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A Predictive Duty Cycle Adaptation Framework using Augmented
Sensing for Wireless Camera Networks
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Energy efficiency dominates practically every aspect of the design of a wireless sensor network and duty
cycling is an important tool for achieving high energy efficiencies. Duty cycling for wireless camera networks
meant for tracking objects is made complex by the nodes having to anticipate the arrival of the objects
in their field-of-view. The consequences of an object arriving in the view-region of a camera when it is
sleeping need no elaboration. Our work presents a predictive framework to provide nodes with an ability to
anticipate the arrival of objects in the field-of-view of their cameras. Our predictive framework differs from
others in that the nodes whose duty cycles are increased are at least one step removed from the immediate
neighborhood of the nodes where the objects are currently visible. By eliminating the need for the currently
busiest nodes to also be in charge of informing their non-busy immediate neighbors to get ready for object
arrival, we end up with a more robust strategy for updating the duty cycle at the nodes where the objects
are highly likely to appear soon. The proposed scheme works by using an existing MAC header bit that
is already in the 802.15.4 protocol and, in that sense, our anticipatory approach for notifying the nodes
about the current state of the object location entails no additional expenditure of energy. Our contribution
includes evaluations based on large-scale simulations as well as real experiments with an Imote2-based
wireless camera network.
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1. INTRODUCTION

Central to the design of a wireless sensor network (WSN) is the need for high energy
efficiency. Considering that radio broadcasting tends to be the most energy-hungry
step in the operation of a WSN, one seeks to achieve high energy efficiencies by duty
cycling the WSN nodes. Duty cycling is based on the straightforward rationale that
if the environmental parameters that a node is monitoring stay constant over long
periods of time, the node can conserve its energy resources by staying asleep much of
the time.
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Whereas duty cycling is relatively simple to implement for WSNs meant for mon-
itoring environmental parameters, such as air or structure quality parameters, the
opposite is the case when the parameter to be monitored is of a transient nature —
as is the case with wireless camera networks meant for tracking people and objects.
Should a node be asleep when an object shows up in the field-of-view of its camera, at
the least you would lose continuity in tracking the object. Obviously, then, the latency
introduced by duty cycling in recording the parameters of interest must be minimized
when such parameters are allowed to be transient.

The interest in using duty cycling for enhancing the energy efficiency of WSNs has
led to several contributions on the incorporation of the same in the MAC protocol layer
[Rhee et al. 2008; Buettner et al. 2006; Polastre et al. 2004; El-Hoiydi and Decotignie
2004; Ye et al. 2002]. But, as we mentioned above, any static approach to duty cycling
would be found wanting when the parameters that need to be monitored by a WSN are
transient. So the past several years have also witnessed contributions that incorporate
dynamic duty cycling in the MAC layer that can adapt to the variations in the temporal
properties of the parameters of interest. These contributions have resulted in the MAC
protocols such as TMAC [Van Dam and Langendoen 2003], AMAC [Nam et al. 2006],
DSMAC [Lin et al. 2004], and CMAC [Liu et al. 2009].

That brings us to an examination of the currently available dynamic approach to
duty cycling from the standpoint of what is needed for wireless camera networks. In
the research contributions we have cited above, the dynamic duty cycle adaptation at
a node is based on the detection of a change in the current traffic conditions at the
node. We claim that such passive duty cycle adaptation schemes are not appropriate
for event-driven WSNs, such as wireless camera networks (WCNs) intended for track-
ing humans and objects in motion. Our claim is based on the observation that the
delay between the time an event occurs and the time a new duty cycle regime becomes
effective may be unacceptable if the event corresponds to a fast moving object being
tracked by a camera network.

What we really need for wireless camera networks are duty cycle adaptation strate-
gies that can anticipate the arrival of events of interest provided the methods used
for anticipation entail only minimal communication overhead. The condition stated
in italics is important since a trivial anticipation strategy consisting of the currently
active nodes merely broadcasting their activity status to all the neighboring nodes is
not likely to work effectively in practice. The currently active nodes are likely to be
the members of clusters that are engaged in observing the target and calculating its
motion parameters. They cannot be expected to also be responsible for communicating
with the non-cluster members. Even if such a simpleminded approach to duty cycle
adaptation was made to work under certain experimental conditions (such as when we
have a small number of slowly moving objects), it would not scale up properly as the
event activity levels increase. Note that the intra-cluster traffic tends to be intense and
bursty. That increases the odds that random communications from cluster members to
non-cluster members in order to lend to the latter the ability to anticipate future traffic
are likely to fall prey to the expected high levels of contention. The packet collision/loss
rate in wireless networks, in general, increases exponentially due to contention as the
traffic increases. Therefore, introducing additional traffic for explicit notification of the
current object state to non-cluster nodes also has the potential to significantly increase
the loss of critical information related to the tracking task. This may result in severe
degradation of the tracking performance, reduced tracking accuracy, and possibly fre-
quent tracking failures.

These observations have motivated us to develop a duty cycle adaptation framework
that requires only minimal communication overhead. Our adaptation framework en-
ables a node to infer the current state of an object of interest that is beyond its sensing
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capability. Our proposed approach, called PDCA (for Predictive Duty Cycle Adaptation)
is a predictive network adaptation framework where a node can adapt its parame-
ters in advance of a moving target actually showing up in its field-of-view and do so
with no additional communication cost. The engine that drives the adaptation is an
event/object tracker that can interact with all of the layers of a protocol stack. The
interaction between any of the protocol stack layers and the tracker creates inputs
for the tracker that can be used to update the state of the object being tracked. The
updated state thus calculated can subsequently be retrieved by all the layers of the
protocol stack. Our approach to modeling the interaction between the tracker module
and the layers of the protocol stack allows for online cross-layer optimization to be
carried out while an object is being tracked.

Our framework for duty cycle adaption in anticipation of upcoming high traffic is
made possible by the notion of augmented sensing that consists of direct sensing and
indirect sensing. Whereas direct sensing refers to sensing by a node’s own camera, in-
direct sensing is defined as obtaining a measurement (or any object state information
inferred therefrom) from the sensing capability of some other nodes via a communi-
cation channel. We show how indirect sensing can be achieved by using a single bit
embedded in the MAC header of all outgoing packets. We refer to this one bit as the
Explicit Event Notification (EEN) flag. Since this flag can be set within the Frame
Control Field (FCF) of the MAC header, which is available in most standard MAC pro-
tocols such as 802.15.4, our proposed method does not require any modification of the
structure of the packet formats of the existing protocols. Moreover, since this flag is set
in the packets that are supposed to be transmitted anyway, our proposed method does
not involve any additional communication overhead.

The event tracker at each node uses a Kalman filter to aggregate all the measure-
ments obtained through augmented sensing in order to keep track of the object of
interest. Thus, all nodes — even those that are not currently seeing the object — can
estimate the current state of the object and make predictions of the future state of the
object. This allows each node to adapt its duty cycling regimen in anticipation of the
arrival of the object in the near future.

A noteworthy aspect of the duty cycle adaptation framework presented in this pa-
per is that it allows different nodes to operate with different duty cycles. For obvious
reasons, this creates challenges in any communication between the nodes, especially
for those modes of communication that do not call for handshaking with ACK. The
work we present here includes a novel approach for nodes with different duty cycles to
engage in communications.

Our proposed framework for duty cycle adaptation, however, does require that the
camera nodes that are currently seeing the object generate radio traffic. This assump-
tion is easily satisfied by the wireless camera networks designed for tracking objects.
The nodes of such networks must engage in collaborative computing within clusters
for the calculation of object state, which naturally results in the sort of radio traffic
our framework depends on.

PDCA can be used as a plug-in/add-on to any synchronous MAC protocol for WSN.
The work we present here shows how the performance of a synchronous MAC protocol
can be improved when PDCA is also deployed for duty cycle adaptation. The perfor-
mance numbers we present in support of this conclusion are based on energy efficiency,
tracking performance, and Time-Bounded Parameter Estimation Accuracy (TIBPEA)
[Shin et al. 2007]. These performance comparisons will be based on both large-scale
simulations and, even more importantly, on real experiments with an Imote2-based
wireless camera network.

In the rest of the paper, we first review in Section 2 some unique features of wireless
camera networks. Section 3 then provides a review of the relevant literature on adap-
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tive duty cycling in WCNs. The new PDCA framework is presented in Section 4 and its
application to duty cycle adaptation in Section 5. The performance evaluation of the
framework is presented in Section 6. As already mentioned, our performance evalua-
tion is based on large-scale simulations and on a real Imote2-based testbed. Section 7
then concludes the paper.

2. WIRELESS CAMERA NETWORKS

As a sub-category of the more general WSNs, the WCNs tend to be event-driven, in
the sense that their operation is frequently triggered by the detection of an event of
interest by one or more camera nodes. In addition to their being event-driven, WCNs
differ from the typical WSNs also from the fact the cameras are directional sensors.
In this section, we focus on two unique characteristics of WCNs that are relevant to
our work. For a more comprehensive survey on camera sensor networks, the reader is
referred to [Soro and Heinzelman 2009] and [Charfi et al. 2009].

2.1. Traffic Patterns for Event-Driven Collaborative Processing

WCNs differ from the more traditional WSNs in that intense and bursty radio traffic
is generated in the vicinity of the events as the camera nodes participate in a collabo-
rative interpretation of the event. As a result, the network-wide variation of the traffic
pattern in WCNs is much larger than that in the conventional WSNs where the traffic
generation tends to be periodic and the pattern remains unchanged in the course of
time.

With regard to the burstiness of the local traffic caused by collaborative interpreta-
tion of the sensed data, it is obviously made necessary by the limited computational
power and sensing capability of the nodes. The nodes that participate in such collab-
orative computations are said to form a cluster. A typical cluster based approach to
collaborative sensing [Medeiros et al. 2007] includes operations such as 1) cluster for-
mation; 2) cluster leader election; 3) cluster propagation, with cluster leader re-election
whenever necessary; 4) estimation of the properties of the objects of interest collab-
oratively; etc. All of these phases of cluster based computing require highly bursty
communications.

Such collaborative nature of processing visual data among the nodes in a WCN is in
contrast to the nodes in a traditional WSN where scalar measurements are acquired
by each node independently and these measurements are simply aggregated in the
network in order to remove redundancies in data transmission. An example of the
traditional WSNs would be a wireless network meant for monitoring the environment
for, say, the air quality.

2.2. Quality of Service (QoS)

The QoS criteria for WCNs must of necessity be more stringent as compared to those
for the more conventional WSNs. Any latencies introduced by, say, duty cycling and
any information loss caused by high traffic contention — traffic contention is more of
an issue for WCNs given the bursty nature of the traffic — is likely to result in more
serious performance degradation. Excessive latencies may, for example, cause to loose
track of a target object.

Achieving a high QoS by simply over-provisioning the nodes for performance require-
ments so that they can cater to the expected peak traffic is obviously not feasible since
the wireless camera nodes are generally resource constrained. It is also not feasible in
such networks to simply reduce the duty cycle at the nodes for energy requirements
since that would adversely affect the QoS. Rather, in order not to lose critical informa-
tion related to the event and also in order to process (in some cases, collaboratively)
the sensed data in real-time, these nodes must be able to quickly alter their network

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

ACM Transactions on Sensor Networks (TOSN),
Speical Issue on "New Advancements in Distributed Smart Camera Networks" (to appear in April 2014)

This is a digitized copy derived from an ACM-copyrighted or licensed work.
ACM did not prepare this copy and does not guarantee that it is an accurate copy of the originally published work.



A Predictive Duty Cycle Adaptation Framework A:5

parameters (e.g., the duty cycle of radio or the sensing rate). These requirements pose
unique challenges for designing communication protocols that are suitable for WCNs.

3. LITERATURE REVIEW

The need for network adaptation arises from the fact that the different nodes in a
network may experience different degrees of traffic and the fact that each node must
conserve its energy budget to the maximum extent possible. Even when a WSN is used
for just environmental monitoring, typically each node reports its measurement to the
base station through a tree-like routing path. Consequently, the amount of traffic each
node experiences depends on its position in the routing path. The closer a node is to
the base station, the more traffic it will see. Such nonuniformities become all the more
severe in WCNs since an event of interest is observed and processed by only a small
subset of the nodes at any given time.

In the context of using a WSN to track animals with passive infrared motion sens-
ing, the Frisbee model [Cerpa et al. 2001; Farina et al. 2005] was proposed to dynam-
ically set a circular zone of a pre-defined radius around the current location of the
target being tracked by the network. The nodes within the zone are kept in fully active
state (meaning at 100% duty cycle) while those outside the zone are made inactive
(meaning at 0% duty cycle) in order to conserve their energy. This circular zone moves
with the target. The system uses a wakeup signal on a different low-power radio as a
mechanism to wake up the nodes that are currently asleep. Therefore, as the target
moves, a so-called “wake-up wavefront” propagates in the direction of the movement of
the target. This approach, however, requires that the nodes be equipped with special
hardware for generating wakeup signals and for responding to the same. Also, using a
wake-up radio to activate a transceiver forces all nodes within one-hop range to turn
on their transceivers regardless of what the radius of the Frisbee zone is set to. The
Frisbee model also requires a small subset of nodes to always be on in order to initiate
the process of object tracking.

Instead of using a special wake-up radio, the Probing Environment and Collaborat-
ing Adaptive Sleeping (PECAS) method presented in [Gui and Mohapatra 2004] re-
quires nodes that detect an event of interest to proactively broadcast wakeup packets.
The nodes that receive such wakeup packets (these would be within one-hop radius of
the event detecting nodes) broadcast a Prepare message to their neighbors. This allows
for the nodes within a two-hop radius of the event-detecting nodes to change their duty
cycle to full on. This type of a proactive wakeup mechanism, however, results in a large
number of wakeup packets generated in a local area, which causes increased packet
collisions and information loss. Both this scheme and the Frisbee approach entail spa-
tial areas of fixed size in relation to where the events are taking place for the change
in the activity levels at the nodes.

Instead of waking up all the nodes within a fixed range, the approach described in
[Tseng and Lu 2009] predicts a smaller set of nodes that may next detect the object
through their motion sensors and then wakes up only those nodes. To make these
predictions, object movement logs over time are stored in a database and the object
motion patterns predicted on the basis of those logs. Predictions obtained in such a
manner may not work should the object exhibit erratic motions as a function of time.
We should also mention other node activation schemes, such as those in [Zhang and
Cao 2004; Xu et al. 2001], for structured networks that adaptively activate/deactivate
nodes. However, these suffer from shortcomings similar to those described above.

In addition to the previous approaches, we should also mention the contribution in
[Mir et al. 2010] that presents the EC-MAC (Event-Centric MAC) protocol for selective
node activation. This MAC layer protocol — which operates at a level in the protocol
stack below those of the previous approaches — is a hybrid scheme that uses asyn-
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chronous random access and TDMA to facilitate efficient and reliable communication
for cluster-based collaborative data processing and the forwarding of packets from the
cluster members to the cluster head within each active region. EC-MAC defines an
active region as a set of nodes that are already detecting an event, and it is based on
a tree organization of the cluster members vis-a-vis the cluster head. The tree rela-
tionship between the nodes in an active region is brought about through the execution
of a tree construction algorithm that can degrade the performance of the system by
increasing the network latency. In addition to EC-MAC, there are other MAC layer
protocols that dynamically adapt the duty cycle of the radio based on synchronous
[Van Dam and Langendoen 2003; Lin et al. 2004; Nam et al. 2006] and asynchronous
[Hurni and Braun 2010; Anwander et al. 2010; Jurdak et al. 2007] schedules.

It bears repetition to mention that all the duty cycle adaptation schemes mentioned
above (including also other adaptive resource allocation methods such as the one de-
scribed in [Mainland et al. 2005]) adapt their parameters on the basis of the current
network conditions related to the current event location, the current buffer state, the
incoming traffic rate, and so on. Such reactive adaptation methods entail an inher-
ent delay between the time of detection and the time of adaptation. By contrast, our
proposed approach allows a node to predict the future state of an event and adapt its
network parameters before the arrival of the event. Moreover, unlike existing proac-
tive schemes that require wake-up messages to be broadcast explicitly, our proposed
method does not incur any communication overhead as it is carried out with implicit
notification embedded in the MAC header of all outgoing packets.

4. OBJECT TRACKING VIA AUGMENTED SENSING

In this section, we present a novel framework for object tracking within the network
protocol stack of WCNs. The proposed object tracker resides in a separate module in
each node that can interact with all of the layers of a protocol stack. The interaction
between any of the protocol stack layers and the tracker creates inputs for the tracker
that can be used to update the state of the object being tracked. The updated state
thus calculated can subsequently be retrieved by all the layers of the protocol stack.
Such interaction between the tracker and the layers of the protocol stack allows for on-
line cross-layer optimization to be carried out simultaneously while an object is being
tracked.

Consider a WCN shown in Figure 1. The communication range and the field-of-view
of each camera node are shown, respectively, in Figures 1(a) and (b). The goal of this
camera network is to track an object of interest depicted as the star in Figure 1(c).
As the object moves, the cameras that can detect this object form a cluster to track
the object collaboratively. The data aggregated within the cluster is then delivered to
the base station (or sink) through multi-hop communications as shown in Figure 1(c).
The nodes labeled E and F represent those cameras that are currently able to see the
object and are actively participating in the data aggregation. Thus, the duty cycle of
these nodes must be set sufficiently high in order to carry out the collaborative object
tracking. Since it is likely that the nodes A and B will soon see the object based on
the expected future location of the object, their duty cycle should be increased in order
to achieve a low-latency condition prior to the object becoming visible to them. The
methods with which we use to achieve this will be discussed in detail in Sections 4.1
to 5.5. The nodes B, H, C, and D are those that are actively participating in delivering
the aggregated data to the base station. The duty cycle at these nodes would also need
to be sufficiently high so that the packets containing the information of the object can
be delivered to the base station as quickly and as reliably as possible. Our proposed
method to achieve this will be the topic of Section 5.6.
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Fig. 1: A depiction of a WCN engaged in tracking a moving object. The dotted circles
and lines in (a) represent the communication range and connectivity among nodes, re-
spectively, and the dotted rectangles in (b)-(c) represent the sensing field of nodes. The
red star in (c) indicates the object of interest and the black solid arrow its moving direc-
tion. The black dotted arrows in (c) indicate the routing path of the packets triggered
by the detection of the object. The augmented sensing field of node C is shown in (d) as
an example, which is the union of the sensing field of node C and its communication
neighbors illustrated as red regions.

To enable predictive network adaptation, the nodes where the objects are highly
likely to appear soon must be notified so that they can get ready to handle the immi-
nent increase in radio traffic. If such notification is carried out through explicit trans-
mission of packets, it will entail not only additional energy consumption but more
importantly increased traffic in the nodes that are engaged in object tracking. Our
proposed approach therefore does not involve transmitting explicit notifications by the
currently busiest nodes. Instead our approach employs an implicit notification embed-
ded in the MAC header of all outgoing packets so that the receiving nodes can infer
the state of the object and adapt the network parameters accordingly. Since the noti-
fication is set in the packets that are supposed to be transmitted anyway, our method
incurs no additional communication overhead. In Section 4.1, we will describe in detail
how the implicit notification is carried out by the notion of augmented sensing.

The aforementioned online network optimization technique requires a prediction of
the state of the object and a proper metric to estimate the probability of the object
appearing at a node at a given time. In Section 4.3, we will present how to keep track
of the current position of the object and make a prediction on the state of the object.

4.1. Augmented Sensing

Sensing generally refers to an action of obtaining measurements from a sensor. In the
context of WCN, sensing can be interpreted as obtaining object measurements from
the images acquired by a camera attached to a wireless mote. We will refer this type
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of sensing as direct sensing. Indirect sensing, on the other hand, refers to obtaining
measurements (or any object state information inferred therefrom) from the sensing
capability of the neighboring nodes via a communication channel. We will use the term
augmented sensing to include both direct sensing and indirect sensing.

Indirect sensing is usually in a summarized or compressed form since communica-
tion is expensive in WSNs. The summarized measurements of an object (e.g., center of
mass and direction) can be made to known to other nodes by explicitly transmitting
packets that contain the object information. The receiving nodes can extract the cur-
rent state of the object and adapt their parameters, if necessary, in anticipation of the
arrival of the object. As we mentioned earlier, this approach is not likely to work in
practice because it creates additional communication overhead for the already busiest
nodes in the network that are currently engaged in object tracking. These nodes can-
not be expected to also be responsible for broadcasting the object state information to
other neighboring nodes in the network. Therefore our proposed framework employs
indirect sensing that does not require any communication overhead. The indirect sens-
ing in our framework is a single-bit flag embedded in the MAC header of all outgoing
packets. We refer to this one bit as Explicit Event Notification (EEN) flag1. Since a node
currently engaged in object tracking is bound to generate a large number of packets,
embedding a binary flag in all outgoing packets will effectively notify the neighboring
nodes about the presence of the object inside the sensing field of the node without in-
curring any additional communication traffic. A node receiving/overhearing a packet
with the EEN bit set to 1 can assume that the object of interest is located somewhere
in the field-of-view of the node that sent the packet. The augmented sensing field of a
node therefore is the union of its own field-of-view and the field-of-view of its one-hop
neighbors. Figure 1(d) illustrates the augmented sensing field-of-view of node C. As
we will describe later, a Kalman filter at each node aggregates all the measurements
obtained through augmented sensing in order to keep track of the object.

In order to carry out indirect sensing, a node must know about the field-of-view of its
one-hop neighbors. For that purpose, we assume that the cameras in the network have
been localized and calibrated and that the field-of-view of each camera is available in
the form of a 3-tuple (i, z, R) where i identifies the node (iself is the local node address),
z corresponds to the center of its field-of-view, and R is an ellipsoid that approximates
the area of the field-of-view. During an initialization stage, each node broadcasts its
field-of-view information to its one-hop neighbors. When a node receives the field-of-
view information from its neighbors, it simply stores them in a list within the tracker
module.

Since EEN can be set within the FCF field of the MAC header, which is available in
most standard MAC protocols such as 802.15.4, our proposed method does not require
any modification of the structure of the packet formats of existing protocols. Moreover,
since EEN is included in the packets that are supposed to be transmitted anyway, our
proposed method does not incur any additional communication overhead. Obviously
one could allocate additional bits to embed more descriptive information about the
object. In fact, the FCF field of the MAC header of the current implementation of
802.15.4 MAC protocol in TinyOS takes only 7 bits out of available 16 bits, leaving us
with up to 9 bits that could be used for EEN. In this paper, we use only one bit for EEN
to demonstrate that there is a significant performance improvement by our proposed
PDCA framework even with the coarsest indirect sensing achieved by a single bit.

For obvious reasons, indirect sensing would be most effective if each node checks the
EEN bit for all receiving packets, including those packets not intended for the node.

1EEN can be thought of as a generalized and implicit form of ECN (Explicit Congestion Notification) used
in TCP/IP.
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A Predictive Duty Cycle Adaptation Framework A:9

This can be easily implemented by checking the EEN bit first at a protocol stack before
the destination address check in the MAC layer. Thus, it does not entail unnecessary
energy consumption that usually happens in typical packet overhearing. Since we only
intend to detect whether or not the EEN bit is set, we refer to this process as event
packet detection.

4.2. Tracker Design

It is reasonable to assume that each node can acquire multiple observations of the ob-
ject via direct and/or indirect sensing. Each measurement may be represented by the
expected location of the object along with its uncertainty in the form of a covariance
matrix. The goal of the discussion that follows is to show how all the measurements
acquired sequentially as the object is being tracked can be used in a recursive frame-
work to predict as to what nodes are likely to see the object next with what probability.
There is a number of recursive estimation methods available including various types
of Particle filters [Doucet et al. 2000; Coates 2004], but we chose to use Kalman filter
[Welch and Bishop 1995] because of its low computational and memory requirement.

Note that the Kalman filter employed in this paper is one of the simplest forms with
a linear dynamics and measurement model. We fully realize that such a simple model
is not adequate to capture various object movements that may occur in different ap-
plications. Our intention is to show that even with such a simple tracker, a significant
performance gain can be made possible using our proposed PDCA framework. Obvi-
ously the type of tracker used in the system would impact the level of performance
gain, and such evaluation is beyond the scope of this paper.

4.2.1. System Model and Kalman Filter Equations. Each node that is currently engaged in
observing and tracking the object of interest will create a state vector for the object.
When a new object is detected within the augmented sensing field-of-view of a node, the
state vector of the object is initialized with the initial object observation. Subsequently,
the node uses the Kalman filter equations to update the state vector. This updated
state vector is then used to make a prediction about where the object will likely to
appear next.

We model the object state as a 4-D vector that consists of the object position (xk, yk)
at a discrete time instant k and its velocity (ẋk, ẏk). That is, the state vector is given by

xk = [ xk yk ẋk ẏk ]
T
.

The system dynamics are modeled by

xk+1 =







xk + δkẋk + ax

2 δ2k
yk + δkẏk +

ay

2 δ2k
ẋk + axδk
ẏk + ayδk






,

where δk is the time elapsed between two successive observations. That is, if the kth

observation was acquired at time tk, the observation k+1 is acquired at time tk+1 = tk+
δk. The event acceleration (ax, ay) is modeled as white Gaussian noise with covariance
matrix Qk. Then, the system dynamics can be represented as

xk+1 = Fkxk +Wkwk

where

Fk =

[

I(2×2) δkI(2×2)

0(2×2) I(2×2)

]

,

Wk =
[

δ2k
2 I(2×2) δkI(2×2)

]T

,
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ALGORITHM 1: Object tracking via indirect sensing using KF in the tracker module: Cross-
layer interaction from MAC and application layer

< Application layer >

zdirect , a measurement from camera in a form of coordinates
Rdirect , the covariance matrix associated with the measurement zdirect
repeat

if a new sensing result is available then
if an object is detected within the sensing field at time tk then

Provide tracker module the new measurement (zdirect, Rdirect);

else ⊲ No object is detected
Provide tracker module a NULL measurement;

until Node is running;

< MAC layer >

packet(i) , a packet transmitted by node i

NodeId[Size] , an array to store the list of node IDs

isDetecting , a boolean indicating whether the node is currently detecting an object or not
Ttimeout , the periodic time interval to send NodeIDs to tracker module
A timer is set to expire at every Ttimeout;
repeat

if a new packet(i) is available with EEN bit set then ⊲ Indirect sensing
Insert i into storage NodeId;

if timer is expired || NodeId is full then
Send storage NodeId to tracker module and Reset timer and storage NodeId;

if a packet is ready to be sent && channel is clear then
EEN bit of the packet← isDetecting;

until Node is running;

and wk = [ ax ay ]T is the process noise vector with covariance matrix Qk.
Each direct sensing measurement consists of the approximate location of the object

along with with its uncertainty as given by the covariance matrix associated with the
state vector. The measurement model can be described by

zk+1 = Hk+1xk+1 + vk+1,

where Hk+1 = [ I(2×2) 0(2×2) ] and vk+1 is the measurement noise, assumed white
Gaussian with covariance matrix Rk+1.

Let x̂k+1|k and x̂k|k be the predicted and the previously estimated state vectors, and
similarly, Pk+1|k and Pk|k the predicted and the previously estimated covariance ma-
trices. Then, the time update equations of the Kalman filter are given by

x̂k+1|k = Fkx̂k|k (1)

Pk+1|k = FkPk|kF
T
k +WkQkW

T
k . (2)

4.2.2. State Updates by Indirect Sensing . Exactly the same Kalman Filter that was de-
scribed in the previous subsection is used to estimate the state vector using indirect
sensing measurements. Note that when a node detects a packet with its EEN bit set
to 1, then the MAC layer can provide the ID of the sender to the tracker module. The
tracker first converts the ID of the sender into (z, R) using the field-of-view informa-
tion obtained during the initialization stage. The Kalman filter then uses (z, R) as an
input to update the state vector of the object. Figure 2 illustrates this process.
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ALGORITHM 2: Object tracking via indirect sensing using KF in the tracker module: Cross-
layer interaction at the tracker module

< Tracker Module >
zindirect(i) , the center of the sensing field of node i

Rindirect(i) , the ellipsoidal approximation of the sensing field of Node i represented as a
covariance matrix
repeat

if an arrayNodeId[N ] is received from MAC layer then ⊲ Indirect sensing
for n := 0 to N − 1 step 1 do

Kalman(zindirect(NodeId[n]), Rindirect(NodeId[n])) ⊲ calls Function

else if a new (zdirect, Rdirect) is received from application layer then ⊲ Direct sensing
if zdirect 6= NULL then

Set isDetecting ← True in the MAC layer;
Kalman(zdirect, Rdirect) ⊲ calls Function

else
Set isDetecting ← False in the MAC layer;

until Node is running;

Fig. 2: An illustration of how the event packet detection is used not only to get advance
notice of an approaching target but also to decide whether the target is close enough
for any changes to the local communication parameters. Node A is currently detecting
an object and wants to collaborate with node B. The outgoing packets from node A have
their EEN bit set. Node C, which is within a single hop range of node A, detects one
such packet. Then, node C uses this information to form an estimate of the current
position of the object.

The estimation of the state vector of an object by indirect sensing only (i.e., by event
packet detection) poses an interesting challenge: How should the node that detects the
EEN bit associate observation uncertainty with the object position at the sender of
the EEN bit? The approach taken in our work is to assume that the mean position of
the object is at the center of the field-of-view of the sender. We further assume that
the covariance of the object position can be approximated by the area of the field-of-
view of the sender. In other words, an indirect sensing measurement obtained by a
packet sent by node i takes a form of a Gaussian distribution (µ(i),Σ(i)), where µ(i) is

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

ACM Transactions on Sensor Networks (TOSN),
Speical Issue on "New Advancements in Distributed Smart Camera Networks" (to appear in April 2014)

This is a digitized copy derived from an ACM-copyrighted or licensed work.
ACM did not prepare this copy and does not guarantee that it is an accurate copy of the originally published work.



A:12 P. J. Shin et al.

the center of the field-of-view of node i and Σ(i) the covariance matrix approximated by
the area of the field-of-view of node i. This simple Gaussian approximation enables our
predictive duty cycle adaptation scheme to be applied even to the extremely resource-
constrained wireless embedded devices. One could use a nonlinear estimator such as a
Particle filter at the cost of larger resource overhead.

We want to note that a naive approach of updating the object state vector each time
a node receives an indirect sensing measurement may result in inaccurate and biased
state estimation. As mentioned before, as an object is being tracked, all the nodes in
the vicinity of the object can acquire measurements via direct and indirect sensing. If
a cluster is created among the nodes that are detecting the same object, one of them
will be elected as the cluster head and the rest its members. Depending on the role
of a node in a cluster, the traffic rate generated by each node could vary significantly;
mostly the cluster head generates more traffic for reporting the updated object states
to the base station and for performing various cluster operations. Therefore, if a node
updates its tracker each time it receives an indirect sensing measurement (i.e., detects
an EEN-set packet from one of the clustering nodes), then the estimation of the tracker
would likely be biased toward the center of the sensing field of the cluster head.

To resolve this issue, we devise in the MAC layer an array for storing the node
IDs and a timer with a timeout threshold Ttimeout. The MAC layer stores the ID of the
sender of an EEN-set packet in the array unless the ID is already in the list. Whenever
the timer expires or the array is full, the MAC layer sends the list of node IDs to the
tracker module and resets the list. The tracker then converts the node IDs into a set
of measurements (z, R) and updates its states.

Of course, this time-window based approach introduces a latency in the Kalman
filter update. However, we argue that the benefits of avoiding estimation bias and
instability far outweigh the slightly increased latency in the Kalman filter update.

One strategy for reducing the effects of the increased latency is to set the EEN bit of
a packet only after making sure the channel is clear right before the packet is trans-
mitted. The nodes receiving this packet can estimate the time that the measurement
was actually taken by subtracting the expected transmission delay of the packet. Since
the transmission delay is consistent for the packets with the same length, the detector
can estimate the measurement time quite accurately.

If a packet with its EEN bit set is detected along with its corresponding time stamp,
and a time synchronization is maintained among the nodes, we can easily obtain a
reasonably precise time measurement and accurately compute the time increment δk
[Kusy et al. 2006]. Even when the measurement time is not accurate, note that the
received measurement in the MAC layer via indirect sensing is already a good approx-
imation to the actual position of the object. Thus it is reasonable to assume that any
inaccuracies caused by time jitter in indirect sensing can be expected to be negligible.

Algorithm 1 and 2 summarize the Kalman filter based tracking at each node.

4.3. Spatio-Temporal Event Probabilities

Given an event (or object) j at a time instant tk, the corresponding spatio-temporal
event probability (STEP) distribution at a particular position u, denoted as Sj

k+1|k(u),

is defined as the probability of the predicted position of the event j at position u at time

tk+1 = tk + δk , where δk is the prediction interval. That is, let pj

k+1|k be the predicted

position of the event, then the STEP at position u at tk+1 is given by

Sj

k+1|k(u) = Pr(pj

k+1|k = u). (3)
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Note that Sj

k+1|k(u) and p
j

k+1|k correspond to the prediction at a future time instant

tk+1. The prediction interval δk should be determined to be larger than the time needed
for a node to change its network parameters such as the duty cycle and the time needed
for the change to actually take place so that the node can complete the adaptation
process before the event actually occurs at the node.

Once the tracker module receives a list of node IDs from the MAC layer and com-
pletes all updates, the tracker estimates the STEP distribution by using its prediction
module to make a prediction of the future position of the target. Assuming the current
estimated state is x̂k|k after completing all updates, the predicted position of the target

p
j

k+1|k for time tk+1 is given by

p
j

k+1|k =

[

1 0 0 0
0 1 0 0

]

x̂
j

k+1|k.

Since the prediction interval δk is not known at time tk, the prediction is carried out
using a pre-defined δk. The STEP at position u at tk+1 then can be estimated according
to using Eq. (3).

4.4. Network Parameter Adaptation

Network parameter adaptation at a node may be carried out either on the basis of the
probability of detecting the object in the field-of-view of the node or on the basis of the
expected arrival time of the object. In this section, we will first show how each node
can estimate the probability of detecting an object in its field-of-view by computing
how much the STEP overlaps with the field-of-view. We define this probability as the
Future Event Detection Probability (FEDP) at a node. We will then show that how each
node can estimate the mobility-based time-of-arrival of the event, which is defined as
the Expected Time-of-arrival of Event (EToE).

4.4.1. Future Event Detection Probability. Given the STEP distribution of an event j at
time tk, each node predicts how likely the event will occur within its field-of-view at
time tk+1 using the prediction module of the tracker. The probability that an event j

will occur within the sensing field of node i at time tk+1, S
(j,i)
k+1|k, is computed by:

S
(j,i)
k+1|k = Pr(pj

k+1|k ∈ G(i))

=

ˆ

u∈G(i)

Pr(pj

k+1|k = u)du

=

ˆ

u∈G(i)

Sj

k+1|k(u)du,

where G(i) denotes the sensing field of the node i as illustrated in Figure 4(a). This
future event detection probability (FEDP) is computed as the integration of STEP over
the field-of-view of a node. This figure also illustrates that the STEP distribution asso-
ciated with the object being tracked may span the field-of-view of multiple cameras.

The state transition diagram shown in Figure 3 describes how FEDP is computed
with Kalman filter. While the state of the Kalman filter is updated whenever a new
set of measurements is available, the network parameter adaptation block also com-
putes a new FEDP based on the updated states in the Kalman filter. According to the
new FEDP, the node determines a new parameter value for adaptation in each indi-
vidual layer. The FEDP at a node is approximated by dividing the field-of-view into m
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A:14 P. J. Shin et al.

Fig. 3: The state transition diagram that describes the steps to determine a new net-
work parameter value based on FEDP.

partitions and performing a Riemann sum:

S
(j,i)
k+1|k ≈

∑

n=[0,m−1]

Sj

k+1|k(un)f(un).

where f(un) is the size of each cell in the discretization of the field-of-view.

4.4.2. Expected Time-of-arrival of Event. Since each node runs its own tracker and since
there will be losses in packets containing indirect sensing information, the estimated
object state and its associated covariance matrix are likely to be different at different
nodes.
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(a) (b)

Fig. 4: STEP distribution for an event j and FEDP of Node A and B: (a) The FEDP

value of Node A and B, S
(j,A)
k+1|k and S

(j,B)
k+1|k, are the integration of STEP, Sj

k+1|k(u), over

G(A) and G(B), respectively. (b) The FEDP values can be approximated by a Riemann
sum with m partitions: In this example, the sensing field of each node is divided into
six partitions.

Fig. 5: Tracking by Kalman filter at each node. Small and large red circles indicate the
current and the predicted positions of an object as estimated by the Kalman filter at the
current cluster head. Small and large green circles are those estimated by the Kalman
filter at each of non-cluster nodes. The color of the node indicates the probability that
the object will enter its field-of-view in the near future (4 seconds).

Figure 5 illustrates this effect where the Kalman filter estimates of the current ob-
ject position and the predicted position made at the cluster head are shown as red
ellipses and the estimates made at other nodes (including those that are not part of
a cluster) are shown as green ellipses. As we can see in Figure 5, nodes 11, 14, and
18 are more distant to the current object position than nodes 12 and 10. Due to the
disparity in Kalman filter estimates at the different nodes, however, nodes 11, 14, and
18 measure a smaller distance to the target than nodes 12 and 10 in terms of the Ma-
halanobis distance (described as the color of a bar on top of each node). While such
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Fig. 6: The continued depiction of a WCN engaged in tracking a moving object at two
subsequent time instants. The red star indicates an event and the black solid arrows
its moving direction. The regions divided by black solid circles indicate examples of a
contour map of the STEP of the event predicted by a node.

disparity is not evident in the predicted position itself, it is significant in its associated
uncertainties (represented as the size of the green ellipsoids).

Given the estimate of the predicted position at time tk+1 as the mean of the STEP
distribution, then a node can estimate the expected time-of-arrival of the event (EToE)
since the node is aware of the speed of the object and the distance to the future position
of the object. However, depending on the process noise in the tracker, in general, we
can expect to see fluctuations in the velocity state. So, instead of directly using the
current velocity state, therefore, one could employ a method to measure the mobility on
a longer term basis in order to smooth out the fluctuations. How such smoothing should
be carried out, would vary from target to target. For example, the noise properties
related to pedestrian movements are obviously very different from the noise properties
related to the movement of automobiles. A node must therefore observe a target before
deciding on the best approach to use for the smoothing.

An understanding of the long-term mobility properties of a target object can be car-
ried out by employing a circular buffer of size Nmobility that stores the most recent
Nmobility estimated speeds of the object whenever the tracker is updated and averag-
ing them. That yields a time-window-based average speed of the object. Note that the
size of the circular buffer, Nmobility, should not be too long in case that the mobility of
an object may change over time. Yet the size should be set large enough to reveal its
typical mobility.

5. PREDICTIVE DUTY CYCLE ADAPTATION

While the tracker module keeps track of a target object, we would want the adaptation
of the network parameters to take place in the individual protocol layers connected to
the tracker module. As an example of such optimization, in this section we present how
such adaptation can be carried out in the MAC layer with regard to the duty cycle at
each node on the basis of FEDP and EToE. As we will show, the predictive duty cycle
adaptation (PDCA) strategy we present for the MAC layer adjusts the duty cycle of a
node in advance according to the FEDP or EToE before the target object is visible to
the camera at the node. PDCA enables a node to quickly ready for the anticipated high
traffic.
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Fig. 7: Overall system architecture of PDCA: The tracker module is implemented sep-
arately, not belonging to any layer within the protocol stack. The adaptation modules
reside in individual layers since each of them is responsible for adapting different
network parameters in different layers. The tracker and adaptation modules are con-
nected to each other and the whole system can be implemented as an add-on to an
existing network system as the figure depicts.

5.1. Overall System Architecture

The proposed PDCA framework can be applied to any network systems with syn-
chronous MAC protocols where a sender and its potential receivers share the same
active periods. Figure 7 shows how PDCA can be added on to an existing network sys-
tem. The protocol stacks in a typical network system have a single-path packet flow
from the physical layer at the bottom to the top application layer. Equipped with PDCA
as an add-on, a cross-layer interaction between all of the layers in the protocol stack
via tracker module is now made possible. More specifically, each of the network lay-
ers that are connected to the tracker module feeds event-related information into the
tracker so that the tracker can update the state of the event/object. At the same time,
each layer is able to consult with the tracker about the current state of the event/object
and if necessary adapt its network parameters. As a result, a PDCA-enabled network
can achieve high energy efficiency and tracking performance. Such synergy is created
when each node in the camera network performs both object tracking and network
parameter adaptation simultaneously.

5.2. Determining an Appropriate Value for the Duty Cycle

Once the FEDP or EToE is computed in the tracker module at a node, each node
chooses a value for its duty cycle in the MAC layer. A higher FEDP or a lower EToE
would cause a node to choose a larger value for the duty cycle. Let’s say we allow for N
different levels of the duty cycle, d0, d1, ..., dN−1, with dN−1 being the highest. Let dc be
the current value for the duty cycle level. Whenever a STEP update occurs at a node,
the node computes its new FEDP or EToE and accordingly a new duty cycle level dm.
If dm 6= dc, then the node schedules a change of duty cycle to dm and adopts the new
schedule based on the new duty cycle level dm. Subsequently, the node broadcasts this
fact to its neighbors so that they can be aware of the updated communication schedule
at the sender.
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Symbol Parameter

N The maximum number of duty cycle level
Tn The frame length of the base (lowest) duty cycle level dn
M The base of the exponentially varying frame length
tc The current time
tcf The time when the current frame started
tbf The time when the previous base frame started
tnf The time when the next frame is scheduled to start

Table I: Parameters and symbols used

Consider an example illustrated in Figure 6 where a target is being tracked and
its future position is being predicted. The circles (in general, these will be ellipses)
represent the equiprobable contours of the STEP distribution. If the target, which was
initially detected by node F, moves to the sensing field of node B, thereby triggering
packet transmissions from node B, as shown in Figure 6(a), then the EEN bit will be
set for all the packets transmitted by node B, informing node A and H of the detection
of the target at B. Upon the reception of a packet from node B, a Kalman filter in both
node A and H will be created, initialized, and updated due to this indirectly sensed
measurement. Nodes in the neighborhood of node B will then compute the current

STEP Sj

k+1|k(u) and FEDP S
(j,i)
k+1|k with respect to their sensing fields. Consider for

example the actions taken by node A: The STEP computed by node A based on the
detected packets from node B is illustrated in Figure 6(a). At this moment, node A
predicts that it is highly likely that the event will be detected in the next measurement

due to a high FEDP value S
(j,A)
k+1|k, and consequently schedules to alter its duty cycle to

the highest level dN−1 at tk+1. At a subsequent time instant, shown in Figure 6(b),
node A acquires an observation of the target and computes a new STEP and FEDP. At
this point, node A realizes that the target is moving away from its sensing field, i.e.,
the new FEDP indicates that it would not need the highest duty cycle level by the time
it acquires the next measurement. Note that since each node computes its own STEP
independently based on not only its own measurements but also the detected packets
from its neighbors, the STEP estimated at each node can be slightly different. Note
also that since the sensing field of node A is closest to the center of the predicted event
position in Figure 6 (a), its FEDP would be the highest among the nodes, causing it to
have the highest duty cycle value dN−1, while the other nodes would have relatively
smaller FEDP values, resulting in adopting the same or lower duty cycle values.

In contrast with the enhanced traffic levels generated by the appearance of a target
in the field-of-view of a node, the disappearance of the target can only be inferred by
the absence of packets with EEN set for a period of time. This translates into a soft
state approach for duty cycle adaptation. That is, we set a timeout period whenever a
duty cycle modification occurs. Upon the expiration of the timeout period, we assume
the target has left the augmented sensing field of the node, and the duty cycle is reset
to the lowest level d0. This soft state approach also prevents a node from changing
its duty cycle too frequently. The duty cycle adaptation procedure is summarized in
Algorithm 3. The definitions of parameters used are summarized in Table I.

5.3. Exponential Frame Length Adjustment

After a target is considered detected, directly or indirectly, and the corresponding duty
cycle ascertained as described previously, the system next calculates the frame length,
which is the sum of the on-time and the off-time for the radios. Any changes to the
frame length are carried out by adjusting it exponentially. Let Tc be the current frame
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ALGORITHM 3: Duty cycle adaptation

repeat
if an event exists within the sensing field then ⊲ Direct sensing

Schedule to adopt the highest duty cycle level dN at the earliest time slot;

else if current time is almost scheduled time then ⊲ Indirect sensing

Compute STEP S
j

k+1|k(u) for event j and FEDP S
(j,i)

k+1|k for a node i ;

Determine its proper duty cycle level dm based on FEDP ;
Schedule/reschedule to adopt the new duty cycle level dm at tk+1;

if dc 6= dm then
Set dm to be the current duty cycle level with a timeout;

else ⊲ dc == dm
Refresh timeout of dc;

if a new schedule is adopted then
Broadcast the new schedule to neighboring nodes;

until Node is running;

Fig. 8: Timeline for adopting a schedule with a higher duty cycle.

length corresponding to the duty cycle value of dc, T0 the frame length for d0, the
smallest value for the duty cycle, and M the base of an exponentially varying frame
length. Then, Tc is one of

Tn =
T0

Mn
,

where n ∈ {0, ..., N − 1}, and M ∈ N
∗. Note that in DSMAC and AMAC, M is always

set to two, whereas in the proposed PDCA scheme it could be any non-negative integer
number. If M is set to either 2 or 3, the frame length would change by doubling or
tripling the interval between the starting time of the active period of two consecutive
frames. For some MAC protocols such as TMAC, the length of the active and sleep pe-
riod changes dynamically according to the current network conditions while the frame
length remains fixed. Our PDCA scheme dynamically changes the length of the frame
itself, regardless of whether the active and sleep periods change or not in a given frame
length.

This exponentially varying adaptive frame method guarantees that any pair of nodes
is able to communicate within a shared active period even if the nodes operate at
different duty cycles. Suppose, for example, that two nodes in and im operate at duty
cycle levels dn and dm, and that n < m. Suppose both nodes are initially active at time
t0. Node in has wake up times at t0 + kTn where k ∈ N, and node im at t0 + lTm where
l ∈ N. Hence, whenever l

k
= Mm−n, the active periods of both nodes will coincide. As

a consequence, every node in the network is able to communicate with its immediate
neighbors at least during the active periods of the base frames, which correspond to
the frames given by the lowest possible duty cycle level d0.
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5.4. Adopting A New Schedule

After a node ascertains that its duty cycle must be changed to a new value — let’s call it
dm — it is necessary to define mechanisms that allow for the communication schedule
at the node to be modified without breaking synchronization with the neighboring
nodes. In order to not cause a break in the synchronization, any modifications to this
schedule must take place at the beginning of a frame. Let tc denote the time instant
when a node figures out that its new duty cycle should be dm. The node must next
determine when to start the new communication schedule with the new duty cycle.

Let tcf be the time that the current frame started, tbf the time when the previous
base frame started, and tnf the time when the next frame will start according to the
current schedule. If a node decides to change its duty cycle to a different level dm at
time tc , it schedules the beginning of the next frame to t

′

nf = tc + △, where △, the
residual time to the beginning of the next frame, is given by

∆ = min

[

U

(

T0

Mdm

)

− (tc − tbf )

]

, (4)

subject to ∆ > 0, where U ∈ {1, . . . ,Mdm}. Since all the parameters in Eq. (4) are
known and Mdm is relatively small, this minimization problem can be solved quickly
by simply searching over all the possible values of U .

Consider for example the timeline shown in Figure 8. In this figure, solid vertical
lines illustrate the beginning of the active periods of the current schedule, and the
dashed vertical lines show the beginning of the active periods of the new schedule
to be adopted. Suppose that the parameters in this case are M = 2, N = 5, and the
current duty cycle level of the node is dc = 1. At time tc, the node decides to increase its
duty cycle to dm = 2. Then, the parameter U will be chosen as the minimum between
1 and Mdm = 22 that satisfies ∆ > 0. Since tc − tbf > T1

2 in this example, it turns out
that U is 3. Next, ∆ is computed by setting U = 3 in Eq. (4), and the beginning time of
the next frame t

′

nf is rescheduled accordingly.

5.5. Communications Among Heterogeneous Schedules

A pair of synchronized nodes with different duty cycles can communicate with each
other successfully only if they share a common active period. This overlap between the
active periods at two different nodes is determined by the node with the shorter duty
cycle.

In general, when a node attempts to send a packet to another node, it is not trivial
to know whether the intended recipient is active or not when the nodes are allowed
to have different radio schedules. In existing adaptive MAC protocols, the sender just
tries to transmit a packet, hoping that the receiver is active. If ACK is not received,
then the sender may try multiple retransmissions of the same packet in the same
or the next active period. Such a trial-and-error approach obviously incurs additional
overhead in terms of energy, traffic, and latency.

In order to overcome these limitations, we employ a novel frame numbering strategy
that provides to the transmitting node an assurance that the receiving node is active.
This completely eliminates the overhead associated with the trial-and-error approach
yet at the cost of broadcasting a SYNC packet whenever a node changes its duty cycle
to notify its neighbors of the change. The main idea is to assign a sequence of integer
numbers to each frame that indicates the position of the current frame with respect
to the base frame in such a way that the assigned frame number is consistent for all
the neighboring nodes that share the same frame although they may have different
duty cycles. Recall that the base frame length T0 is the length of a frame when the
duty cycle is at the lowest level d0. Suppose node A is operating at the highest duty
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(a) (b)

Fig. 9: (a) An example of inconsistent frame numbering, when M = 2 and N = 3. (b)
An example of consistent frame numbering, when M = 2 and N = 4. From the top
timeline, dc corresponds to 0, 1, 2, and 3, respectively.

cycle level dN−1, thus having MdN−1 frames within one base frame length. In this case,
we can simply number each frame consecutively from 0 to MdN−1 − 1. Now suppose
a neighboring node B is operating at a lower duty cycle level dc, c < N − 1, and thus
can only have M (dN−1−dc) frames in one base frame length. If we again consecutively
number these frames from 0 to M (dN−1−dc) − 1, the frame number of the frames that
node A and B share will be different at node A and B, resulting in inconsistency in
frame numbering as shown in Figure 9(a). To avoid such inconsistency, we use the
following simple equation to generate a sequence of frame numbers for a node with a
particular duty cycle dc:

f(i+ 1) = (f(i) +M (dN−1−dc))modMdN−1 (5)

where f(i) is the frame number of the i-th frame and f(0) = 0. With this consistent
frame numbering strategy as shown in Figure 9(b), the active periods of a node and
the active periods of a neighboring node operating at a duty cycle dpeerc are guaranteed
to overlap whenever the following condition is true:

f(i)mod (MdN−1−dpeer
c ) == 0. (6)

For successful unicast communications, the node should transmit a packet to its neigh-
bor only in such frames.

While the strategy presented above solves the problem of unicast communications
between two nodes with different schedules, we still have the issue of broadcast com-
munications among such nodes. For broadcast communications, multiple transmission
policies are at out disposal: One could restrict the communications so that a node can
broadcast a packet only if all of its neighbors can receive it, that is, only if Condition (6)
is true for all of its neighbors. This approach, evidently, incurs longer transmission de-
lays for broadcast packets. On the other hand, it is also possible to broadcast messages
as long as at least one neighbor is awake, that is, if Condition (6) is true for at least
one neighbor. Although this may reduce the chance of neighbors receiving the packets,
the PDCA scheme employs this approach since the nodes in the vicinity of an event
are highly likely to have the same or even higher duty cycle, and the event-related
information is usually delay-sensitive.

5.5.1. Neighbor Synchronization . All synchronous MAC protocols require that SYNC
messages be exchanged by the nodes in order to maintain time synchronization. What
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ALGORITHM 4: Support for fast delivery of routing packets related to an event of interest

pin(i) , a packet received from node i via unicast ⊲ Intended recipient

pout(i) , a packet to be transmitted to node i

isEventRouting , a flag indicating whether a node is part of a routing path of event-related
packets
repeat

if a packet pin(i) is detected with EEN or EERN bit set then
Set isEventRouting with a timeout;
dm ← drouting ;
Schedule/reschedule to adopt the new duty cycle level dm;

if a packet pout(i) is ready then
pout(i).EERN ← isEventRouting;

if timeout expires then
Unset isEventRouting ;
dm ← d0 ;
Schedule/reschedule to adopt the new duty cycle level dm;
Broadcast the new schedule to neighboring nodes;

until Node is running;

is placed in the SYNC packets depends on the MAC protocol and its synchronization
policies. For our case, in order to enable PDCA, the SYNC packets also contain (1) the
address of the schedule initiator; (2) the current duty cycle level dc; (3) the residual
time to the beginning of the next base frame; (4) the age of the current schedule; and
(5) a 2-bit field for EEN and EERN that is discussed in the next section. The age of a
schedule refers to the number of times that the schedule was broadcasted by the initia-
tor in periodic exchanges. PDCA also requires that the SYNC packet be sent whenever
a schedule change occurs at a node due to a change in the local duty cycle.

5.6. Fast Delivery of Event-related Packets

To reduce latency in the delivery of the packets containing event-based information
back to the base station, the system must be able to identify the intermediate nodes
along the routing path to be used for the delivery of such packets. As we previously
discussed, nodes that detect events, directly or indirectly, set the EEN bit in the MAC
header of the outgoing packets. In order to indicate that a node has been selected for
routing event-related packets to the base station, we define the Explicit Event-Routing
Notification (EERN) bit in the MAC header.

A node that is on a routing path increases its duty cycle to a pre-defined level drouting
to minimize the end-to-end latency. For example, drouting could be set to the maximum
duty cycle dN−1. Consider, for example, the WCN shown in Figure 1(c). Since the nodes
B, H, C, D, and Sink are along the routing path of the event-related packets, their duty
cycle would be increased to drouting upon the reception of packets originated from nodes
E or F.

The routing-path membership of a node is considered to be a soft state that must be
refreshed periodically by the reception of packets with EERN set. If a node does not
receive a routing packet within a specific period of time, it will reduce its duty cycle to
the lowest level d0. Duty cycle adaptation for routing event information is summarized
in Algorithm 4. In the algorithm, the variable isEventRouting indicates whether a node
is currently a part of a routing path.
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6. PERFORMANCE EVALUATION

We now present two evaluations of the adaptive duty cycling approach presented in
this paper. One is computer-simulation based and the other on an actual wireless cam-
era network consisting of Imote2 nodes equipped with cameras.

Our evaluation is based on metrics that include Quality-of-Service (QoS) metrics de-
signed specifically for wireless camera networks. Note that, in general, the definition of
QoS depends on the intended application of a WSN. Bianchi et al. [Bianchi et al. 1996],
for example, analyzed the throughput and access delay of the IEEE 802.11 MAC pro-
tocol as a function of various contention windows. Their QoS evaluation metrics were
the prioritization capabilities of the several MAC operation modes, including network
utilization, latency and throughput. He et al. [He et al. 2004] presented a novel way to
achieve energy efficiency in a WSN for an object tracking system using a sentry-based
power management. They claim that the precision in the location estimate and the
latency in reporting an event to the base station are important QoS metrics for the
specific application of tracking performance.

Our primary application space is target tracking with a WCN. Since this application
requires that the nodes engage in collaborative processing of the sensed data for scene
interpretation, the QoS metrics used must reflect this fact. The widely used perfor-
mance metrics such as latency and throughput do not capture the unique properties of
WCNs and thus are not sufficient for our evaluation. We therefore include application-
level QoS metrics that were designed specifically for WCNs. These QoS metrics are
intended to evaluate performance in data aggregation and clustering operations for
collaborative processing in WCNs. Using a QoS metric for data aggregation (i.e., the
average TIBPEA which will be reviewed in the next subsection) and three QoS metrics
for clustering operations (which will be elaborated in Section 6.3) as well as energy
efficiency (in terms of the average effective duty cycle), we conduct performance evalu-
ation, first, with a large-scale simulation, and, then, on a real testbed based on Imote2
motes with cameras.

Before presenting the rest of the material in this evaluation, we recall that the PDCA
framework is an add-on functionality for network systems with a synchronous MAC
protocol. We have chosen the well-known synchronous MAC protocol known as TMAC
[Van Dam and Langendoen 2003] as the basic MAC protocol for our experiments. We
retrofit PDCA to TMAC for predictive duty cycling. We refer to this combination as
P-TMAC. We compare the performance of P-TMAC with just TMAC to validate the
predictive duty cycling approach presented in this paper. Note that our PDCA can be
applied to different MAC protocols as long as they maintain a synchronous communi-
cation schedule among the nodes.

6.1. Quality-of-Service Metric

In Section 2.1, we showed the traffic patterns associated with typical cluster-based
collaborative processing. Earlier, in [Shin et al. 2007], we established that a good
QoS metric for such traffic patterns in WCN is the TIBPEA metric. (TIBPEA stands
for Time Bounded Parameter Estimation Accuracy.) TIBPEA is based on the ratio-
nale that the dominant factor that contributes to the accuracy in cluster-based object
tracking is the number of measurements available for each aggregation. TIBPEA for a
cluster-based object tracking application is computed by the average percentage of the
cluster members that successfully reply to the cluster head within a certain timeout
period.

Consider again the WCN shown in Figure 1. Suppose an event occurs at Node B
and it is elected as a cluster head while its one-hop neighbors such as Node E, F, H,
and A are its cluster members as in Figure 6 (a). Then, when Node B transmits a
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Tx range ∼ 100meters SYNC 22Bytes

Tx power 42.24mW RTS/CTS 14Bytes

Rx power 38mW ACK 14Bytes

Sleep power 15µW DATA 44Bytes

Idle power 3mW Sim. time 2400Sec.

Table II: Summary of simulation parameters.

broadcast message to request measurements from its members, it expects to receive
four measurements within a timeout. If Node B ends up receiving only three of them
due to severe contention or whatever reason, then TIBPEA in this round would be
3
4 = 0.75. Suppose again the event occurs to Node H as in Figure 6 (a) and it is elected
as a cluster head afterward. If it receives only two measurements from its members
when it requested measurements, then TIBPEA would be computed as 2

3 = 0.67 since
it has three cluster members such as Node A, B, and C. The network-wide average of
TIBPEA values over time will then be used for performance evaluation.

6.2. Simulation-based Evaluation

While TMAC allows for active time adaptation, it does not allow for frame length adap-
tation, and, even more importantly, it does not allow for adaptation to be based on pre-
diction. TMAC only reacts to the current network conditions by adapting the length
of the active period. By applying the PDCA scheme to TMAC, the frame length also
becomes dynamic, and duty cycle adjustments are carried out in a predictive manner.
The result is better adaptation without any design conflict. TMAC modified in this
manner will be called P-TMAC.

In TMAC, different nodes in the network may operate under different schedules be-
cause a node can randomly initiate its own schedule in the initialization stage if it does
not receive any schedule for a certain period of time, which often results in multiple
border nodes with different schedules. Since border nodes create severely unbalanced
energy consumption in the network and introduce additional delays in routing, for
simplicity, we employ a simple global scheduling scheme in the entire network solely
for performance evaluation purposes. If a node that has a schedule receives a new
schedule, then it adopts the schedule that was created earlier.

We evaluate P-TMAC in the context of target tracking using the Castalia simulator
[Boulis 2007] which is based on OMNeT++. We simulate a network consisting of 200
TelosB nodes equipped with cameras hung randomly from the ceiling and pointing
downwards. The nodes cover a 200m × 200m area. The sensing range of each camera
is a circle with a radius of 40m. A randomly moving object is assumed to exist in the
network during one third of the total simulation time.

We compare the performance between P-TMAC and TMAC. The base frame length
of P-TMAC is set to T = 1000ms, its active period to 30ms, and its frame length is
allowed to vary among N = 4 levels, corresponding to T , T/2, T/4, and T/8, that is,
M = 2. Since the active period remains constant, these frame lengths correspond to
duty cycles of 3%, 6%, 12%, and 24%, respectively. To ensure a fair comparison, we
evaluate TMAC operating at the same four duty cycles. In our experimental results,
these different TMAC instances are identified as TMAC-3, TMAC-6, TMAC-12, and
TMAC-24. The detailed parameters used in our evaluation are summarized in Table
II.

We simulated two types of scenarios: In the first scenario, each node that detects
an object directly reports that fact to a base station. In the second scenario, when-
ever a node detects an object, it creates a new cluster or it joins an existing cluster.
The elected cluster head broadcasts a request message to its members to perform col-
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(a) (b)

(c)

Fig. 10: Simulation results of network performance in terms of (a) latency, (b) through-
put, and (c) energy consumption of P-TMAC and TMAC with four different duty cycles.

laborative sensing and processing, and each cluster member replies by unicasting its
measurement. In the first scenario, we evaluate the performance of the MAC protocols
in terms of a set of traditional metrics such as latency, throughput, and energy effi-
ciency. The energy efficiency is evaluated based on the consumed energy only by the
radio. To successfully capture the performance characteristics of the MAC protocols
in the second scenario, we employ the aforementioned application-level QoS metric
TIBPEA.

6.2.1. Individual Processing and Reporting Scenario. Because of the adaptive frame length
design, P-TMAC is expected to show performances in between TMAC-3 and TMAC-24.
Figure 10(a) shows that the latency of P-TMAC is comparable to that of TMAC-24 at
different sampling intervals. Figure 10(b) shows the throughput evaluation results.
Obviously, shorter sampling intervals entail higher packet rates.

To interpret this result, let us define the period from the time an object of interest
enters the sensing field of a node to the time it leaves it as the sensing round. Let us
also define the first packet transmitted during each sensing round as the link initial-
izing packet. With the same object motion, higher sampling rate causes more packet
generation per sensing round, resulting in a small proportion of link initializing pack-
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Fig. 11: Simulation results of the average TIBPEA with different average target
speeds: (a) 6m/s and (b) 24m/s.

ets to the overall number of packets. TMAC is designed to work best when the rate of
link initializing packets is low because of low sampling interval or slow object move-
ment. As we can see in Figure 10(a), the average per-hop latency of TMAC-3 increases
as the sampling interval increases while P-TMAC retains its performance similar to
that of TMAC-24.

Providing performance that is comparable to TMAC-24 on the basis of latency and
throughput, P-TMAC achieves an energy efficiency level between TMAC-3 and TMAC-
6, as shown in Figure 10 (c). It implies that P-TMAC substantially improves the trade-
off between energy and latency compared to TMAC.

6.2.2. Collaborative Processing and Reporting Scenario. When a node detects an object of
interest in this scenario, it tries to collect its neighbors’ measurements to obtain more
in-depth understanding of the object by collaborative data processing. We conduct two
sets of simulations with average target speeds of 6m/s and 24m/s. In each set, the aver-
age TIBPEA is measured with different timeout bounds. In all simulations, when the
timeout bound is tight, the performance of P-TMAC is comparable to that of TMAC-24,
as shown in Figure 11. When the timeout bound is loose, P-TMAC still shows better
performance than TMAC-3 but worse than TMAC-24. This is caused by the inher-
ent additional communication overhead of P-TMAC for broadcasting SYNC messages
whenever a duty cycle adaptation occurs. Nonetheless, the superior performance of
P-TMAC for delay-critical applications satisfies our design goal.

6.3. Evaluation Using Real Data on Imote2-based Testbed

With regard to performance evaluation with real data, we have evaluated PDCA on a
testbed consisting of 13 Imote2 nodes that span three rooms, each roughly 20ft× 20ft,
as shown in the 3D model of the rooms in Figure 12(a) and the plan view in Figure
12(b). It is important to note that this spatial layout is located in one of the oldest
buildings on campus and that the rooms are separated by thick masonry walls with
embedded wire meshing for reinforcement. So the usual formulas for the single-hop
distance one may associate with the radio emanations from Imote2 nodes would not
apply in this case. The linear distance between the node at one end (node 1 in Figure
12(b)) and the node at the other end (node 8 in the same figure) is approximately 80
ft. It takes two radio hops for the node at one end to communicate with the node at
the other end. The cameras at the locations shown in the plan view in Figure 12(b)
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(a) (b) (c)

Fig. 12: The RVL wireless camera network testbed used for this validation consists
of 13 Imote2 motes with cameras deployed across three rooms: (a) A 3D model of the
testbed with the sensing region of each camera depicted as a colored polygon on the
floor; (b) A plan view of the testbed with the physical location of each camera drawn
as a small red box and the center of its sensing range drawn as a small black box
connected to the red box with a dotted line; and (c) An example of a mobile object’s
trajectory estimated by the testbed.

are oriented in such a way that it is safe to assume that as a target object travels
in the area monitored by the 13 cameras, it will always be visible to more than two
cameras at a time. Note that each of the cameras is calibrated. What that means is
that each camera knows its position and orientation in a global frame of references.
When tracking “flattish” objects, each camera can use its calibration parameters to
calculate the center of mass of the object on the floor, assuming that the object is
visible to the camera. Since such calculations are standard in computer vision [Hartley
and Zisserman 2004], we will not go into them here. Figure 12(c) shows the track as
computed by the network for an object piloted by a remote controller.

For the MAC layer in our experiments, the base M of the exponentially varying
frame length is set to 2 while the maximum duty cycle level is also 2 (that is, N is set
to 2 in Section 5.2), and the length of the active period of a frame is set to 300ms while
the base frame length is 4000ms. Therefore, the individual nodes in the network can
have up to three different duty cycle levels at any given time. This translates into the
maximum duty cycle being 300/(4000/22) = 30% and the minimum duty cycle being
300/(4000/20) = 7.5%. With regard to the object tracked in these experiments, we used
a toy vehicle that can be navigated with a handheld controller.

With regard to evaluating the effectiveness of the duty cycling achieved, we use the
TIBPEA QoS metric and energy efficiency. Our choice of TIBPEA is dictated by the
fact that the more traditional network-level performance metrics such as end-to-end
latency and throughput do not capture the performance of a WCN that must engage
in collaborative processing of sensed data. As we will point out later in this section,
even TIBPEA has certain limitations with regard to capturing the true benefits of us-
ing our adaptive approach to duty cycling. Said another way, while the information
conveyed by TIBPEA is necessary, it is not sufficient. Therefore, in addition to show-
ing performance evaluation with TIBPEA, we will present comparative results using
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Fig. 13: Performance comparison in terms of (a) energy efficiency measured as the
average effective duty cycle and (b) the average TIBPEA with varying timeouts.

other criteria. As we explain later, the shortcoming of TIBPEA is not relevant to our
simulation results.

Our experimental evaluation is a 4-way comparison between the following: (1) PDCA
with the EEN bit set in the MAC header; (2) PDCA without the EEN bit in the MAC
header, but now the cluster head must broadcast the state information in separate
packets periodically; (3) Reactive duty cycling in which the duty cycle at a node is
modified only when the node directly sees the target; and (4) The same reactive duty
cycling but with a higher minimum duty cycle. In our presentation of the results, we
refer to the first case as P-TMAC-imp, where “imp” stands for implicit notification of
event information using the EEN bit, and the second case as P-TMAC-exp, where “exp”
stands for explicit broadcast of the state by the cluster head. We refer to the third and
fourth cases as R-TMAC-1 and R-TMAC-2, respectively, where ’R’ stands for “reactive”.

With regard to the two reactive schemes in our comparative study, R-TMAC-1 and
R-TMAC-2, the minimum duty cycle of R-TMAC-2 is set at twice the level of the other
three approaches while maintaining its maximum duty cycle to be the same as others.
Consequently R-TMAC-2 has only two levels of duty cycle while the other three ap-
proaches have three. R-TMAC-2 can therefore be expected to yield high performance
in tracking but at the cost of low energy efficiency. By the same token, we can expect R-
TMAC-1 to yield high energy efficiency and low object tracking performance. Including
these two reactive approaches in our comparative study allows us to demonstrate the
performance gain of the proposed predictive method in terms of both application-level
performance (i.e., tracking) and energy efficiency.

Figure 13 shows the performance comparison between P-TMAC-imp, P-TMAC-exp,
R-TMAC-1, and R-TMAC-2 in terms of energy efficiency measured as the average effec-
tive duty cycle, as shown in Figure 13(a), and the average TIBPEA, as shown in Figure
13(b), with varying timeouts. The average effective duty cycle is computed by the total
active duration of the radios divided by the total running time. As expected, R-TMAC-
1 consumes less energy than the other three approaches. Note that R-TMAC-2 has
a higher minimum duty cycle than others that would result in higher overall energy
consumption in a large-scale network where only a small subset of nodes are expected
to adapt their duty cycle as an object is tracked while the rest are at the minimum
duty cycle. Since our testbed consists of only 13 camera nodes, the energy consump-
tion caused by a larger duty cycle at the nodes in the vicinity of an object tends to
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Fig. 14: Performance comparisons in terms of (a) the expected number of data aggre-
gations per second at the cluster heads for Kalman updating of the object position; and
(b) the expected number of measurements per second that are reported to the cluster
heads during tracking.

make a larger impact on the overall energy efficiency than would be the case in a
larger network in which a smaller fraction of the nodes would be engaged in actual
object tracking at any given time. Figure 13(b) shows that P-TMAC-imp outperforms
the other three approaches in terms of the average TIBPEA. Figure 13(b) establishes
conclusively that a reactive approach with a duty cycle twice as long as the other reac-
tive approach does not yield a commensurate increase in the performance as measured
by the average TIBPEA. With regard to a comparison of the predictive versus the re-
active approaches in Figure 13(b), on the basis of the average TIBPEA results shown
in Figure 13(b), it does not appear that the predictive approaches are overwhelmingly
superior to the reactive approaches. Obviously, the predictive approaches are no worse
than the reactive approaches. In what follows, we will explain that the story told by the
performance curves in Figure 13(b) for the predictive approaches vis-a-vis the reactive
approaches is incomplete. In other words, those curves are necessary but not suffi-
cient for fully characterizing the network performance that is achieved with predictive
approaches — especially the predictive approach presented in this paper.

TIBPEA assumes that the clusters have already elected their cluster heads for the
parameters it measures — it measures the rate at which the cluster members succeed
in communicating their measurements to the cluster head given a certain timeout. Al-
though a necessary measure of the performance of a camera network, TIBPEA does not
measure the main reason for predictive duty cycling, which is the ability to increase
the duty cycle at a node in advance of the object actually arriving in its field-of-view for
agile handling of upcoming traffic. As mentioned previously, such advance alteration
of the network parameters allows for various clustering operations (for example, clus-
ter formation, propagation, fragmentation, coalescence, etc.) to be executed smoothly
while tracking objects. Therefore, to appreciate the full power of a predictive duty cy-
cling approach such as ours, we also need to evaluate it from the standpoint of the
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Fig. 15: Performance comparisons in terms of the number of measurements that a
cluster head expects to receive from its cluster members within a varying timeout
during object tracking. The data shown is averaged over all the clusters formed during
tracking.

efficiency with which the clustering operations can be carried out. Average TIBPEA
does not measure those effects in a network.2

To evaluate how well the clustering operation is supported by the MAC layer proto-
col, we have measured (1) the expected number of data aggregations per second at the
cluster heads for Kalman-filter based updating of the object position; (2) the maximum
expected number of measurements per second that can be reported to the cluster heads
during tracking; and (3) the expected number of measurements per second that are ac-
tually reported to the cluster head within a varying timeout. By experimental design,
a cluster head polls the cluster members every 950ms for any data they may have to
report. This implies that a data aggregation at a cluster head can be carried out every
950ms. Figure 14(a) shows the expected number of data aggregations per second at
the cluster heads for the four different approaches. These numbers are calculated by
dividing the total number of data aggregations made at all the cluster heads by the
total time during which the object was present within the sensing coverage of the net-
work. Figure 14(b) then shows the maximum expected number of measurements per
second that can be reported to the cluster head. More specifically, the results shown
in Figure 14(b) are computed as the total number of measurements generated at the
cluster members to be reported to their cluster heads divided by the total time when
the object was present in the network. Figure 15 then shows how many of the gen-
erated measurements at the cluster members would be successfully reported to the
cluster heads within a certain timeout. Since in the cluster-based distributed object
tracking, more measurements at a higher data aggregation rate at the cluster head
would yield a higher tracking accuracy with a lower error bound, we believe that the
results shown in Figure 15 strongly demonstrate how well our predictive MAC proto-
col supports the distributed object tracking application. In both Figures 14(a) and (b),
it is evident that our proposed P-TMAC-imp outperforms R-TMAC-1 while being com-

2In the comparative results in Section 6.2 where we have only used the average TIBPEA metric, note that
those involved only one adaptive approach — our predictive approach. In this section, however, all the duty
cycling approaches we are comparing are adaptive — even the reactive ones — with different adaptation
strategies that have a bearing on the efficiency of clustering operations.
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parable to R-TMAC-2 which incurs a higher energy cost. In Figure 15, P-TMAC-imp
significantly outperforms both reactive approaches in terms of the expected number of
measurements within a varying timeout. These results demonstrate that our proposed
predictive approach better supports the dynamic changes in event-driven network op-
erations, allowing for more frequent data aggregations with more measurements made
available to the cluster heads.

7. CONCLUSION

We have presented a predictive duty cycle adaptation scheme (PDCA) suitable for wire-
less camera networks. The adaptation at a node takes place on the basis of the proba-
bility of object arrival at the node. This probability is estimated using a Kalman filter
that takes into account both the direct measurements of the object position, when the
object can be seen by the camera at the node, and on the basis of the indirect mea-
surements of the object’s position as conveyed by the EEN bit in the MAC header. Our
simulation results confirm that our approach outperforms TMAC in terms of the TIB-
PEA metric and presents a better tradeoff between energy efficiency and throughput
or latency. We found that our approach is superior to others especially when the mobil-
ity of an event is large and when the latency requirement is strict. These results were
further confirmed by our experiments involving a network of Imote2 nodes.
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