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Abstract

Designing and optimizing high performance micropro-
cessors is an increasingly difficult task due to the size and
complexity of the processor design space, high cost of de-
tailed simulation and several constraints that a processor
design must satisfy. In this paper, we propose the use of em-
pirical non-linear modeling techniques to assist processor
architects in making design decisions and resolving com-
plex trade-offs. We propose a procedure for building accu-
rate non-linear models that consists of the following steps:
(i) selection of a small set of representative design points
spread across processor design space using latin hypercube
sampling, (ii) obtaining performance measures at the se-
lected design points using detailed simulation, (iii) building
non-linear models for performance using the function ap-
proximation capabilities of radial basis function networks,
and (iv) validating the models using an independently and
randomly generated set of design points. We evaluate our
model building procedure by constructing non-linear per-
formance models for programs from the SPEC CPU2000
benchmark suite with a microarchitectural design space
that consists of 9 key parameters. Our results show that
the models, built using a relatively small number of simula-
tions, achieve high prediction accuracy (only 2.8% error in
CPI estimates on average) across a large processor design
space. Our models can potentially replace detailed simula-
tion for common tasks such as the analysis of key microar-
chitectural trends or searches for optimal processor design
points.

1. Introduction

Processor architects are constantly confronted with the
challenge of designing high performance microprocessors
while simultaneously meeting constraints such as power
consumption and design costs. The problem of identifying
optimal processor configurations is further exacerbated for�
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the following reasons. First, processors are evolving into
increasingly complex systems with a large number and type
of components such as caches, predictors and queues. As a
consequence, architects must deal with a large microarchi-
tectural design space consisting of several interacting pa-
rameters. Furthermore, modern day workloads are com-
posed of a large spectrum of programs with widely differing
characteristics.

Architects have addressed these problems in the past by
exploring the design space using detailed microarchitectural
simulations on representative workloads. However, this ap-
proach has high simulation costs due to the low speed of
cycle-accurate simulators and large sizes of workloads. As
a result, architects are forced to restrict the number of de-
sign points that are evaluated. The selection of design points
considered for detailed simulation is usually governed by
design constraints such as power budgets or based on the ar-
chitect’s experience about the relative importance of certain
parts of the design space. This approach to experimentation
and optimization has the following drawbacks:� The underlying assumptions based on expert knowl-

edge can be in error, due to the changing significance
of micro-architectural parameters across process tech-
nologies, and the changing workloads.� Lack of statistical rigor, and hence conclusions drawn
can be incorrect.� Lack of insights on issues such as the nature of perfor-
mance bottlenecks, significance of individual param-
eters and their interactions, and characteristics of the
workload.

Models for processor performance. Much like in other
disciplines of science and engineering, the use of analytical
models can potentially address these limitations. An ana-
lytical model that accurately characterizes the relationship
between processor performance and various microarchitec-
tural parameters would, in theory, obviate the need for de-
tailed, expensive simulations. However, existing analytical
modeling techniques for processor performance [11, 16] are
based on several simplifying assumptions and only model a



small number of microarchitectural parameters. As a result,
these models lack the accuracy or the flexibility for use in a
real-world processor design cycle.

As an alternative to analytical models, several empirical
modeling techniques for processor performance have been
proposed and evaluated. For instance, Joseph et al. [10]
model performance as a linear combination of individual
microarchitectural parameters and their interactions. The
key characteristic of their approach is that the linear models
are learnt from data obtained from a small number of simu-
lations performed at carefully selected points in the design
space. While linear models were shown to be extensible and
capable to providing accurate estimates of the significance
of parameters and their interactions, they suffer from one
significant drawback. The inherent nature of linear models
prevents accurate representation of non-linear response be-
havior observed for processor performance. For instance, it
has been empirically shown that the number of instructions
issued per cycle varies nonlinearly with instruction window
size[11]. We further illustrate this limitation of linear mod-
els using a simple experiment. We measured the change
in superscalar processor performance as modeled by Sim-
plescalar [2] by varying two parameters, the L1 instruction
cache size and the L2 cache latency, while keeping other
microarchitectural parameters fixed. Figure 1 illustrates the
variation in performance for vortex, a benchmark from the
SPEC CPU2000 suite. As expected, higher L2 cache la-
tencies have a larger influence on performance when the L1
instruction cache is relatively small, indicated in Figure 1 by
the curvature in response and sharp changes for lower cache
sizes. As the number of parameters in the design space in-
creases, such changes in the response surface can be hard
to capture using linear models alone, and may result in low
prediction accuracies.

Figure 1. The CPI response surface.

Main contributions. In this paper, we propose the use

of nonlinear regression modeling techniques to build accu-
rate predictive models for processor performance. Specifi-
cally, we choose to build models using Radial Basis Func-
tion (RBF) networks [3], primarily because of their ability
to approximate many complex functions, and the relative
ease with which these models can be generated. We pro-
pose a procedure, BuildRBFmodel, that can be used to con-
struct accurate RBF network models for a given program-
input pair at low simulation cost. The procedure involves
following steps.

1. The design space of interest is specified by determin-
ing the microarchitectural parameters that should be
included in the model.

2. An initial a set of design points within the design space
(a sample) is selected for simulation. We use a space-
filling criteria called the ��� -star discrepancy [8] for se-
lecting the sample.

3. Processor response for the sample is obtained using de-
tailed, cycle accurate simulation.

4. The set of design points together with the response
(sample data) is used to build an RBF network model.

5. An estimate of the model’s accuracy is obtained by us-
ing a predetermined set of randomly generated points
in the design space.

6. This process is repeated with increasing sample sizes
until a desired level of accuracy is obtained.

We evaluated our models using programs from the SPEC
CPU2000 benchmark suite. We built a separate model for
each program-input pair and used the model to predict per-
formance at unexplored points in the design space. Our
results show that nonlinear models can achieve good pre-
diction accuracy (2.8% error in CPI on average) across the
design space with reasonable simulation cost. Furthermore,
we find that the nonlinear models can accurately capture
important microarchitectural trends and variations in per-
formance. Therefore, the nonlinear models we build could
potentially replace detailed simulation in several stages of
the processor design cycle.

Paper outline. This paper is organized as follows. Sec-
tion 2 describes the approach we use for building nonlin-
ear models. We discuss issues such as specification of the
design space, criteria for the selection of design points for
simulation and describe how RBF network models can be
used for approximating arbitrary functions. Section 3 de-
scribes the experimental framework we use to evaluate our
modeling procedure. We present the results of our evalua-
tion in Section 4. Section 5 discusses related work in the
area of processor performance modeling. We conclude in
Section 6.



2. Building Nonlinear Regression Models
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The first step in the construction of empirical models

involves the specification of the microarchitectural design
space of interest i.e. selection of parameters to be included
in the model, and the ranges of these parameters. The mod-
eling process does not constrain the number of parameters
that can be included in the model. The only cost associ-
ated with including a larger number of parameters is the
increased cost of simulation1. For building models of pro-
cessor performance, we derive from our previous study that
estimate the significance of microarchitectural parameters
[10] and include nine parameters that have the largest im-
pact on processor performance. These parameters are listed
in Table 1. We chose ranges for these parameters to be
wider than the range of most current superscalar implemen-
tations. Hence, all significant and feasible design points are
included within this design space.
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The careful selection of processor design points used for

performance simulation is critical for building accurate pre-
dictive models. Firstly, this sample must be representative
of the entire design space i.e. it should include points dis-
tributed in all regions of the design space since the presence
of large non-sampled regions can lead to low model accu-
racy. Furthermore, the size of the sample should be small
enough to keep the simulation cost low. Thus, a good sam-
ple selection strategy should space out points throughout the
design space just close enough to capture variations in the
response.

We achieve good sampling of the design space by using
a variant of latin hypercube sampling [15]. In this scheme,
the sample is ensured to have points corresponding to all
settings of a parameter, and the settings of each of the pa-
rameters are randomly combined. For a typical set of pro-
cessor micro-architectural parameters as in Table 1, a latin
hypercube sample will have points for all levels of pipeline
depth, all reorder buffer sizes, all L2 cache sizes, and so
on. This strategy has been shown to have better coverage
as compared to a simple random selection of points in the
design space [6].

To further improve the quality of latin hypercube sam-
ples, we use space-filling measures to quantify the extent to
which a sample covers the design space. The specific space
filling metric we use, referred to as the ��7 -star discrepancy,

1Our previous studies [10] have shown that the minimum number of
simulation runs required for building accurate models is roughly 10 times
the number of parameters.

has been analytically derived in Hickernell [8], and it mea-
sures the deviation of the sample from a uniform distribu-
tion of points in the space. Lower values of �8� -star discrep-
ancy denote better space filling. For building our models,
we generate a large number of latin hypercube samples and
choose the one with the best �87 -star discrepancy metric.

Choosing a correct sample size for experimentation is
another important decision. The sample must be sufficiently
large to cover the design space, and should be as small as
possible to keep the simulation cost low. We observe that
a suitable size can be determined using the �8� -star discrep-
ancy metric for different sample sizes. This is demonstrated
in Figure 2, for the samples we used in our experimentation.
There is a knee in this curve where the metric starts to taper,
indicating that further increases in size has lower impact on
space coverage. We observe that a choice of sample size
near this region meets our requirements.
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Figure 2. The best obtained ��� -star discrep-
ancy with number of simulations for our ex-
perimental setup.
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After we have decided on the sample of design points,

we simulate the performance at each of the selected design
points. We then use Radial Basis Function (RBF) networks
[3] to model and interpolate the simulation output data to
unexplored design points. Figure 3 illustrates the RBF net-
work, and how we use it in our context. Structurally, the net-
work consists three layers, an input layer which reads P in-
puts, a hidden layer that consists of Q radial basis functions
and an output layer consisting of a linear additive function
which produces the response. Each RBF receives the en-
tire input vector and generates a response. The output layer



Figure 3. A Radial Basis Function network.

function accumulates responses from all RBF and generates
a final response. The relationship between the input and the
output of this whole network can be mathematically repre-
sented by R,S TU�VXWYZ\[']�^ ZN_*Z

S TU (1)

where ` Z are the non-linear radial basis functions, x is the
vector of input settings, a Z are the weights associated with
the RBFs, and Q is the number of RBFs chosen.

Each radial basis function _cb
S TU is typically character-

ized by a center point d b within the parameter space and a
radius vector e b . Specifically, we use functions of the type

`
S TU�Vgfih/j S�kmlYn [']

S h n kBo n U �p n � U (2)

where the center point d Vrq o ] o �<stsusts
o lwv

and radius vectore Vxq p ] p �&ststsus p lwv . Note that this function has the highest
response when input corresponds to the center c, and the re-
sponse decreases as the distance of the input vector from the
center increases, controlled by the radius vector q p ] p �/sustsus p lJv .
Hence, for any input the functions which have centers close
to the input have the highest response, and the overall re-
sponse is effectively the weighted mean of these significant
RBF responses.

For this study, we map the microarchitectural design
space to the input space of the RBF network and use CPI as
the response. We use the data generated from simulation to
determine (i) specific design points as RBF centers (ii) radii
of influence of these centers (iii) weights so that the whole
network provides a good model of the CPI response metric
for the entire parameter space. For this we use a scheme

based on regression trees which was originally devised by
Orr et al. [17]. In our context, this scheme identifies con-
tiguous regions of the design space - specified by ranges
of the design parameters - that have similar performance as
measured by CPI. RBF centers are chosen at the centers of
such regions, and the radius of the RBF is chosen in propor-
tion to the size of the region. We next describe regression
trees and how they identify regions within the design space.�
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As the first step in model building, we build regression
trees for the sample data. Regression trees recursively par-
tition the input parameter space of the sample into two par-
titions such that the variability of data in the resulting parti-
tions is minimum. Any partitioning is governed by two pa-
rameters, an input parameter � and a value � for that input
parameter. Design points with parameter values less than or
equal to � form one branch of the binary tree, and the data
with parameter values greater than � form the other branch.
The parameter � and the boundary � are chosen to minimize
the residual error between the approximation and the data,
as we explain below. Suppose that a partition separates data� V��/� 7 � sts ��j at value � into left and right subsets

��
and�>�

, of sizes j � and j � , such that

�*� V~�N���&h�� n6� �i� (3)�>� V~�N���&h�� n6� �i� (4)

where h�� n is the setting of input parameter � at data point� . The mean output value on either side of the bifurcation is
given by

�� � V �j � Y�+�/�<� �&� (5)

�� � V �j � Y�:�/�&� �&� (6)

The residual square error between the mean values and the
data is given by

� S � � � U�V �j
S Y�+�/�<�

S �&� k �� � U ��� Y�+�/� �
S �&� k �� � U � U (7)

The bifurcation with lowest E(k,b) over all possible choices
of k and b is found by a discrete search over the P input
dimensions and j sample points. This essentially partitions
the data along an input parameter and a parameter value
which minimizes variation in the resulting partitions.

The regression tree is constructed by recursively parti-
tioning the data. Each partition creates two terminal nodes
in the tree, and these nodes are recursively bifurcated. The



parameters which cause the most output variation tend to
be split earliest and most often. The process of recursive
splitting is continued until there are no more than j W � l data
points in all terminal nodes, where j W � l is a method pa-
rameter whose best value is determined by experimentation.
The result of the construction is a tree where each node rep-
resents a region of the design space. The root node repre-
sents the whole space, and nodes at higher depths represent
increasingly smaller sub-regions.�
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Constructing an RBF network from the regression tree
involves choosing RBF centers, and the radius of the RBFs
from the structure of the regression tree. The regression tree
contains a root node, some non-terminal nodes, and termi-
nal nodes. Each node has an associated hyper-rectangle in
the input parameter space represented by a center d and a
size ¢ V£q ¤ ] ¤ �<ststsus ¤ l!v , where each ¤¡� represents the length
of the corresponding parameter range associated with the
hyper-rectangle. We associate RBF centers with the centers
of these hyper-rectangles, choose RBFs of the type in Eq.
2, and the RBF radii e V¥q p ] p � ststsus p l v of these RBFs are
set to the size of the associated hyper-rectangle scaled by a
parameter ¦ e V ¦'¢ (8)

We choose a best suited ¦ based on experimentation.
We select a subset of the regression tree node centers

as RBF centers such that the resulting model generalizes
well. We achieve this using model selection criteria [7],
which help to select a model that fits well on the training
data and also has a small number of model parameters -
in this case determined by the number of RBFs. We use
Akaike’s Information Criteria ( §©¨wª¬« ) for subset selection.
This criteria is defined as

§©¨wª « V$j��®+¯i°
S²±³ � U � 7´Q � 7´Q

S
Q � �¡US j k Q
k �iU �

o ¯ P ¤Nµ�¶ P µ (9)

where j is the size of the sample, m is the number of RBF
centers chosen , and

±³ � is the error variance of the RBF
network on the sample. These criteria combine model ac-
curacy and complexity, and have low values when both the
error variance and the number of RBF centers are simulta-
neously low. We choose the subset producing lowest values
of the selection criteria.

We order the selection of RBF centers for inclusion in
the model using the tree based selection ordering strategy
in Orr et al. [17]. This strategy first selects the center of
the root node of the regression tree; in this case the center
of the considered design space. Then it considers the cen-
ters of the two child nodes, and chooses between including

and excluding each of the total three centers. Amongst the
8 different possibilities, it chooses the one which most de-
creases the model selection criterion. Once this is done, it
moves deeper in the regression tree for considering addi-
tional centers in a similar fashion.

�
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We use a modified version of the function rbf rt 1 in

Mark Orr’s MATLAB software [18] for our model con-
struction. The software was updated to use §©¨wª « in the
model selection. We used it to determine optimal values of
the method parameters, j W � l and ¦ , to build the predictive
model, and to achieve the prediction at different settings.
We determined optimal j W � l and ¦ for each benchmark by
choosing the values which resulted in the lowest §|¨!ª�« .
3. Experimental Framework

The accuracy of our model construction depends on the
accuracy of the simulator. Hence, we use a detailed and
validated superscalar processor simulator in our experi-
mentation. Our simulation framework models pipelined,
multiple-issue, dynamically scheduled, speculative execu-
tion processors. It models all the performance critical
micro-architectural events and structures in superscalar pro-
cessors. The pipeline, caches, branch direction and tar-
get predictors, micro-architectural queues, functional units,
DRAM device timing, queuing at the memory controller,
and contention for the memory bus are all modeled. We
verified the functionality of each component of the simula-
tor individually. To further verify the simulator’s accuracy
across the processor design space, we validated trends in the
summary statistics against another similarly configured ver-
ified simulator, alphasim [4] at several points in the design
space.

We used the simulator to run benchmarks from the
SPEC CPU2000 integer suite using the lgred data set in
MinneSPEC [12] reduced data sets. This is done using
traces generated with IBM PowerPC executables, compiled
with xlc compiler applying the -O3 option. We run the
benchmarks to completion, and do not use any sampling.

We used our simulator to evaluate the CPI at a few com-
binations of the nine key micro-architectural parameters
listed in Table 1. These nine parameters are the most sig-
nificant factors affecting the CPI of SPEC benchmark exe-
cution using MinneSPEC inputs [10]. We note that the rel-
ative significance of microarchitectural parameters is input
dependent. For instance, the memory subsystem parameters
would have a higher influence on performance if the SPEC
reference inputs were used. We selected design points for
simulation within the 9-dimensional space bounded by the



Parameter Low Value High Value
pipe depth 22 9
ROB size 37 115
IQ size 0.31*ROB size 0.69*ROB size
LSQ size 0.31*ROB size 0.69*ROB size
L2 size 256KB 8MB
L2 lat 18 7
il1 size 8KB 64KB
dl1 size 8KB 64KB
dl1 lat 4 1

Table 2. Parameter range used for generating
test data.

Benchmark mean max std
181.mcf 2.1 12.7 1.8
186.crafty 2.9 10.8 2.7
197.parser 2.2 8.4 2.0
253.perlbmk 4.0 17.0 3.1
255.vortex 3.4 12.0 2.7
300.twolf 3.2 11.9 2.3
183.equake 1.9 5.9 1.3
188.ammp 2.5 4.8 1.2

Average 2.8

Table 3. Error diagnostics of predictive
model.

parameter ranges shown in Table 1. These ranges were cho-
sen to be wider than the range of most current superscalar
implementations. A sample of design points in the space
was generated by our variant of latin hypercube sampling,
and the benchmarks were simulated to completion at each
selected set of design points. We then built predictive mod-
els using RBF networks for CPI measures obtained from
these simulations using the input transformations listed in
the table. These particular transformations were chosen for
simplicity since the models tend to be accurate irrespective
of the transformations.

We used a randomly and independently generated set of
test data points to empirically estimate the predictive accu-
racy of the resulting models. We generated fifty such design
points within a more restricted parameter space specified in
Table 2. All benchmarks were simulated at these test points
and the resulting CPI was compared against the CPI pre-
dicted by model. We used the mean absolute percentage
error in CPI, standard deviation of this error, and the maxi-
mum error as model accuracy metrics.

Sample size 30 50 70 90 110 200¹Jº,»½¼ 1 2 1 1 1 1¾ 5 8 10 12 6 7
Number of RBF centers 15 16 22 27 40 76

Table 4. Diagnostics of RBF model for mcf.

4 Results

Figure 4 presents the mean, standard deviation, and max-
imum error of the RBF network models for mcf and twolf, at
different sample sizes. The model error decreases with in-
creasing sample sizes for the benchmarks, and we observe
similar plots for other benchmarks. Table 3 presents the er-
ror data for eight benchmarks at a sample size of 200. The
mean error in prediction across all benchmarks is 2.8%, and
the maximum error at any design point for any benchmark
is 17%. The floating point benchmarks equake and ammp
have low maximum error values of 5.9 and 4.8 respectively.
These errors are smaller than those achieved by any of the
existing modeling techniques, despite the fact that our mod-
els are built and tested across a significantly larger design
space.

We also observe from Figure 4 that although the model
error decreases with increasing sample size, this reduction
tapers at higher sample sizes. For the programs we study,
a sample size of around 90 combines good accuracy with
low simulation cost; increasing the sample size beyond this
point improves error at a lower rate. This point corresponds
to the knee in the �8� -star discrepancy curve (Figure 2).

The regression tree construction method parameters,j W � l and ¦ also affect the accuracy of models. Table 4
presents the best j W � l and ¦ values identified during RBF
network construction for mcf benchmark execution. The ta-
ble also presents number of RBF centers that were chosen
within the design space. The best j W � l value is typically
1. The radius is typically 5-12 times the size of the regres-
sion tree region, implying the influence of an RBF on the
predicted response in its own as well as in its neighboring
regions. We also observe that the number of RBF centers
is typically restricted to much less than half the number of
sample points.

The regression tree splitting forms a significant part of
the model construction, and contributes to its accuracy. We
present in Table 5 the initial and most significant splits. For
mcf the most significant splits are for L2 latency, L1 data
cache latency, and L2 size, while for vortex these are L1
data cache latency, instruction cache size and issue queue
size. Figure 5 gives another view of the same tree splitting,
providing the distribution of the actual parameter values at
which splitting occurs.



Parameter Low Value High Value Number of levels Transformation
Pipeline depth 24 7 18 linear
ROB size 24 128 ¿ linear
Issue Queue size 0.25*ROB size 0.75*ROB size ¿ linear
LSQ size 0.25*ROB size 0.75*ROB size ¿ linear
L2 size 256KB 8MB 6 log
L2 lat 20 5 16 linear
instrn. l1 size 8KB 64KB 4 log
data l1 size 8KB 64KB 4 log
data l1 lat 4 1 4 linear

Table 1. Parameter ranges and levels.
�

denotes sample size dependent number of parameter levels.
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Figure 4. Mean error, standard deviation, and maximum error of our predictive model.

Number 1 2 3 4 5 6 7 8
mcf parameter L2 lat dl1 lat L2 size L2 size L2 size dl1 lat ROB size pipe depth

value 11.5 2.5 370KB 370KB 740KB 2.5 56.5 17.9
depth 1 2 2 3 3 3 4 4

vortex parameter dl1 lat il1 size IQ size pipe depth L2 lat IQ size L2 lat ROB size
value 2.5 12KB 0.34* 18.5 13.5 0.36* 13.5 41.3
depth 1 2 2 3 3 3 3 4

Table 5. The most significant splitting points during regression tree construction.
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Figure 5. The parameter values in tree split-
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Apart from high predictive accuracy, another important

characteristic of a high quality model is the ability to pre-
dict major trends in response. To evaluate the RBF network
models on this count, we identified several potentially sig-
nificant two-factor interactions, predicted the nature of the
interaction using our model and compared the prediction
against data obtained from detailed simulation. Figure 6
presents the results for one such interaction between the in-
struction cache size and the L2 cache latency for the vortex
benchmark. In this figure, solid lines represent the simu-
lated CPI whereas dashed lines represent the CPI predicted
by our model. We find that the predicted values closely mir-
ror the trends obtained from simulation, except for config-
urations with low instruction cache sizes and high L2 la-
tencies where the model fails to predict the large drop in
performance.
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Having established the quality of nonlinear models, we

were interested in answering the following question: how
do simple linear regression models [10] compare against
their non-linear counterparts in terms of the accuracy of
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Figure 6. Using RBF network for predicting
variation in performance for the vortex bench-
mark due to different icache sizes and L2 la-
tencies

prediction? To ensure fair comparison in our experimental
setup, we built linear regression models for the 9-parameter
design space specified in Table 1. We used the same space-
filling samples that were used for building nonlinear model.
The amount of data we have restricts the linear model to
those with the main effects and all two-parameter interac-
tions only. After building a linear model, we use variable
selection based on the AIC criteria to eliminate insignificant
factors from the model. Finally, we estimate the prediction
accuracy of linear models using the same set of test data
points we used for evaluating nonlinear models.

Figure 7 plots the change in predictive accuracies of both
linear and nonlinear models for different sample sizes for
three benchmarks. The nonlinear models consistently have
model. For mcf, the linear model has a higher mean CPI
error of 6.5% as compared to 2.1% for the non-linear model
even with a sample size of 200. We find similar differences
between predictive accuracies for all benchmarks we evalu-
ated.

5. Related Work

As a result of the high cost of using simulators, efforts
have been made at developing models as alternatives to sim-
ulation for exploring the processor design space. Theoreti-
cal models [11, 16] relate performance to a few key micro-
architectural parameters and program characteristics. These
models typically measure the program execution speed un-
der an ideal micro-architecture, and then account for the
slowdowns due to cache misses, branch mispredictions, and
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Figure 7. Comparison of the predictive accu-
racies of linear and RBF network models.

other significant micro-architectural events. Building the
model requires the collection of these micro-architectural
statistics at the considered design point. They are useful
to evaluate and compare the performance of closely related
designs, but they have not been demonstrated to be accurate
across the entire feasible design space.

Statistical simulation [5, 19] uses profiled program
statistics as well as cache and branch prediction statistics to
generate a synthetic instruction trace which can guide pro-
cessor simulation. These simulations converge to a steady
value quickly and hence make it feasible to study a larger
set of configurations. However, its accuracy has not been
demonstrated across the entire design space. Its accuracy is
typically tested by varying a few parameters[5].

Yi et al. [20] have quantified the significance of
micro-architectural parameters by conducting simulations
based on foldover Plackett-Burman experimental designs.
Plackett-Burman designs are a way of choosing P param-
eter settings which allow the accurate estimation of the P
parameter effects in a little over P simulations. However,
these designs cannot quantify all the interactions between
processor parameters, which we observe are significant.

In all these modeling schemes, the designer is assumed
to have prior knowledge or must make simplifying assump-
tions about the relative significance of micro-architectural
parameters. For instance, experimentation based on the
Plackett-Burman design inherently assumes that all param-
eter interactions are negligible, and Karkhanis and Smith
[11] assume a set of significant miss events. Eeckhout et al.
[5] pre-determine a set of program properties and events to
profile for statistical simulation.

Joseph et al. [10] propose an iterative procedure for

building accurate linear regression models from simulation
data, and obtained estimates of the significance of microar-
chitectural parameters in superscalar processors. However,
we observe that the accuracy of linear models in predicting
processor performance is much lower than the non-linear
models we present.

Agakov et al. [1] develop statistical models relating pro-
gram execution to compiler optimization sequences for sev-
eral benchmarks, and use it to predict the best optimization
sequence for a new program. The prediction is done using
the model of the statistically closest program in terms of
program properties. Marin and Mellor-Crummey [14] build
models to predict application performance on processors
using a combination of architecture independent program
parameters and micro-architectural parameters. The focus
of the work is to predict the application performance for var-
ious input sizes on a target architecture. In contract, we pre-
dict the performance of a fixed application and input combi-
nation on different target architectures. The two approaches
can possibly be combined to learn a model relating appli-
cation characteristics, input sizes, and micro-architectural
parameters to execution speed.

In parallel with our work, Lee and Brooks [13] and Ipek
et al. [9] have independently developed predictive models
for processors. Lee and Brooks use regression splines to
build predictive models from simulation data. Ipek et al.
use artificial neural networks for the same purpose. The key
differences in our approach are: (1) use of latin hypercube
sampling to select design points for simulation, (2) parti-
tioning of the design space, and (3) and use of localized ra-
dial basis functions. These techniques help us achieve high
accuracy at relatively low simulation cost, .

6. Conclusion

In this paper, we have developed models capable of accu-
rately predicting performance across the entire superscalar
processor design space. We achieve this by training and
optimizing radial basis function networks using simulation
data from a carefully selected set of design points spread
throughout the design space. We obtain an average predic-
tion error of 2.8%, and this is significantly better than the
accuracy of other modeling techniques reported in litera-
ture. The model is accurate enough to be potentially used
by processor architects to systematically explore the design
space for optimal design points.

In constructing predictive models, we have interpolated
processor performance using RBF networks. Other mod-
eling techniques could possibly be used; its usefulness in
improving prediction accuracy requires further study. Fur-
ther, the simulation costs involved in constructing predictive
models can potentially be reduced using adaptive sampling,
wherein sets of design points to simulate are selected based



on data from initial small samples.
While our focus in this paper has been on developing

modeling for performance of speculative superscalar pro-
cessors similar models can be developed for other metrics
such as power consumption. Furthermore, our model build-
ing process and strategies can be applied for other types of
processors and for building models of systems performance
incorporating other parameters such as compiler optimiza-
tions. However, achieving accurate models in each of these
settings will require further tuning of the model building
strategies.
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