Fm(x, y, t) · nids is approximated by

∮

∂Ti

Fm · nids =

3
∑

k=1

F̃m
ik · nik|lik|,

where F̃m
ik is the numerical flux through the k-th surface lik with length of |lik|. The

Lax-Friedrichs numerical flux is adopted, i.e.,

F̃m
ik · nik =

1

2
[F (ρm,l

ik ) · nik + F (ρm,r
ik ) · nik − c(ρm,r

ik − ρm,l
ik )], k = 1, 2, 3,

where ρm,r
ik , ρm,l

ik are the values at the right and left of side lik, and

c = max
i,k

|Fm′(ρm) · n|i,k.

See (Jiang et al. 2009; Jiang et al. 2011) for details of the numerical flux.
For the time discretization, the first-order Euler scheme is used, and the density at the

n+ 1 time step can be obtained as

(ρm)n+1
i = (ρm)ni −

∆t

Ai

3
∑

k=1

F̃m
ik · nik|lik|+∆t(qm)ni ,
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where the time step ∆t must satisfy the Courant-Friedrichs-Lewy condition

∆t ≤ min
i=1,...,NT ,k=1,2,3

Ai

|lik||Fm′(ρm) · n|
.

For the time-dependent Hamilton-Jacobi equation, the value of ϕm (m = 1, . . . ,M) at
node Xi is approximated by ϕm

i . ∇ϕm (m = 1, . . . ,M) at Tik is denoted by (∇ϕm)ik. We
assume the density ρm(x, y, t) (m = 1, . . . ,M) is known. Noting that the initial time of
the Hamilton-Jacobi equation is t = tend, we define

τ = tend − t, Φm(x, y, τ) = ϕm(x, y, tend − τ), m = 1, . . . ,M,

and thus we can rewrite Eqs. (8) in the following form:



















1

Um
Φm
τ + |∇Φm| = cm, ∀(x, y) ∈ Ω, τ ∈ T,

Φm(x, y, τ) = ϕm
CBD, ∀(x, y) ∈ Γm

CBD, τ ∈ T,

Φm(x, y, 0) = ϕm
0 (x, y), ∀(x, y) ∈ Ω,

∀m = 1, . . . ,M.

We define

H(∇Φm) = Um(|∇Φm| − cm),

and then the scheme to solve equation Φm
τ +H(∇Φm) = 0 is

(Φm)n+1
i = (Φm)ni −∆tĤ((∇Φm)i1, . . . , (∇Φm)iIi),

where Ii is the number of the elements around node Xi.
We assume that Φm(x, y, τ) on each element Tik is approximated by a linear function

with the values of Φm at three vertices. Thus, its gradient (∇Φm)ik on Tik is approximated
by a constant vector. The global Lax-Friedrichs numerical flux is adopted (Abgrall 1996):

Ĥ((∇Φm)i1, . . . , (∇Φm)iIi) = H(

∑Ii
k=1

(∇Φm)ik
2π

)−
α

π

Ii
∑

k=1

βik+ 1

2

(
(∇Φm)ik + (∇Φm)ik+1

2
)·nik+ 1

2

,

where

βik+ 1

2

= tan
θik
2

+ tan
θik+1

2
,

α = max{ max
A≤a≤B,C≤b≤D

|H2(a, b)|, max
A≤a≤B,C≤b≤D

|H1(a, b)|}.

Here, H1 and H2 are the partial derivatives of H with a and b, respectively. [A,B], [C,D]
are the value range of Φm

x and Φm
y respectively. θik is the angle of the Tik at node Xi,

and nik+ 1

2

is the unit vector along the common side of Tik and Tik+1 (see Figure 3). The

time step ∆t must satisfy the Courant-Friedrichs-Lewy condition

∆t ≤
h

2α
,
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where h is the smallest radius of the circles of center Xi and contained in
∪

k Tik, i =
1, . . . , NP .

4.2. Fixed-point problem and a self-adaptive MSA

Noting that the model’s two parts are interconnected and the initial times are different,
we consider it as a fixed-point problem and solve it by using a self-adaptive MSA.
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Define the vectors of the numerical solutions as

ρ⃗ = {ρm,n
i ,m = 1, . . . ,M, i = 1, . . . , NT , n = 1, . . . , Nt},

ϕ⃗ = {ϕm,n
i ,m = 1, . . . ,M, i = 1, . . . , NT , n = 1, . . . , Nt},

where Nt is the number of time steps.
We define one iteration of the MSA as following two steps.

Step 1. With a known vector ϕ⃗old, we solve the conservation law part Eq. (7) from t = 0
to t = tend using the finite volume method, and thus we have

ρ⃗ = g(ϕ⃗old).

Step 2. We solve the Hamilton-Jacobi part Eq. (8) from t = tend to t = 0 using the finite
volume method, and thus we have

ϕ⃗new = h(ρ⃗).

We denote the iteration by

ϕ⃗new = h(g(ϕ⃗old)) = f(ϕ⃗old).

Next, we solve the fixed-point problem

ϕ⃗ = f(ϕ⃗),

using a self-adaptive MSA.
We denote the solution before the k-th iteration by ϕ⃗k and compute ϕ⃗k+1 with following

steps.

Step 1. We solve the solution y⃗k = f(ϕ⃗k) in the k-th iteration.

11
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Figure 7. Convergence curves (left: density of Class 1 along Line 1; right: density of Class 2 along Line 2).
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Step 2. Choosing a step size λk, we have

ϕ⃗k+1 = (1− λk)ϕ⃗
k + λk · y⃗

k.

The convergence is reached if

||ϕ⃗k+1 − ϕ⃗k|| ≤ δ, (10)

where δ is the convergence threshold value and is set as 0.01.
The choice of the step size is important to the convergence speed of the MSA. A

predetermined step size λk = 1/k was suggested by Robbins and Monro (1951). However,
the step sizes become too small after a number of iterations, such that the convergence
speed is very slow. Du et al. (2013) proposed a self-adaptive MSA to automatically
determine the optimal step size by using the least squares approach. We rewrite it as
follows.

1. For the first several iterations, the step sizes are set as:

λ1 = 1.0, λ2 = 0.4, λ3 = 0.3, λ4 = 0.2, λ5 = 0.15, λ6 = 0.1, λ7 = 0.05.

2. For k > 2, we record the step size λk−1 and compute the ratio of error

rk−1 =
||ϕ⃗k − f(ϕ⃗k)||2

||ϕ⃗k−1 − f(ϕ⃗k−1)||2
,

and thus we use the points (λk−1, rk−1) to fit the curve r∗(λ).
3. For the n + 1(n ≥ 7) step, we use the least squares method to fit the points

(λk, rk), k = 2, . . . , n. Here, we require the fitted curve to pass through the point
(0, 1). Determine the step size λn+1 as the minimum point of the fitted curve r∗(λ),
i.e., r∗(λn+1) = minλ r

∗(λ). If λn+1 ≤ 0 or λn+1 ≥ 1, we set λn+1 = 0.5λn.

4.3. Solution procedure

To start the self-adaptive MSA, the first iteration should be given because we have no
information on the actual total cost at the initial time. We compute the density from 0
to tend by solving the following reactive dynamic user-optimal model (Jiang et al. 2014,
2009; Huang et al. 2009):























ρmt +∇ · Fm = qm, ∀(x, y) ∈ Ω, t ∈ T,

Fm = −ρmUm ∇ϕm

|∇ϕm|
, ∀(x, y) ∈ Ω, t ∈ T,

|∇ϕm| = cm(x, y, t), ∀(x, y) ∈ Ω, t ∈ T,

∀m = 1, . . . ,M, (11)

and the initial boundary conditions are











Fm(x, y, t) · n = 0, ∀(x, y) ∈ Γ \ Γm
CBD, t ∈ T,

ρm(x, y, 0) = ρm0 (x, y), ∀(x, y) ∈ Ω,

ϕm(x, y, t) = ϕm
CBD, ∀(x, y) ∈ Γm

CBD, t ∈ T,

∀m = 1, . . . ,M.
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In this model, the instantaneous total cost is computed at each time step, and the route-
choice strategy that satisfies the reactive dynamic user-optimal principle is used. We can
consider the instantaneous total cost as ϕ⃗1.
We write the solution procedure as follows.

1. Compute the density ρ1 using Eqs. (11). Compute the total cost

y⃗1 = h(ρ⃗1)

by solving Eqs. (9) and obtain ϕ⃗2 = (1− λ1)ϕ⃗
1 + λ1y⃗

1.

2. For k ≥ 2, using the k-th numerical solution ϕ⃗k, we have

y⃗k = h(g(ϕ⃗k)) = f(ϕ⃗k).

3. Compute the step sizes λk (k > 7) using the method described in Section 4.2. The
λk (k = 1, . . . , 7) are predetermined.

4. Compute the (k + 1)-th solution vector

ϕ⃗k+1 = (1− λk)ϕ⃗
k + λky⃗

k.

5. If Eq. (10) is satisfied, stop the iteration; if not, return to step 2.

5. Numerical experiments

In this section, we provide a numerical example to demonstrate the effectiveness of the
model and the numerical algorithm. A polycentric urban city (see Figure 4) with two
CBDs is considered. The city spans about 37 km from west (x ≈ 4 km) to east (x ≈
41 km) and 24 km from south (y ≈ 10 km) to north (y ≈ 34 km). CBD 1 and CBD
2 are located at (14 km, 20 km) and (31 km, 23 km), respectively, and the radiuses
of both are 1 km. Denote the travelers to CBD 1 and CBD 2 by Class 1 and Class 2,
respectively. The modeling period is 5 hours, i.e., T = [0 hr, 5 hr], tend = 5 hr. The
elastic demand, which is associated with the total travel cost, is set to be

qm(ϕm(x, y, t), t) = qmmax[1− γ1ϕ
m(x, y, t)]gm(t), m = 1, 2,

where qmmax (in veh/km2/hr) is the maximum of Class m and γ1 = 0.002 $−1. The factor
1 − γ1ϕ

m(x, y, t) means that more travelers are generated in the area with lower cost.
The function gm(t) (m = 1, 2) represents the time-dependent natural demand. We define

g1(t) =











t/2, t ∈ [0 hr, 2 hr],

2− t/2, t ∈ [2 hr, 4 hr],

0, t ∈ [4 hr, 5 hr],
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Figure 8. Density plot (left: Class 1; right: Class 2).

and

g2(t) =























t, t ∈ [0 hr, 1 hr],

1, t ∈ [1 hr, 3 hr],

4− t, t ∈ [3 hr, 4 hr],

0, t ∈ [4 hr, 5 hr].
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Figure 9. Speed plot.

In Eq. (1), we set the parameter β = 2× 10−6, and the free-flow speed is

Um
f (x, y) = Um

max[1 + γ2
d1(x, y)

d1max

d2(x, y)

d2max

],

where Um
max is the maximum speed of the Class m, dm(x, y) is the distance between

(x, y) and the center of the m-th CBD, dmmax = max(x,y)∈Ω dm(x, y) (m = 1, 2) and

γ2 = 0.12 km−1. Then, we can compute the critical density is 353.55 veh/km2. We
set U1

max = U2
max = 65 km/hr and compute d1max, d2max are 27.6 km and 26.9 km,

respectively. In Eq. (2), we set κ = 75 $/hr and



















π1(ρ̃(x, y, t)) = π0[
ρ2(x, y, t)

ρ1(x, y, t) + ρ2(x, y, t)
]2 + π1(ρ

1(x, y, t) + ρ2(x, y, t))2,

π2(ρ̃(x, y, t)) = π0[
ρ1(x, y, t)

ρ1(x, y, t) + ρ2(x, y, t)
]2 + π1(ρ

1(x, y, t) + ρ2(x, y, t))2,

(12)

where π0 = 0.0025 hr/km, π1 = 10−8 h km3/veh2. The two terms in Eqs. (12) represent
the preference for avoiding conflict with the other class of traffic flow and the preference
for avoiding the high-density region, respectively.
We assume that there is no traveler at the beginning of the modeling period and no cost

incurred by entering each CBD. Thus, we have ρm0 (x, y) = 0, ∀(x, y) ∈ Ω (m = 1, . . . ,M)
and ϕm(x, y, t) = 0, ∀(x, y) ∈ Γm

CBD, t ∈ T (m = 1, . . . ,M). We use three meshes (Mesh
1: 1457 nodes, 2756 elements and Nt = 3000; Mesh 2: 3178 nodes, 6107 elements and
Nt = 6000; Mesh 3: 4998 nodes, 9693 elements and Nt = 6000) in the numerical example.
Let us consider the convergence and effectiveness of the self-adaptive MSA in which

Mesh 2 is considered. Figure 5 compares the step size between the self-adaptive MSA
and the conventional MSA. We can see that the step size of the self-adaptive MSA is
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Figure 10. Cost potential plot (left: Class 1; right: Class 2).

Table 1. Number of iterations of the conventional MSA and self-adaptive MSA.
Conventional MSA Self-adaptive MSA

Mesh 1 261 48
Mesh 2 499 121
Mesh 3 706 128

almost constant after several steps, which can be viewed as the optimal step size, and
is much larger than that of the conventional MSA. Figure 6 illustrates the errors of the
self-adaptive MSA and the conventional MSA. From the figure, we can see convergence
of the self-adaptive MSA. Table 1 shows the number of iterations of the two methods
with different meshes. We can see that the self-adaptive MSA method is more efficient
than the conventional MSA.
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Figure 11. Flow vector plot (left: Class 1; right: Class 2).

We now consider the convergence of different meshes. The density of Class 1 along the
Line 1 (y = 3

4(x−14)+20) and the density of Class 2 along the Line 2 (y = −1
3(x−31)+23)

are shown in Figure 7. We can see good convergence of the meshes. Mesh 2 is adopted
for further discussion.
Figures 8 and 9 show the density and speed distributions of Class 1 and Class 2,

respectively. At t = 1 hr, Class 1 is in the free-flow state and the density near CBD
2 is very low (Figure 8(a)), whereas Class 2 exceeds the critical density at the western
boundary of the CBD 2 and the density near CBD 1 is very low (Figure 8(b)). As the
demands increase, the two classes of traffic flow are both in a congestion condition around
each CBD at t = 2 hr (Figure 9(b)). The density of Class 1 is higher in the eastern region
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Figure 12. (a) The total demand and total inflow; (b) The cumulative demand and cumulative inflow.

of CBD 1 because there are more travelers arriving at CBD 1 from the east of the city
(Figure 8(c)). Similarly, the density of Class 2 is higher in the western region of CBD 2
(Figure 8(d)). At t = 3 hr, although the demand of Class 1 is lower, the regions around
the CBD 1 and CBD 2 are still in the congestion state due to the limitation on the traffic
inflow into the CBDs (Figure 8(e), (f) and Figure 9(c)). As the demands continuously
decrease, the two classes of traffic flow both revert to the free-flow state at t = 4 hr
(Figure 8(g), (h) and Figure 9(d)).
Figure 10 illustrates the contours of the cost potential of Class 1 and Class 2 at different

times. At the beginning of the modeling period, when the density of Class 1 is low and
the traffic is in a free-flow state, the cost potential contours are a series of concentric
circles located around CBD 1 (Figure 10(a)). The cost potential contours of Class 2 on
the western side of CBD 2 are slightly denser than those on the eastern side (Figure
10(b)). At t = 2 hr and t = 3 hr, the contours become denser, especially in the region
around the CBDs, due to the high traffic density (Figure 10(c)-(f)), which means that
the local cost increases. As the traffic demands decrease, the traffic flow reverts to the
free-flow state, and the cost potential contours of the two classes again become concentric
circles (Figure 10(g), (h)).
Figure 11 shows the temporal and spatial distributions of the flow vector of Class 1

and Class 2, which reflect the route-choice strategy. Travelers bypass the lake and the
other CBD. At the beginning and the end of the modeling period, the density is low
and travelers almost move along straight lines pointing to the center of the CBD (Figure
11(a), (b), (g), (h)). As the density in the eastern area around CBD 1 and the western
area of CBD 2 increases, the travelers choose curved routes to avoid the area (Figure
11(c), (d), (e), (f)).
The total demand of the Class m (m=1,2) over the whole domain at time t is

qm(t) =

∫ ∫

Ω
qm(ϕm(x, y, t), t)dxdy,

and the cumulative demand is

Qm(t) =

∫ t

0
qm(ξ)dξ.
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The total inflow of Class m through Γm
CBD is

fm
CBD =

∮

Γm

CBD

(Fm · n)(x, y, t)ds.

and the cumulative inflow is

Fm
CBD =

∫ t

0
fm
CBD(ξ)dξ.

The total demands, inflows, the corresponding cumulative demands and the corre-
sponding cumulative inflows of the two classes of traffic flow are shown in Figure 12.
At the beginning of the period, the total demands and inflows of each class are both
increased due to the increasing traffic demand. After about t = 1.6 hr, the total inflows
of the two classes reach the maximum value and no longer increase because the density
around the CBDs is greater than the critical density ρc, and the capacities of the two
CBDs are very similar. After about t = 3.7 hr, traffic flow returns to the non-congestion
state, and the inflows of each class begin to fall. The inflows decrease to 0 after about
t = 4.3 hr (Figure 12(a)). For each class, the corresponding cumulative inflow Qm

CBD is
always lower than the corresponding cumulative demand Qm(t), which describes a traf-
fic delay. However, the two curves finally coincide, which implies that all travelers have
reached the CBDs.

6. Conclusions

A PDUO-C model is extended to study the traffic equilibrium problem for a polycentric
urban city with an arbitrary configuration. The model satisfies the predictive dynamic
user-optimal principle, which describes the route choice behavior of each class of traffic
flow. The model consists of two interconnected parts, the conservation law part and the
Hamilton-Jacobi part, with different initial times. Each class of the traffic flow follows
its own conservation law and Hamilton-Jacobi equation. However, different classes are
not independent and the interactions are described by the cost function. We regard it as
a fixed-point problem and use a self-adaptive MSA, which can automatically determine
the optimal MSA step size, to solve the problem. The finite volume method is applied
to solve the conservation equations and the Hamilton-Jacobi equations on unstructured
meshes. The numerical results show that the model can describe the macroscopic dynamic
characteristics of the traffic flow for a polycentric city, and the numerical algorithm is
effective.
In this paper, we consider that the density of each class of traffic flow is a function

of the total density. It would be reasonable to consider the influence of the directions of
other classes in future work.
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