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Gestational diabetes mellitus (GDM) affects 3–14% of preg-

nancies, with 20–50% of these women progressing to type 2

diabetes (T2D) within 5 years. This study sought to develop a

metabolomics signature to predict the transition from GDM

to T2D. A prospective cohort of 1,035 women with GDM

pregnancy were enrolled at 6–9 weeks postpartum (base-

line) and were screened for T2D annually for 2 years. Of

1,010 women without T2D at baseline, 113 progressed to

T2D within 2 years. T2D developed in another 17 women

between 2 and 4 years. A nested case-control design used

122 incident case patients matched to non–case patients by

age, prepregnancy BMI, and race/ethnicity. We conducted

metabolomics with baseline fasting plasma and identified

21metabolites that significantly differed by incident T2D sta-

tus. Machine learning optimization resulted in a decision tree

modeling that predicted T2D incidence with a discriminative

power of 83.0% in the training set and 76.9% in an indepen-

dent testing set, which is far superior to measuring fasting

plasma glucose levels alone. The American Diabetes Associa-

tion recommendsT2Dscreening in theearly postpartumperiod

via oral glucose tolerance testing after GDM, which is a time-

consuming and inconvenient procedure. Our metabolomics

signature predicted T2D incidence from a single fasting blood

sample. This study represents the first metabolomics study

of the transition from GDM to T2D validated in an independent

testing set, facilitating early interventions.

Currently, gestational diabetes mellitus (GDM) occurs in 3–
14% of pregnancies, and type 2 diabetes (T2D) develops in
20–50% of women with GDM within 5 years of the index

pregnancy (1,2). The American Diabetes Association (ADA)
thus recommends T2D screening at 6–12 weeks postpar-
tum and every 1–3 years thereafter via testing fasting
plasma glucose (FPG) level using a 2-h 75-g oral glucose
tolerance test (OGTT), or hemoglobin A1c level for women
in this high-risk population (3). However, the screening of
women after GDM pregnancy remains suboptimal, with
very low compliance rates of 16–19% (4,5), although inte-
grated health care systems report screening rates of 60%
(2). The reasons for low rates include logistical difficulties in
administering an OGTT, fear of receiving a diagnosis of
diabetes (6), and failure to attend the postpartum follow-up
examination (7). Furthermore, many women with a previ-
ous GDM pregnancy hold a faulty low-risk perception of
T2D incidence (8,9). A metabolic risk score that can quan-
tify risk, for prediction of the transition from GDM to
T2D with a single nonfasting test, would thus be bene-
ficial, but is currently unavailable. Although several risk
scores have been developed for T2D (10,11), none of
them consider a history of GDM diagnosis. Thus, the
prediction of T2D in women with a previous GDM preg-
nancy is critical for individual risk stratification and
early prevention after delivery.

Herein, we have used a metabolomics approach that
implements advanced machine learning methods as an
excellent tool to identify early diagnostic biomarkers that
have the best predictive abilities for complex pathologies such
as diabetes, which is a heterogeneous disorder of glucose
metabolism that can have diverse root cause across various

1Department of Medicine, University of Toronto, Ontario, Canada
2Department of Biomedical Sciences, University of Copenhagen, Copenhagen,

Denmark
3Department of Physiology, University of Toronto, Ontario, Canada
4Kaiser Permanente Northern California, Division of Research, Oakland, CA
5Department of Molecular Genetics, University of Toronto, Ontario, Canada
6Department of Obstetrics and Gynaecology, University of Toronto, Ontario,

Canada

Corresponding authors: Erica P. Gunderson, erica.gunderson@kp.org, and

Michael B. Wheeler, michael.wheeler@utoronto.ca.

Received 17 December 2015 and accepted 27 May 2016.

Clinical trial reg. no. NCT01967030, clinicaltrials.gov.

This article contains Supplementary Data online at http://diabetes

.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-1720/-/DC1.

E.P.G. and M.B.W. are co-senior authors.

© 2016 by the American Diabetes Association. Readers may use this article as

long as the work is properly cited, the use is educational and not for profit, and

the work is not altered. More information is available at http://diabetesjournals

.org/site/license.

Diabetes Volume 65, September 2016 2529

M
E
T
A
B
O
L
IS
M

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ia
b
e
te

s
jo

u
rn

a
ls

.o
rg

/d
ia

b
e
te

s
/a

rtic
le

-p
d
f/6

5
/9

/2
5
2
9
/6

0
1
3
7
8
/d

b
1
5
1
7
2
0
.p

d
f b

y
 g

u
e
s
t o

n
 2

5
 A

u
g

u
s
t 2

0
2
2

http://crossmark.crossref.org/dialog/?doi=10.2337/db15-1720&domain=pdf&date_stamp=2016-08-02
mailto:erica.gunderson@kp.org
mailto:michael.wheeler@utoronto.ca
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-1720/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db15-1720/-/DC1
http://diabetesjournals.org/site/license
http://diabetesjournals.org/site/license


racial and ethnic subgroups (12). We measured numerous
metabolites in stored frozen fasting plasma samples drawn
at 6–9 weeks postpartum under standardized research pro-
tocols from women with recent GDM without diabetes via
the 2-h 75-g OGTT and in whom annual follow-up screening
was conducted with 2-h 75-g OGTTs to identify incident
cases of T2D within 2 years.

Previous metabolomic investigations of T2D in the
general population have revealed significant differences
between patients with diabetes and normal glucose-
tolerant (NGT) control subjects (13–22), although the
majority of these were cross-sectional studies of T2D
prevalence. Recently, a study (23) performed lipodomic
analysis and evaluated the risk of T2D among women
with previous GDM, who were of northern European an-
cestry. In this study, clinical variables combined with lipid
species predicted 21 cases of T2D during 8.5 years of
follow-up with ;80% accuracy. However, this signature
has not been independently validated or tested among
other ethnicities. Thus, there is an unmet need to accu-
rately predict T2D after GDM pregnancy with a more con-
venient and accurate method. This study represents the first
metabolomics study of the transition from GDM to T2D
and offers a quantitative measure of risk, as well as insight
into the etiology of the transition.

RESEARCH DESIGN AND METHODS

Study Design

The Study of Women, Infant Feeding, and Type 2 Diabetes
Mellitus After GDM Pregnancy (SWIFT) is a prospective
cohort study that enrolled 1,035 racially and ethnically
diverse women (age 20–45 years) in whom GDM was di-
agnosed via a 3-h 100-g OGTT based on the Carpenter and
Coustan criteria (24), who had no history of diabetes or
other serious health conditions, received prenatal care,
and delivered singleton pregnancies after $35 weeks
of gestation at Kaiser Permanente Northern California
(KPNC) hospitals during 2008–2011 (25). Details of the
study recruitment, selection criteria, methodologies, and
baseline characteristics of the cohort (75% minority
women [Asian, Hispanic, and black] and 25% of low in-
come), have been described previously (25,26). The SWIFT
participants provided written consent to attend three in-
person study visits at baseline (6–9 weeks postpartum),
and 1 year and 2 years postpartum that included a 2-h
75-g OGTT, and assessments of lactation intensity and
duration, sociodemographics, medical and reproductive his-
tory, lifestyle behaviors, and anthropometry (25). At each
study visit, trained research staff collected and processed
plasma samples at the fasting and 2-h time points during
the 75-g OGTT and completed assessments. These plasma
samples were analyzed within several weeks for levels of
glucose and insulin, and subsequently for selected levels of
lipids and lipoproteins, as previously described (26,27). The
study design and all procedures were approved by the KPNC
Institutional Review Board for the protection of human sub-
jects. Of 1,010 women without T2D at baseline, 959 (95%)

had follow-up assessments for T2D status within 2 years
after baseline via annual study OGTTs and electronic med-
ical records to capture diagnoses of diabetes from KPNC
clinical laboratory tests within and beyond the 2 years
after baseline (28). T2D diagnosis was based on ADA criteria
(29).

Design of Experiment

Of the 130 incident cases of T2D, 113 cases developed
within 2 years after baseline (28), and another 17 cases
developed beyond 2 years as of December 2014. Using a
nested case-control study design within the prospective
cohort, 122 incident cases of T2D (105 within 2 years,
and 17 beyond 2 years postbaseline) were matched to
non-T2D control subjects in a 1:1 ratio based on age, pre-
pregnancy BMI, and race/ethnicity. Age, prepregnancy
BMI, and ethnicity/race distributions for the excluded in-
cident T2D cases were not significantly different from in-
cident T2D cases included in the analysis. The 122 incident
T2D cases were split in a 2:1 ratio for the training and
testing sets. Importantly, for the training set incident
T2D cases were matched to control subjects on time of the
annual screening tests within the 2 years of follow-up and
used to develop a metabolic risk signature. Subsequently,
the testing set, comprising 28 incident cases within 2 years
as well as 14 incident cases beyond 2 years, was used to
independently ensure the generalizability of the model. Fig.
1 displays the study design and work flow.

Metabolite Assay Development

To assay all metabolites of interest, a total of 182metabolites
were subpaneled into four major methods and evaluated in
fasting plasma samples collected at 6–9 weeks postpartum.
The subpanel of 13 free fatty acids and 4 amino acids were
selected based on a literature review of over a dozen T2D
metabolomics studies (13–22,30,31). These metabolites
were chosen on the basis of consistency in trend direction
and significance in a minimum of two studies. Both free
fatty acid and amino acid subpanel assays were developed
in-house, as described below in the following relevant sec-
tions. In addition, a total of 163 metabolites were assayed
using the p150 AbsoluteIDQ plate technology according to
the manufacturer instructions (Biocrates Life Sciences AG,
Innsbruck, Austria). All assays were performed by the An-
alytical Facility for Bioactive Molecules (The Hospital for
Sick Children, Toronto, ON, Canada). b-Hydroxybutyrate
(catalog #700190; Cayman Chemicals, Ann Arbor, MI) was
assayed by ELISA, whereas FPG level and 2-h OGTT postload
glucose (2hPG) were assayed as previously described
(26). Only metabolites with a coefficient of variation
of ,20% for each batch were accepted for the multiplex
methods, although the majority had coefficients of variation
of ,15%. In addition, values were accepted only if the read
concentration was within the dynamic range of the assay.

Amino Acid Analysis

For amino acid analyses, aliquots (10 mL) of plasma samples
and standard mix samples (0.05–50 mg/mL leucine [Leu]
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and isoleucine [Ile], 0.005–5 mg/mL 2-aminoadipic acid
[2-AAA] and phenyl acetyl glutamine [PAG]) were spiked
with the internal standard mixture (5 mg/mL Leu-d10 and
Glu-d3, 0.5 mg/mL PAG-d5 in H2O plus 0.1% fatty acid)
and extracted by protein precipitation using 600 mL of
methanol. Samples were then derivatized with 100 mL 3N
HCL in n-butanol, evaporated, and reconstituted in 500 mL
of the liquid chromatography–tandem mass spectrometry
(LC-MS/MS) mobile phase. LC-MS/MS analysis was per-
formed on a 1290 Infinity LC System (Agilent Technologies)
with a Q-Trap 5500 Mass Spectrometer (AB Sciex). Chroma-
tography was performed isocratically on a Kinetex HILIC
Column (2.6 mm, 100 Å, 50 3 4.6 mm) (Phenomenex) at a
flow rate of 500 mL/min using 5 mmol/L ammonium formate
(pH 3.2) in 10/90 water/acetonitrile as the mobile phase. Data
were acquired by scheduled multiple reaction monitoring.

Free Fatty Acid Analysis

For selected fatty acids, aliquots (20 mL) of plasma sam-
ples and standard mix samples (palmitic [C16:0], palmi-
toleic [C16:1 n-7], cis-7-hexadecenoic [C16:1 n-9], stearic
[C18:0], oleic [C18:1 n-9], vaccenic [C18:1 n-7], linoleic

[C18:2], a-linolenic [C18:3], arachidic [C20:0], eicosenoic
[C20:1 n-7], arachidonic [C20:4], eicosapentaenoic [C20:5],
docosapentaenoic [C22:5], and docosahexaenoic [C22:6]
acids) were spiked with internal standards (myristic acid-d3
[C14:0-d3], palmitoleic acid-d14 [C16:1-d14], heptadecanoic
acid [C17:0], and eicosanoic acid-d3 [C20:0-d3]). Samples
were then acidified with 1 mol/L HCl, and extracted twice
with 1 mL of hexane. The combined hexane phases were
taken to dryness and derivatized with equal amounts of 1%
pentafluorobenzyl bromide and 1% diisopropylamine, evap-
orated, and reconstituted in 200 mL of hexane. The samples
were then injected on the gas chromatography–mass spec-
trometry system. Excellent separation on the chromato-
graph was observed for every fatty acid, except for oleate
and vaccenate. These two were thus combined to give a
total concentration for C18:1.

Statistical Analysis

Testing and training set characteristics at baseline were
compared using x

2 statistics for categorical variables
(race, education, perinatal characteristics, and medication
use) and by comparison of means for continuous variables

Figure 1—Study design and metabolic assay work flow. A: Study design of the SWIFT prospective cohort, a total of 1,035 women in whom

GDM was diagnosed were enrolled at 6–9 weeks postpartum (baseline) and screened via 2-h 75-g OGTTs. At baseline (V1), 21 women with

T2D and 4 ineligible women were excluded from the follow-up. The study observed 1,010 participants without diabetes who were

rescreened annually via OGTTs with retention rates of 85% and 83% for 1 and 2 years, respectively. Prospective cohort sample sizes

for non-T2D and incident T2D are as follows: T2D developed in 59 women at 1 year and in 54 women at 2 years; T2D developed in another

17 women beyond 2–4 years postbaseline. B: Work flow of metabolomics assay. A total of 182 metabolites were assayed in plasma from

V1 (baseline) using LC-MS/MS, gas chromatography–mass spectrometry (GC-MS), and ELISA. For further methodology, please refer to

Supplementary Table 1.
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using ANOVA (levels of fasting plasma lipids and glu-
cose, age, and BMI) and comparison of medians for the
months of follow-up using the Wilcoxon rank sum test. A
two-tailed independent t test was computed to determine
significant differences between non-T2D and incident
T2D in the baseline metabolite concentrations, with an
a-value set at P , 0.05 using SPSS Statistics version
20 (IBM, Armonk, NY) and then with P values corrected
for multiple comparisons with the Benjamini-Hochberg
method using RStudio software version 0.99.486 (Boston,
MA). Predictive modeling was performed using WEKA
software (University of Waikato, Hamilton, New Zealand).

The best model was selected as the one with the highest
score in the summation of the discriminative power from
the receiver operating characteristic (ROC) curves and the F
score (32), which is a measure that places greater weight on
detecting future cases. The J48 machine learner was opti-
mized to develop a broad classifier by setting the confi-
dence threshold to 0.5 and the minimum object in the
leaf node to 14. The naive Bayes classifier was used as
the default parameter setting in the WEKA software. Sen-
sitivity (Se), specificity (Sp), and precision (P) were further
calculated from the classification plot for both the training
and testing sets.

Table 1—Baseline (6–9 weeks postpartum) and follow-up characteristics of SWIFT women with GDM in the training and testing

sets (n = 122 pairs)

Characteristics

Training set Testing set

Non-T2D

(n = 80)

Incident T2D

(n = 80)

Non-T2D

(n = 42)

Incident T2D

(n = 42)

Sociodemographic/clinical

Age, years 33.1 (4.5) 33.3 (5.2) 35.1 (5.5)† 35.4 (5.5)†

Race/ethnicity, n (%)

Non-Hispanic white 13 (16) 12 (15) 8 (19) 9 (21)

Asian (East, South, Southeast) 26 (33) 26 (33) 13 (31) 10 (24)

Non-Hispanic black 10 (12) 10 (12) 2 (5) 5 (12)

Hispanic 31 (39) 31 (39) 17 (41) 17 (41)

Other 0 (0) 1 (1) 2 (5) 1 (2)

Parity, n (%)

Primiparous (1 birth) 31 (39) 26 (33) 13 (31) 16 (38)

Biparous (2 births) 27 (34) 29 (36) 14 (33) 16 (38)

Multiparous (.2 births) 22 (27) 25 (31) 15 (36) 10 (24)

GDM prenatal treatment, n (%)

Diet only 50 (63) 33 (41)*‡ 29 (69) 19 (45)*‡

Oral medications 28 (35) 38 (48) 13 (31) 17 (40)

Insulin 2 (2) 9 (11) 0 (0) 6 (14)

Gestational age at GDM diagnosis (weeks) 24.4 (7.5) 22.0 (8.6) 25.0 (7.1) 23.3 (8.1)

Prepregnancy BMI, kg/m2 33.3 (8.3) 33.5 (8.4) 32.6 (7.5) 33.1 (7.6)

Postpartum 6–9 weeks BMI, kg/m2 33.2 (7.8) 33.5 (7.7) 32.4 (6.6) 33.3 (7.6)

Hypertension history, n (%) 16 (20) 19 (24) 8 (19) 8 (19)

Family history of diabetes, n (%) 42 (53) 45 (56) 19 (33) 27 (64)*‡

6–9 weeks postpartum, lifestyle

Smoker, n (%) 2 (3) 4 (5) 1 (2) 1 (2)

Physical activity, met-h/week 47.4 (21.0) 54.2 (25.1) 49.4 (21.6) 48.8 (24.9)

Total energy intake, kcal/day 811 (319) 805 (338) 774 (340) 900.4 (297)

Lactation intensity groups, n (%)

Exclusive lactation 20 (25) 10 (12) 8 (19) 8 (19)

Mostly lactation 30 (38) 28 (35) 15 (36) 17 (41)

Mostly formula/mixed 18 (22) 19 (24) 10 (24) 12 (29)

Exclusive formula 12 (15) 23 (29) 9 (21) 5 (12)

6–9 weeks postpartum, plasma

FPG, mg/dL 95 (8.4) 103 (10.5)* 93.5 (7.8) 101.4 (11.3)*

2hPG, mg/dL 109 (25.9) 132 (29.5)* 116 (28.5) 132 (30.2)*

Fasting insulin, mU/mL 26 (14.8) 33 (17.7)* 25.6 (12.1) 29.1 (20)

Fasting triglycerides, mg/dL 128 (90.7) 150 (105.2) 134 (79.6) 151.3 (106)

Fasting HDL-C, mg/dL 49 (13.2) 49 (13.0) 51.5 (13.0) 49.4 (10.9)

HOMA-IR 6.1 (3.7) 8.6 (5.0)* 5.97 (3.0) 7.47 (5.9)

HOMA-B 299 (183) 305 (156) 313 (153) 284 (193)

Postbaseline, 2-year follow-up

Subsequent birth, n (%) 5 (6) 5 (6) 9 (21) 2 (5)*‡

Follow-up in months, median (IQR) 22.4 (1.9) 16.4 (11.6)*‡§ 21.8 (2.8) 18.3 (12.5)

Data are presented as the mean (SD) unless otherwise noted. Plasma values are from the SWIFT database (26). *P , 0.05 between

incident T2D and non-T2D groups; ‡Determined by x
2 test; †P , 0.05 between training and testing sets. Specific differences between

specific characteristics are shown in boldface type. §Determined by Wilcoxon sum rank tests for medians.
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Pearson correlation coefficients were calculated to
analyze the relationship between significant metabolites
and baseline clinically relevant parameters (6–9 weeks
postpartum BMI, FPG, 2hPG, fasting insulin, and HOMA-
insulin resistance [IR]) using SAS for Windows (version
9.1.3; SAS Institute Inc., Cary, NC).

RESULTS

Baseline sociodemographic and clinical characteristics of
training and testing sets are summarized in Table 1. Al-
though the mean age of women in the training set was
significantly younger (P , 0.05) compared with the test-
ing set, no statistically significant differences in any other
baseline or prenatal clinical characteristics were found.
The race/ethnicity distributions in both the training
and testing sets were similar. There was no statistically
significant difference in either prepregnancy or baseline
(6–9 weeks postpartum) BMI, total caloric intake, or
physical activity. A greater proportion of T2D incident
case patients had a family history of T2D in the testing
set compared with the training set. At baseline, there
were significantly higher mean levels of FPG, 2hPG,
and fasting insulin, and a higher proportion of case

patients treated with insulin or oral diabetes medication
during pregnancy among incident T2D case patients
compared with non-T2D case patients (P , 0.05) in both
sets. The mean HOMA-IR was higher for T2D versus non-
T2D case patients (P , 0.05) only in the training set.

A total of 110 metabolites passed all quality control
criteria, as described above. In the training set, a two-tailed
independent t test was carried out, with 21 metabolites
found to significantly differ between T2D and non-T2D case
patients (Table 2). The levels of metabolites 2-AAA (P ,

0.009), Ile (P , 0.009), Leu (P , 0.007), threonine (Thr)
(P , 0.02), tryptophan (Trp) (P , 0.02), tyrosine (Tyr) (P ,

0.0008), valine (Val) (P, 0.002), xleucine (xLeu) (P, 0.0009),
Hexose (P , 0.000002), and the acylcarnitine (AC)3 (P ,

0.05) were significantly elevated in incident T2D compared
with non-T2D case patients. In contrast, levels of the me-
tabolite glycine (Gly) (P , 0.04), sphingomyelin (SM) me-
tabolites SM (OH) C16:1 (P , 0.04), SM (OH) C22:2 (P ,

0.04), SM C18:0 (P , 0.03), SM C18:1 (P , 0.005), SM
C20:2 (P , 0.0002), SM C24:1 (P , 0.02), phosphatidyl-
cholines (PC) metabolites PC ae C40:5 (P , 0.05), PC ae
C42:5 (P, 0.03), PC ae C44:5 (P, 0.05), AC10 (P, 0.05),
and free fatty acid palmitoleic acid (C16:1 n9) (P , 0.04)

Table 2—Metabolites that significantly differ in incident T2D in the training set (n = 80 pairs)

No. Metabolites Non-T2D Incident T2D Uncorrected P value Corrected P value*

1 2-AAA 1.06 6 0.44 1.27 6 0.54 8.02E-03 1.01E-01

2 Gly 311.1 6 112.63 279.14 6 71.7 3.38E-02 2.31E-01

3 Ile 46.94 6 9.09 51.39 6 11.8 8.30E-03 1.01E-01

4 Leu 115.05 6 21.79 126.34 6 29.01 6.05E-03 9.50E-02

5 Thr 141.13 6 27.78 154.77 6 43.81 1.99E-02 1.83E-01

6 Trp 66.76 6 8.31 70.52 6 10.99 1.57E-02 1.57E-01

7 Tyr 94.82 6 17.48 106.33 6 24.51 7.95E-04 2.23E-02

8 Val 230.79 6 35.52 252.44 6 45.63 1.01E-03 2.23E-02

9 xLeu+ 200.69 6 29.18 220.64 6 43.67 8.63E-04 2.23E-02

10 Hexoses 4.7 6 0.51 5.16 6 0.63 1.13E-06 1.24E-04

11 SM (OH) C16:1 2.87 6 0.69 2.62 6 0.8 3.87E-02 2.31E-01

12 SM (OH) C22:2 7.13 6 1.45 6.59 6 1.83 3.90E-02 2.31E-01

13 SM C18:0 17.21 6 3.83 15.82 6 4.19 2.98E-02 2.31E-01

14 SM C18:1 8.91 6 2.01 7.94 6 2.21 4.11E-03 7.54E-02

15 SM C20:2 0.42 6 0.12 0.34 6 0.12 1.33E-04 7.33E-03

16 SM C24:1 26.86 6 5.52 24.52 6 6.44 1.47E-02 1.57E-01

17 PC ae C40:5 4.81 6 1.21 4.36 6 1.59 4.32E-02 2.31E-01

18 PC ae C42:5 2.27 6 0.46 2.08 6 0.59 2.42E-02 2.05E-01

19 PC ae C44:5 1.18 6 0.25 1.09 6 0.32 4.47E-02 2.31E-01

20 AC10 0.25 6 0.08 0.22 6 0.06 4.63E-02 2.31E-01

21 AC3 0.28 6 0.08 0.31 6 0.1 4.55E-02 2.31E-01

22 Palmitoleic acid (C16:1 n9) 2.76 6 0.96 2.45 6 0.86 3.86E-02 2.31E-01

Data are presented as the mean 6 SD, unless otherwise noted. Concentrations of metabolites are in mmol/L except for hexoses

(mmol/L). *P values are corrected for multiple comparisons with the Benjamini-Hochberg method and significant metabolites

are shown in boldface type. +Metabolites assayed using both Biocrates plate technology and in-house method, but xLeu was

excluded for prediction analysis. Significant differences after Benjamini-Hochberg correction for multiple comparisons are shown

in boldface type.
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were decreased in incident T2D compared with non-T2D case
patients. Furthermore, levels of Tyr, Val, xLeu, hexoses, and
SM C20:2 remained statistically significant after Benjamini-
Hochberg correction for multiple comparisons (Table 2).

To identify a set of metabolites with an accurate
prediction of future occurrence of T2D, we selected a
rigorous method of splitting data into training (model
building) and testing (model verification) over methods
such as cross-validation and holdout. Several methods of
attribute selection were explored. First, attributes were
ranked by predictive capacity and then trained and tested
in a naive Bayes model. Although this initial model
worked well in a 10-fold cross-validation, it performed
poorly in the testing set, indicating that this method of
attribute selection contained data set–specific biases (data

not shown). Next, the J48 decision tree method using
random sampling of attributes to build trees and then
selecting and pruning the trees to identify the best per-
forming attributes (the metabolite model) was used to
create the model. We optimized the J48 model by increas-
ing the confidence threshold to 0.5 and the minimum
number of subjects to 14. These settings ensured a broad
classifier model that was not prone to overfitting.

The resulting metabolite model had a high summation
of the area under the curve (AUC) and F score in the train-
ing set (Fig. 2A), relying only on a few metabolites, as
follows: PC ae C40:5, hexoses, branched-chain amino
acids (BCAAs) (Val, Leu, Ile), and SM (OH) C14:1. Baseline
(6–9 weeks postpartum) FPG alone predicted T2D inci-
dence in the training set, with an AUC of 0.724 (95% CI

Figure 2—Decision tree and ROC for the prediction of incident T2D. A: Decision tree by the J48 machine learner based on the combined

AUCs and F scores of all algorithms. The gray boxes indicate the metabolite chosen for the node, whereas the clear numbered boxes

indicate the concentration threshold in mmol/L for PC ae C40:5, BCAA, and SM (OH) C14:1 and in mmol/L for hexoses. The percentage

below each group indicates percent of instances correctly classified. B: ROC curve of the J48 machine learner algorithm for the training and

testing sets, performing with discriminative power of 0.830 (P < 0.000001) and 0.769 (P < 0.0001), respectively, which is greater than for

FPG alone 0.724 (P< 0.0001) and 0.706 (P< 0.01), as well as for 2hPG alone 0.726 (P< 0.000001) and 0.661 (P< 0.05), respectively. Data

are presented as the AUC.
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0.645–0.803, P , 0.0001), an Se of 60.0%, an Sp of
75.0%, an F score 0.649, and a total score of 1.373. In
contrast, the metabolite model resulted in an AUC of
0.830 (95% CI 0.765–0.894, P , 0.000001), with an Se
of 86.3%, a Sp of 69%, an F score of 0.793, and a total
score 1.623. We next applied the metabolite model and
the FPG model against the testing data set and assessed
relative performance using ROC curves (Fig. 2B). The FPG
model was worse at predicting the occurrence of T2D, with
an AUC of 0.706 (95% CI 0.569–0.816, P , 0.01), an Se of
57.0%, an Sp of 66.7%, an F score of 0.6, and a total score
of 1.306. In contrast, the metabolite model performed well
with an AUC of 0.769 (95% CI 0.667–0.871, P, 0.001), an
Se of 73.8%, an Sp of 69%, an F score of 0.721, and a total
score of 1.49 (Table 3). The metabolite model also outper-
formed the use of 2hPG in both the training set (AUC
0.726, F score 0.6309, total score 1.357) and the testing
set (AUC 0.661, F score 0.615, total score 1.276).

Using FPG and the 2hPG, we could build a model using
the J48 decision tree method (the glucose model). The
glucose model had greater Se but worse P and Sp com-
pared with the metabolite model (glucose model: P 0.627,
Se 0.881, Sp 0.476; metabolite model: P 0.705, Se 0.738,
Sp 0.690). To determine whether combining the glucose
model and metabolite model (the combined model) could
improve prediction, we built an optimized naive Bayes
classifier model combining the four metabolite species and
glucose data (FPG and 2hPG). The combined model showed
worse prediction compared with metabolites alone (P 0.697,
Se 0.548, Sp 0.762). Of the three models, the metabolite-only
model outperformed the latter two models with the highest
AUC and F score (Table 3). The predictions from the three
models (metabolite, glucose, and combined metabolite-glucose)
were directly compared in a Venn diagram to determine
the similarities and differences among the models (Fig. 3).

From the comparisons of the three models (Fig. 3), the
combined model showed improvement in capturing all six
future T2D case patients solely predicted by the glucose

model and missed by the metabolite model. The glucose
model could capture only 11 of 16 future T2D case pa-
tients predicted by the metabolite model. The combined
model fared worse in the prediction of control subjects
with eight unique false-negative findings (predicted as pa-
tients with diabetes; Fig. 3).

Pearson correlation coefficients were calculated among
the 22 metabolites that significantly differ between
incident T2D cases and non-T2D cases in the training
set, with metabolites selected by machine learning, and
five baseline clinical parameters that significantly differed
between incident T2D and non-T2D case patients in both
the training and testing sets (BMI, FPG, 2hPG, fasting
insulin level, and HOMA-IR). SM C24:1 most significantly
and negatively correlated with BMI (P , 0.0005,
r = 20.277). The correlations of 2-AAA, Ile, AC3, hexoses,
and SM C20:2 were most significant using FPG (P ,

0.0005, and r = 0.283, 0.278, 0.306, 0.826, and 20.284,
respectively). At 2 h PG, total hexoses were most signif-
icantly correlated with glucose levels (P , 0.005, r =
0.211), as expected. All other metabolites, with the excep-
tion of palmitoleic acid, significantly correlated with both
fasting insulin level and HOMA-IR (Table 4). Interest-
ingly, among all 22 significant metabolites, Gly and hex-
oses were the only metabolites to correlate significantly
with all five of the following clinical parameters: BMI
(r = 20.151, 0.160), FPG (r = 20.192, 0.826), 2hPG
(r = 20.173, 0.211), fasting insulin (r = 20.279, 0.311),
and HOMA-IR (r = 20.281, 0.429). SM (OH) C14:1 corre-
lated negatively with BMI, FPG, 2hPG, fasting insulin level,
and HOMA-IR, like the other SMs investigated in this
study.

DISCUSSION

GDM represents one of the strongest risk factors for the
development of T2D among young women, of whom 20–50%
may develop T2D within 5 years after delivery (1). Metzger
et al. (33) reported greater severity of hyperglycemia during

Table 3—Comparison of FPG, 2hPG and metabolites optimized machine learning performance, indicating greatest performance

in the metabolite model

Sets Parameters

Optimized

machine

learner

algorithm AUC* Se Sp Accuracy P

F

score

Best model

score

(F score

plus AUC)

Training FPG LR 0.724 (0.645–0.803) 60.00% 75.00% 67.50% 70.60% 64.90% 1.373

2hPG LR 0.726 (0.648–0.804) 58.75% 72.50% 65.63% 68.12% 63.09% 1.3569

Metabolite

model

DT 0.830 (0.765–0.894) 86.30% 68.80% 77.50% 73.40% 79.30% 1.623

Testing FPG LR 0.706 (0.596–0.816) 57.10% 66.70% 61.90% 63.20% 60.00% 1.306

2hPG Model LR 0.661 (0.543–0.779) 57.10% 71.40% 64.30% 66.70% 61.50% 1.276

Metabolite

model

DT 0.769 (0.667–0.871) 73.80% 69.10% 71.40% 70.50% 72.10% 1.490

Glucose model

(FPG and

2hPG)

DT 0.732 88.10% 47.60% 67.90% 62.70% 73.30% 1.465

Combined

model

NB 0.754 54.80% 76.20% 65.50% 69.70% 61.30% 1.367

DT, J48 decision tree; LR, logistic regression, NB, naive Bayes. *Data are presented as the mean and 95% CI.
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pregnancy-predicted T2D conversion within 6 months post-
partum as opposed to 5 years, and that higher prepregnancy
BMI increased the risk of T2D within 5 years postpartum. The
Diabetes Prevention Program Research Group (34) reported a
greatly reduced risk of T2D progression among women with a
history of GDM by either a lifestyle modification or metformin
treatment, with a T2D incidence of 10–15% within 10 years
compared with 50% in the standard care group. Nevertheless,
many women with GDM hold a false perception of low-risk
status for future diabetes (8,9). Thus, diabetes screening is
suboptimal during the postpartum period because of the
time-consuming glucose tolerance testing and required
fasting period.

Herein, we explored a combination of several signifi-
cantly altered metabolites for the prediction of incident
T2D compared to clinical parameters FPG and 2hPG among
women matched on age, race/ethnicity, and BMI. Our
metabolite model predicts T2D above and beyond the risk
contributed by obesity. Several metabolites were statis-
tically significant predictors of incident T2D, and they
were previously associated with T2D in cross-sectional
metabolomics studies, suggesting that GDM women who
are at risk for progressing to T2D present a more T2D-like
metabolite profile within the very short time frame of
6–9 weeks postpartum compared with women who will
remain without diabetes. Women in whom T2D devel-
oped were also more likely to have been treated with in-
sulin or oral medication during pregnancy, underscoring
the predictive value of the severity of glucose intolerance
during pregnancy.

Comparison of the three T2D predictive models
identified the metabolite model as the most balanced
for type I (false positive) and type II (false negative)
errors over the glucose model. A combined model of
metabolites and glucose could improve the capture of
future T2D over glucose alone, but with higher false-
positive prediction rates. This increased type I error
suggests a conflict between the predictions arising from the
metabolite or glucose models. Alternatively, these false-
positive predictions of future diabetes may represent the
detection of individuals in whom diabetes will develop
beyond the 2-year window of our current study.

The levels of several amino acids (2-AAA, Ile, Leu, Thr,
Trp, Tyr, Val) were increased in subjects with incident T2D,
except for Gly, which was significantly decreased. These
amino acids are known predictors of T2D (19). The metabolite
2-AAA has been reported to be increased up to 12 years
before T2D onset (30). In our study, 2-AAA levels were ele-
vated in women with incident T2D after a previous pregnancy
with GDM and were positively correlated with IR. Prevalent,
however, in a study by Fiehn et al. (15), where levels of 2-AAA
were assessed in a cross-sectional study of African American
women with T2D, no statistical significance was observed.
Mechanistically, in murine models treated with 2-AAA, de-
creased levels of FPG and enhanced glucose-stimulated
insulin secretion in b-cell models were observed (30). It
is still to be determined whether a similar response ex-
ists in humans.

BCAA levels correlate with IR in obese subjects (35).
Catabolism of BCAAs plays an important role in T2D and

Figure 3—Comparison of Venn diagrams and contingency tables of model predictions of future diabetes. A: Venn diagrams of correct and

incorrect predictions of the testing data set for all patients; only patients with incident T2D and patients with non-T2D (Non) are shown.

Intersection of correct predictions (green) and incorrect (red) indicates that one or more models had identical prediction of a patient, and the

other models did not. Although the correct and incorrect patient predictions appear similar across all three models (left), the glucose and

combined models have worse performance for the prediction of future diabetes (middle). The combined model has worse prediction for

control subjects (right). B: Contingency tables of the three different models against the testing data set. Columns are known group labels,

and rows are predicted group labels. The metabolite model (left) shows the higher P and Sp compared with the glucose model. The

combined model (right) has overall poorer Se and Sp compared with both the metabolite and glucose models alone.
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impaired fasting glucose levels (36). Clinical trials (18)
have also demonstrated that levels of BCAAs, such as
Leu, Ile, and Val, are increased up to 7 years before T2D
onset. In this study, BCAAs were elevated at 6–9 weeks
postpartum among women who were at the highest risk
of subsequent progression to T2D, indicating that this
metabolic profile precedes the onset of disease rather
than being a consequence of T2D.

In our cohort, we observed higher levels of the hexoses (all
six carbon sugars, such as glucose, fructose, and mannose) for
incident T2D, which is consistent with the findings of others
(18). Interestingly, in a T2D metabolomics study, Fiehn et al.
(15) characterized carbohydrates and found fructose levels to
be significantly elevated in obese women with T2D. Unlike
glucose, fructose stimulates hepatic lipogenesis, which may
result in hepatic IR, a key feature of T2D (37).

We also observed an overall reduction of sphingomye-
lin species in individuals with incident T2D compared
with non-T2D. Wang-Sattler et al. (19) confirmed a de-
crease in SM C20:2, SM C16:0, and SM C16:1, among
other SM species, and Floegel et al. (21) observed a de-
crease in SM C16:1 and an inverse association with

insulin secretion. In these nested case-control studies,
the decreases were found up to 7 years before T2D inci-
dence. The metabolic breakdown of SM results in ceramides,
which are known to induce b-cell apoptosis (38,39). Further
research is required to determine whether altered concen-
trations of ceramides mechanistically contribute to T2D, and
specifically to levels of SM C20:2, the sphingomyelin species
most significant in this cohort.

Anderson et al. (40) investigated the lipidome of post-
partum women who were normal, had hyperglycemia
(non-GDM), or had GDM. They observed that phosphati-
dylcholine, lysophosphatidylcholine, ACs, and free fatty
acids had the strongest correlations. Lappas et al. (23)
applied lipidomics analysis of plasma collected at 12 weeks
postpartum in 104 women with a GDM pregnancy who
were NGT postpartum and later evaluated T2D again at
8–10 years after delivery in a model including age, BMI,
pregnancy FPG, postnatal FPG, triacylglycerol, and total
cholesterol, and three metabolites (CE 20:4, PE(P-36:2),
and PS 38:4). In our study, palmitoleic acid, AC3, and AC10
were significantly altered with incident T2D. Palmitoleic
acid levels were positively related to T2D among older

Table 4—Pearson correlation coefficients (r) between 22 metabolites that significantly differ in incident T2D compared with

non-T2D, as well as metabolite selected by machine learning (SM (OH) C14:1), in the training set (80 pairs) at baseline and

clinical parameters BMI, FPG, 2hPG, fasting insulin, and HOMA-IR at baseline

Parameter and metabolite BMI (kg/m2) Fasting glucose (mg/dL) 2hPG (glucose mg/dL) Fasting insulin (mU/mL) HOMA-IR

2-AAA 0.210** 0.283*** 0.115 0.335*** 0.353***

Gly 20.151+ 20.192* 20.173* 20.279*** 20.281***

Ile 0.230** 0.278*** 0.144 0.415*** 0.437***

Leu 0.055 0.242** 0.15* 0.343*** 0.367***

Thr 0.218** 0.156* 0.025 0.150+ 0.153+

Trp 20.161* 0.22** 0.061 0.171* 0.187*

Tyr 0.205** 0.252** 0.028 0.335*** 0.353***

Val 0.073 0.235** 0.161* 0.409*** 0.418***

AC10 20.022 20.165* 0.139 20.201* 20.202*

AC3 0.104 0.306*** 0.184* 0.362*** 0.387***

xLeu+ 0.118 0.311*** 0.197* 0.481*** 0.508***

Hexoses 0.16* 0.826*** 0.211** 0.311*** 0.429***

Palmitoleic acid (C16:1n9) 0.246** 20.1 20.009 0.098 0.068

PC ae C40:5 20.252** 20.054 0.081 20.329*** 20.311***

PC ae C42:5 20.115 20.033 0.018 20.266*** 20.252**

PC ae C44:5 20.006 20.177* 20.182* 20.204** 20.217**

SM C18:0 20.181* 20.150* 0.028 20.266*** 20.272***

SM C18:1 20.049 20.157* 20.039 20.254** 20.263***

SM C20:2 20.092 20.284*** 20.122 20.358*** 20.376***

SM C24:1 20.277*** 20.246** 20.025 20.475*** 20.475***

SM (OH) C14:1 20.136 20.207* 20.175* 20.257** 20.279***

SM (OH) C16:1 20.161* 20.199* 20.087 20.315*** 20.329***

SM (OH) C22:2 20.201* 20.226** 20.034 20.378*** 20.385***

+P = 0.05. *P , 0.05. **P , 0.005. ***P , 0.0005.
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adults (41), and AC3 is known to be integral in the path-
way of BCAA catabolism (35). In previous studies, AC10
level has been associated with a graded increase among
individuals who were NGT, had impaired glucose tolerance,
and had T2D, but others found no significant difference in
the association of AC10 levels with T2D compared with
female control subjects (14,42). In contrast, our study
revealed a decrease in AC10 levels.

Prediction revealed two novel metabolites, PC ae C40:5
and SM (OH) C14:1, as being predictive of incident T2D.
Interestingly, PC ae C40:5 was not only significantly de-
creased in women with incident T2D, but also negatively
correlated with BMI, fasting insulin levels, and HOMA-IR.
Importantly, machine learning selected metabolite SM (OH)
C14:1, a metabolite not associated with T2D incidence. This
is because in predictive modeling, as opposed to traditional
exploratory research, association is not a requirement for
variable inclusion (43). Interestingly, similar to other SMs,
SM (OH) C14:1 correlated negatively with BMI, FPG level,
and 2hPG, which may partially explain why the combined
model did not outperform the metabolite-only model.

Presently, the ADA recommends T2D screening via
measuring fasting glucose levels or conducting a 2-h 75-g
OGTT at 6–12 weeks postpartum and thereafter every
1–3 years for women with a prior GDM diagnosis, and
more frequent testing if screening results fall within the
prediabetes ranges. Our metabolomics signature holds the
potential to replace the requirement for frequent OGTTs,
surpassing both the issue of lost follow-up and low screen-
ing rates with a single fasting measurement. In addition,
this signature was comparable and outperformed using the
2-h postload plasma glucose level after the OGTT in pre-
dicting future T2D incidence within 2 years. Furthermore,
this signature presents valuable insight into the etiology of
the transition to T2D in women with previous GDM.
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