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A model is proposed with which the statistics of the fluctuating streamwise velocity in
the inner region of wall-bounded turbulent flows are predicted from a measured large-
scale velocity signature from an outer position in the logarithmic region of the flow.
Results, including spectra and all moments up to sixth order, are shown and compared
to experimental data for zero-pressure-gradient flows over a large range of Reynolds
numbers. The model uses universal time-series and constants that were empirically
determined from zero-pressure-gradient boundary layer data. In order to test the
applicability of these for other flows, the model is also applied to channel, pipe and
adverse-pressure-gradient flows. The results support the concept of a universal inner
region that is modified through a modulation and superposition of the large-scale
outer motions, which are specific to the geometry or imposed streamwise pressure
gradient acting on the flow.
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1. Introduction

Recently, the authors presented a predictive model for the streamwise velocity
statistics in the near-wall region of zero-pressure-gradient turbulent boundary layers,
where the only input required is a large-scale velocity signature from a wall-normal
position further from the wall (Marusic, Mathis & Hutchins 2010b, hereafter referred
to as MMH). Here, we show the full details of the model, including the procedures
for evaluating the constants and functions that make up the mathematical model,
and provide insights into the underlying turbulent boundary layer mechanisms that
make up the mathematical formulation. Moreover, new tests have been provided in
order to demonstrate the validity and reliability of the model. We also extend the
comparison to additional statistics, such as the spectrum across the entire near-wall
region, and present all moments up to the sixth order (u6). Furthermore, we extend
the comparison of the model to wall-bounded flows different to the zero-pressure-
gradient case. This addresses a comment by Adrian (2010), in the related Science
perspectives article, for the need of future work to evaluate the model ‘for flow
geometries different from the flat plate’. This has subsequently been done and here
we show the comparison of the model with experimental results in channel flow, pipe
flow and an adverse-pressure-gradient turbulent boundary layer.
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1.1. Background and motivation

The near-wall region of wall-bounded turbulent flows accounts for the highest levels
of shear and related local turbulence production, and accordingly has been the
focus of considerable attention over the past several decades. However, most of
these studies have been at low Reynolds numbers. At higher Reynolds numbers,
accurate turbulence measurements in the near-wall region become very challenging
due to the decreasingly small size of this region. This brings related difficulties with
limited sensor spatial and temporal resolution and wall-proximity errors. Some of
these measurement challenges were recently studied by Hutchins et al. (2009), who
used new experimental data across a large range of Reynolds numbers, along with
previously published data, to show that sensor spatial resolution in turbulent boundary
layer measurements can lead to significant scatter between experiments, clouding our
understanding of the scaling and Reynolds number dependence of the streamwise
turbulence intensity. In addition to spatial resolution issues, simply accessing the near-
wall region with probes is difficult at high Reynolds numbers. For example, in the
Princeton Superpipe studies of Morrison et al. (2004), the lowest wall-normal position
was limited to z+ = zUτ/ν ≈ 400 at friction Reynolds number Reτ = 101 000, which is
already well into what is classically regarded as the logarithmic region (Marusic et al.
2010c). (Here, z is the wall-normal position, Uτ is the friction velocity, ν is the fluid
kinematic viscosity; Reτ = δUτ/ν, where δ is the boundary layer thickness, pipe radius
or channel half-height.) While new micro-probes are being developed to improve
this (Bailey et al. 2010) many of the challenges are likely to remain at very high
Reynolds numbers. Therefore, an accurate model of the near-wall turbulence is highly
desirable.

Over the past decade or so, several studies have proposed formulations to describe
the scaling behaviour of the turbulence intensity profiles across zero-pressure-gradient
turbulent boundary layers. Much controversy has arisen concerning the correct form
of the scaling in the near-wall region, either based on inner variable scaling (Mochizuki
& Nieuwstadt 1999; Sreenivasan 1989), mixed scaling (DeGraaff & Eaton 2000), or
formulations involving both inner- and outer-scaling (Marusic, Uddin & Perry 1997;
Marusic & Kunkel 2003). To date, these models are restricted to the mean streamwise
turbulence intensity, and cannot predict either higher moments or spectra. In addition,
they are empirically based and hence are also subject to the near-wall experimental
measurement uncertainties.

Since the early observations of the recurrent near-wall streaks by Kline et al.
(1967), which are believed to play a key role in turbulence regeneration, numerous
studies have focused on the small-scale near-wall features. With the advent of
direct numerical simulation (DNS), our understanding of the near-wall cycle has
evolved considerably. Low-Reynolds-number numerical simulations by Jiménez &
Pinelli (1999) and Schoppa & Hussain (2002) seemed to indicate that the near-
wall cycle can be viewed as an autonomous process in which structures propagate
and sustain without need of external triggers (Panton 2001). Recent advances in
measurement techniques (e.g. PIV) and computational capabilities (e.g. DNS), along
with development of new high-Reynolds-number laboratory facilities, have enabled
in-depth studies of the large-scale features associated with the log layer (Adrian,
Meinhart & Tomkins 2000; del Álamo et al. 2004; Hoyas & Jiménez 2006).
Experimental studies and numerical simulations have highlighted the presence
in the log region of pronounced and elongated regions of low- and high-speed
fluctuations (Ganapathisubramani, Longmire & Marusic 2003; del Álamo & Jiménez
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2003; Tomkins & Adrian 2003; Ganapathisubramani et al. 2005; Hambleton,
Hutchins & Marusic 2006). These large-scale log-region events have been proposed
to be a series of very long trains of aligned hairpin eddies (Adrian 2007); but
also as global modes (del Álamo & Jiménez 2006). These alternated patterns of
elongated high- and low-speed events have a typical spanwise width of 0.3–0.5δ and
a streamwise length that often exceeds the field of view afforded by PIV experiments,
and Hutchins & Marusic (2007a) showed that in boundary layers these features can
be extremely long in the streamwise direction (up to 15δ are commonly reported).
Due to their large size and significant contribution to the Reynolds shear stress, we
describe these events as ‘superstructures’. Moreover, Abe, Kawamura & Choi (2004)
and Hutchins & Marusic (2007a) have shown that these large-scale structures impose
a strong ‘footprint’ all the way down to the wall. This is consistent with the attached-
eddy hypothesis of Townsend (1976), which suggests that the near-wall region will
feel wall-parallel motions due to all attached eddies that reside above that point
(including superstructures). In the attached-eddy model, the large-scale fluctuations
are merely superimposed onto the near-wall region as a low-wavenumber shift onto
the small scales, as observed by Abe et al. (2004) and Hutchins & Marusic (2007a).
A number of previous studies have also considered the importance of large-scale
outer motion in the near-wall region, including Rao, Narasimha & Badri Narayanan
(1971), Nikora et al. (2007) and Tutkun et al. (2009).

Further insight into the large-scale activity has been obtained by studying the
energy content. In addition to the near-wall peak signature in the pre-multiplied
energy spectra kxΦuu/U 2

τ , Hutchins & Marusic (2007a) observed the emergence of a
secondary peak in the log region (at sufficient Reynolds number, Reτ > 2000). They
refer to this peak as the ‘outer peak’ (as opposed to the ‘inner peak’, which refers
to the near-wall cycle). The outer spectral peak is most likely the energetic signature
due to the superstructure-type events discussed above. Although it is noted that the
typical length scale of the outer peak (λx ≃ 6δ) is shorter than the commonly observed
structures, possibly due to the meandering as reported by Hutchins & Marusic
(2007a), they have also shown that the magnitude of the outer peak increases with
Reynolds number, resulting in an increase of the magnitude of the large-scale influence
(footprint) onto the near-wall cycle. Hutchins & Marusic (2007b) also observed that
the interaction of the large-scale motions was more than a mere superposition (or
mean shift) onto the near-wall fluctuations (as per the attached eddy hypothesis) but
that rather the small-scale structures were subject to a modulation effect by the much
larger scales that inhabit the log region. A similar observation is also noted in the
studies of Grinvald & Nikora (1988) and Bandyopadhyay & Hussain (1984). Based
on this observation, Mathis, Hutchins & Marusic (2009a) developed a mathematical
tool to accurately quantify the degree of amplitude modulation exerted by the large-
scale events onto the near-wall small-scale structures. Instead of using the Fourier
transformation commonly used in turbulence signals analysis, they introduced the
Hilbert transformation, which is a more appropriate tool for amplitude-modulated
signals (Spark & Dutton 1972; Hristov, Friehe & Miller 1998; Huang, Shen &
Long 1999; Ouergli 2002). They quantify the degree of amplitude modulation by
calculating the correlation coefficient between the large scales (obtained using a low-
pass Fourier filter) and the envelope of the small scales (obtained using the Hilbert
transform). Mathis et al. (2009a) showed strong supporting evidence for an amplitude
modulation of the near-wall region by the large scales. They also found that the
degree of amplitude modulation increases as the Reynolds number increases.
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The predictive model considered here synthesizes the observations of Hutchins &
Marusic (2007b) and Mathis et al. (2009a) into a mathematical form. The model
enables reconstruction of a realistic streamwise fluctuating velocity signal for the
entire near-wall region based only on information about the large-scale events in the
log region. It is noted that the model is of a form that is well suited to high-Reynolds-
number large-eddy simulations near surfaces, where one requires a near-wall model
given only filtered (large-scale) information away from the wall (Piomelli & Balaras
2002). The model is thus consistent with requirements posed by George & Tutkun
(2009) for a new generation of near-wall models for large-eddy simulation. In their
paper, they advocate the need for near-wall models that are in sync, and follow, the
outer flow.

2. Model for inner–outer interaction

The MMH model is given as equation (2.1) in figure 1. Here, u+
p is the predicted

statistically representative streamwise fluctuating velocity signal in the inner region,
and is a function of z+ and t+. Once the universal signals u∗ and parameters α, β

and θL are set, the only input to the equation is the fluctuating large-scale streamwise
velocity signal u+

OL from a position in the log region. This model gives a predicted
streamwise fluctuating velocity signal u+

p at some given wall-normal location z+ based
only on a measured large-scale signal in the log region, and some predetermined
universal signals (u∗) and universal parameters (α, β and θL). For the inner-region
positions we consider a range of z+ values as chosen in the calibration experiments
described in § 3. Here u∗ is referred to as the ‘universal’ time series at the inner wall-
normal location z+, and effectively corresponds to the universal inner-scaled signal
that would exist if there were no large-scale influence. Terms α, β and θL are constants
determined during the process of finding u∗, described in § 4. It is emphasized that u∗,
α, β and θL are all functions of z+.

The model consists of two parts. The first part of (2.1) models the amplitude
modulation at z+ by the large-scale log-region motions, and the second part models
the superposition of these large-scale motions felt at z+. The signal u+

OL is obtained
from the measured signal at z+

O in the following way. First, the signal is filtered to
retain only large scales above streamwise wavelengths of λ+

x = 7000, and the phase
information of the large-scale signal is retained corresponding to the universal signal
u∗ (as explained fully in § 4). Second, since we are equating a log-region signal to a
signal nearer the wall, the measured signal at z+

O is shifted forward in the streamwise
direction (assuming Taylor’s hypothesis) to account for the mean inclination angle θL

of the large-scale structures. This angle corresponds to the shift �x/δ that produces
the maximum cross-correlation between large-scale signals in the outer and inner
regions using the same low-pass filter at λ+

x = 7000 for both signals. This angle is
related to the coherent structure angle reported by numerous authors to be within
12◦ < θL < 16◦ (Brown & Thomas 1977; Robinson 1986; Boppe, Neu & Shuai 1999;
Carper & Porte-Agel 2004; Marusic & Heuer 2007). Throughout this paper, the
subscript L refers to large-scale filtered data.

The magnitude of the amplitude modulation effect modelled here is strongly
dependent on the Reynolds number, as well as the wall-normal location, as shown
in figure 13(a) of Mathis et al. (2009a). Most importantly, Mathis et al. (2009a)
have shown that the level of the modulation increases significantly with increasing
Reynolds number.
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u+
p(z+) = u*(z+) 1 + β u+

OL (z
+
O,θL) + α u+

OL (z+
O, θL) (2.1)
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Figure 1. (Colour online available at journals.cambridge.org/FLM) Mathematical
formulation of the predictive model for reconstruction of a realistic streamwise fluctuating
velocity signal in the inner layer.

3. Details of experiments

To obtain the universal parameters in the model and to validate it, experiments were
conducted in the high-Reynolds-number boundary layer wind tunnel (HRNBLWT)
at the University of Melbourne (Hafez et al. 2004; Nickels et al. 2005). The facility
consists of an open loop wind tunnel with a working test section of 27 m×2 m×1 m,
with a free-stream turbulence intensity less than 0.05 %. A zero streamwise pressure
gradient is maintained in the working test section by bleeding air from the tunnel
ceiling through adjustable slots. The fluctuating velocity measurements were made
using single-normal hot-wire probes made from platinum Wollaston wire of various
diameters. For each Reynolds number the sensing element was etched to a constant
viscous scaled length of l+ = lUτ/ν ≃ 22 (where l is the length of the etched part of
the wire), to allow comparison without any spatial resolution variations. For each
Reynolds number, an appropriate wire diameter d was selected, such that the desired
l+ could be achieved, whilst maintaining l/d > 200 (as recommended by Ligrani &
Bradshaw 1987; Hutchins et al. 2009). To adequately resolve the highest frequency
scales, a non-dimensional time interval between samples was maintained in the range
�T + ≃ 0.3–0.6, and to converge the energy contained in the largest scales, a long
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x U∞ δ Uτ ν/Uτ

Reτ Facility (m) (m s−1) (m) (m s−1) (µm) l+ l/d �T + T U∞/δ

7300 Melbourne 21 10.02 0.328 0.338 44.6 22 200 0.32 17 200

Table 1. Experimental parameters for two-point synchronized hot-wire measurements;
x refers to the distance between the tripped inlet and the measurement station.

z+
O = 3.9 Reτ

1/2

U +
O

U +

�z+

6.28 < z+ < 303

x

z

Outer probe (fixed)

Inner probe (moving)

Figure 2. Experimental set-up for two-point synchronized hot-wire measurements.

sample length T was used, in the range 12 000–18 000 boundary-layer turnover times
(T U∞/δ, where U∞ is the free-stream velocity). Details of the experimental conditions
are given in tables 1 and 2. The friction velocity Uτ was calculated from a Clauser
chart fit (using log-law constants κ = 0.41 and A = 5.0) which has been confirmed
with oil-film interferometry measurements (Chauhan, Ng & Marusic 2010). Boundary
layer thickness is calculated from a modified Coles law of the wake fit (Jones, Marusic
& Perry 2001). Two sets of measurements were conducted in the Melbourne facility.

(a) Two-point simultaneous measurements: two hot-wire probes separated in the
wall-normal direction are sampled simultaneously at a Reynolds number Reτ = 7300
to calibrate the predictive model. A fixed probe is located at the outer-spectral-peak
location, z+

O = 3.9Re
1/2

τ = 333 (Mathis et al. 2009a), and is sampled simultaneously
with a probe that traverses the inner region between 6.28 � z+ � 303, as shown in
figure 2. Details of the experimental conditions are given in table 1. The choice of the
measured large-scale wall-normal location, z+

O , is not important provided the location
is in the logarithmic region, where the superstructure signal is most prominent.
However, the choice of z+

O in the calibration experiment does dictate the location
where filtered large-scale information is required in order to later use the model
predictively for different Reynolds numbers. The location z+

O =3.9Re1/2
τ is favoured

because it corresponds nominally to the centre of the logarithmic region, and also
corresponds to the location of the outer spectral peak as shown by Mathis et al.
(2009a).

(b) In order to validate the predictive model we use data first presented in Hutchins
et al. (2009). Five experiments were conducted in the Melbourne facility at different
Reynolds numbers, from Reτ = 2800 to 19 000, all with matched l+. Details of these
measurements are given in table 2.

The highest-Reynolds-number data are obtained from the atmospheric surface
layer (ASL) at the SLTEST facility in the Great Salt Lake Desert in Western Utah.
The SLTEST facility constitutes a unique geographic site which allows acquisition of
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x U∞ δ Uτ ν/Uτ

Reτ Facility (m) (m s−1) (m) (m s−1) (µm) l+ l/d �T + T U∞/δ

2800 Melbourne 5 11.97 0.098 0.442 35.0 22 200 0.53 14 600
3900 Melbourne 8 11.87 0.140 0.426 36.0 21 200 0.49 15 200
7300 Melbourne 21 10.30 0.319 0.352 44.0 23 200 0.34 17 400

13 600 Melbourne 21 20.54 0.315 0.671 23.0 22 200 0.48 15 700
19 000 Melbourne 21 30.20 0.303 0.960 16.0 22 233 0.59 12 000

1.4 × 106 SLTEST – – ∼100 0.260 69.2 – – 75.10 ∼180

Table 2. Experimental parameters for hot-wire traverses; Melbourne experiments were
conducted with single hot-wire probe. SLTEST data were acquired with sonic anemometers.
x refers to the distance between the tripped inlet and the measurement stations.

data in extremely high-Reynolds-number turbulent boundary layers (Reτ ∼ O(106)).
The boundary layer develops naturally for over 100 km of a remarkably flat and
low-surface roughness salt playa. Full descriptions of the SLTEST facility are given
in Klewicki et al. (1995), Metzger & Klewicki (2001) and Kunkel & Marusic (2006).
Measurements at SLTEST were conducted using a wall-normal array of five sonic
anemometers (Campbell Scientific CSAT3) equispaced logarithmically from z = 0.24
to 2.93 m. Details of the experimental conditions are reported in table 2 and full
descriptions are given in Heuer & Marusic (2005) and Marusic & Heuer (2007).
A 40 min data set was recorded from a period of prolonged neutral buoyancy
and steady wind conditions. A crude estimate of the boundary-layer turnover time,
based on sample length, δ ≈ 100 m and U∞ (estimated from the mean velocity
at the highest wall-normal position), would indicate T U∞/δ of approximately 180.
In terms of boundary-layer turnover times, the sample length of SLTEST data is
significantly shorter than the laboratory data. As such, only a very limited sample of
superstructure-type events ( > 10δ in length) is contained within the 40 min sample,
which will lead to incomplete convergence of the low-wavenumber statistics. Despite
the measurement challenges, the SLTEST results have been found to agree well
with canonical boundary layer data from laboratory facilities (Hutchins & Marusic
2007a; Marusic & Heuer 2007; Marusic & Hutchins 2008). In particular, very similar
large-scale two-point correlations and conditional averages of the streamwise velocity
fluctuation have been observed between SLTEST and laboratory flows. This suggests
that the large scales in the atmospheric surface layer are remarkably similar to those
observed in laboratory turbulent boundary layers. The principal divergence between
ASL and laboratory boundary layers occurs in the wake region. Recent investigations
by Monty et al. (2007, 2009) have shown a strong similarity of the large-scale events
between internal and external wall-bounded flows, which also have very different
wake regions. This would indicate that the large-scale superstructure-type events (or
VLSM; Kim & Adrian 1999) are a common feature of wall-bounded turbulence, and
appear to be only weakly dependent on the geometry. Given these observations, it
seems reasonable to use the SLTEST measurements as a representation of very-high-
Reynolds-number behaviour (at the very least as a loose indicator of trends).

4. Construction of the predictive model

The procedure for finding u∗, α, β and θL for all wall-normal locations z+ involves
a calibration experiment conducted at an arbitrary Reynolds number (in this case
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Figure 3. Procedure to find the coefficient of superposition α and the inclination angle θLS:
(a) large-scale cross-correlation R{u+

L (z+), u+
L (z+

O )}, where z+
O ≃ 333 and z+ ≃ 34; (b) wall-

normal evolution of the coefficient α = max(R{u+
L (z+), u+

L (z+
O )}) and the corresponding

large-scale inclination angle θL = arctan(�z/�xm), with �z = z+
O − z+.

Reτ = 7300). (A sufficiently high Reτ is needed to allow adequate scale separation;
see Hutchins & Marusic 2007a,b and Mathis et al. 2009a for more details concerning
scale separation.) Here, the u-signals from two hot wires mounted at z+

O and z+ are
simultaneously sampled (see figure 2 and table 1). The first step is to low-pass filter the
two signals, giving u+

L (z+
O) and u+

L (z+), and then consider the cross-correlation between
these two filtered signals. It should be noted that a cutoff wavelength of λ+

x = 7000
was chosen to perform the scale decomposition (Hutchins & Marusic 2007b; Mathis
et al. 2009a), and a common convective velocity is used for both large-scale signals
corresponding to the mean velocity at the location of the outer peak. This choice
of convection velocity is supported by the recent study of Hutchins et al. (2011),
who used a streamwise spatial array of skin-friction sensors to detect the convection
velocity of the large-scale motion footprint at the wall. The choice of the cutoff
wavelength is set fixed in inner variables λ+

x instead of in terms of outer variables
λx/δ, as discussed below, and justification for λ+

x = 7000 is given in § 5.2.
The superposition coefficient α is then chosen to be equal to the maximum of

the cross-correlation between the large-scale components at the inner and outer
locations, α = max(R{u+

L (z+), u+
L (z+

O)}). The mean inclination angle of the large-scale
structures θL, used in (2.1), corresponds to the streamwise shift at the maximum of the
correlation �xm/δ (assuming Taylor’s hypothesis), as indicated in figure 3(a). That is,
θL = arctan(�z/�xm). The wall-normal evolution of the superposition coefficient α

and the large-scale inclination angle θL are shown in figure 3(b). It is observed that α

remains high, above 60 %, even very close to the wall. This corresponds to the strong
‘footprint’ imposed by the large-scale log-region events onto the inner region. The
inclination angle θL is seen to be relatively constant within 11◦ <θL < 15◦ for z+ < 150,
which agrees well with previous studies on the structure angle of coherent motions
usually observed in the range 12◦ <θL < 16◦ (Brown & Thomas 1977; Robinson
1986; Boppe et al. 1999; Carper & Porte-Agel 2004; Marusic & Heuer 2007). Above
z+ = 150, θL systematically increases and reaches almost 20◦ when z+ becomes close to
z+

O . In their study, Marusic & Heuer (2007) showed that the coherent structure angle
is relatively constant, ∼14◦, over three orders of magnitude in Reynolds number, but
this comes from a cross-correlation between fluctuating velocity in the log region and
the fluctuating wall-shear stress at the wall. Here, once z+ approaches z+

O , increasing
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Figure 4. (Colour online) Example of fluctuating velocity signals: (a) raw fluctuating
component u+(z+) at z+ ≃ 15; (b) large-scale fluctuations u+
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d (z+); (d) universal signal

u∗(z+); and (e) difference between square of de-trended and universal signals (u+
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along with u+
L (z+

O ).

correlation levels are expected due to the increasingly correlated localized small-scale
structures that will have larger inclination angles (Marusic 2001).

With the coefficient of superposition α and the inclination angle θL now known, the
‘footprint’ effect of the large-scale log-region events can be removed from the inner
signal, leading to a ‘de-trended’ signal u+

d (z+) of the form

u+
d (z+) = u+(z+) − αu+

OL(z+
O, θL), (4.1)

where u+
OL(z+

O, θL) is the filtered outer signal shifted forward in the streamwise direction
for the corresponding value of θL. The ‘de-trended’ signal u+

d represents the inner-
scaled signal without the superposition or mean shift imposed by the large-scale
log-region events. Samples of instantaneous fluctuating signals including the raw
signal u+, the large-scale components u+

L (z+
O) and u+

L (z+) and the de-trended signal
u+

d (z+) are shown in figure 4(a–c) for the inner location z+ ≃ 15. A high degree of
correlation is observed between the large-scale components at z+ and z+

O in figure 4(b)
(about 65 %, typical of the ‘footprint’ caused by the superstructure-type events of the
log region). The de-trended signal, as shown in figure 4(c), is seen to have the long
wavelength trends effectively removed by the process described in (4.1).

With the de-trended signal obtained, equation (2.1),

u+(z+) = u∗(z+){1 + βu+
OL(z+

O, θL)} + αu+
OL(z+

O, θL), (4.2)

where u+(z+) is known, combined with (4.1) gives

u+
d (z+) = u∗(z+){1 + βu+

OL(z+
O, θL)}, (4.3)

where α, u+
d (z+) and u+

OL(z+
O, θL) are now known. The final unknowns in (4.3), u∗

and β , are found through iteratively searching for a solution to (4.3) that gives zero
degree of amplitude modulation of the universal signal u∗ (this is in keeping with our
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original definition of the universal signal which is defined as the inner-scaled signal
that would exist in the absence of large-scale effects, and is thus non-modulated):

u∗(z+) =
u+

d (z+)

1 + βu+
OL(z+

O, θL)
, solved for β such that AM(u∗(z+)) = 0, (4.4)

where AM is the correlation coefficient between the filtered envelope of u∗ and
u+

OL(z+
O), as described in Mathis et al. (2009a):

AM(u∗(z+)) =
EL(u∗) u+

OL
√

u∗2
L

√

u+2
OL

, (4.5)

where EL(u∗) denotes the filtered envelope of the universal signal u∗ (e.g. long
wavelength pass-filter above λ+

x = 7000 of the envelope obtained by a Hilbert

transform of u∗), and
√

u2 the root mean square value of the signal u. An example
of the iterative process is given in figure 5(a) for the determination of the amplitude
modulation coefficient β at the wall-normal location z+ ≃ 15. The ‘true’ value of β is
determined by a linear interpolation using points below and above AM= 0.

Figure 5(b) shows the obtained values of β versus z+. It is observed that the
trend of β follows reasonably well the trend of the degree of amplitude modulation
of the original signal AM(u+(z+)) (Mathis et al. 2009a). This is expected since the
coefficient AM indicates how much the signal is amplitude-modulated by the large
scales, whereas β indicates by how much we need to de-amplitude-modulate this
signal in order to remove the large-scale influence.

A sample of the instantaneous universal fluctuations is given in figure 4(d). At
first glance, very little difference can be discerned between the de-trended u+

d and
the universal u∗ signals. However, plotting the difference between the square of
both signals and comparing this with the outer large-scale component highlights the
amplitude modulation effect (figure 4e). It can be seen that the difference of the squares
follows well the behaviour of large-scale fluctuations u+

L (z+
O): positive (or negative)

values of the difference of the squares coincide perfectly with positive (or negative)
values of the large-scale fluctuations. A positive value of the difference of the square
means that energy has been removed from u+

d to create u∗, and vice versa for the
negative values. Therefore, the process of ‘de-amplitude-modulating’ the de-trended
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Figure 6. (Colour online) Statistics of the universal signal as compared to the original signal
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τ ; (b) skewness profiles; (c) kurtosis profiles; and (d, e) iso-contour representations

of the pre-multiplied energy spectra of streamwise velocity fluctuations, kxφuu/U 2
τ . Contour

levels show kxΦuu/U 2
τ from 0.2 to 1.6 in steps of 0.2. The vertical dotted dashed line shows

the location of the outer peak z+
O = 3.9Re

1/2
τ for Reτ = 7300. The thick (blue) line is for the u∗

signal alone.

signal means that near the wall the small-scale energy is removed where positive large-
scale fluctuations occur, and added where negative large-scale fluctuations occur.
At some point within the log region, the sign of this process reverses, and the
opposite occurs. The global energy of the signal remains effectively unchanged, the
pre-multiplied energy spectra of u+

d and u∗ are found to be indistinguishable.
A comparison of the main statistics for the universal signal to those of the original

signal (Reτ = 7300) along with a lower Reynolds number flow at Reτ = 1000 is
shown in figure 6. Here the turbulence intensity, skewness, kurtosis, as well as pre-
multiplied energy spectra are shown. The Reτ = 1000 results are from a channel flow
(with matched hot-wire length l+ = 22), and while it is clear that differences in the
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largest scales between internal and external geometries exist, for present purposes a
reasonable comparison of the inner layer is likely to be valid (Monty et al. 2009;
Mathis et al. 2009b).

The results in figure 6 show that the statistics of the universal signal (u∗)
seem to follow those of a low-Reynolds-number case (Reτ ≃ 1000) reasonably well,
while considerable differences are observed with the Reτ =7300 case. This supports
numerous other findings that high-Reynolds-number effects are closely related to
increasing scale separation and large-scale activities (Townsend 1976; Gad-el-Hak &
Bandyopadhyay 1994; Adrian et al. 2000; Metzger & Klewicki 2001; del Álamo
et al. 2004; Hoyas & Jiménez 2006; Hutchins & Marusic 2007a; Marusic, Mathis &
Hutchins 2010a, and others). The universal signal is effectively one with minimal
large-scale influence, and therefore it is expected to follow the behaviour of a low-
Reynolds-number flow where the large-scale influences are weak. It is noted that even
at Reτ =1000 large-scale influences are present but their signature is weak (Hutchins &
Marusic 2007b; del Álamo et al. 2004).

The reasoning behind the choice of the cutoff wavelength in inner variables
as opposed to outer variables discussed above is supported by the following
considerations. The energy content of the universal signal that we have built here
(see spectra map given in figure 6) remains invariant in inner variables for any
prediction regardless of the Reynolds number, the idea of the model being that all
the Reynolds number effects are embedded into the measured large-scale component
u+

OL. Therefore, it is essential to set the cutoff wavelength between small and large
scales in inner variables λ+

x . Indeed, if this cutoff was defined in outer variables,
say λx = δ (e.g. λ+

x = δ+), this would result in a gap in the range of scales in the
predicted signal. For example, for a prediction at Reτ =100 000, there would be a gap
between the upper limit of the universal signal energy content (which has no energy-
containing scales larger than λ+

x ≃ 40 000 as seen in figure 6) and the lower limit of
the measured large-scale component (which will be high-pass filtered at λ+

x =100 000).
Choosing a threshold between the small and large scales in inner variables avoids
any discontinuity in the range of scales contained in the predicted signal. It should
be noted that a consequence of using a filter at λ+

x =7000 is that the measured large-
scale component, even if it does not need to be fully resolved, should at least contain
converged information for the range of scales λ+

x � 7000. This limits the application
of such models at very high Reynolds numbers, such as large-eddy simulations, as it
sets the minimum resolution.

5. Prediction and validation

With the model parameters now established for all wall-normal locations z+, the
predicated statistically representative signal u+

p (z+) can now be constructed at any
Reynolds number using (2.1), where the only required input is the large-scale signal
at z+

O . Here, we present results for five sets of hot-wire experimental measurements
performed in the high-Reynolds-number wind tunnel at the University of Melbourne,
plus a prediction at a very high Reynolds number using a set of sonic anemometer
measurements from the ASL (SLTEST). For each Reynolds number (except ASL
data), the predicted statistics of the inner layer can be compared to the original
experimental measurements. Together, these data cover a range of three decades in
Reynolds number, from 2800 to 1.4 × 106. (Details of experimental conditions are
given in table 2.)



Model for turbulence statistics in wall-bounded flows 549

To make the prediction, only the signal nominally at the outer-peak location
z+

O ≃ 3.9Re1/2
τ is used. The outer-peak signal is filtered to extract the large-scale

component u+
OL(z+

O), and for each wall-normal location z+ a streamwise shift is
applied to account for θL (as described above). The final step in forming u+

OL(z+
O, θL)

is to retain the Fourier phase information of the large-scale component used in § 4 to
build the universal signal. To explain this step, let us refer to {u+

OL}m as the actual
measured large-scale signal and {u+

OL}∗ as the large-scale signal that was measured
during the calibration experiment used to determine u∗. Furthermore, we denote the
Fourier transforms of these as

FT[{u+
OL}m] = Aeiφ, FT[{u+

OL}∗] = A∗e
iφ∗, (5.1)

where φ∗ can be viewed as the universal Fourier phase of the outer large-scale
corresponding to the universal signal. Then, u+

OL(z+
O, θL) is formed from the inverse

Fourier transform

u+
OL(z+

O, θL) = FT−1[Aeiφ∗]. (5.2)

This does not affect the spectral density of the measured signal. Switching the Fourier
phase effectively ‘re-synchronizes’ both signals: the universal signal u∗ determined
previously and the large-scale signal u+

OL measured for the prediction. Indeed, we
recall that during the construction of the predictive model in § 4, the inner and outer
signals were measured simultaneously, whereas during a reconstruction the universal
signal and the large-scale component are uncorrelated. Therefore, if these signals are
combined using (2.1) without switching the Fourier phases, a mismatch may occur
which propagates through to the statistics. Examples of reconstructions, with and
without the retention of the large-scale Fourier phases, are given in Appendix A, and
while differences are noted they are seen not to be large. These differences may also
be interpreted as an indication that the universal signals built in § 4 are not perfect
and thus retain some small amount of large-scale information. This would be an
expected symptom of the spectral filtering and imperfect scale separation and scale
decomposition. (It is possible that in the future, a higher Reynolds number calibration
measurement could avoid the need for this re-synchronization.) A flow chart of the
complete procedure to build the prediction is given in Appendix B.

Once u+
OL(z+

O, θL) is known, the prediction can be made at the location z+ using
(2.1). This process is performed for each wall-normal location z+, allowing us to
predict a complete traverse of the inner layer, from z+ =6.3 to z+ = 303 (or up to the
outer-peak location for Reynolds number lower than 7300).

It should be noted that to make a prediction, the measured large-scale signal
u+

OL does not need to be of the same length as the universal signal u∗, as long as
the measured u+

OL signal is sufficiently long to provide convergence of the large-scale
contribution to the statistics of that flow. If u+

OL is shorter than the universal signal u∗,
then u∗ is shortened to match the length of u+

OL. If the measured signal is longer than
the universal signal, then u∗ is duplicated to match the length of u+

OL. These actions
have no effect on the universal signal and its statistical representation of the near-
wall small-scale events, as the u∗ signals are obtained from calibration measurements
using a very long sample length (T U∞/δ > 17 000) where the large-scale content is
fully converged. As a result, this length is several times longer than is needed to
converge the small-scale events.

5.1. Validation and robustness

Figure 7 shows the predicted (blue solid lines) pre-multiplied energy spectra map
kxΦuu/U 2

τ for all sets of measurements, along with the measured pre-multiplied energy
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Figure 7. (Colour online) Pre-multiplied energy spectra map of the streamwise velocity
fluctuations kxΦuu/U 2

τ ; thick (blue) solid lines, prediction; thin (grey) solid lines, measurements:
(a) Reτ =2800, (b) Reτ = 3900, (c) Reτ = 7300, (d) Reτ = 13 600, (e) Reτ = 19 000 and (f )
Reτ = 1.4 × 106. Contour levels show kxΦuu/U 2

τ from 0.2 to 1.6 in steps of 0.2. The vertical
dot-dashed line marks the location of the outer peak z+

O = 3.9Re1/2
τ .

spectra maps (grey solid lines). The vertical dot-dashed line marks the location of
the outer peak (z+

O = 3.9Re1/2
τ ), corresponding to the location where the outer large-

scale component is taken. In general, the predictive model contours agree well with
measurements over the full range of Reτ . The principal effect of increasing Reynolds
number – the increase in large-scale energy and emergence of an outer energetic
peak – is well captured by the model. The ASL data, though no experimental data
are available for comparison, is included here as an indicator of the predicted trends
at very high Reynolds number.

A more detailed comparison of the predictive model spectra is shown in figures 8
and 9 at z+ = 15, the location of the inner peak. Figure 8 shows a direct comparison
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location (z+ ≃ 15) for (a) the measurements and (b) the prediction.

for lowest and highest laboratory Reynolds numbers, while figure 9 shows spectra at
z+ ≃ 15 for all Reynolds numbers: figure 9(a) shows the true measurements, and the
prediction is given in figure 9(b). We see excellent agreement between both plots, with
the Reτ trend correctly captured for the available data.

The excellent agreement for the spectra implies that the predicted u2/U 2
τ profiles

will also be good. This is confirmed in figure 10(a), where comparisons are shown for
representative Reynolds numbers across the data range. The corresponding Reynolds
number dependence of the peak of the streamwise turbulence intensity (at z+ = 15)
is emphasized in figure 10(b) for the predictions, actual measurements, and for a
number of other available results from the literature (as given in Hutchins & Marusic
2007a, their figure 8). Also included in figure 10(b) is the corrected predicted intensity
due to hot-wire spatial resolution effects using the method of Chin et al. (2009).
Indeed, the predicted data assume l+ = 22 (since this was the wire length used in the
calibration measurement). The correction of Chin et al. (2009) adds an appropriate
amount to correct the data to an l+ = 3.8. Overall, the predictions of the inner peak
intensity are seen to follow the general trend of the measurements very well. The
predicated trend at very high Reynolds number, with a second outer peak appearing
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Figure 10. (Colour online) Prediction of the streamwise turbulence intensity u2/U 2
τ as

compared to measurements. (a) Wall-normal evolution for Reynolds numbers Reτ = 2800,
7300, 19 000 and 1.4×106. The symbol ‘×’ marks the location where the large-scale component
is measured. (b) Reynolds number dependence of the peak intensity (around z+ =15); ⊙, other
studies: collated results where l+ � 10, including DNS and experimental results from channel
flow, boundary layer and atmospheric surface layer (see figure 8 of Hutchins & Marusic
2007a for full details); � denotes prediction corrected to take into account spatial resolution
effects (Chin et al. 2009).

in u2/U 2
τ , is a topic of some controversy (Fernholz & Finley 1996; Morrison et al.

2004; Hutchins et al. 2009; Marusic et al. 2010c). Here, this is based purely on the
ASL data and therefore due caution is noted. Recent studies undertaken at Melbourne
and Princeton have shown that the second outer peak in the u2/U 2

τ profile is likely
the result of experimental artefacts, mainly due to hot-wire spatial and temporal
resolution issues (Hutchins et al. 2009; Bailey et al. 2010); however, the topic remains
open at very high Reynolds numbers.

We also consider the effectiveness of the model to predict higher moments, from the
third to sixth order against measurements, and these are shown in figure 11. It should
be noted that for the sixth moment order, measurements and prediction are close to
the limit of what could be actually measured by the different available techniques



Model for turbulence statistics in wall-bounded flows 553

0
4
8

(a)

(b)

(c)

(d)

Measurements

Prediction (left axis)

Ref.

 0

 100

 200

 300

 0

 100

 200

 300

 400
Measurements

Prediction (left axis)

Prediction (right axis)

Ref.
Reτ increasing

Reτ increasing

0

400

Measurements

Prediction (left axis)

Ref.

 0

 25

 50

 75

 100

101 102 103 104 105
 0

 5

 10

 15

 20Measurements

(×102) (×103)

Prediction (left axis)

Prediction (right axis)

Ref.

z+

u
6
/U

6 τ

–
–

u
5
/U

5 τ

–
–

u
4
/U

4 τ

–
–

u
3
/U

3 τ

––

Figure 11. (Colour online) Prediction of high-order moments un/Un
τ for Reynolds number

Reτ = 2800, 7300, 19 000 and 1.4 × 106: (a) n= 3, (b) n= 4, (c) n= 5 and (d) n= 6. The symbol
‘×’ marks the location where the large-scale component is measured. The ordinate axis is
shifted per Reynolds number, by 11 in plot (a) and by 600 in plot (c).
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Figure 12. (Colour online) Prediction of skewness for Reynolds number Reτ = 2800, 7300,
19 000 and 1.4 × 106 (from bottom to top). The symbol ‘×’ marks the location where the
large-scale component is measured. For the highest-Reynolds-number case, experimental ASL
data are shown from Metzger & Klewicki (2001) (open circles) and Folz & Wallace (2010)
(plus symbols). The ordinate axis is shifted by 1 per Reynolds number.

(not only hot wire). Again, the prediction appears to be very good, with only a slight
over-prediction as order increases. Even so, there is reasonable quantitative agreement,
and certainly the salient Reynolds number trend is reproduced. Of particular note is
that the prediction is able to capture the change in sign of skewness in the viscous
buffer region as Reynolds number increases (from negative to positive) as shown
in figure 12. This trend for the skewness had previously been reported by Metzger
& Klewicki (2001), indicating a significant structural change in the near-wall region
as Reynolds number increased. The atmospheric surface layer data of Metzger &
Klewicki (2001) and Folz & Wallace (2010), taken at SLTEST in Utah, are included
in figure 12 and are seen to agree well with the predicted values from the model. This
suggests that this structural change noted in the skewness is due to the nonlinear
modulation effect of the large scales near the wall.

Finally, it is worth noting that the amplitude modulation part of (2.1) plays a key
role in the prediction of all the odd moments. However, the amplitude modulation
effect, which is the nonlinear part of the model, only very weakly affects the even
moments and spectra. A comparison of the second- to fifth-order moments is shown
in figure 13 with and without the amplitude modulation effect included. Without the
amplitude modulation component, the skewness results would not vary with Reynolds
number in the buffer region. In fact, this Reynolds trend would not be captured at
all and the predictive odd moments would remain invariant at all Reynolds numbers.

5.2. Effect of the cutoff wavelength

As discussed in § 4, the construction of the model parameters requires a choice
of the cutoff wavelength separating the large and small scales, and this was set to
λ+

x = 7000. To ensure that the conclusions are not sensitive to the precise chosen value,
we performed a sensitivity test using two other cutoff wavelengths, λ+

x = 4000 and
λ+

x = 10 000. It should be noted that for each cutoff, all the model parameters including
the universal signal had been re-calculated. Figure 14 shows the prediction of high-
order moments at Reynolds number Reτ =19 000 for each of the cutoff wavelengths
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selected. Very little change is seen between the different cutoff wavelengths, thus
further confirming the robustness of the predictive model.

6. Application to other wall-bounded flows

The simple algebraic form of the model given in (2.1) constitutes a descriptive
basis for all wall-bounded flows, as it describes a universal inner region that interacts
(through superposition and modulation) with the large-scale outer motions. Therefore,
it is natural to consider the validity of the present model in other wall-bounded flows,
such as internal flows and boundary layers subjected to pressure gradients. If the main
dynamical mechanisms are indeed the same, then successful application of the model
(calibrated for ZPG boundary layers) would imply a true universality of the inner-
region motions. If the inner region is different for different flows, then a new calibration
is needed to evaluate u∗, α, β , θL etc. for each of the flows.

To investigate this, here we consider experimental time-series data obtained in a
channel flow, pipe flow and an adverse-pressure-gradient turbulent boundary layer
(APG-TBL). An additional experiment is also considered for a zero-pressure-gradient
boundary layer, such that the Reynolds number is matched to that of the pipe, channel
and APG flows (Reτ ≃ 3000). The ZPG-TBL, channel and pipe flows were conducted
at matched Reynolds number and are described in Monty et al. (2009). Details of
the experimental conditions are summarized in table 3. It should be noted that the
friction velocity Uτ is accurately calculated from pressure drop in the channel and
pipe flows, whereas in the APG and ZPG boundary layers, oil-film interferometry
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x U∞ δ Uτ ν/Uτ

Reτ Facility (m) (m s−1) (m) (m s−1) (µm) l+ l/d �T + T U∞/δ

3020 ZPG-TBL 5.0 12.5 0.1003 0.457 33.2 30 200 0.57 22 500
3020 APG-TBL 4.1 20.1 0.077 0.645 24.6 30 200 0.54 26 300
3015 Channel 17.6 23.1 0.05 0.913 16.7 30 200 0.55 27 700
3005 Pipe 17.3 24.3 0.0494 0.922 16.4 30 200 0.56 29 500

Table 3. Experimental parameters for zero-pressure-gradient turbulent boundary layer
(ZPG-TBL), adverse-pressure gradient turbulent boundary layer (APG-TBL), channel and
pipe (all facilities located at the University of Melbourne).
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Figure 14. (Colour online) (a–d ) Effect of the cutoff wavelength: high-order predicted
moments un/Un

τ (n=2, 3, 4 and 5) for Reynolds number Reτ = 19 000. The symbol ‘×’
marks the location where the large-scale component is measured.

was used to measure Uτ , as described in Chauhan et al. (2010), and a modified
Coles law of the wake fit (Jones et al. 2001) is used to calculate the boundary layer
thickness δ.

The APG-TBL data are as described by Harun et al. (2010) and were measured
in a second boundary layer facility consisting of an open-return blower wind tunnel
with a working test section of 4.2 m×0.94 m×0.375 m, and a free-stream turbulence
intensity nominally 0.3 % (see Perry, Marusic & Jones 2002, for more details about the
facility). The ceiling of the test section is made from adjustable acrylic panels, which
enabled the pressure gradient to be set (either adverse, favourable or zero) within
1% accuracy. The APG results used here are obtained for a mild adverse pressure



Model for turbulence statistics in wall-bounded flows 557

102

103

104

105

106

107

(a)

(c) (d)

(b)

102

103

104

105

106

107

z/δ z/δ

λ+
x

102

101 102 103 104 105

101 102 103 104 105 101 102 103 104 105

103

104

105

106

107

102

103

104

105

106

107

λ+
x

10–1

100

101

102

103

10–1

100

101

102

103

10–1

100

101

102

103

10–1

100

101

102

103

10–2 10–1 100 101 102 10–2 10–1 100 101 102

10–2 10–1 100 101 10210–2 10–1 100 101 102

z+

101 102 103 104 105

z+

λ
x
/δ

λ
x
/δ

Figure 15. (Colour online) Pre-multiplied energy spectra map of the streamwise velocity
fluctuations kxΦuu/U 2

τ ; thick (blue) solid lines, prediction; thin (grey) solid lines, measurements:
(a) zero-pressure-gradient turbulent boundary layer, (b) pipe, (c) channel and (d)
adverse-pressure-gradient turbulent boundary layer. Contours levels show kxΦuu/U 2

τ from
0.2 to 1.6 in steps of 0.2. The vertical dot-dashed line marks the location of the outer peak
z+
O =3.9Re1/2

τ .

gradient, with the Clauser pressure gradient parameter β =(δ∗/τ0)(dP/dx) = 1.89.
Further details are summarized in table 3.

Predicted spectra and moments, compared to measurements, are given in figures 15–
17. Figure 15 shows the predicted (thick blue solid lines) pre-multiplied energy spectra
map kxΦuu/U 2

τ for the four different flows, compared to measurements (grey solid
lines). The vertical dot-dashed line shows the location where the outer large-scale
component u+

OL is taken. Figure 16 shows the comparison for the second moment
and the skewness and flatness, and figure 17 shows the higher-order moments (fifth
and sixth). For figures 16 and 17 the solid lines are measurements and the solid filled
symbols are the predictions using (2.1).

As expected, the prediction works well for the ZPG-TBL for all the statistics.
The pipe and channel flow results also show reasonably good agreement. It is
noted that the predictions are based on u∗ signals obtained from measurements with
sensing length l+ = 22 while the ZPG, channel and pipe flow measurements are for
l+ = 30. This means that some overestimation for the moments is expected for the
predicted results, and this is what is observed. The agreement for channel and pipe
flows is perhaps not surprising as recent work (Monty et al. 2009; Mathis et al.
2009b) has shown that near the wall these internal flows are statistically close to the
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Figure 16. (Colour online) Prediction of (a) u2/U 2
τ , (b) skewness and (c) kurtosis for pipe,

channel and boundary layer at Reynolds number Reτ ≃ 3000, together with APG boundary
layer. The symbol ‘×’ marks the location where the large-scale component is measured. The
ordinate axis is shifted per case, by 3 in plot (a), 1 in plot (b) and 1.5 in plot (c).

zero-pressure-gradient turbulent boundary layer, only diverging in the outer and
wake regions. (It should be noted that this similarity holds only for the statistics of
the streamwise velocity component. Recent works have shown significant differences
between internal and external wall-bounded flows for the other velocity components
and Reynolds stresses: Jiménez & Hoyas 2008; Buschmann & Gad-el-Hak 2010.) The
main difference between internal and external flows was found in the largest energetic
scales, not only in the outer/wake region, but right down to the wall. However, as
the small-scale energy content is similar between channels/pipes and ZPG-TBL, it is
reasonable to expect that the universal signal (a typical inner-region signal that would
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τ , curves are shifted upwards by 4000 to enhance visibility. The symbol ‘×’ marks the

location where the large-scale component is measured. The ordinate axis is shifted per case,
by 450 in plot (a) and by 3000 in plot (b).

exist in the absence of any large-scale activity) will be the same for the internal flows.
Moreover, the predictive model uses the large-scale signal from the specific flows and
therefore this accounts for the major differences between the flows.

The model is also seen to reliably capture the trends in the APG-TBL flow,
although the quantitative comparisons are not as good as the other flows. The
indications though are encouraging in support of a true universal inner region in all
four flows for the following reasons. It is known that the effects of the large scales on
the small scales near the wall are significantly increased for the APG flows (Bradshaw
1967; Harun et al. 2010) and therefore one would expect that β should be higher for
this flow, and similarly the different nature of the inclination angle and correlation
suggests that α and θL are also likely to be different to the values obtained for ZPG
flows. The main parameter in (2.1) that is relevant to the universality of the inner
region is the robustness of u∗. Towards testing this, figures 16 and 17 also include
‘artificial’ predicted values for the APG case shown by open (unfilled) circles. Here,
the same u∗ signals are used as in all other results, but the values of β and α have
been changed. For example, β is everywhere increased by 0.025, which is consistent
with the higher levels of amplitude modulation that Harun et al. (2010) observed, and
α is steadily increased in small increments as z+ increases, with the largest increase
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in α being less than 20 %. This results in excellent agreement and suggests that the
universality of u∗ for all four flows is a possibility. However, this remains an open
question and full confirmation would need to await new experiments where the u∗

signals are re-calibrated from two-point simultaneous measurements in each flow. It
is noted that some studies have argued that APG flows are fundamentally different
from ZPG even in the near-wall region. For example, Lee & Sung (2009) report that
the near-wall streak spacing in an APG flow is 400 viscous units (compared to 100
for the ZPG flow), although these results are from DNS at low Reynolds number.
Another issue that has been considered in applying the model to APG flows is the
choice of λ+

x = 7000 as the demarcation length scale between large and small motions.
This value was obtained from observing the ZPG spectrograms for which it describes
a suitable separation between the large- and small-scale energetic peaks. However,
it is possible that a more refined criterion is required for non-zero-pressure-gradient
flows. A sensitivity test performed using different cutoff wavelengths (λ+

x = 4000 and
10 000) has shown no improvements or deterioration in the APG prediction.

Finally, it can be observed in figure 15 that the outer spectral peak in APG flow
might be located at a higher wall-normal position than in ZPG, pipe and channel
flows. This is not surprising as several studies on APG boundary layers have reported
a deviation of the mean velocity profile from the classical log law with significant
change in the wake region (Krogstad & Sk̊are 1995; Marusic & Perry 1995; Nagano,
Tsuji & Houra 1998; Nagib & Chauhan 2008). In order to investigate the sensitivity of
the wall-normal location of the measured large-scale component, a second prediction
for the APG case was carried out using a different outer location z+

O ≃ 470 (instead of
z+

O = 3.9Re1/2
τ ≃ 215 used in the original prediction). The results effectively show no

discernible differences compared to the original predictions shown in figures 15–17.
This suggests that the choice of the outer location is not a critical parameter for the
prediction, as long as it remains within a reasonable range around the outer-peak
wall-normal location (at least in the log region).

7. Conclusions

The MMH predictive model (Marusic et al. 2010b) of a realistic streamwise
fluctuating velocity signal for the entire near-wall region of wall-bounded flows is
fully described. This model enables prediction of the streamwise turbulence statistics
(spectra, turbulence intensity, skewness, kurtosis and moments up to the sixth order)
across the inner layer of the zero-pressure-gradient turbulent boundary layer, using
a single measurement point taken at the location of the energetic outer peak. The
mathematical model is based on recent observations that the near-wall region is
amplitude-modulated by the large scales that inhabit the log layer (Bandyopadhyay
& Hussain 1984; Hutchins & Marusic 2007b; Mathis et al. 2009a), and on the
attached eddy hypothesis of Townsend (1976). The fundamental basis of the model
is that a ‘universal’ inner region exists in wall-bounded flows that interacts, through
superposition and modulation, with the large-scale outer motions. By ‘universal’, we
refer to a statistically representative streamwise fluctuating velocity component that
would exist in the absence of any large-scale activity, either footprint or modulation
(ideally a very low Reynolds number). Further tests of the model, including spectra
and all moments up to the sixth order, show the capabilities of the model to accurately
reconstruct the whole inner layer, up to the outer energetic peak. In particular, the
Reynolds number trend is captured well by the model, which has been studied over
three orders of magnitude in Reτ .
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In further comparisons, the model has been applied to other wall-bounded turbulent
flows, beyond the zero-pressure-gradient case upon which the model was formulated.
Initial results from these tests are encouraging. Indeed, reasonably good predictions
are shown for internal flows (channel and pipe), although this might be expected
since the near-wall behaviour of these flows is known to be statistically close to the
zero-pressure-gradient turbulent boundary layer. The quantitative comparisons in the
adverse-pressure-gradient turbulent boundary layer are not as good as for the other
flows, but the pertinent overall trends are still captured. Specifically, it is shown that by
adjusting only the constant parameters (α, β and θL) and keeping the same universal
signal u∗, an excellent prediction can be made of adverse-pressure-gradient flows.
Again, such results seem encouraging in suggesting the universality of u∗ for wall-
bounded flows, where only the constant parameters need to be adjusted/re-calibrated
for each of the flows. This is also consistent with the fact that the constant parameters
are directly proportional to the intensity of the superposition and modulation, and
the coherent structure angle, which are all expected, or in some cases known to be
different in different types of wall-bounded flows.

In terms of utility, the proposed model would be of value for turbulent boundary
layer measurements at high Reynolds numbers, where accurate measurements of
the near-wall flow are difficult due to spatial resolution constraints or diminishing
physical scale of the near-wall region. Even in such situations, the measurement of the
streamwise fluctuating velocity signal at the outer-region peak remains comparatively
simple with standard anemometry (especially the large-scale component which does
not require a fully spatially resolved measurement). The model also has the potential
for being useful for numerical simulations, especially as the basis of a near-wall model
in large eddy simulation, and this is the topic of ongoing research.

A database of the universal signals u∗ and tabulated values of the parameters in
(2.1) is available from the authors.

The authors wish to gratefully acknowledge the Australian Research Council for
financial support.
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Appendix A. A note on retaining the universal large-scale Fourier phases

As seen in § 5 the procedure to make a prediction involves a swap of the Fourier
phases between the measured large-scale component that will be used for the pre-
diction, and the original large-scale component used in the construction of the
universal signal. As stated previously, this has the effect of ‘re-synchronizing’ the
signals u∗ and u+

OL, which are uncorrelated in the prediction. Figure 18 shows
a predicted pre-multiplied energy spectra map at Reτ = 19 000 with and without
the retained universal large-scale component phases. It is clearly observed that
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without switching the Fourier phases a large discontinuity occurs around λ+
x = 7000,

corresponding to the cutoff wavelength (lower bound of the smooth filter) used to
extract the large-scale component. Figure 18(b) shows the improved result when the
large-scale ‘universal’ Fourier phases are retained. Figure 19 shows the effects of
retaining the ‘universal’ Fourier phase information for the large scales for the second-
and sixth-order moments. The effect is seen to be minor for the predicted u2 but is
significant for u6.

Appendix B. Flow chart for prediction using the model

Figure 20 shows a flow chart of the procedure for obtaining the predicted time-series
from a velocity signal in the logarithmic region.
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