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Abstract: Within the subject area of maintenance and maintenance management, authors identified a 

deficiency in studies focussing on the expected value from adopting Predictive Maintenance (PdM) 

techniques for Machine Tools (MT)s. Authors identified no studies focusing on presenting a PdM value 

analysis or cost model specifically for Small-Medium Enterprise (SME)s operating Computer 

Numerically Controlled (CNC) MTs. This paper’s novelty is addressing SMEs minimal representation in 

literature by explanatorily collecting data from SMEs within the focal area via surveys, modelling and 

analysing datasets, then proposes a cost effective PdM system architecture for SME CNC machine shops 

that predicts cost savings ranging from £22,804–£48,585 over a range of 1–50 CNC MTs maintained on 

a Distributed Numerically Controlled (DNC) network. Affirms PdM’s tangible value creation for SME 

CNC machine shops with predicted positive impacts on their MTs cost and performance drivers. These 

exploratory research findings corroborates SMEs pooling together to optimize their CNC MT 

maintenance cost through the recommended system architecture. Finally, introduces opportunities for 

further PdM research taking into account SMEs’ perspective. The paper’s industrial application is 

confirmed from the surveyed SMEs that demonstrated their current utility of PdM; then anonymous 

positive feedback on the online dashboard, shared with participant companies, confirmed the research 

results supported SMEs in considering exploring the path to adapting PdM. It is anticipated that 

beneficiaries of this research will be maintenance managers, business executives and researchers who 

seek to understand the expected financial and performance impact of adopting PdM for a MT’s overall 

life cycle costs. 
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1 Introduction 

Industrial Revolution (IR) in the late 18th century initiated key organisational developments and 

adaptation practices that enabled existing organisations cope with the ever-changing environmental 

factors and business   requirements [1]. These changes make an IR potent towards transforming existing 

practices or tools to increase efficiency; therefore, improving manufacturing processes is key for 

transformations [2]. In the late 20th century, the emergence of computers, internet and robots which 

resulted in huge improvements to industrial processes by introducing concepts of automation which is 

popularly known as Third Industrial Revolution (3IR) or Digital Revolution [3]. The first decade of 21st 



century witnessed an introduction of new digital disruptive technologies that are being embraced as tools 

for the digital-industrial future; this concept can be been accredited to the German government’s 2011 

promotion of manufacturing computerisation, dubbed Fourth Industrial Revolution (4IR) or Industry 4.0 

[4]. As IRs industrialise key manufacturing processes like production batches and lead time with 

improved Machine Tools (MT)s, strategic efforts are required to keep these MTs in worthy operating 

conditions via maintenance procedures. Maintenance philosophies have also transformed over the 

generations from a necessary evil into a valuable performance driver. Figure 1 illustrates MTs and their 

associated maintenance evolutions throughout the IR eras. 

 

Fig. 1 Machine Tool and Maintenance Evolution over Industrialisation Eras 

Industry 4.0 focuses on the ability of “smart” machines to perform autonomously and provide statistical 

data on their physical processes. The smart machine data is monitored by cyber physical systems (CPS)s, 

which are equipped to make decisions based upon measured feedback via high-end sensors, 

microcontroller units and software [5]. Smart machines and factories use advanced technologies such as 

networking, connected devices, data analytics, and artificial intelligence to reach more efficient Predictive 

Maintenance (PdM). PdM involves networking and servicing machines before failure and attending to 

non-major faults to improve safety, reliability, availability, and efficiency [6–8]. These interactions form 

an ecology that supersedes 3IR, where automated machines worked independently under supervision of 

an operator, by having machines working and interacting together under minimal supervision of humans 

[9,10].  

MTs are major components of any manufacturing systems, they have evolved from manually operated 

machines into CNC MTs with the advent of computers in the 3IR. With the rapid integration of  “Industry 

4.0” within SMEs that utilises disruptive digital technologies like cloud computing, artificial intelligence 

and big data, a new generation of machines are building upon the concept of Distributed Numerically 

Controlled (DNC) machines, which was first coined in the 1980s [11]. 



However, during these transformations, there seems to be minimal consideration for the SME's when 

advanced technologies are discussed since several implementation methods are often too complex and 

capital intensive.  This study seeks to contribute towards making appropriate PdM decisions suitable for 

SME CNC machine shops by identifying PdM’s suitability, proposing a cost effective PdM DNC system 

architecture and affirming PdM’s additional tangible value creation. 

Maintenance management reviews by Ruschel et al. [12] and Garg and Deshmukh [13] revealed 

relatively few articles reported on maintenance costing aspect for management decision; therefore, this 

study seeks to contribute in that deficiency area too. This study also aims to further develop a cost model 

that will assist SME machine shops to evaluate benefits of adopting PdM techniques, using financial 

modelling and strategies that build on maximizing value. This was achieved by collecting and analysing 

data from SME CNC machine shops in the United Kingdom (UK) that utilizes PdM techniques and their 

impact on the cost performance. A reusable interactive platform has been developed and will be published 

online for the benefit of SME CNC machine shop companies when making informative decisions 

regarding investing into PdM initiatives and projects. The UK government is strategically aligning 

towards “Industry 4.0” concepts, as can be seen from the document entitled “Factory of The Future” [14].  

However, there is no public platform that SMEs can easily access or use to assist in their investment 

decisions for “Industry 4.0” techniques, and to effectively estimate their CNC MTs maintenance cost 

within the Total Cost of Ownership (TCO) and Life Cycle Costs (LCC). 

The overall goal and scope of this study is to extend the PdM body of knowledge by capturing the 

potential readiness, voice and perspectives of SMEs operating CNC MTs using relatively simple and 

logical relationships and discovered themes. This exploratory research approach commenced with 

reviewing literature for key PdM cost drivers, acquiring primary data from SMEs across UK; then 

analysing this data for inferences against benchmarks in literature. Ultimately this study proposes a need 

for such PdM technologies research to incorporate the perspectives of SMEs and recommends adaptation 

measures for SMEs; supported with predicted values on tangible gains and constraints of adopting PdM 

at the SME level through the proposed system architecture. An argument was put forth as a research 

agenda calling for further studies in that area because it was discovered that SMEs were using PdM and 

their situation was unique from other larger organisations. 
 

2 Literature Review 

This section discusses trends concerning maintenance and its management, then identifies the research 

gap and how this paper’s novelty contributes to filling this gap. 

2.1 Maintenance and Maintenance Management 

Maintenance and Maintenance Management are no new topics in the field of academic and industrial 

practice. Although meaningful literature on maintenance impact is abundant, Bokrantz et al. [6] argued 

that manufacturing literature often side-line maintenance’s specific readiness for the forthcoming 



“Industry 4.0”; therefore, their study revealed the gap between the expectations of digitalised 

manufacturing and the future role of maintenance. This section reviews the maintenance impact and its 

evolution over the years. 

After investigating various maintenance strategies, authors identified four main strategies trending in 

the literatures, that being Corrective Maintenance (CM), Preventive Maintenance (PM), Predictive 

Maintenance (PdM) and Cyber-Physical Maintenance (CPM). CM is simply maintenance performed in 

reaction to unplanned functional capabilities failure (“malfunction”) [15,16]. CM has huge cost 

implications; thus, is often deemed a major maintenance classification in several literatures [17,18]. 

Unlike CM, PM tackles problems of imminent failure by performing scheduled maintenance [7,18]; 

thus, PM is often deemed as the next major classification of maintenance [7,12]. PM is deemed as a value-

adding activity [19,20]; however, PM’s pre-programmed intervention by the Original Equipment 

Manufacturer (OEM) risks tampering with machine performance by influencing faster deteriorating states 

[21]. Furthermore, Galar et al. [19] cautioned on this similar problem of repeated cycles of PM without 

adding value to machine’s availability and reliability and suggest that both CM and PM can induce 

irrelevant downtime and affect the equipment’s LCC. Therefore, they proposed using “smart” 

maintenance services that migrate from fail to fix into predict and prevent philosophies. This is where 

PdM value can be underlined. 

PdM is a proactive process of performance modelling and conditional monitoring used to trigger 

warnings for effective maintenance scheduling and execution [10,20]. Additionally, Mobley [17] 

identified PdM as opportune activities for improving productivity, product quality, and overall 

effectiveness of manufacturing, by regularly monitoring equipment operating conditions (e.g. efficiency, 

capability, etc.). The rapid development of predictive science, prognosis as a valuable tool, is useful in 

predicting service life of MT and this leads to an efficient maintenance strategy [10,21]. Recent 

technological advancements for 4IR have resulted in proposed cloud-based PdM services to augment 

Industrial Internet of Things (IoT) for collecting and transmitting condition measurements to a centralized 

server for analysis, fault diagnosis, prognosis and maintenance scheduling [23,24]. 

CPM seeks to extend PdM and is deemed as Intelligent Maintenance for monitoring interconnected 

systems through digital-twining; thus, enabling a maintenance approach that brings the digital and 

physical worlds together to create an intelligent network [22–24]. Lee [25] argued that digital-twinning 

is an intersectionality and not a union of physical and cyber infrastructure; therefore, CPM requires both 

aspects of physical and cyber maintenance. Furthermore, Brettel et al. [26] argued industrial revolutions 

were triggered by technical innovation; while 4IR is triggered by Cyber-Physical System (CPS), enabling 

close monitoring of information flow and synchronization with physical equipment and cyber space. The 

advent of industrial IoT and industrial big-data have resulted in significant new opportunities, as well as 

challenges to maintenance.  Therefore, CPM can be seen as an embodiment of PdM for self-healing 

systems [25]. 



Academic and industrial reviews were consulted which included 111 academic papers and 18 case 

studies from industrial resources including consulting organisations in the field such as IBM [27]. 

This section presents re-categorised papers from strategic literature reviews by Ruschel et al. [12]  and 

Garg and Deshmukh [13] as CM, PM, PdM and CPM, in conjunction with the literature used in this study 

to establish trends shown in Figure 2. This was accomplished by reassessing papers in the strategic 

literature review to determine the trending maintenance literature as perceived from current day 

perspectives. The trends in Figure 2 observing vital years (2006, 2017 and 2018) reveal a significant 

increasing trend in PdM, a steep increasing trend in CPM, a reducing tend in PM and an almost stagnated 

trend in CM. The overall trend demonstrates significant increase and justification to explore PdM for this 

research study. 

 
Fig. 2 Maintenance Management Literature Review Trends Chart 

 

The following section discusses benefits and challenges of PdM as reported in reviewed literature 

earlier. Mobley [28] surveyed successful PdM programmes and revealed anticipated improvements upon 

implementing PdM. Similarly, IBM [27] identified benefits of implementing PdM for the anticipated 4IR. 

The Table 1 highlights predicted results deemed relevant for MT users, while Figure 3 demonstrates 

predicted significant cost reductions when migrating through maintenance types [30,32]. 
 

Table 1: Benefits of Adopting Predictive Maintenance (Predicted Values) 

Benefits Mobley (2001) IBM (2016) 

Decrease in Maintenance Costs 50% 50% 
Breakdowns Eliminated/Reduced 55% 70% 

Increase in Mean Time Between Failure (MTBF) 30% 50% 
Increase in Machine Uptime 30% 35% 

 

 
Fig. 3 Maintenance Cost Reduction Process (Predicted Values) 

 



Although PdM programmes promise significant benefits, Table 2 maps a summary of the additional 

responsibilities and challenges of PdM as argued by Mobley [17] and Galar et al. [19]. 

Table 2 Challenges of Adopting Predictive Maintenance (Described Issues) 

Challenges Brief Description 

Unreliable Data or Calibration 

Error 

Measurement metrics giving false positives and taking 
inconsistent data that can mislead in predicting failure 

Special Training Required and 

Costs for System Analysis 

Staff training may be required on acquiring and interpreting 
predictive data to schedule maintenance 

Maintenance and Security of Data 

Infrastructure 

Data protection and security requirements to ensure 
sensitive information is not leaked or hacked maliciously 

Significant Investments on 

Acquisition Cost 

Initial investment into the technological infrastructure can 
be significant, when retrofitting to factory’s original design 

 
2.2 CNC Machine Tool Cost Models 

For CNC MTs, TCO comprises “Operating Costs” and “Maintenance Cost”; thus, maintenance costs 

contribute to lifecycle costs via Programmed Maintenance (Preventive) and Un-programmed 

Maintenance (Corrective) [29]. Furthermore, Enparantza et al. [29] demonstrated the limitations of cost 

models that are applicable to MT by stating: “A basic feature of a LCC tool for machine tools is the 

evaluation of maintenance costs which are based on the (Reliability, Availability and Maintainability) 

RAM parameters of the machines” [29].  

Whereas Parida et al. [30] reviewed maintenance performance literature to affirm maintenance cost 

drivers are influenced by tangible and intangible inputs (e.g. IT support). They supported their argument 

on maintenance’s metrics by stating excessive breakdown and CM adversely affect performance, while 

PM and PdM drive both performance and costs when effectively applied. 

Moreover, Reina et al. [31] re-constructed previous authors’ concerns by discussing the cradle-to-grave 

perspective of LCC in manufacturing systems. They revealed maintenance as an essential contribution 

towards LCC and affirmed its potentials towards reducing overall LCC in manufacturing industries. They 

built upon Enparantza et al.’s [29] recommendations on RAM parameters by establishing that reliability 

and maintainability are strongly interconnected as influential cost drivers in LCC, so an effective 

maintenance strategy can influence the MT’s useful life and in turn reduce LCC.  Reliability and 

Maintainability (R&M) costs were highlighted as major cost drivers in manufacturing. The highlighted 

reliability related costs were associate with lost production from operations; while the highlighted 

maintenance costs were associated with scheduled maintenance (preventive/predictive), unscheduled 

maintenance (corrective) and spare parts (inventory). 

Despite the popularity of PdM in various literatures, the majority of academic literature focuses on 

maintenance optimisation through reliability tools and complex mathematical R&M relationships for 

PdM, through conditional or statistical monitoring of equipment health, yet, limited work have been 

reported on the actual maintenance cost. Likes of Enparantza et al. [29] have demonstrated research need 

towards CNC MT cost models and even identified existence of such systems within business-to-business 

domains, for example automobile industries. Kans and Ingwald [32] proposed a maintenance database 



concept to support costing; while Cheng et al. [33] proposed a distributed network manufacturing 

environment with a focus mostly on the technological development. The reviewed literature indicate 

trends towards PdM adaptation or optimisation from reliability engineering perspectives, with few on the 

efforts to reduce LCC for CNC MTs. Furthermore, this paper reveals scarcity of MT maintenance cost 

literature tailored for SMEs and proposes a cost model that will assist SMEs with maintenance strategic 

decisions in “Industry 4.0” towards evaluating expected value of PdM for their CNC MTs LCC. 
 

3 Research Methodology  

From a conceptual and theoretical perspective, this field of research using data technology for PdM is 

relatively new. This study identified no major theory or framework regarding PdM’s adaptation impact 

on SME CNC shops that was readily available. Nevertheless, secondary data presented in the public case 

studies and previous literature on PdM’s impact composed a reasonable direction for testing.  

Although secondary data lacked similar costing projects on implementing PdM for CNC MTs; it 

provided direction that was used to confirm industrial consensus on cost impacts of adopting PdM for 

various industries. According to Bryman and Bell [34], using secondary data has several advantages. It 

saves the researcher cost and time, provides high-quality source to solidify the research, provides different 

opportunities for multiple analysis methods, and forms a good opportunity for cross-cultural analysis. 

Primary data was gathered using questionnaires disseminated to SME CNC shops in the UK to reduce 

the impact of unavailability of historical data. Upon reviewing secondary data and conducting literature 

review, the primary hypotheses were developed and accordingly an initial questionnaire draft was 

constructed and reviewed. An online survey platform was selected for easy distribution and increased 

reliability. The main questions included in the research questionnaire were Likert-type scale questions 

collected using Self-Administered Questionnaires (SAQ) distributed to candidates in the UK, and a total 

of 21 responses were received from SMEs and further investigated for this research study. 

3.1 Key Hypotheses 

The key hypotheses investigated for the paper were as follows: 

(H1) Feasibility of adopting PdM for SME CNC machine shops in “Industry 4.0” 

(H2) Cost effectiveness for SME CNC machine shops to use PdM 

(H3) Implementing PdM outcomes  in a tangible value creation for SME CNC machine shops 

3.2 Data Analysis 

Quantitative analysis was performed on the collected data in order to examine the impact of using 

traditional maintenance approaches, Corrective Maintenance (CM) and Preventive Maintenance (PM), 

and the expected or realised benefits of adopting PdM. The correlation between current maintenance state, 

various categories of maintenance costs, and the estimation results allowed a better understanding of the 



impact. Survey responses were exported to a spreadsheet software (Microsoft Excel) and statistical 

analysis software (SPSS) for detailed analyses and graphical representation of trends. 

Correlation Analysis was used to investigate the bivariate relationship strengths and directions of each 

pair of selected variable using the Pearson product-moment correlation, supported by Cohen’s [35] 

guidelines on interpreting the “Pearson’s r” relationship [37]. Linear regression analysis was used to 

investigate the relationship between variables because it surpasses correlation, which gives a goodness of 

fit and direction, by providing a simple linear relationship of connected predictor variable for a possible 

outcome [39]. Additionally, the chosen multivariate regression is recommended by Panik [37] as an 

objective method of testing hypothesis with a measure of significance; since cost was not the only 

predictive parameter [41]. The Likert-Type Analysis was employed in assessing relationships among 

SME’s opinion on the subject matter and its impact on their organisation’s performance, to mitigate a 

misuse of these opinion as facts as cautioned by Robertson [43]. Pareto Analysis was used to complement 

the Likert-Type Analysis by prioritising the common cause process relationships between existing 

maintenance strategy and its overall impact of key performance indicators like cost, quality, safety and 

productivity [45]. Parametric Modelling was finally used to extend all the aforementioned analysis 

outcomes and literature in accordance with Todman and Dugard’s [47] decision tree for small sample size 

statistical analysis and Mislick and Nussbaum’s [49] cost estimation recommendation. The model’s 

output were then used to develop a user-friendly dashboard using Power BI in order to extend the research 

finding’s accessibility into the public domain. The research data shall be made available via Research 

Gate. 
 

4 Data Results and Analysis 

This section presents survey results for further analysis on inferred maintenance impact within 

participant companies. A preliminary breakdown of the 21 survey responses showed:  

 15 participants owned the CNC MT, thus were directly affected by maintenance costs 

 Four participants leased the CNC MT, thus were indirectly affected by maintenance costs 

 Two responses were considered void due to incomplete data to fully extract and process 

4.1 Preliminary Raw Data Result 

This section presents results from the raw data acquired in a synthesised manner to aid facilitated the 

reader’s understanding and appreciation of the research findings and decisions leading to the analysis. 

4.1.1 Maintenance Strategies and Asset Size 

Survey responses provided meaningful data into contextually classifying their relevance towards the 

previously outlined hypotheses (H1-H3) on investigating MT maintenance costs influence on its LCC. 

The 15 SMEs that owned their MT were assumed as principal stakeholders of TCO in terms of the impact 

of maintenance management and MT operations costs. Figure 4 represents a distribution of CNC MT 



maintenance strategies used by SMEs. PM was the highest strategy employed (67%), while PdM was the 

least employed (14%). Figure 5 represents a distribution of participants’ CNC MTs quantity on SMEs 

shop floor. The combined range of 1–5 MTs (47%) and 5-10 MTs (21%); jointly, represent over 60% of 

responses; thus, bringing more evidential perspective towards few CNC MT on SME shop floor
 

 
Fig. 4 Maintenance Strategies for SME CNC MT 

 
Fig. 5 CNC MT Quantity on SME Shop Floor 

 

4.1.2 Machine Performance Data Extraction 

The SME responses to data collection on MT performance via sensors revealed that 68% of SMEs did 

not participation in MT performance data extraction, 21% of SMEs demonstrated “few” or “some” MT 

performance data collection, while 10% disclosed “mostly” or “completely” integrated data collection on 

MT performance. This information suggests an influence on MT breakdowns. 

4.1.3 Machine Operating and Failure Rates 

Majority of SMEs operates either 24-hours or 8-hours but shows an almost even distribution of shift-

hours throughout the day. The MT failure frequency was mostly “high”, with a combined majority 

(70%+) having frequent breakdowns in a month or less, and this may suggest frequent maintenance 

activities as drivers of cost. In building the argument towards maintenance impact significance from the 

perspective of “owned” or “leased” CNC MTs. 

4.1.4 Maintenance Costs 

Respondents’ cost data revealed CNC MT total maintenance cost range from approximately £10,000–

£60,000 annually, with an overall annual mean and median cost as £34,737 and £30,000 respectively, 

combining both categories of owned and leased CNC MTs. Figure 6 illustrates the broken-down nature 

of responses per category, thus revealing annual maintenance cost for leased MTs are approximately 

£10,000. Meanwhile maintenance cost for owned MTs range from approximately £20,000–£60,000 

annually. The data set’s overall 85-percentile reveals that 15% of maintenance annual cost from the 

participants are higher than £56,143 or approximately close to the £60,000 category. This information 

confirms maintenance cost on CNC MTs as significant LCC and cost savings in this area will be of 

significant value for SMEs. 



 
Fig. 6 Annual Maintenance Cost (£) of SME CNC Companies Bar Chart 

Two respondents provided no maintenance cost information; thus it was assumed that those participants 

had no financial obligation towards CNC MTs maintenance due to their contracting terms or there was 

no financial information about company expenditure on their CNC MT maintenance. Furthermore, the 

cost trend of leased CNC MTs suggested respondents either had ‘contractual knowledge’ of the leasing 

company’s maintenance expenditure on the CNC MT or paid an agreed amount to the leasing company 

for a maintenance package. This explains the lower limit values of the costs as compared to SMEs that 

own their CNC MTs. 

4.1.5 Likert-Type Scale Survey Results 

This section presents the survey results on key maintenance performance parameters (maintenance cost 

contribution, lost productivity cost, downtime cost and maintenance effectives). The charted results of 

Likert-Type scale questions are presented in Figure 7, which shows the maintenance cost significance via 

opinion responses for comparison with key maintenance costs and performance parameters. 

 
Fig. 7 Likert-Type Scale Survey Resolution as Stacked Bar Chart 

Maintenance Cost to Operational Cost relationship (MCC) rating was mostly “Moderate” and 

represented 47% of responses in that category. This eluded the high maintenance costs disadvantage of 

CNC MT by Bawa [36], because “High” and “Highest” rates were the least, representing 11% and 0% 

respectively. Lost Productivity Cost to Maintenance Cost relationship (LCC) rating was mostly “Low” 



and represented 47% of responses in that category. Next in rank were “High” and “Highest” each 

representing 20% and 11% respectively. These responses demonstrate alignment with issues like 

production capacity management or calibration issues, which maintenance can address and improve 

[38,40]. Downtime Cost to Maintenance Cost relationship (DCC) rating was mostly “High” and 

“Moderate”, and both represented 52% of responses in that category.  This verifies claims by Ungureanu 

et al. [42] that a major component of maintenance costs is due to malfunction or none productivity of 

CNC MT, known as downtime; as such downtime cost must be factored into maintenance costs. 

Maintenance Effectiveness rating (MOE - Uptime to Downtime relationship) was mostly “Moderate”, 

followed by “Low”, and these represented 42% and 26% of responses respectively in that category. This 

reveals overall equipment effectiveness relationship with Reliability, Availability and Maintainability 

(RAM) parameters that Enparantza et al. [29] mentioned as significant cost contributors for CNC MTs. 

The result of Likert-Type scale questions demonstrates areas of agreement and disagreement with popular 

literature claims, and this may suggest that SMEs’ approach to CNC MT maintenance is unique-in-class. 

4.1.6 Motives for Adopting Predictive Maintenance (PdM) 

SMEs which identified their current maintenance system as PdM, were given further questions to 

facilitate in-depth understanding of motives that influenced adopting PdM as shown in Figure 8. These 

results confirmed suggested benefits of adopting PdM for CNC MTs by Mobley [17] and Selcuk [7]. 

Furthermore, from a CNC MT LCC perspective, these results suggest long term benefits of effective 

maintenance strategy. By focusing on areas like reliability, productivity, safety, quality and cost, an 

organisation tends to benefit from PdM as proposed by Houshyar [44,46], Okoh et al. [48] and Gu et al. 

[50].
 

 
Fig. 8 Motives for Predictive Maintenance Adoption 

 
4.2 Overall Impact of Current Maintenance Strategy for CNC Machine Tools 

A Pareto Chart was generated to establish a relationship between the existing maintenance strategy of 

these organisations and its impact on the overall organisation’s cost, quality, safety and productivity. 

Based on the Pareto principle, which states 20% of problems drive the remaining 80% of problems; 



therefore, by addressing the accumulated majority (vital few) on the left hand side, the results will provide 

direct and indirect impacts to resolve the accumulated minority (trivial many) on the right hand side 

[51,52]. Figure 9 presents participants’ responses on probable issues associated with their current 

maintenance strategy. 

 
Fig. 9 Pareto Chart of Current Maintenance Impact and Relationship 

In order of priorities, first the ‘downtime impact’ was the highest concern especially to SMEs whenever 

the machines are not operating due to low machine effectiveness. Second was ‘machine stop issues’ as 

another significant concern, this relates to the Mean Time Between Failures (MTBF). Third  was the 

‘ineffective maintenance’, which makes a logical connection with the “Swiss-Cheese” model that the 

loopholes in the existing maintenance strategy lead to increased probability of downtime and machine 

stoppage. As mentioned earlier, one can appreciate addressing these three priority issues can provide 

gains in reduced lost productivity, MT operating expenditure (“OPEx”) and ultimately gaining Life Cycle 

value from the MT. 

4.3 Development of Parametric Cost Model 

The parametric cost model results are presented in this section for key parameters that were deemed 

critical maintenance cost drivers, with the intent to establish potential relationships. Just like any 

parametric model, the major limitation is the potential for over simplification of intrinsic influencing 

factors, as well as it being at risk of inapplicability when extrapolated beyond the sample range. 

Nevertheless, this study seeks to initiate research into this area and keep it simple for SME respondents 

to interpret and relate to beyond complexities and avoid the challenges of adaptive implementation as 

stated by Moeuf et al. [53]. 



4.3.1 Key Assumptions for Parametric Modelling 

There was the need to make certain assumptions to rationalise the data responses for the modelling 

process. The model’s major parameters considered are: Machine Data Extraction (MDE), Machine Tool 

Quantity (MTQ) and Machine Failure Rate (MFR) 

Modelling Hypotheses 

This section focusses on explanatorily investigating the maintenance cost drivers of SME’s using CNC 

MT. The above parameters’ (MDE, MTQ, MFR) relationship with Machine Operating Cost (MOC), 

Machine Maintenance Cost (MMC), Machine Lost Productivity Cost (MLC), Machine Downtime Cost 

(MDC) and Machine Overall Effectiveness (MOE) were investigated as shown in Equation (1) to 

Equation (5). The formulated null hypothesis was input variables (InpV) insignificantly correlate and 

predict output variables (OtpV) in a simple parametric linear relationship (cost model); and the alternative 

hypothesis was InpV significantly correlate and predict OtpV in a simple parametric cost model.

 𝑀𝑀𝐶 𝑦𝑖𝑒𝑙𝑑𝑠→    𝑓(𝑀𝐷𝐸,𝑀𝐹𝑅,𝑀𝑇𝑄) (1) 𝑀𝑂𝐶 𝑦𝑖𝑒𝑙𝑑𝑠→    𝑓(𝑀𝑀𝐶) (2) 𝑀𝐿𝐶 𝑦𝑖𝑒𝑙𝑑𝑠→    𝑓(𝑀𝑀𝐶) (3) 𝑀𝐷𝐶 𝑦𝑖𝑒𝑙𝑑𝑠→    𝑓(𝑀𝑀𝐶) (4) 𝑀𝑂𝐸 𝑦𝑖𝑒𝑙𝑑𝑠→    𝑓(𝑀𝐹𝑅) (5) 

Key assumptions were made for the parametric modelling of the survey results, and the following 

parameter are captured:  

 Machine Tool Quantity (MTQ) assumed median value of each group’s range. 

 Machine Operating Rate (MOR) assumed machines operated continuously per shift. 

 Machine Failure Rate (MFR) assumed one failure possibility for each specified range. 

 Machine Maintenance Cost (MMC) assumed cost in units of tens-of-thousands (1x104). 

 Machine Maintenance Type (MMT) assumed numeric values for each maintenance type. 

 Machine Repair Ownership (MRO) assumed numeric values for each ownership type. 

 Machine Data Extraction (MDE) assumed numeric values for data collection scenario. 

 Statistical Testing assumed data from individual each group as unpaired and unrelated. 

4.3.2 Bivariate Relationships in Parametric Models 

The basic mathematical linear equation was used to correlate data in a simple and logical manner, thus 

in Section 4.4, Equation 6 to Equation 10  were derived through investigation of input variables (InpV) 



theoretical and statistical significance in predicting output variables (OtpV) through linear regression 

analysis which was performed in SPSS and supported with graphs from MS Excel. This section focuses 

on the MMC and its impact on other MT performance measure deemed relevant to management [30]. The 

plotted relationships between individual parameters and MMC are shown in Figure 10 to Figure 14, and 

discussed hereafter. 

In Figure 10, the plotted relationship between MMC and MTQ revealed an inversely proportional 

relationship; thus, as MTQ increases, MMC decreases. Although one may expect more MT means more 

maintenance costs, this relationship suggests an indication of economy of scale and scope. 

 
Fig. 10 MMC vs MTQ 

In Figure 11, the plotted relationship between MMC and MFR revealed a directly proportional 

relationship; thus, as MFR increases, MMC increases. Authors infer this supports the logic of more failure 

means more maintenance activities and costs. 

 
Fig. 11 MMC vs MFR 

In Figure 12, the plotted relationship between MMC and MDE revealed a directly proportional 

relationship; thus, MMC increases as MDE increases on the scale 1-5 for MT performance data and 

condition monitoring (where 1 represents no participation, and 5 represents full participation). One may 

infer this cost relations as evidence of potential additional costs associated with acquiring and maintaining 

digital infrastructure for PdM; however, the gains are with reduced lost productivity and unnecessary 

maintenance due to active MT active performance and condition monitoring. 



 
Fig. 12 MMC vs MDE 

In Figure 13, the plotted relationship between MMC and MMT revealed an inversely proportional 

relationship; thus, as MMT changes from “PdM”, through “CM” into “PM”, MMC decreases. Although 

PdM comes with additional costs and PM/CM are the least costly strategies; there are more cost drivers 

of MMC which PdM can influence for reduction. Furthermore, the costly impact of CM due to unplanned 

failure, while PM is deemed less costly due to its progressive development is clearer.

 
Fig. 13 MMC vs MMT 

In Figure 14, the plotted relationship between MMC and MRO revealed a directly proportional 

relationship; thus, as MRO changed from Leased into Owned, MMC increases. One may infer this as 

evidence for potential justification that maintenance impact is felt more by organisations owning the MT 

thus taking on the full LCC, as compared to those leasing the MT and takes on minimal LCC. 



 
Fig. 14 MMC vs MRO 

In summary, the relationships demonstrated simple bivariate relationships between MMC and its 

predictors (MDE, MFR, MTQ); and this approach was used for all the other output parameters that relate 

to MMC. A number of these parameters seem to form weak relationships with MMC, in terms of the 

coefficient of determination (R2) values with the exemption of MRO’s dummy variables. Therefore, all 

relationships were investigated through exploratory statistical methods to check the degree of accuracy 

in predicting MMC and potential cross-relationship beyond MMC, as detailed in the next section [50]. 

4.4 Statistical Confirmation on Parametric Relationships Validity 

This section addresses statistical relationships between parameters. The selected of significance level 

(α-level) was 0.20 with 80% power confidence and 5% error margin for the 21 responses (deemed as 

population size); thus the evaluated applicable sample size was 19 responses (verified via the online 

survey platform). The adapted population and sample size were due to limited participation and data 

accessibility within the research constraints; nevertheless, the selected and achieved statistical power 

confidence, significance level and sample size were in accordance to recommendations by Vishwakarma 

[60] and Kim [54]. Correlation and linear regression were performed to investigate significant predictors 

of other parameters; thus, evaluating the modelling hypothesis using multivariate regression in SPSS and 

Microsoft Excel. 

Equation 6 to Equation 10 show linear equations generated from the multivariate regression and 

consequently, used for the cost model. Since MMC was the main output, it is examined briefly in this 

section. The Equation 6 shows that all coefficients are positive except MTQ, which seems to confirm that 

the logical relationship of DV being directly proportional to InpV and increased MMC. Alternatively, the 

negative coefficient of MTQ, demonstrates an indirectly proportional relationship between MCC; 

therefore, it reduces MMC. Secondly, the absolute values of each predictor’s (InpV) coefficient 

demonstrate MFR, MDE and MTQ, respectively, contributes significantly towards the MMC. The 

intercept shows that the MCC begins above zero (0), which indicates that there are other elements of 

MMC, aside from these InpVs. The MMC prediction iteration for linear relationships with other 

parameters implication are briefly shown and discussed below. 



 𝑀𝑀𝐶 = 17719 + 8094𝑀𝐷𝐸 + 173052𝑀𝐹𝑅 − 526𝑀𝑇𝑄 (6) 𝑀𝑂𝐶 = 29516 + 1.4𝑀𝑀𝐶 (7) 𝑀𝐿𝐶 = 753 + 0.8𝑀𝑀𝐶 (8) 𝑀𝐷𝐶 = 1021 + 0.8𝑀𝑀𝐶 (9) 𝑀𝑂𝐸 = 0.69 − 1.99𝑀𝐹𝑅 (10) 

Although MRO demonstrated a stronger R2 value when related to MMC, it was exempted from MMC’s 

final predictor variable list because it served as an exploratory (dummy) variable to understand the 

qualitative impact of MT ownership within the dataset; thus avoiding any sign of bias that Kim [54] and 

Figueiredo Filho et al. [55] cautioned researchers on blindly accepting statistical significance. 

One may be curious on how MMT relates to MMC.  However, this led to an insignificant results from 

both the correlation and regression analysis. When the MRO is inserted into the predictor variable pool, 

it shows itself as the only significant value and pushes other theoretical values beyond the α-value. When 

examined closely, it was clear that the cluster of MRO responses were owned MT rather than leased; thus 

the exploratory (dummy) variable MRO confirmed the significant difference between MT ownership by 

revealing that SMEs who owned the MTs felt the impact of MMC more when MRO was incorporated 

into the regression model [56,57]. 

The InpVs, MDE, MTQ and MFR, did not individually provide the strongest account on variations, 

however, they performed better when combined, both statistically and theoretically towards MMC’s 

prediction; thus, these InpVs were retained [55]. 

Additionally in an attempt to verify the model’s reliability on unseen small-n data; the 70-30 data 

splitting rule was applied. Acquired data was entered by participants without a deliberate sequence, thus 

enabling the data to be randomly grouped into two dataset: training and test sets. The training datasets 

were used to develop a regression model and the test dataset were used for the model’s validation. The 

output for all cases were cross-validated by comparing the absolute error in the predicted outputs of both 

the training and test outputs with that of the benchmark model; sample results are reported in Table 3. 

 
Table 3: Cross-Validation Datasets Model Outputs (Predicted Values) 

Trial# <10% dataset variance <20% dataset variance 

1 (14 train, 5 test) 
4 entries of test dataset 
(67% of test dataset) 

5 entries of test dataset 
(83% of test dataset) 

2 (15 train, 4 test) 
3 entries of test dataset 
(60% of test dataset) 

4 entries of test dataset 
(80% of test dataset) 

 

Results in both cases reveal that over 60% of the test datasets had a <10% variance (90% accuracy) 

from the benchmark model’s data, while over 80% of the test data had <20% variance (80% accuracy) 



from the benchmark model’s data. This aided in affirming a relationship validity at the 80% power 

confidence level set for the parametric model and equally validate the model’s accuracy at 80%. 

4.4.1 Parametric Cost Model Output 

This section presents trends established with the theoretically and statistically significant predictors of 

MMC from the developed PdM Cost Model. Table 4 indicates an output on the expected cost savings 

when comparing MMT, MTQ, MFR and MDE with MMC.  Where MTQ varied while all other variables 

remained fixed over 1-50 CNC MTs. The trend in Table 4 generally predicts cost savings for operating 

more MT with PdM and PM. While CM predicts no savings, PM cost savings begins at £773 for one MT 

and increases to £22,686 for 50 MT, and PdM cost savings begins at £22,804 for one MT and increases 

to £48,585 for 50 MT. These predicted cost saving results are derived from primary data modelling in 

concordance with literature and were not values obtained directly from on-site observations. 

Table 4 Maintenance Cost Savings Mapping Over 1-50 CNC MTs 

Maintenance  

Strategy 

 (MMT) 

Failure 

Rate 

 (MFR) 

Data 

Collection 

(MDE) 

Predicted Amount of 

Estimated Savings 

(£) 

Corrective Maintenance (CM) Weekly None £0 
Preventive Maintenance (PM) Monthly Some £773 - £22,686 

Predictive Maintenance (PdM) Yearly All £22,804 - £48,585 

Figure 15 and Figure 16 show the cost model’s output for MMC, MOC, MLC and MDC of both 

maintenance strategies (PM and PdM) to support understanding of the trend with increasing operation of 

MTs. Figure 15 shows a decreasing trend for MOC and its components, the cost contributors show 

marginal cost savings; thus, eventually resulting in MOC entering savings at 45 MTs when using PM. 

Figure 16 shows a decreasing trend for MOC and its components too. However, all the cost contributors 

show cost savings from one MT onwards, thus resulting in significant MOC savings when applying PdM. 



 
Fig. 15 Cost Model Output: MMT=PM, MDE=Some, MFR=Month 

 

 
Fig. 16 Cost Model Output: MMT=PdM, MDE=All, MFR=Yearly 

 

 

The parametric cost model outputs demonstrated a relationship between MOC, MMC, MLC and MDC 

with their predictors MDE, MTQ, MFR and MMT. The next section discussed the data analysis results 

and reflects on literature in the context of this paper’s hypotheses (H1-H3). 

 



5 Discussion 

In Section 2, both academic and industry related literature were reviewed on existing trends in 

maintenance strategies, MT evolution, maintenance’s impact on their LCC and how these literatures are 

significant to SMEs. In Section 4, the results of primary data and secondary data assessments established 

a meaningful trend between MT maintenance strategies and their estimated annual maintenance cost 

contribution to the MT’s LCC; the section identified potential cost savings trends when PdM is fully 

applied factory wide and over a larger pool of MTs. 

5.1 Hypothesis (H1) 

Reviewed literature revealed PdM as “nothing-new”; however, new technologies and frameworks have 

augmented PdM’s potential to migrate into Industry 4.0 [17]. Survey responses confirmed existence of 

CNC MTs equipped with data collection technologies within SME CNC machine shops. More recent 

literature argues that the PdM adapts from PM, which provides a rudimentary perspective on maintenance 

as a value-adding activity. Therefore, with survey results revealing PM as the predominant SME 

maintenance strategy, it sets the path for suitable PdM adaptation. Lastly, industry case studies of 

implementing PdM for CNC machine shops were confirmed through survey results, with existing 

evidence of PdM application for SME CNC machine shops; thus affirming PdM’s suitability for SME 

CNC machine shops in “Industry 4.0”.  

5.2 Hypothesis (H2) 

Initial analysis demonstrated Machine Maintenance Cost (MMC) as inversely proportional to Machine 

Maintenance Type (MMT); thus suggesting PdM is more expensive than PM and CM. However, literature 

review demonstrated significant cost reduction when migrating from traditional maintenance (PM or CM) 

to PdM (see Figure 3).  The PdM’s relative high costs can be associated with initial implementation (see 

Table 2).  However, empirical data analysis revealed PdM as the most cost-effective maintenance strategy 

(see Figure 10). Correlation and regression analysis confirmed Machine Data Extraction (MDE), Machine 

Failure Rate (MFR) and Machine Tool Quantity (MTQ) as MMC’s significant predictors. MMC’s 

predictor coefficients (B) demonstrated MDE as the better alternative.  However, MFR was the most 

influential cost driver because each unit decrease of MFR resulted in £173,052 reduction in MMC per 

year. Additionally, each unit increase in MDE resulted in £8,094 increase in MMC, while each unit 

increase in MTQ resulted in £526 decrease of MMC. Maintaining MDE at least capacity results in 

approximately 33% of its influence on the cost driving potential of MFR; however, increasing MDE to 

full capacity results in approximately 85% influence on the cost driving potential of MFR. As PdM seeks 

to significantly reduce MFR, it will reduce MMC and the impact of MDE’s cost significantly (see 

Equation 6). Results in Table 5 shows significant evidence that InpVs (MFR, MDE, MTQ) significantly 

predict OtpV (MMC).



Table 5 Machine Maintenance Cost Model Descriptive Statistics 

 MMC MFR MDE MTQ 

Mean £34736.84 0.06 1.68 12.37 
Standard Deviation £18064.21 0.05 1.20 12.41 

Median £30000.00 0.04 1 7 

Model Summary 𝑀𝑀𝐶 𝑦𝑖𝑒𝑙𝑑𝑠→    𝑓(𝑀𝐷𝐸,𝑀𝐹𝑅,𝑀𝑇𝑄) 
F(3,15)=2.14, p=0.14 

The model’s fit summary metrics, R2 and adjusted R2 shows 30% to? 16% of the variance in MMC was 

accounted for by its linear relationship with its predictors (MFR, MDE and MTQ). A number of literature 

indicated PdM reduces MFR (see Table 1), hence resulting in MMC reduction. Adopting caution by 

Figueiredo Filho et al. [55] on blindly following statistical significance norms of p≤0.05; this MMC model 

was deemed significant to account for α-level of 0.15 and 85% confidence level; which was lower than 

the initially selected α-level and confidence level for analysis. Apart from the small sample size, both 

statistical and theoretical evidence deem this model’s outputs as significant because the results ranges 

were compliant with the research investigations in reviewed literature; thus, affirming PdM as cost 

effective for SME CNC machine shops. This partially confirms hypothesis (H2) as it demonstrates PdM 

might be costly for a single SME with small MTQ (1-5), but is cost effective as MTQ increases. 

5.3 Hypothesis (H3) 

Considering the benefit-cost ratio (value) definition, value is improved by either reducing costs, 

increasing benefits or both. A number of literature suggested benefits of PdM which include reduced 

maintenance, lost productivity and downtime costs.  Additionally, PdM improves machine availability, 

reliability and Machine Overall Effectiveness (MOE) by reducing MFR (see Table 1). Analysis results 

buttress this claim in literature by identifying MFR as the major maintenance cost and performance driver, 

though it seemed to have a weaker correlation; therefore, incorporating MFR from a theoretical 

perspective in relation to MMC, where the Type II error was avoided [54]. The relationship between MFR 

and MOE were inversely proportional; thus, as MFR reduced, MOE increased.  Also, the relationship 

between MFR and MMC were directly proportional; thus, as MFR reduced, MMC reduced. These 

significant relationships established through data analysis suggest MFR is an influencing factor which 

can result in value creation when tackled properly. The PdM seeks to reduce MFR by monitoring and 

predicting imminent failure, thus MMC is reduced while improving productive uptime and MOE. This 

significantly aligns with tangible value creation for SME CNC machine shops, thus PdM supports value 

by reducing cost and increasing R&M and OEE metrics [19].  

5.4 Additional Comments 

The financial cost model are consistent with most of the literature and case studies on PdM adoption 

benefits and add additional perspective in the case of CNC SMEs. Additionally, MMC’s high correlation 

with Machine Repairs and Overhauls (MRO) demonstrated some validation on the assumption that the 

SMEs who own their MTs will be highly affected by their maintenance costs. The SMEs seem to be 



predominantly implementing PM.  However, their breakdown frequency of one month or less accounts 

for about 70% of breakdowns. This underlines the existing challenges with effective maintenance as 

argued by Marais and Saleh [58] and Galar et al. [19]; thus, providing  a sound justification to migrate 

towards PdM to reduce MFR. The results suggest evidence on SMEs being impacted by imperfect PM 

and provide some understanding on their high maintenance costs. From the perspective of readiness for 

Industry 4.0, it is evident that most of the SME’s CNC MTs are unequipped with data collection sensors 

and are prone to high MFR as recorded in approximately 68% of responses. 

5.5 Academic and Practical Comparison 

The results evidently enable one to appreciate PdM’s contribution towards reducing productivity loss 

and operating expenditure (“OPEx”) by addressing downtime impact, machine stop issues, and 

ineffective maintenance. These are issues from industry mentioned in the several literatures, presenting a 

sound response to hypothesis (H2); nevertheless, as Equation 6 demonstrates a starting intercept point of 

£17,719. This shows PdM requires additional overhead costs for both physical and data systems as well 

as information security. Although comparing the means of PdM, PM and CM suggest that PdM is more 

expensive than the others, considering the significant contribution of breakdown frequency on 

maintenance cost concludes that PdM is deemed to be the best solution among all three maintenance 

techniques as it will predict imminent failures and eliminate unrequired scheduled maintenance based on 

Machine Tool (MT) condition monitoring. It was inferred that the difference in mean costs was due to the 

lack of adequate data of PdM for MT by SMEs (14.3% of total MMT). Major feedback from participants 

expressed positive value of the cost estimation dashboard’s assistance in making informative maintenance 

decisions; while, minor feedback expressed need for orientation on operating the dashboard. 

This study’s output adds insight into the essence of SMEs readiness for Industry 4.0 migration. As 

future of manufacturing is trending and new technologies are supporting PdM and Cyber-Physical 

Maintenance (CPM), this study’s novelty contribute towards both academic and industrial partnership 

with SMEs pooling together to optimise their CNC MT maintenance costs through the recommended 

system architecture proposed below in Figure 17. 



 
Fig. 17 Proposed DNC PdM System Architecture for SME Pooling 

 

As demonstrated from the inverse cost relationship with quantity of machines, and through existing 

DNC protocols discussed in literature review, it is proposed that the networked CNC MTs in organisations 

pool their resources through a central data collection and maintenance service; thus building upon the 

shared maintenance database capabilities concepts by Kans and Ingwald [32] to adapt MT maintenance 

capabilities and decisions further towards IR4.0. The SMEs will benefit not only from economy of scale 

and scope, but also from the shared intelligence of predicting failure, scheduling maintenance, and 

securely transferring capabilities to other members on the network. The network will support reducing 

lost productivity, downtime and maintenance costs and ultimately operating costs towards extending the 

useful life of CNC MT and reducing its LCC through PdM. 

As part of the research, a Power BI Dashboard was developed and can be publicly accessed at: 

https://bit.ly/2w7IoZd 
 

6 Conclusion and Future Research 

This study originated from an intersection of industrial transformation, MT maintenance, LCC and their 

overall impact on a SME’s readiness for Industry 4.0. The study sought to investigate SME CNC machine 

shops’ readiness to adopt and sustain PdM within Industry 4.0 and makes the following contributions 

below. 

Identifying PdMs suitability for SME CNC machine shops in “Industry 4.0”: this is evident from the 

statistical data results and analysis on survey responses, showing that some SMEs are using PdM; 

however, majority are using PM and CM. The results supported with secondary data suggest that 

predictive maintenance can be implemented by SMEs. Proposing a cost effective PdM DNC system 

architecture for SME CNC machine shops: this is evident from a combination of literature review from 



industry and academia that was used to verify the analysed survey results to establish a cost model. The 

cost model estimates PdM as the most cost-effective strategy for SMEs with predicted cost savings 

ranging from £22,804–£48,585 compared to PM which ranged from £773–£22,686; with no savings for 

CM. The modelled range was from 1–50 CNC MTs; therefore, providing significance to the proposed 

DNC PdM system architecture that allows SMEs to pool together. Nevertheless, some of the limiting 

issues of small sample size resulted in 16%–30% account for variance in maintenance cost prediction by 

its predictors; thus, an increase in sample size and further multivariate analysis could have resulted in 

improved R2 and adjusted R2 values, and ultimately improved confidence power. Additionally, the large 

data may be analysed from multiple perspectives that support statistical robustness testing and validation 

techniques. Furthermore, this exploratory venture affirmed PdM’s additional tangible value creation for 

SME CNC machine shops: the demonstrated inversely proportional relationship between failure rate and 

maintenance, downtime and lost productivity cost, as well as machine overall availability and 

effectiveness as discussed; thus, resulting in significant and tangible value creation for the SME. 

Nevertheless authors acknowledge the model’s predicted output require a next stage of further 

participatory verification and exploratory adaptation as deemed relevant to selected cases of SMEs 

providing actual observed data after implementing the proposed system architecture. 

A limitation to this research finding is its focus area on UK’s criterion on SME definitions; nevertheless 

these have a scalable adaptability to the European region due to close similarities on SME definition 

criteria. Furthermore the focal predictors were MTQ, MFR and MDE, which are usual maintenance data 

that are tracked by most large companies thus facilitating the opportunity to address scalability by the 

theory proposed. Nevertheless, since MMC entails several influencing conditions and each MDE practice 

or package may differ from company to company, there remains a potential limitation on immediate 

transferability without tailoring the model specifically for their operation. Authors consider the model’s 

principles are consistent with literature, thus in theory the model serves as a reference point for PdM 

decision making at different CNC companies size both within and beyond UK. In order to successfully 

adapt the model to a setting beyond the purpose authors specify for, a larger company or one beyond the 

UK will have to assess their MFR and MDE levels; then convert them onto a numeric scale 0-1 and 1-5 

respectively as designed. Additionally the MTQ margin within 1-50 will require direct plug in of the 

MTQ; however, beyond 50+ MTQ; there will be a requirement for the organisation to extrapolate with 

parameters from within the PdM Cost Model’s range. Finally with the issue of currency conversion from 

GBP to any other currency, the user beyond UK will require a conversion rate that is equivalent to that of 

2017-2018. 

Despite the strong advocacy for “Industry 4.0” of MTs; it must be cautioned that there are several 

concerns or questions beyond the scope of this study that must be addressed on readiness to adapt DNCs 

maintenance systems in terms of information security shown in Table 6. These are areas worthwhile 

addressing in further research to assure the readiness of SME CNC machine shops migration into Industry 



4.0. It is therefore recommended that further research in this area be continued with larger data sample 

sizes and improved statistical power. Additionally, issues associated with information security and data 

protection for the proposed system is equally recommended for consideration by future researchers. 

Finally, extended literacy of Industry 4.0 from the perspective of SMEs is encouraged since the report by 

Wright [59] reveals SMEs are great contributors to Gross Domestic Products (GDP) with 2.0tn annual 

revenue that represented 52% of UK’s private sector; thus should not be excluded from Industry 4.0 

migrations.

Table 6: Cyber Security Concern Areas Questions & Descriptions 

Concern Area Concern Questions/Descriptions 

Data collection and storage strategies What gets measured and who or where does it get stored, be 
it internally or externally? 

Network infrastructure service plans Is the network infrastructure contract setup for support or 
maintenance by an external company or everything 
managed in house? 

Data protection plans Level of privacy on sensitive data collected, 3rd party 
company’s privileges to the company’s machine tool data 
e.g. tolerance, machining time, down time, etc.), how does 
unused data get destroys? Are Antivirus, Malware or 
Firewalls that block out hackers or competitors? 

Access Control Who has access to this data and what level of information 
can be accessed, which other network infrastructure does 
the data tie into staff list, operator’s personal details, 
loaning company’s details, company’s financial 
information and propriety information? 

Internet reliability The amount of uptime to the network service as once the 
network is down means accessing and controlling these 
machines, data feedback transmissions may be lost? 

Overall, the sample size, statistical significance convention limitations, anonymous positive feedback 

received from the dashboard users supported in validating the cost model’s outputs. It was inferred that 

the online dashboard provided significant support for SMEs to consider exploring the path towards PdM. 

Due to the significant acquisition cost of PdM architecture and extended maintenance of both computer 

and physical MT, the need arises for collaborations among SMEs via the proposed DNC PdM architecture 

to reduce unit MT costs and gain collectively from economy of scale and scope on a shared network. In 

summary this paper presents the study’s contribution in the following manner: 

 Proposed a cost effective PdM DNC system architecture for SME CNC machine shops that predicts 

cost savings ranging from £22,804–£48,585 over a range of 1–5 CNC MTs 

 Affirmed PdM’s additional tangible value creation for SME CNC machine shops with potential 

reduction in MFR which also reduces MDC, MLC and MOE for the MTs 

 Introduces opportunities for further exploratory research within the PdM subject area taking into 

account the perspective of SMEs, since they greatly contribute to UK’s GDP and over 50% of 

participants expressed interest in the research outcome to show their curiosity towards the subject area 
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Appendix A: Survey Questions & Response Summary 
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Q1    What is the total number of employees in your organisation? 

Q2    How many CNC machines do your company currently operate? 

Q3    Do you currently own your CNC machines or lease them from another vendor? 

Q4    What is the total operating hours of your CNC machines per day? 

Q5    What is your current total annual maintenance costs for CNC machines in £GBP? 

Q6    Are any of your CNC machines use data collection sensors or are internet connected?   
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7    On a scale from 1- 5, (1 being the lowest, and 5 being the highest) how would you rate each of the following?  

Q7.1    Current maintenance costs of your CNC machines compared to total operations costs 

Q7.2     Loss of productivity due to maintenance 

Q7.3     Impact of down time due to machine breakdown 

Q7.4     Effectiveness of your current maintenance processes 
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Q8      On average, how often do you face a machine stop due to a performance issue or breakdown?  

Q9      What is your current maintenance strategy for your CNC machines?  

Q10    What were your primary motives of choosing a predictive maintenance approach (Check all that applies)? 
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Q11    On average, what was your maintenance costs per machine as a percentage of total operations costs before 

using predictive maintenance?  

Q12    On average, what is your current maintenance costs per machine as a percentage of total operations costs 

after using predictive maintenance? 

Q13 Do you consent that I want to be contacted with a summary of the research results when the research is 

concluded on September 2018? 


