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Abstract. With the increasing popularity of GPS-enabled handheld devices, lo-
cation based applications and services have access to accurate and real-time lo-
cation information, raising serious privacy concerns for their millions of users.
Trying to address these issues, the notion of geo-indistinguishability was recently
introduced, adapting the well-known concept of Differential Privacy to the area
of location-based systems. A Laplace-based obfuscation mechanism satisfying
this privacy notion works well in the case of a sporadic use; Under repeated use,
however, independently applying noise leads to a quick loss of privacy due to the
correlation between the location in the trace.
In this paper we show that correlations in the trace can be in fact exploited in
terms of a prediction function that tries to guess the new location based on the
previously reported locations. The proposed mechanism tests the quality of the
predicted location using a private test; in case of success the prediction is reported
otherwise the location is sanitized with new noise. If there is considerable corre-
lation in the input trace, the extra cost of the test is small compared to the savings
in budget, leading to a more efficient mechanism.
We evaluate the mechanism in the case of a user accessing a location-based ser-
vice while moving around in a city. Using a simple prediction function and two
budget spending strategies, optimizing either the utility or the budget consump-
tion rate, we show that the predictive mechanism can offer substantial improve-
ments over the independently applied noise.

1 Introduction

In recent years, the popularity of devices capable of providing an individual’s posi-
tion with a range of accuracies (e.g. wifi-hotspots, GPS, etc) has led to a growing use
of “location-based systems” that record and process location data. A typical example
of such systems are Location Based Services (LBSs) – such as mapping applications,
Points of Interest retrieval, coupon providers, GPS navigation, and location-aware social
networks – providing a service related to the user’s location. Although users are often
willing to disclose their location in order to obtain a service, there are serious concerns
about the privacy implications of the constant disclosure of location information.

In this paper we consider the problem of a user accessing a LBS while wishing to
hide his location from the service provider. We should emphasize that, in contrast to
several works in the literature [1,2], we are interested not in hiding the user’s identity,
but instead his location. In fact, the user might be actually authenticated to the provider,
in order to obtain a personalized service (personalized recommendations, friend infor-
mation from a social network, etc); still he wishes to keep his location hidden.



Several techniques to address this problem have been proposed in the literature,
satisfying a variety of location privacy definitions. A widely-used such notion is k-
anonymity (often called l-diversity in this context), requiring that the user’s location
is indistinguishable among a set of k points. This could be achieved either by adding
dummy locations to the query [3,4], or by creating a cloaking region including k loca-
tions with some semantic property, and querying the service provider for that cloaking
region [5,6,7]. A different approach is to report an obfuscated location z to the service
provider, typically obtained by adding random noise to the real one. Shokri et al. [8]
propose a method to construct an obfuscation mechanism of optimal privacy for a given
quality loss constraint, where privacy is measured as the expected error of a Bayesian
adversary trying to guess the user’s location [9].

The main drawback of the aforementioned location privacy definitions is that they
depend on the adversary’s background knowledge, typically modeled as a prior distri-
bution on the set of possible locations. If the adversary can rule out some locations
based on his prior knowledge, then k-anonymity will be trivially violated. Similarly,
the adversary’s expected error directly depends on his prior. As a consequence, these
definitions give no precise guarantees in the case when the adversary’s prior is different.

Differential privacy [10] was introduced for statistical databases exactly to cope
with the issue of prior knowledge. The goal in this context is to answer aggregate
queries about a group of individuals without disclosing any individual’s value. This
is achieved by adding random noise to the query, and requiring that, when executed
on two databases x, x′ differing on a single individual, a mechanism should produce
the same answer z with similar probabilities. Differential privacy has been successfully
used in the context of location-based systems [11,12,13] when aggregate location in-
formation about a large number of individuals is published. However, in the case of a
single individual accessing an LBS, this property is too strong, as it would require the
information sent to the provider to be independent from the user’s location.

Our work is based on “geo-indistinguishability”, a variant of differential privacy
adapted to location-based systems, introduced recently in [14]. Based on the idea that
the user should enjoy strong privacy within a small radius, and weaker as we move away
from his real location, geo-indistinguishability requires that the closer (geographically)
two locations are, the more indistinguishable they should be. This means that when lo-
cations x, x′ are close they should produce the same reported location z with similar
probabilities; however the probabilities can become substantially different as the dis-
tance between x and x′ increases. This property can be achieved by adding noise to the
user’s location drawn from a 2-dimensional Laplace distribution.

In practice, however, a user rarely performs a single location-based query. As a mo-
tivating example, we consider a user in a city performing different activities throughout
the day: for instance he might have lunch, do some shopping, visit friends, etc. Dur-
ing these activities, the user performs several queries: searching for restaurants, getting
driving directions, finding friends nearby, and so on. For each query, a new obfuscated
location needs to be reported to the service provider, which can be easily obtained by
independently adding noise at the moment when each query is executed. We refer to
independently applying noise to each location as the independent mechanism.



However, it is easy to see that privacy is degraded as the number of queries increases,
due to the correlation between the locations. Intuitively, in the extreme case when the
user never moves (i.e. there is perfect correlation), the reported locations are centered
around the real one, completely revealing it as the number of queries increases. Tech-
nically, the independent mechanism applying ε-geo-indistinguishable noise (where ε is
a privacy parameter) to n location can be shown to satisfy nε-geo-indistinguishability
[14]. This is typical in the area of differential privacy, in which ε is thought as a privacy
budget, consumed by each query; this linear increase makes the mechanism applicable
only when the number of queries remains small. Note that any obfuscation mechanism
is bound to cause privacy loss when used repeatedly; geo-indistinguishability has the
advantage of directly quantifying this loss terms of the consumed budget.

The goal of this paper is to develop a trace obfuscation mechanism with a smaller
budget consumption rate than applying independent noise. The main idea is to actually
use the correlation between locations in the trace to our advantage. Due to this corre-
lation, we can often predict a point close to the user’s actual location from information
previously revealed. For instance, when the user performs multiple different queries
from the same location - e.g. first asking for shops and later for restaurants - we could
intuitively use the same reported location in all of them, instead of generating a new one
each time. However, this implicitly reveals that the user is not moving, which violates
geo-indistinguishability (nearby locations produce completely different observations);
hence the decision to report the same location needs to be done in a private way.

Our main contribution is a predictive mechanism with three components: a predic-
tion functionΩ, a noise mechanismN and a test mechanismΘ. The mechanism behaves
as follows: first, the list of previously reported locations (i.e. information which is al-
ready public) are given to the prediction function, which outputs a predicted location z̃.
Then, it tests whether z̃ is within some threshold l from the user’s current location using
the test mechanism. The test itself should be private: nearby locations should pass the
test with similar probabilities. If the test succeeds then z̃ is reported, otherwise a new
reported location is generated using the noise mechanism.

The advantage of the predictive mechanism is that the budget is consumed only
when the test or noise mechanisms are used. Hence, if the prediction rate is high, then
we will only need to pay for the test, which can be substantially cheaper in terms of
budget. The configuration of N and Θ is done via a budget manager which decides
at each step how much budget to spend on each mechanism. The budget manager is
also allowed to completely skip the test and blindly accept or reject the prediction, thus
saving the corresponding budget. The flexibility of the budget manager allows for a
dynamic behavior, constantly adapted to the mechanism’s previous performance. We
examine in detail two possible budget manager strategies, one maximizing utility under
a fixed budget consumption rate and one doing the exact opposite, and explain in detail
how they can be configured.

Note that, although we exploit correlation for efficiency, the predictive mechanism
is shown to be private independently from the prior distribution on the set of traces.
If the prior presents correlation, and the prediction function takes advantage of it, the
mechanism can achieve a good budget consumption rate, which translates either to bet-
ter utility or to a greater number of reported points than the independent mechanism. If



there is no correlation, or the prediction does not take advantage of it, then the budget
consumption can be worse than the independent mechanism. Still, thanks to the arbi-
trary choice of the prediction function and the budget manager, the predictive mecha-
nism is a powerful tool that can be adapted to a variety of practical scenarios.

We experimentally verify the effectiveness of the mechanism on our motivating ex-
ample of a user performing various activities in a city, using two large data sets of GPS
trajectories in the Beijing urban area ([15,16]). The results for both budget managers,
with and without the skip strategy, show considerable improvements with respect to
independently applied noise. More specifically, we are able to decrease average error
up to 40% and budget consumption rate up to 64%. The improvements are significative
enough to broaden the applicability of geo-indistinguishability to cases impossible be-
fore: in our experiments we cover 30 queries with reasonable error which is enough for
a full day of usage; alternatively we can drive the error down from 5 km to 3 km, which
make it acceptable for a variety of application.

Note that our mechanism can be efficiently implemented on the user’s phone, and
does not require any modification on the side of the provider, hence it can be seamlessly
integrated with existing LBSs.

Contributions The paper’s contributions are the following:
– We propose a predictive mechanism that exploits correlations on the input by means

of a prediction function.
– We show that the proposed mechanism is private and provide a bound on its utility.
– We instantiate the predictive mechanism for location privacy, defining a prediction

function and two budget managers, optimizing utility and budget consumption rate.
– We evaluate the mechanism on two large sets of GPS trajectories and confirm our

design goals, showing substantial improvements compared to independent noise.
All proofs can be found in the report version of this paper [17].

2 Preliminaries

Differential Privacy and Geo-indistinguishability. The privacy definitions used in
this paper are based on a generalized variant of differential privacy that can be defined
on an arbitrary set of secrets X (not necessarily on databases), equipped with a metric
dX [18,19]. The distance dX (x, x

′) expresses the distinguishability level between the
secrets x and x′, modeling the privacy notion that we want to achieve. A small value
denotes that the secrets should remain indistinguishable, while a large value means that
we allow the adversary to distinguish them.

Let Z be a set of reported values and let P(Z) denote the set of probability mea-
sures over Z . The multiplicative distance dP on P(Z) is defined as dP(µ1, µ2) =

supZ⊆Z | ln
µ1(Z)
µ2(Z) | with | ln µ1(Z)

µ2(Z) | = 0 if both µ1(Z), µ2(Z) are zero and ∞ if only
one of them is zero. Intuitively dP(µ1, µ2) is small if µ1, µ2 assign similar probabilities
to each reported value.

A mechanism is a (probabilistic) function K : X → P(Z), assigning to each secret
x a probability distribution K(x) over the reported values. The generalized variant of
differential privacy, called dX -privacy, is defined as follows:



Definition 1 (dX -privacy). A mechanism K : X → P(Z) satisfies dX -privacy iff:

dP(K(x),K(x′)) ≤ dX (x, x
′) ∀x, x′ ∈ X

or equivalently K(x)(Z) ≤ edX (x,x′)K(x′)(Z) ∀x, x′ ∈ X , Z ⊆ Z .

Different choices of dX give rise to different privacy notions; it is also common to scale
our metric of interest by a privacy parameter ε (note that εdX is itself a metric).

The most well-known case is when X is a set of databases with the hamming metric
dh(x, x

′), defined as the number of rows in which x, x′ differ. In this case εdh-privacy
is the same as ε-differential privacy, requiring that for adjacent x, x′ (i.e. differing on a
single row) dP(K(x),K(x′)) ≤ ε. Moreover, various other privacy notions of interest
can be captured by different metrics [19].

Geo-indistinguishability In the case of location privacy, which is the main motivation of
this paper, the secrets X as well as the reported values Z are sets of locations (i.e. sub-
sets of R2), while K is an obfuscation mechanism. Using the Euclidean metric d2, we
obtain εd2-privacy, a natural notion of location privacy called geo-indistinguishability
in [14]. This privacy definition requires that the closer (geographically) two location
are, the more similar the probability of producing the same reported location z should
be. As a consequence, the service provider is not allowed to infer the user’s location
with accuracy, but he can get approximate information required to provide the service.

Seeing it from a slightly different viewpoint, this notion offers privacy within any
radius r from the user, with a level of distinguishability εr, proportional to r. Hence,
within a small radius the user enjoys strong privacy, while his privacy decreases as r
gets larger. This gives us the flexibility to adjust the definition to a particular application:
typically we start with a radius r∗ for which we want strong privacy, which can range
from a few meters to several kilometers (of course a larger radius will lead to more
noise). For this radius we pick a relatively small ε∗ (for instance in the range from ln 2
to ln 10), and set ε = ε∗/r∗. Moreover, we are also flexible in selecting a different
metric between locations, for instance the Manhattan or a map-based distance.

Two characterization results are also given in [14], providing intuitive interpreta-
tions of geo-indistinguishability. Finally, it is shown that this notion can be achieved by
adding noise from a 2-dimensional Laplace distribution.

Protecting location traces. Having established a privacy notion for single locations, it
is natural to extend it to location traces (sometimes called trajectories in the literature).
Although location privacy is our main interest, this can be done for traces having any
secrets with a corresponding metric as elements. We denote by x = [x1, . . . , xn] a trace,
by x[i] the i-th element of x, by [ ] the empty trace and by x :: x the trace obtained by
adding x to the head of x. We also define tail(x :: x) = x. To obtain a privacy
notion, we need to define an appropriate metric between traces. A natural choice is the
maximum metric d∞(x,x′) = maxi dX (x[i],x

′[i]). This captures the idea that two
traces are as distinguishable as their most distinguishable points. In terms of protection
within a radius, if x is within a radius r from x′ it means that x[i] is within a radius r
from x′[i]. Hence, εd∞-privacy ensures that all secrets are protected within a radius r
with the same distinguishability level εr.



mechanism IM (x )
z := [ ]
f o r i := 1 t o |x|
z := N(εN )(x[i])
z := z :: z

re turn z

Fig. 1: Independent Mecha-
nism

In order to sanitize x we can simply apply a noise
mechanism independently to each secret xi. We assume
that a family of noise mechanisms N(εN ) : X →
P(Z) are available, parametrized by εN > 0, where
each mechanism N(εN ) satisfies εN -privacy. The re-
sulting mechanism, called the independent mechanism
IM : Xn → P(Zn), is shown in Figure 1. As explained
in the introduction, the main issue with this approach is
that IM is nεd∞-private, that is, the budget consumed
increases linearly with n.

Utility. The goal of a privacy mechanism is not to hide completely the secret but to
disclose enough information to be useful for some service while hiding the rest to pro-
tect the user’s privacy. Typically these two requirements go in opposite directions: a
stronger privacy level requires more noise which results in a lower utility.

Utility is a notion very dependent on the application we target; to measure utility
we start by defining a notion of error, that is a distance derr between a trace x and a
sanitized trace z. In the case of location-based systems we want to report locations as
close as possible to the original ones, so a natural choice is to define the error as the
average geographical distance between the locations in the trace:

derr(x, z) =
1
|x|
∑
i d2(x[i], z[i]) (1)

We can then measure the utility of a trace obfuscation mechanism K : Xn →
P(Zn) by the average-case error, defined as the expected value of derr:

E[derr] =
∑

x π(x)
∑

z K(x)(z) derr(x, z)

where π ∈ P(Xn) is a prior distribution on traces.
On the other hand, the worst-case error is usually unbounded, since typical noise

mechanisms (for instance the Laplace one) can return values at arbitrary distance from
the original one. Hence, we are usually interested in the p-th percentile of the error, com-
monly expressed in the form of α(δ)-accuracy [20]. A mechanism K is α(δ)-accurate
iff for all δ: Pr[derr(x, z) ≤ α(δ)] ≥ δ. In the rest of the paper we will refer to α(0.9)
(or simply α) as the “worst-case” error.

Note that in general, both E[derr] and α(δ) depend on the prior distribution π on
traces. However, due to the mechanism’s symmetry, the utility of the Laplace mecha-
nism is independent from the prior, and as a result, the utility of the independent mech-
anism (using the Laplace as the underlying noise mechanism) is also prior-independent.
On the other hand, the utility of the predictive mechanism, described in the next section,
will be highly dependent on the prior. As explained in the introduction, the mechanism
takes advantage of the correlation between the points in the trace (a property of the
prior), the higher the correlation the better utility it will provide.

3 A predictive dX -private mechanism

We are now ready to introduce our prediction-based mechanism. Although our main
motivation is location privacy, the mechanism can work for traces of any secrets X ,



equipped with a metric dX . The fundamental intuition of our work is that the presence of
correlation on the secret can be exploited to the advantage of the mechanism. A simple
way of doing this is to try to predict new secrets from past information; if the secret
can be predicted with enough accuracy it is called easy; in this case the prediction can
be reported without adding new noise. One the other hand, hard secrets, that is those
that cannot be predicted, are sanitized with new noise. Note the difference with the
independent mechanism where each secret is treated independently from the others.

Let B = {0, 1}. A boolean b ∈ B denotes whether a point is easy (0) or hard (1).
A sequence r = [z1, b1, . . . , zn, bn] of reported values and booleans is called a run; the
set of all runs is denoted by R = (Z × B)∗. A run will be the output of our predictive
mechanism; note that the booleans bi are considered public and will be reported by the
mechanism.

Main components The predictive mechanism has three main components: first, the
prediction is a deterministic functionΩ : R → Z , taking as input the run reported up to
this moment and trying to predict the next reported value. The output of the prediction
function is denoted by z̃ = Ω(r). Note that, although it is natural to think of Ω as
trying to predict the secret, in fact what we are trying to predict is the reported value.
In the case of location privacy, for instance, we want to predict a reported location at
acceptable distance from the actual one. Thus, the possibility of a successful prediction
should not be viewed as a privacy violation.

Second, a test is a family of mechanisms Θ(εθ, l, z̃) : X → P(B), parametrized
by εθ, l, z̃. The test takes as input the secret x and reports whether the prediction z̃ is
acceptable or not for this secret. If the test is successful then the prediction will be used
instead of generating new noise. The purpose of the test is to guarantee a certain level of
utility: predictions that are farther than the threshold l should be rejected. Since the test
is accessing the secret, it should be private itself, where εθ is the budget that is allowed
to be spent for testing.

The test mechanism that will be used throughout the paper is the one below, which
is based on adding Laplace noise to the threshold l:

Θ(εθ, l, z̃)(x) =

{
0 if dX (x, z̃) ≤ l + Lap(εθ)
1 ow. (2)

The test is defined for all εθ > 0, l ∈ [0,+∞), z̃ ∈ Z , and can be used for any
metric dX , as long as the domain of reported values is the same as the one of the secrets
(which is the case for location obfuscation) so that dX (x, z̃) is well defined.

Finally, a noise mechanism is a family of mechanisms N(εN ) : X → P(Z),
parametrized by the available budget εN . The noise mechanism is used for hard secrets
that cannot be predicted.

Budget management The parameters of the mechanism’s components need to be con-
figured at each step. This can be done in a dynamic way using the concept of a budget
manager. A budget manager β is a function that takes as input the run produced so far
and returns the budget and the threshold to be used for the test at this step as well as
the budget for the noise mechanism: β(r) = (εθ, εN , l). We will also use βθ and βN as
shorthands to get just the first or the second element of the result.



mechanism PM (x )
r := [ ]
f o r i := 1 to |x|

(z, b) := Step(r)(x[i])
r := (z, b) :: r

re turn r

(a) Predictive Mechanism

mechanism Step(r) (x )
(εθ, εN , l) := β(r)
z̃ := Ω(r)
b := Θ(εθ, l, z̃)(x)
i f b == 0 then z := z̃
e l s e z := N(εN )(x)
re turn (z, b)

(b) Single step of the Predictive Mechanism

Of course the amount of budget used for the test should always be less than the
amount devoted to the noise, otherwise it would be more convenient to just use the
independent noise mechanism. Still, there is great flexibility in configuring the various
parameters and several strategies can be implemented in terms of a budget manager.

The mechanism We are now ready to fully describe our mechanism. A single step of
the predictive mechanism, displayed in Figure 2b, is a family of mechanisms Step(r) :
X → P(Z × B), parametrized by the run r reported up to this point. The mechanism
takes a secret x and returns a reported value z, as well as a boolean b denoting whether
the secret was easy or hard. First, the mechanism obtains the various configuration
parameters from the budget manager as well as a prediction z̃. Then the prediction
is tested using the test mechanism. If the test is successful the prediction is returned,
otherwise a new reported value is generated using the noise mechanism.

Finally, the predictive mechanism, displayed in Figure 2a, is a mechanism PM :
Xn → P(R). It takes as input a trace x, and applies Step(r) to each secret, while
extending at each step the run r with the new reported values (z, b).

Note that an important advantage of the mechanism is that it is online, that is the
sanitization of each secret does not depend on future secrets. This means that the user
can query at any time during the life of the system, as opposed to offline mechanisms
were all the queries need to be asked before the sanitization. Furthermore the mecha-
nism is dynamic, in the sense that the secret can change over time (e.g. the position of
the user) contrary to static mechanism where the secret is fixed (e.g. a static database).

It should be also noted that, when the user runs out of budget, he should in prin-
ciple stop using the system. This is typical in the area of differential privacy where a
database should not being queried after the budget is exhausted. In practice, of course,
this is not realistic, and new queries can be allowed by resetting the budget, essentially
assuming either that there is no correlation between the old and new data, or that the
correlation is weak and cannot be exploited by the adversary. In the case of location
privacy we could, for instance, reset the budget at the end of each day. We are currently
investigating proper assumptions under which the budget can be reset while satisfying
a formal privacy guarantee. The question of resetting the budget is open in the field of
differential privacy and is orthogonal to our goal of making an efficient use of it.

The main innovation of this mechanism if the use of the prediction function, which
allows to decouple the privacy mechanism from the correlation analysis, creating a
family of modular mechanisms where by plugging in different predictions (or updating
the existing) we are able to work in new domains. Moreover proving desirable security



properties about the mechanism independently of the complex engineering aspects of
the prediction is both easier and more reliable, as shown in the next sections.

3.1 Privacy

We now proceed to show that the predictive mechanism described in the previous sec-
tion is dX -private. The privacy of the predictive mechanism depends on that of its com-
ponents. In the following, we assume that each member of the families of test and noise
mechanisms is dX -private for the corresponding privacy parameter:

∀εθ, l, z̃. Θ(εθ, l, z̃) is εθdX -private (3)
∀εN . N(εN ) is εNdX -private (4)

In the case of the testΘ(εθ, l, z̃) defined in (2), we can show that it is indeed dX -private,
independently of the metric or threshold used.

Fact 1 (Privacy of Test function). The family of test mechanisms Θ(εθ, l, z̃) defined
by (2) satisfies assumption 3.

The global budget for a certain run r using a budget manager β is defined as:

εβ(r) =

{
0 if |r| = 0
βθ(r) + b(r)× βN (r) + εβ(tail(r)) o.w.

(5)

As already discussed, a hard step is more expensive than an easy step because of the
cost of the noise mechanism.

Building on the privacy properties of its components, we first show that the pre-
dictive mechanism satisfies a property similar to dX -privacy, with a parameter ε that
depends on the run.

Lemma 1. Under the assumptions (3),(4), for the test and noise mechanisms, the pre-
dictive mechanism PM, using the budget manager β, satisfies

PM(x)(r) ≤ eεβ(r) d∞(x,x′)PM(x′)(r) ∀r,x,x′ (6)

This results shows that there is a difference between the budget spent on a “good” run,
where the input has a considerable correlation, the prediction performs well and the
majority of steps are easy, and a run with uncorrelated secrets, where any prediction
is useless and all the steps are hard. In the latter case it is clear that our mechanism
wastes part of its budget on tests that always fail, performing worse than an independent
mechanism.

Finally, the overall privacy of the mechanism will depend on the budget spent on
the worst possible run.

Theorem 1 (dX -privacy). Under the assumptions (3),(4), for the test and noise mech-
anisms, the predictive mechanism PM, using the budget manager β, satisfies εd∞-
privacy, with ε = supr εβ(r).

Based on the above result, we will use ε-bounded budget managers, imposing an
overall budget limit ε independently from the run. Such a budget manager provides a
fixed privacy guarantee by sacrificing utility: in the case of a bad run it either needs to
lower the budget spend per secret, leading to more noise, or to stop early, handling a
smaller number of queries. In practice, however, using a prediction function tailored to
a specific type of correlation we can achieve good efficiency.



3.2 Utility

We now turn our attention to the utility provided by the predictive mechanism. The
property we want to prove is α(δ)-accuracy, introduced in Section 2. Similarly to the
case of privacy, the accuracy of the predictive mechanism depends on that of its compo-
nents, that is, on the accuracy of the noise mechanism, as well as the one of the Laplace
mechanism employed by the test Θ(εθ, l, z̃) (2). We can now state a result about the
utility of a single step of the predictive mechanism.
Proposition 1 (accuracy). Let r be a run, β a budget manager, let (εθ, εN , l) = β(r)
and let αN (δ), αθ(δ) be the accuracy of N(εN ), Lap(εθ) respectively. Then the accu-
racy of Step(r) is α(δ) = max(αN (δ), l + αθ(δ))

This result provides a bound for the accuracy of the predictive mechanism at each
step. The bound depends on the triplet used (εθ, εN , l) to configure the test and noise
mechanisms which may vary at each step depending on the budget manager used, thus
the bound is step-wise and may change during the use of the system.

It should be noted that the bound is independent from the prediction function used,
and assumes that the prediction gives the worst possible accuracy allowed by the test.
Hence, under a prediction that always fails the bound is tight; however, under an accu-
rate prediction function, the mechanism can achieve much better utility, as shown in the
evaluation of Section 5.

3.3 Skipping the test

The amount of budget devoted to the test is still linear in the number of steps and can
amount to a considerable fraction; for this reason, given some particular conditions, we
may want to skip it altogether using directly the prediction or the noise mechanism. The
test mechanism we use (2) is defined for all εθ > 0, l ∈ [0,+∞). We can extend it to
the case εθ = 0, l ∈ {−∞,+∞} with the convention that Θ(0,+∞, z̃) always returns
1 and Θ(0,−∞, z̃) always returns 0. The new test mechanisms are independent of the
input x so they can be trivially shown to be private, with no budget being consumed.

Fact 2 (Privacy of Test function). The test functions Θ(0,+∞, z̃) and
Θ(0,−∞, z̃) satisfy assumption 3.

Now if β returns (0, εN ,−∞) we always fallback to the noise mechanism N(εN );
this is especially useful when we know the prediction is not in conditions to perform
well and testing would be a waste of budget. For instance, consider a prediction function
that needs at least a certain number n of previous observables to be able to predict with
enough accuracy; in this case we can save some budget if we directly use the noise
mechanism for those n steps without testing. Note that the bound on utility is preserved
in this case, as we can rely on the αN (δ)-accuracy of N(εN ).

On the other hand, the budget manager can return (0, 0,+∞) which causes the
prediction to be reported without spending any budget. This decision could be based on
any public information that gives high confidence to the prediction. A good use of this
case can be found in Section 5 where timing information is used to skip the test.

Note that the prediction is computed from public knowledge, so releasing it has no
privacy cost. However in this case we loose any guarantee on the utility of the reported



answer, at least in the general case; based on the criteria for skipping the test (as in the
case of the user walking in the city), we could make assumptions about the quality of
the prediction which would allow to restore the bound.

4 Predictive mechanism for location privacy

The applicability of dX -privacy to location-based systems, called geo-indistinguishability
in this context, was already discussed in Section 2. Having studied the general proper-
ties of our predictive mechanism, we are ready to apply it for location privacy.

As already described in the preliminaries the sets of secret and observables are sets
of geographical coordinates, the metric used is the euclidean distance and we will use
Θ(εθ, l, z̃) (2) as test function. We start with the description of a simple prediction
function, followed by the design of two budget managers and finally some heuristics
used to skip the test.

Prediction Function. For the prediction function we use a simple strategy, the parrot
prediction, that just returns the value of the last observable, which ultimately will be the
last hard observable.

parrot((z, b) :: r) = z (7)

Despite its simplicity, this prediction gives excellent results in the case when the secrets
are close to each other with respect to the utility required - e.g. suppose the user queries
for restaurants and he is willing to accept reported points as far as 1 km from the secret
point, if the next positions are tens of meters apart, then the same reported point will
be a good prediction for several positions. Similarly, the prediction is quite effective
when the user stays still for several queries, which is a typical case of a smartphone
user accessing an LBS.

More concretely, we define the step of a trace as the average distance between its
adjacent points σ(x) = avg0≤i<|x| d(xi, xi+1) and we compare it with the αN (0.9)-
accuracy of the noise mechanism. The intuition is that the parrot prediction works well
on a trace x if σ(x) is smaller than αN (0.9) or in the presence of clusters because once
we release a hard point we can use it as a good enough prediction for several other
secret points close to it.

Furthermore the parrot prediction can be trivially implemented on any system and it
has the desirable property of being independent from the user; taking into account past
traces of the user, for instance, would give a more effective prediction, but it would be
restricted to that particular user.

Budget Managers When configuring a mechanism we need to take into account 3
global parameters: the global privacy, the utility and the number of interactions, written
(ε, α, n) for brevity. All three are interdependent and fixing one we obtain a relation
between the other two. In our case we choose to be independent of the length of the
traces; to do so we introduce the privacy consumption rate (or just rate) which is the
amount of budget spent at each step on average: ρ(r) = ε(r)

|r| . This measure represent the
privacy usage of the mechanism or how fast we run out of budget and given this value
we can easily retrieve how many points we can cover given a certain initial budget. As



already done for derr, we also introduce the average-case rate for the mechanism as the
expected value of ρ, given a prior distribution π ∈ P(Xn) on traces:

E[ρ] =
∑

x π(x)
∑

r PM(x)(r) ρ(r)

Given that our main concern is privacy we restrict ourselves to ε-bounded budget man-
agers, that guarantee that the total budget consumed by the mechanism will never ex-
ceed ε, and divide them in two categories:

Fixed Utility: In the independent mechanism if we want to guarantee a certain level
of utility, we know that we need to use a certain amount of budget at each step, a fixed
rate, thus being able to cover a certain number n of steps. However in our case, if the
test is successful, we may save the cost of the noise and meet the fixed utility with a
smaller rate per point; smaller rates translates in additional interactions possible after
n. We fix the utility and minimize the rate.

Fixed Rate: Alternatively, if in the independent mechanism we want to cover just
n steps, thus fixing the rate, we would obtain a certain fixed utility. On the contrary
the predictive mechanism, in the steps where the test succeeds, spends less than the
chosen rate, allowing the next steps to spend more than the rate. This alternance creates
a positive behavior where hard points can use the saved budget to increase their accuracy
that in turn makes predicting more accurate and likely to succeed, leading to more
saving. Of course the average cost for all steps meets the expected rate. In this case we
fix the rate and maximize the utility.

Configuration of the mechanism We now give an overview of the constraints that
are present on the parameters of the predictive mechanism and a guideline to configure
them to obtain the desired levels of privacy and utility. The only settings that the user
needs to provide are ε and either α or ρ. The budget manager will define at each step the
amount of budget devoted to the test εθ, the noise mechanism εN and the test threshold
l, starting from the global settings.

Budget usage First we define the prediction rate PR as the percentage points predicted
successfully; this property will be used to configure and to verify how effective is the
predictive mechanism. We can then introduce a first equation which relates εθ and εN
to the budget consumption rate: ρ = εθ + (1 − PR)εN . This formula is derived from
the budget usage of the mechanism (Lemma 1), with the two following approximations.
First, εθ and εN in future steps are assumed constant. In practice they will be variable
because this computation is re-done at each step with the actual remaining budget. Sec-
ond, we assume the hard steps are evenly distributed along the run. This allows us to
use PR, which is a global property of the trace, in a local computation.

Note that ρ is constant in the fixed rate case and is computed over the current run
for the fixed utility case. We already knew that the budget available at each step had to
be split between Θ and N , this result confirms the intuition that the more we manage
to predict (higher PR) the less we’ll need to spend for the noise generation (on average
over the run).

Utility From the utility result given by Proposition 1 we obtain an equation that relates
all the parameters of the mechanism, εθ, εN and l. Given that the global utility will be



budget manager β (r )
i f ε(r) ≥ ε then STOP
e l s e
εθ := η cθα (1 + 1

γ )

εN := cN
α

l := cθ
γεθ

re turn (εθ, εN , l)

(a) Fixed Utility configured with ε and α

budget manager β (r )
i f ε(r) ≥ ε then STOP
e l s e
εN := ρ

(1−PR)+
cθ
cN

η(1+ 1
γ )

εθ := εNη
cθ
cN

(1 + 1
γ )

l := cθ
γεθ

re turn (εθ, εN , l)

(b) Fixed Rate configured with ε, ρ and PR

the worst of the two, we decide to give both the noise and predictive components the
same utility: αN = l + αθ. Moreover, as discussed in the utility section, this result is a
bound valid for every possible prediction function, even one that always fails, for this
reason the bound may be too pessimistic for the practical cases where the prediction
does work. In order to reduce the influence of the accuracy of the predictive component
we introduce a parameter 0 ≤ η ≤ 1 that can be set to 1 to retrieve the strict case or can
safely go as low as 0.5 as shown in our experiments. Finally we obtain the following
relation between the parameters: α = αN = η(l + αθ).

Noise-threshold ratio Now we have two equations for three parameters and to com-
pletely configure the mechanism we introduce an additional parameter 0 ≤ γ ≤ 1 that
is used to tune, in the predictive component, the ratio between the threshold l and the
Laplacian noise added to it so that γ = αθ

l . The intuition is that γ should not be bigger
that 1, otherwise the noise could be more important than the threshold and we might as
well use a random test. For our experiments we found good values of γ around 0.8.

Note that both η and γ are values that should be determined using a representative
sample of the expected input, in a sort of tuning phase, and then fixed in the mechanism.
The same goes for the expected prediction rate that is used to configure the budget
managers, at least in the beginning this value is necessary to allocate some resource for
Θ, after some iterations it is computed from the actual run.

Relation between accuracy and epsilon The final simplification that we apply is when
we compute the accuracy of the noisy components, for both the linear Laplacian and
the polar Laplacian we can compute their maximum value up to a certain probability
δ using their inverse cumulative probability distributions, that we denote icll and
icpl respectively. Fixing δ to 0.9, both these functions can be expressed as the ratio of
a constant and the epsilon used to scale the noise αN (δ) = icpl(εN , δ) =

cN (δ)
εN

and

αθ(δ) = icll(εθ, δ) = cθ(δ)
εθ

.
Now that we have the equations that relate the various parameters, from the settings

given by the user we can realize the two budget managers, shown in Figure 3a and 3b.
Furthermore we can compare the expected rate or accuracy of our mechanism with

those of an independent mechanism and find the prediction rate that we need to meet
to provide an improvement. We obtain in both cases a lower bound on the prediction
rate: PR ≥ η cθcN (1 + 1

γ ). This gives an idea of the feasibility of a configuration before



actually running it, for example using the parameters of our experiments we find that it
is necessary to predict at least 46% of points to make up for the cost of the test.

5 Case study

To evaluate our mechanism, we follow our motivating example stated in the introduction
of a user performing several activities while moving around the city throughout a day,
possibly using different means of transport. During these activities, the user performs
queries to an LBS using his mobile device, while wishing to keep his location private.

We assume that the user queries the LBS only when being still or moving at a slow
speed (less than 15 km/h); this reflect the semantic of a geo localized query: there is usu-
ally little value in asking information relative to one’s current position if the position is
changing quickly. We perform a comparison between the independent mechanism IM
and our predictive mechanism PM, both using polar Laplace noise as the underlying
noise mechanism. The mechanisms are evaluated on two data sets of real GPS trajecto-
ries, using both a fixed-utility and fixed-rate budget managers and a skip strategy.

Data sets The first data set we tested our mechanism against, is the well known GeoLife
[15] which collects 18.670 GPS trajectories from 182 users in Beijing during a period
of over five years. In this set the users take a variety of means of transport, from walking
and biking to car, train, metro, taxi and even airplane. Regarding the trajectories length
we can roughly divide them on three equal groups, less than 5 km, between 5 and 20
km and more than 20 km. As for duration 58% are less than 1 hour, 26% between 1 and
6 hours and 16% more than 6 hours.

The second data set is Tdrive [16], a collections of about 9000 taxi trajectories,
always in the city of Beijing. As opposed to the variety of Geolife in this set we have
only cars movements and the trajectories tends to be longer in both time and distance.
The interest of using this set, which does not exactly correspond to our target use case
of a user walking in a city, is to test the flexibility of the mechanism.

In order to use this sets some preprocessing is needed in order to model our use case.
GPS trajectories present the problem of having all the movements of the user, instead
of just the points where the user actually queried the LBS, which is a small subset of
the trajectory. For this reason we perform a probabilistic “sampling” of the trajectories
that, based on the speed and type of user, produces a trace of query points. First, we
select the part of the trace where the speed is less than 15 km/h, and in these segments
we sample points depending on the type of user, as explained below.

Users are classified based on the frequency of their use of the LBS, from occasional
to frequent users. This is achieved by defining two intervals in time, one brief and the
other long (a jump), that could occur between two subsequent queries. Then each class
of users is generated by sampling with a different probability of jumping p, that is the
probability that the next query will be after a long interval in time. Each value of p
gives rise to a different prior distribution π on the produced traces, hence affecting the
performance of our mechanism.

The interval that we used in our experiments are 1 and 60 minutes, both with ad-
dition of a small Gaussian noise; frequent users will query almost every minute while
occasional users around every hour. In our experiments we generated 11 such priors,



with probability of jumping ranging from 0 to 1 at steps of 0.1, where each trace was
sampled 10 times.

Configuration In order to configure the geo-indistinguishable application, first the user
defines a radius r∗ where she wishes to be protected, that we assume is 100 meters,
and then the application sets ε∗, the global level of privacy, to be ln 10. This means that
taken two points on the radius of 100 meters their probability of being the observables
of the same secret differ at most by 10, and even less the more we take them closer to
the secret. We think this is a reasonable level of privacy in a dense urban environment.
For what concerns the two budget managers, the fixed-rate was tested with a 3.3% rate,
which corresponds to about 30 queries, which in a day seems a reasonable number even
for an avid user. For the fixed-utility we set an accuracy limit 3 km, again reasonable if
we consider a walking distance and that these are worst cases.

Skip-the-test strategy While the aim of the mechanism is to hide the user’s position,
the timestamp of a point is observable, hence we can use the elapsed time from the last
reported point to estimate the distance that the user may have traveled. If this distance
is less than the accuracy required, we can report the predicted value without testing it,
we know that the user can’t be too far from his last reported position. The risk of this
approach lies in the speed that we use to link elapsed time and traveled distance, if
the user is faster that expected (maybe he took a metro) we would report an inaccurate
point. To be on the safe side it should be set to the maximum speed we expect our
users to travel at, however with lower values we’ll be able to skip more, it is a matter
of how much we care about accuracy or how much we know about our users. In our
experiments we assumed this speed to be 0.5 km/h.

We would expect this approach to be more convenient in a context where accuracy
is not the primary goal; indeed skipping the test will provide the greatest advantage for
the fixed-utility case, where we just don’t want to exceed a worst case limit.

Additionally we use another skip-the-test strategy to use directly with the noise
mechanism when we are in the first step and thus there is no previous hard point for the
parrot prediction to report. This is a trivial example of skip strategy, yet it can lead to
some budget savings.

Results It should be noted that both the preprocessing and the sanitization were per-
formed with same configuration on both data sets. The results of running the mecha-
nism on the samples traces from the Geolife data set, are reported in figures 4, 5, the
graphs of Tdrive are omitted for reason of space as they show a very similar behavior
to Geolife (they can be found in [17]). In the horizontal axis we have the probability
p that was used during the sampling, to determine how often the user performs a jump
in time: the smaller the value the more frequent the queries. For each budget manager
we plot: In the first graph, some general statistics about the mechanism, such as the
prediction rate achieved, the amount of budget devoted to Θ and the amount of skipped
points; In the second column the average (E[derr]) and 90-th percentile (α(0.9)) of the
error; In the third the average budget consumption rate E[ρ]. Furthermore we run the
experiments with and without the skip the test strategy, for the sake of comparison.

The graphs present a smooth behaviour, despite the use of real data, because of the
sampling on each trace and the averaging over all traces of all users. As general remarks,
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(a) Fixed-Rate 3% without skip
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Fig. 4: General statistics, Average Error and Rate for Fixed-Rate budget manager.

we can see that the prediction rate degrades as the users become more occasional, thus
less predictable, and the same goes for the number of skipped points. Notice that the
testing budget adapts with the prediction rate which is a sign that the budget managers
reconfigure dynamically.

Fixed-rate (Fig. 4): fixing the rate to 3.3% to cover 30 points, we can devote the
budget saved to improve the accuracy. In the right most graph we see that indeed the
rate is very stable even in the unpredictable cases, and very close to the rate of the inde-
pendent mechanism. The graph in the center shows great improvements in the average
error, 500 m in the worst case and 700 m in the best, and even more remarkable is the
improvement for the maximum error, 1.3km up to 1.9km. With the skip strategy we see
a small improvement for p ≤ 0.5, again both in average and maximum error, which
correspond to a decrease in the testing budget in the left most graph: the budget saved
skipping the test is invested in more accurate noise.

Fixed-utility (Fig. 5): fixing the maximum utility (or in-accuracy) to 3 km, our mech-
anism manages to save up to 1.5% of budget rate. If we want to compare the number
of points covered, the independent mechanism can do around 17 points while the pre-
dictive 24. As expected the average and max errors are below the independent mecha-
nism corresponding values which confirms that the budget manager is working correctly
keeping the utility above a certain level. Despite this they don’t show a stable behavior
like the rate in the fixed-rate case, this is due to the fact that while we can finely control
the amount of budget that we spend, the error is less controllable, especially the one
produced by the predictive component. With the skip strategy in this case we obtain a
very noticeable improvement in this case, with rates as low as 2% in the best case which
translates to 50 points covered. As already pointed out, in this case the skip strategy is
more fruitful because we care less about accuracy.
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(a) Fixed-Utility 3 km without skip
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Fig. 5: General statistics, Average Error and Rate for Fixed-Utility budget manager.

Tdrive This data set reports remarkably similar performance to Geolife when the proba-
bility of jumping p is less than 0.7. In this cases the predictive mechanism is consistently
a better choice than the independent mechanism on both budget managers. On the con-
trary for higher values of p the independent mechanism performs better, it is interesting
to notice that the prediction rate at p = 0.7 starts to be lower than 46%, as expected
from Section 4. This difference between the best and worst case is more accentuated in
Tdrive precisely because the prediction function was not designed for this scenario. The
more sporadic users are even less predictable as they are moving at higher speeds and
roaming larger areas. Also the skip strategy, again designed for walking users, shows
some spikes in the average error, due to wrongly skipped points where probably the taxi
speeded up suddenly.

Figure 6 displays one of Geolife trajectories sanitized with fixed utility. The original
trace, in red, starts south with low speed, moves north on a high speed road and then
turns around Tsinghua University for some time, again at low speed, for a total of 18 km
traveled in 10 hours. The sampled trace was obtained with a probability 0.5 of jumping
and is plotted in light blue: as expected, 9 of the points are north, one south and the
middle part was skipped. Finally in yellow we have the reported trace with 3 locations,
which were used once for the point at the bottom, 7 times for the one in the middle and
twice for point in the top.

6 Conclusions and Future Work
Future Work. As the experiments show the more efficient use of budget allows us to
cover a day of usage, which was the goal we were aiming for in order to attack realistic
applications. The intuition is that even if there is correlation between the traces of the
same user on several days (for example we go to work and home every day) still it



is not enough to accurately locate the user at a precise moment in time (we might go
to work later, or follow a different road). It is not clear though if one day is enough
time to break the correlation and possibly reset the budget, we leave to future work to
investigate in which cases it is indeed possible to reset the system and when on the
contrary the epsilon keeps increasing.

Fig. 6: Original trace (red), sam-
pled trace (light blue) and reported
trace (yellow).

One other possibility to prolong even further
the use of the system is to improve the predic-
tion. An extension we plan to develop consist in
using the mobility traces of a user, or of a group
of users, to designate locations where the next po-
sition is likely to be. In [21] the authors already
developed inference attacks on the reported loca-
tions of users to discover points of interests and
future locations, among other things; the idea is
to use these attacks as a prediction.

We are also developing a linearizing predic-
tion, that using past points tries to establish the
next location using a linear regression method.

Alternatively we are considering the use of
public geographic information to improve the pre-
diction, which could simply translate to using al-
ready developed map-matching algorithms: typi-
cally in navigation systems an approximate loca-
tion needs to be matched to an existing map, for
example to place the user on a road. Map match-
ing would make trivial predicting the direction of
the user moving on a road for example, while in
crossroads could be dealt with with the help of the
mobility traces already discussed before: if on the
left the is just countryside and on the right a mall, the user is more likely to turn right.
Ultimately if more than one prediction function prove effective, we are interested in the
possibility to merge them, for instance using multiplicative weights or related technique
(e.g. Kalman filters).

Related work. On the predictive mechanism side, our mechanism was mainly inspired
by the median mechanism [20], a work on differential privacy for databases based on
the idea of exploiting the correlation on the queries to improve the budget usage. The
mechanism uses a concept similar to our prediction to determine the answer to the
next query using only past answers. An analogous work is the multiplicative weights
mechanism [22], again in the context of statistical databases. The mechanism keeps a
parallel version of the database which is used to predict the next answer and in case of
failure it is updated with a multiplicative weights technique.

A key difference from our context is that in the above works, several queries are
performed against the same database. In our setting, however, the secret (the position
of the user) is always changing, which requires to exploit correlations in the data. This



scenario is explored also in [23] were the authors consider the case of an evolving secret
and develop a differentially private counter.

Concerning location privacy, there are excellent works and surveys [24,25,26] that
present the threats, methods, and guarantees. Like already discussed in the introduc-
tion the main trends in the field are those based on the expectation of distance error
[9,8,27,28] and on the notion of k-anonymity [3,4,5,6,7], both dependents on the adver-
sary’s side information, as are some other works [29] and [30].

Notions that abstract from the attacker’s knowledge based on differential privacy
can be found in [11] and [12] although only for aggregate information.

The notion we based our work on, geo-indistinguishability [14], other than ab-
stracting from the attacker’s prior knowledge, and therefore being suitable for scenarios
where the prior is unknown, or the same mechanism must be used for multiple users,
can be used for single users. In addition, being the definition an instantiation of the
more general notion of dX -privacy [19] we were able to generalize our mechanism as
well, being the prediction the only domain specific component.

Conclusions. We designed a general framework for private predictive dX -private mech-
anisms able to manage the privacy budget more efficiently than the standard approach,
in the cases where there is a considerable correlation on the data. The mechanism is
modular and clearly separates the privacy protecting components from the predictive
components, allowing ease of analysis and flexibility. We provide general configuration
guidelines usable for any notion of dX -privacy and a detailed instantiation for geo in-
distinguishability. We tested the geo private mechanism obtained with two large sets of
GPS trajectories and confirmed the goals set in the design phase. Experimental results
show that the correlation naturally present in a user data is enough for our mechanism
to outperform the independent mechanism in the majority of prior tested.
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